A hybrid deconvolution approach for estimation of in vivo non-displaceable binding for brain PET targets without a reference region

Estimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 5; p. e0176636
Main Authors Zanderigo, Francesca, Mann, J. John, Ogden, R. Todd
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0176636

Cover

Abstract Estimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [11C]DASB and [11C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines VND at the individual level without requiring either a reference region or a blocking study. HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region's impulse response function into the sum of a parametric non-displaceable component, which is a function of VND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common VND. HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of VND and binding potentials to those obtained based on VND estimated using a purported reference region. For [11C]DASB and [11C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of VND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a VND determined from a non-ideal reference region, when considering the binding potentials BPP and BPND. HYDECA can provide subject-specific estimates of VND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
AbstractList Estimation of a PET tracer's non-displaceable distribution volume (V.sub.ND) is required for quantification of specific binding to its target of interest. V.sub.ND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [.sup.11 C]DASB and [.sup.11 C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines V.sub.ND at the individual level without requiring either a reference region or a blocking study. HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region's impulse response function into the sum of a parametric non-displaceable component, which is a function of V.sub.ND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common V.sub.ND . HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of V.sub.ND and binding potentials to those obtained based on V.sub.ND estimated using a purported reference region. For [.sup.11 C]DASB and [.sup.11 C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of V.sub.ND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a V.sub.ND determined from a non-ideal reference region, when considering the binding potentials BP.sub.P and BP.sub.ND. HYDECA can provide subject-specific estimates of V.sub.ND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
Background and aim Estimation of a PET tracer’s non-displaceable distribution volume (V ND ) is required for quantification of specific binding to its target of interest. V ND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [ 11 C]DASB and [ 11 C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines V ND at the individual level without requiring either a reference region or a blocking study. Methods HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region’s impulse response function into the sum of a parametric non-displaceable component, which is a function of V ND , assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common V ND . HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of V ND and binding potentials to those obtained based on V ND estimated using a purported reference region. Results For [ 11 C]DASB and [ 11 C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of V ND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a V ND determined from a non-ideal reference region, when considering the binding potentials BP P and BP ND . Conclusions HYDECA can provide subject-specific estimates of V ND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
Background and aim Estimation of a PET tracer’s non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [11C]DASB and [11C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines VND at the individual level without requiring either a reference region or a blocking study. Methods HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region’s impulse response function into the sum of a parametric non-displaceable component, which is a function of VND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common VND. HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of VND and binding potentials to those obtained based on VND estimated using a purported reference region. Results For [11C]DASB and [11C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of VND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a VND determined from a non-ideal reference region, when considering the binding potentials BPP and BPND. Conclusions HYDECA can provide subject-specific estimates of VND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
