Does adding MRI and CSF-based biomarkers improve cognitive status classification based on cognitive performance questionnaires?

Cognitive status classification (e.g. dementia, cognitive impairment without dementia, and normal) based on cognitive performance questionnaires has been widely used in population-based studies, providing insight into the population dynamics of dementia. However, researchers have raised concerns abo...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 18; no. 5; p. e0285220
Main Authors Farina, Mateo P., Saenz, Joseph, Crimmins, Eileen M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.05.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0285220

Cover

More Information
Summary:Cognitive status classification (e.g. dementia, cognitive impairment without dementia, and normal) based on cognitive performance questionnaires has been widely used in population-based studies, providing insight into the population dynamics of dementia. However, researchers have raised concerns about the accuracy of cognitive assessments. MRI and CSF biomarkers may provide improved classification, but the potential improvement in classification in population-based studies is relatively unknown. Data come from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We examined whether the addition of MRI and CSF biomarkers improved cognitive status classification based on cognitive status questionnaires (MMSE). We estimated several multinomial logistic regression models with different combinations of MMSE and CSF/MRI biomarkers. Based on these models, we also predicted prevalence of each cognitive status category using a model with MMSE only and a model with MMSE + MRI + CSF measures and compared them to diagnosed prevalence. Our analysis showed a slight improvement in variance explained (pseudo-R2) between the model with MMSE only and the model including MMSE and MRI/CSF biomarkers; the pseudo-R2 increased from .401 to .445. Additionally, in evaluating differences in predicted prevalence for each cognitive status, we found a small improvement in the predicted prevalence of cognitively normal individuals between the MMSE only model and the model with MMSE and CSF/MRI biomarkers (3.1% improvement). We found no improvement in the correct prediction of dementia prevalence. MRI and CSF biomarkers, while important for understanding dementia pathology in clinical research, were not found to substantially improve cognitive status classification based on cognitive status performance, which may limit adoption in population-based surveys due to costs, training, and invasiveness associated with their collection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0285220