A Machine Learning Framework for Alzheimer’s Disease Detection: A Random Forest Approach with OASIS Data

ABSTRACT Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that causes memory loss, cognitive decline, and behavioral changes, making it a major global health challenge. With over 55 million people affected worldwide, timely and accurate diagnosis is crucial to improve patient out...

Full description

Saved in:
Bibliographic Details
Published inINTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT Vol. 9; no. 8; pp. 1 - 9
Main Authors C S, Swetha, Reshmi, Neha Ishwar
Format Journal Article
LanguageEnglish
Published 27.08.2025
Online AccessGet full text
ISSN2582-3930
2582-3930
DOI10.55041/IJSREM52209

Cover

Abstract ABSTRACT Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that causes memory loss, cognitive decline, and behavioral changes, making it a major global health challenge. With over 55 million people affected worldwide, timely and accurate diagnosis is crucial to improve patient outcomes. Traditional diagnostic methods such as MRI scans and clinical evaluations, while reliable, are often costly, time-consuming, and require expert involvement. Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) offer alternative approaches by detecting hidden patterns in patient data for early prediction. In this study, the OASIS Longitudinal Dataset, containing MRI, demographic, and cognitive features, was utilized to develop a predictive model for Alzheimer’s detection. A Random Forest Classifier was employed due to its robustness in handling heterogeneous data and its ability to provide feature importance insights. After preprocessing and training, the model achieved high accuracy in classifying subjects into non-demented, mildly demented, and moderately demented groups, with Clinical Dementia Rating (CDR), age, and MMSE scores identified as key predictors. The results demonstrate that Random Forest offers a reliable and interpretable solution for Alzheimer’s prediction, supporting its role as a clinical decision-support tool. Keywords: Alzheimer’s Disease, OASIS Dataset, Random Forest Classifier, Machine Learning, Early Detection, Dementia Prediction.
AbstractList ABSTRACT Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that causes memory loss, cognitive decline, and behavioral changes, making it a major global health challenge. With over 55 million people affected worldwide, timely and accurate diagnosis is crucial to improve patient outcomes. Traditional diagnostic methods such as MRI scans and clinical evaluations, while reliable, are often costly, time-consuming, and require expert involvement. Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) offer alternative approaches by detecting hidden patterns in patient data for early prediction. In this study, the OASIS Longitudinal Dataset, containing MRI, demographic, and cognitive features, was utilized to develop a predictive model for Alzheimer’s detection. A Random Forest Classifier was employed due to its robustness in handling heterogeneous data and its ability to provide feature importance insights. After preprocessing and training, the model achieved high accuracy in classifying subjects into non-demented, mildly demented, and moderately demented groups, with Clinical Dementia Rating (CDR), age, and MMSE scores identified as key predictors. The results demonstrate that Random Forest offers a reliable and interpretable solution for Alzheimer’s prediction, supporting its role as a clinical decision-support tool. Keywords: Alzheimer’s Disease, OASIS Dataset, Random Forest Classifier, Machine Learning, Early Detection, Dementia Prediction.
Author C S, Swetha
Reshmi, Neha Ishwar
Author_xml – sequence: 1
  givenname: Swetha
  surname: C S
  fullname: C S, Swetha
– sequence: 2
  givenname: Neha Ishwar
  surname: Reshmi
  fullname: Reshmi, Neha Ishwar
BookMark eNplkE1OwzAUhC0EEqV0xwF8AAK2Eycxu6g_UNSqUtt99JK8UJfEieygqqy4BtfjJFQti0qsZjT6NIvvhlyaxiAhd5w9SMkC_jh9XS3HcykEUxekJ2QsPF_57PKsX5OBczpjMlJC8oj3yDahc8g32iCdIVijzRudWKhx19h3WjaWJtXnBnWN9ufr29GRdggO6Qg7zDvdmCea0CWYoqnppLHoOpq0rW0On3Snuw1dJKvpio6gg1tyVULlcPCXfbKejNfDF2-2eJ4Ok5mXR1J5Sok8DOMCVSaLMgpZxoVkPhZZyYOC5ywHlfkQZyxALrjEOESASIiyRFAB9_vEO91-mBb2O6iqtLW6BrtPOUuPqlK9dRbro6oDf3_ic9u4w1z-x8_M-r8g7W29