Background and aim Estimation of a PET tracer's non-displaceable distribution volume (V.sub.ND) is required for quantification of specific binding to its target of interest. V.sub.ND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [.sup.11 C]DASB and [.sup.11 C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines V.sub.ND at the individual level without requiring either a reference region or a blocking study. Methods HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region's impulse response function into the sum of a parametric non-displaceable component, which is a function of V.sub.ND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common V.sub.ND . HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of V.sub.ND and binding potentials to those obtained based on V.sub.ND estimated using a purported reference region. Results For [.sup.11 C]DASB and [.sup.11 C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of V.sub.ND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a V.sub.ND determined from a non-ideal reference region, when considering the binding potentials BP.sub.P and BP.sub.ND. Conclusions HYDECA can provide subject-specific estimates of V.sub.ND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
Estimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [11C]DASB and [11C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines VND at the individual level without requiring either a reference region or a blocking study.BACKGROUND AND AIMEstimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [11C]DASB and [11C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines VND at the individual level without requiring either a reference region or a blocking study.HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region's impulse response function into the sum of a parametric non-displaceable component, which is a function of VND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common VND. HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of VND and binding potentials to those obtained based on VND estimated using a purported reference region.METHODSHYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region's impulse response function into the sum of a parametric non-displaceable component, which is a function of VND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common VND. HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of VND and binding potentials to those obtained based on VND estimated using a purported reference region.For [11C]DASB and [11C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of VND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a VND determined from a non-ideal reference region, when considering the binding potentials BPP and BPND.RESULTSFor [11C]DASB and [11C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of VND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a VND determined from a non-ideal reference region, when considering the binding potentials BPP and BPND.HYDECA can provide subject-specific estimates of VND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.CONCLUSIONSHYDECA can provide subject-specific estimates of VND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
Estimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is generally assumed to be comparable brain-wide and is determined either from a reference region devoid of the target, often not available for many tracers and targets, or by imaging each subject before and after blocking the target with another molecule that has high affinity for the target, which is cumbersome and involves additional radiation exposure. Here we propose, and validate for the tracers [11C]DASB and [11C]CUMI-101, a new data-driven hybrid deconvolution approach (HYDECA) that determines VND at the individual level without requiring either a reference region or a blocking study. HYDECA requires the tracer metabolite-corrected concentration curve in blood plasma and uses a singular value decomposition to estimate the impulse response function across several brain regions from measured time activity curves. HYDECA decomposes each region's impulse response function into the sum of a parametric non-displaceable component, which is a function of VND, assumed common across regions, and a nonparametric specific component. These two components differentially contribute to each impulse response function. Different regions show different contributions of the two components, and HYDECA examines data across regions to find a suitable common VND. HYDECA implementation requires determination of two tuning parameters, and we propose two strategies for objectively selecting these parameters for a given tracer: using data from blocking studies, and realistic simulations of the tracer. Using available test-retest data, we compare HYDECA estimates of VND and binding potentials to those obtained based on VND estimated using a purported reference region. For [11C]DASB and [11C]CUMI-101, we find that regardless of the strategy used to optimize the tuning parameters, HYDECA provides considerably less biased estimates of VND than those obtained, as is commonly done, using a non-ideal reference region. HYDECA test-retest reproducibility is comparable to that obtained using a VND determined from a non-ideal reference region, when considering the binding potentials BPP and BPND. HYDECA can provide subject-specific estimates of VND without requiring a blocking study for tracers and targets for which a valid reference region does not exist.
Audience Academic
Author Zanderigo, Francesca
Mann, J. John
Ogden, R. Todd
AuthorAffiliation 2 Department of Psychiatry, Columbia University, New York, New York, United States of America
1 Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York, United States of America
University of Manchester, UNITED KINGDOM
3 Department of Radiology, Columbia University, New York, New York, United States of America
4 Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, New York, United States of America
AuthorAffiliation_xml – name: 1 Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, New York, United States of America
– name: University of Manchester, UNITED KINGDOM
– name: 4 Department of Biostatistics, Columbia University, Mailman School of Public Health, New York, New York, United States of America
– name: 2 Department of Psychiatry, Columbia University, New York, New York, United States of America
– name: 3 Department of Radiology, Columbia University, New York, New York, United States of America
Author_xml – sequence: 1
  givenname: Francesca
  orcidid: 0000-0001-6510-0676
  surname: Zanderigo
  fullname: Zanderigo, Francesca
– sequence: 2
  givenname: J. John
  surname: Mann
  fullname: Mann, J. John
– sequence: 3
  givenname: R. Todd
  surname: Ogden
  fullname: Ogden, R. Todd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28459878$$D View this record in MEDLINE/PubMed
BookMark eNqNk01v1DAQhiNURD_gHyCIhITgsEucDzvmgFRVBSpVKoLC1ZrYk6wrrx3sZEvP_HHc3bTqVhWqcog1eebNzDvj_WTHOotJ8pJkc1Iw8uHCjd6CmfcxPM8Io7SgT5I9wot8RvOs2Llz3k32Q7jIsqqoKX2W7OZ1WfGa1XvJ38N0cdV4rVKF0tmVM-OgnU2h770DuUhb51MMg17COu7aVNt0pVcujfXMlA69AYnQGEwbbZW23Tql8RC5b8fn6QC-wyGkl3pYuHFIIfXYokcrMZ66KPo8edqCCfhieh8kPz8fnx99nZ2efTk5OjydSVbVw6wFjrKtaZvRUoJivOJUSqyIyouCN21GIM-QVcAKyhvkjcw5KqpUzSkoDsVB8nqj2xsXxORfEKTmRV0xTvJInGwI5eBC9D527a-EAy3WAec7AX7Q0qCAWEnNeKParCxL1TYFltFgrJWkNWUqalUbrdH2cHUJxtwKkkxcj_CmBHE9QjGNMOZ9mqocmyUqiXbwYLaK2f5i9UJ0biWqkpBoTRR4Nwl493uMsxNLHSQaAxbduO63rAhnLIvom3vow65MVAexcW1bF_8rr0XFYckzzjJWskjNH6Dio3Cp42phq2N8K-H9VkJkBvwzdDCGIE5-fH88e_Zrm317h10gmGERpr0O2-Cru07fWnxzOyJQbgDpXQhxbR87wY_30qQe1tcnOqLN_5P_AQ7FOl0
CitedBy_id crossref_primary_10_1016_j_neuroimage_2019_05_055
crossref_primary_10_1088_1361_6560_abd4f7
crossref_primary_10_1038_s41380_022_01578_8
crossref_primary_10_1002_syn_22042
crossref_primary_10_1016_j_jad_2019_07_035
Cites_doi 10.1001/archpsyc.64.2.201
10.1038/jcbfm.2009.245
10.1016/j.mri.2003.12.002
10.1038/jcbfm.2011.108
10.1038/jcbfm.1994.45
10.1016/j.neuroimage.2014.12.038
10.1109/TBME.2002.804588
10.1007/s00259-016-3517-z
10.1080/01621459.2015.1060241
10.1093/biostatistics/kxi044
10.1016/j.biopsych.2010.03.023
10.1038/jcbfm.2009.190
10.1109/TBME.2009.2013820
10.1006/nimg.1996.0066
10.1006/nimg.2000.0717
10.1016/j.neuroimage.2014.05.033
10.1016/j.mibio.2003.09.009
10.2967/jnumed.110.076257
10.1097/00004647-200106000-00002
10.1016/j.neuroimage.2016.01.058
10.1038/jcbfm.2012.59
10.1109/4233.908397
10.1038/jcbfm.1995.17
10.1007/s00259-005-0027-9
10.1093/brain/awm255
10.1016/j.biopsych.2005.08.010
10.1016/S0969-8051(01)00214-1
10.1038/jcbfm.2009.49
10.1038/sj.jcbfm.9600072
10.1016/j.automatica.2009.10.031
10.1109/TNS.2002.1039552
10.2967/jnumed.107.046540
10.1016/j.nucmedbio.2007.03.008
10.1038/sj.jcbfm.9600329
10.1097/01.wcb.0000045042.03034.42
10.1198/jasa.2009.0021
10.1002/syn.20966
10.1002/sim.1562
10.1038/jcbfm.1993.5
10.1038/sj.jcbfm.9600197
10.1038/sj.jcbfm.9600493
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Zanderigo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 Zanderigo et al 2017 Zanderigo et al
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Zanderigo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 Zanderigo et al 2017 Zanderigo et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0176636
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Agricultural Science Database



MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Estimating PET binding without a reference region
EISSN 1932-6203
ExternalDocumentID 1893857912
oai_doaj_org_article_af86879bdf0444dfb3e4005e8dc6867d
10.1371/journal.pone.0176636
PMC5411064
A490970747
28459878
10_1371_journal_pone_0176636
Genre Validation Studies
Journal Article
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c758t-fa9ecf86f064cad79596cce51d2339bf01a20e75a7369be9bc29ed6dd896ad9a3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:12:37 EST 2021
Fri Oct 03 12:50:46 EDT 2025
Sun Oct 26 04:14:48 EDT 2025
Tue Sep 30 16:52:22 EDT 2025
Fri Sep 05 06:32:27 EDT 2025
Tue Oct 07 07:40:56 EDT 2025
Mon Oct 20 22:00:08 EDT 2025
Mon Oct 20 16:45:33 EDT 2025
Thu Oct 16 14:37:59 EDT 2025
Thu Oct 16 14:15:39 EDT 2025
Thu May 22 21:18:50 EDT 2025
Wed Feb 19 02:32:32 EST 2025
Wed Oct 01 02:50:48 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-fa9ecf86f064cad79596cce51d2339bf01a20e75a7369be9bc29ed6dd896ad9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Conceptualization: FZ JJM RTO.Data curation: FZ.Formal analysis: FZ RTO.Funding acquisition: JJM.Methodology: FZ RTO.Project administration: FZ JJM RTO.Resources: JJM.Software: FZ.Supervision: RTO.Validation: FZ JJM RTO.Visualization: FZ.Writing – original draft: FZ JJM RTO.Writing – review & editing: FZ JJM RTO.