ContentType Journal Article
CorporateAuthor Department of MCA, Bangalore Institute of Technology, Karnataka, India
CorporateAuthor_xml – name: Department of MCA, Bangalore Institute of Technology, Karnataka, India
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.55041/IJSREM52209
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2582-3930
EndPage 9
ExternalDocumentID 10.55041/ijsrem52209
10_55041_IJSREM52209
GroupedDBID AAYXX
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c759-992c668de9b5df760b12503edbf14d1c0ca9b3a8b04e1215e86eaa722ffea9413
IEDL.DBID UNPAY
ISSN 2582-3930
IngestDate Wed Oct 01 16:33:58 EDT 2025
Wed Oct 01 05:40:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 8
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c759-992c668de9b5df760b12503edbf14d1c0ca9b3a8b04e1215e86eaa722ffea9413
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ijsrem.com/download/a-machine-learning-framework-for-alzheimers-disease-detection-a-random-forest-approach-with-oasis-data/?wpdmdl=58596&refresh=68aec395d21f51756283797
PageCount 9
ParticipantIDs unpaywall_primary_10_55041_ijsrem52209
crossref_primary_10_55041_IJSREM52209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-08-27
PublicationDateYYYYMMDD 2025-08-27
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-27
  day: 27
PublicationDecade 2020
PublicationTitle INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
PublicationYear 2025
SSID ssib057925171
Score 1.9244721
Snippet ABSTRACT Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that causes memory loss, cognitive decline, and behavioral changes, making it a...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 1
Title A Machine Learning Framework for Alzheimer’s Disease Detection: A Random Forest Approach with OASIS Data
URI https://ijsrem.com/download/a-machine-learning-framework-for-alzheimers-disease-detection-a-random-forest-approach-with-oasis-data/?wpdmdl=58596&refresh=68aec395d21f51756283797
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2582-3930
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib057925171
  issn: 2582-3930
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB216YIVDwGiFVSzAHa39XPsQaqQRRK1lVJQ00plFd159UHiRNRRRReI3-Av-BV-gS_hjh9VBBu27Ges4_H1vcczx-cy9lJRNoylcBAKoSGJrAXlpAB0cW4dZhnN82qLI7F_mhyepWdr7MfdvzBXVBlmdYo23i1-jmYXYVYLCy20nRTOwXXKJSBqBzi9vbCXfp8X2mMNMLaqpUwlIFDSN5RwaCQlWui8usFvdMIcry9pFla4-_ZmYWZmukcE2jdZtY6GX-yJHK2OZWqi0KVUa4W3i5HZOtsQ_kirxzZOjz4UH30Pu5TIaizjoNHXE_VPwvZ-iOR4xeNK5bu3LBf45Qan05VyNnzAfnYL0ahYPu0sK7Wjb__wiPyfVuohu99ya140L8MjtmbLx-yq4KMGLW-9ZM_5sEPLCQMvOrS_vn2_5v0GMO93gN_wgh_XiPmwRsyLFjH3iPn7Ynww5n1C_ISdDAcn7_ahbTABOkslSBlpIXJjpUqNy0RAgZsGsTXKhYkJdaBRqhhzFSTWm3DYXFjELIqcsyip-j9lvXJe2meMO6VNYESELsgTmes80CIyKqIrYZrbdJO96p79ZNHYiEzo86uOkcnB4fh4MKpjZJO9vguMvweuBNPWvw58znrV56V9QdSpUttsffR1sN3G7G9Nmij3
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEG2FyYETiwARBKgPwK0Sr-1upAhZTEZJpASUSaRwGlVvWZjxjIhHETnxG_wFv8Iv8CVUe4lGcOHKvdt6bpernrufXzH2SlM2TJXwEAthIEucA-2VAPSpdB6LguYFtcWh2D3J9k_z0zX24_ZfmEuqDLMmRdvgFj9Hu4Uwa4SFDrpOCmfge-USELUDnN6cu4uwzwvdsQZYVzdSpgoQKOlbSjg0khIt9F7dEDY6YY5XFzQLa9x6d72wMzvdJgIdmqw6T8PPt4VEZ1KV2yT2OdVaEexiVHGHrYtwpDVg6yeHH8tPoYddTmQ1VWnU6uuJ-mdxdz9EcoLicaXy3V1WC_x6jdPpSjkb3Wc_-4VoVSyfN5e13jQ3f3hE_k8r9YDd67g1L9uX4SFbc9UjdlnygxYt77xkz_ioR8sJAy97tL--fb_iwxYwH_aA3_KSHzWI-ahBzMsOMQ-I-YdyvDfmQ0L8mB2Pdo7f70LXYAJMkStQKjFCSOuUzq0vRESBm0eps9rHmY1NZFDpFKWOMhdMOJwUDrFIEu8dKqr-T9igmlfuKeNeGxtZkaCPZKakkZERidUJXQlz6fIN9rp_9pNFayMyoc-vJkYme_vjo52DJkY22JvbwPh74EowPfvXgc_ZoP6ydC-IOtX6ZRetvwFclyfG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Framework+for+Alzheimer%E2%80%99s+Disease+Detection%3A+A+Random+Forest+Approach+with+OASIS+Data&rft.jtitle=INTERNATIONAL+JOURNAL+OF+SCIENTIFIC+RESEARCH+IN+ENGINEERING+AND+MANAGEMENT&rft.au=C+S%2C+Swetha&rft.au=Reshmi%2C+Neha+Ishwar&rft.date=2025-08-27&rft.issn=2582-3930&rft.eissn=2582-3930&rft.volume=9&rft.issue=8&rft.spage=1&rft.epage=9&rft_id=info:doi/10.55041%2FIJSREM52209&rft.externalDBID=n%2Fa&rft.externalDocID=10_55041_IJSREM52209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2582-3930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2582-3930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2582-3930&client=summon