Competing Interests: Drs. Zanderigo and Ogden declare no conflict of interest. Dr. Mann receives royalties for commercial use of the Columbia-Suicide Severity Rating Scale from the Research Foundation for Mental Hygiene Inc. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
ORCID 0000-0001-6510-0676
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0176636
PMID 28459878
PQID 1893857912
PQPubID 1436336
PageCount e0176636
ParticipantIDs plos_journals_1893857912
doaj_primary_oai_doaj_org_article_af86879bdf0444dfb3e4005e8dc6867d
unpaywall_primary_10_1371_journal_pone_0176636
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5411064
proquest_miscellaneous_1894519770
proquest_journals_1893857912
gale_infotracmisc_A490970747
gale_infotracacademiconefile_A490970747
gale_incontextgauss_ISR_A490970747
gale_incontextgauss_IOV_A490970747
gale_healthsolutions_A490970747
pubmed_primary_28459878
crossref_primary_10_1371_journal_pone_0176636
crossref_citationtrail_10_1371_journal_pone_0176636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References RB Innis (ref2) 2007; 27
C DeLorenzo (ref7) 2009; 29
MS Milak (ref27) 2008; 49
L Knutsson (ref38) 2004; 22
DY Riabkov (ref37) 2002; 49
M Naganawa (ref32) 2014; 99
RT Ogden (ref45) 2006; 7
KP Wong (ref36) 2002; 49
F O'Sullivan (ref29) 2009; 104
K Ishibashi (ref13) 2012; 32
N Ginovart (ref8) 2006; 26
JE Litton (ref14) 1994; 14
RV Parsey (ref11) 2006; 59
KP Wong (ref34) 2001; 5
H Ito (ref20) 2001; 13
FE Turkheimer (ref16) 2012; 32
VJ Cunningham (ref5) 2010; 30
RN Gunn (ref24) 2001; 21
NA Lassen (ref4) 1995; 15
FE Turkheimer (ref12) 2007; 48
RN Gunn (ref43) 2002; 22
M Slifstein (ref3) 2001; 28
VJ Cunningham (ref42) 1993; 13
RV Parsey (ref17) 2005; 25
RN Gunn (ref22) 2011; 65
M Yaqub (ref21) 2012; 32
AA Lammertsma (ref44) 1996; 4
G Henriksen (ref9) 2008; 131
F Zanderigo (ref26) 2015
G Pillonetto (ref40) 2010; 46
RT Ogden (ref28) 2007; 27
H Guo (ref35) 2007; 34
R Todd Ogden (ref25) 2015; 108
SM Ametamey (ref6) 2007; 48
CR Jiang (ref41) 2016; 111
M Laruelle (ref1) 2003; 5
RT Ogden (ref30) 2003; 22
RV Parsey (ref18) 2010; 68
S Eberl (ref31) 2017; 44
MS Milak (ref10) 2010; 51
M Veronese (ref23) 2016; 130
RT Ogden (ref33) 2010; 30
A Jucaite (ref15) 2006; 33
MA Oquendo (ref19) 2007; 64
F Zanderigo (ref39) 2009; 56
References_xml – volume: 64
  start-page: 201
  issue: 2
  year: 2007
  ident: ref19
  article-title: Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography
  publication-title: Archives of general psychiatry
  doi: 10.1001/archpsyc.64.2.201
– volume: 30
  start-page: 816
  issue: 4
  year: 2010
  ident: ref33
  article-title: Simultaneous estimation of input functions: an empirical study
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2009.245
– volume: 22
  start-page: 789
  issue: 6
  year: 2004
  ident: ref38
  article-title: Aspects on the accuracy of cerebral perfusion parameters obtained by dynamic susceptibility contrast MRI: a simulation study
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2003.12.002
– volume: 32
  start-page: 70
  issue: 1
  year: 2012
  ident: ref16
  article-title: Quantification of ligand PET studies using a reference region with a displaceable fraction: application to occupancy studies with [(11)C]-DASB as an example
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2011.108
– volume: 14
  start-page: 358
  issue: 2
  year: 1994
  ident: ref14
  article-title: Saturation analysis in PET—analysis of errors due to imperfect reference regions
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.1994.45
– volume: 108
  start-page: 234
  year: 2015
  ident: ref25
  article-title: Estimation of in vivo nonspecific binding in positron emission tomography studies without requiring a reference region
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.038
– volume: 49
  start-page: 1318
  issue: 11
  year: 2002
  ident: ref37
  article-title: Estimation of kinetic parameters without input functions: analysis of three methods for multichannel blind identification
  publication-title: Biomedical Engineering, IEEE Transactions on
  doi: 10.1109/TBME.2002.804588
– volume: 44
  start-page: 296
  issue: 2
  year: 2017
  ident: ref31
  article-title: Preclinical in vivo and in vitro comparison of the translocator protein PET ligands [18F]PBR102 and [18F]PBR111
  publication-title: European journal of nuclear medicine and molecular imaging
  doi: 10.1007/s00259-016-3517-z
– volume: 111
  start-page: 1
  issue: 513
  year: 2016
  ident: ref41
  article-title: A Functional Approach to Deconvolve Dynamic Neuroimaging Data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2015.1060241
– volume: 7
  start-page: 115
  issue: 1
  year: 2006
  ident: ref45
  article-title: Estimation in regression models with externally estimated parameters
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxi044
– volume: 68
  start-page: 170
  issue: 2
  year: 2010
  ident: ref18
  article-title: Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations
  publication-title: Biological psychiatry
  doi: 10.1016/j.biopsych.2010.03.023
– volume: 30
  start-page: 46
  issue: 1
  year: 2010
  ident: ref5
  article-title: Measuring drug occupancy in the absence of a reference region: the Lassen plot re-visited
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2009.190
– volume: 56
  start-page: 1287
  issue: 5
  year: 2009
  ident: ref39
  article-title: Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov
  publication-title: IEEE transactions on bio-medical engineering
  doi: 10.1109/TBME.2009.2013820
– volume: 48
  start-page: 158
  issue: 1
  year: 2007
  ident: ref12
  article-title: Reference and target region modeling of [11C]-(R)-PK11195 brain studies
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
– volume: 4
  start-page: 153
  issue: 3 Pt 1
  year: 1996
  ident: ref44
  article-title: Simplified reference tissue model for PET receptor studies
  publication-title: NeuroImage
  doi: 10.1006/nimg.1996.0066
– volume: 13
  start-page: 531
  issue: 3
  year: 2001
  ident: ref20
  article-title: Error analysis for quantification of [(11)C]FLB 457 binding to extrastriatal D(2) dopamine receptors in the human brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0717
– volume: 99
  start-page: 69
  year: 2014
  ident: ref32
  article-title: Evaluation of the agonist PET radioligand [(1)(1)C]GR103545 to image kappa opioid receptor in humans: kinetic model selection, test-retest reproducibility and receptor occupancy by the antagonist PF-04455242
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.033
– volume: 5
  start-page: 363
  issue: 6
  year: 2003
  ident: ref1
  article-title: Relationships between radiotracer properties and image quality in molecular imaging of the brain with positron emission tomography
  publication-title: Mol Imaging Biol
  doi: 10.1016/j.mibio.2003.09.009
– volume: 51
  start-page: 1892
  issue: 12
  year: 2010
  ident: ref10
  article-title: In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
  doi: 10.2967/jnumed.110.076257
– volume: 21
  start-page: 635
  issue: 6
  year: 2001
  ident: ref24
  article-title: Positron emission tomography compartmental models
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1097/00004647-200106000-00002
– volume: 130
  start-page: 1
  year: 2016
  ident: ref23
  article-title: Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.058
– volume: 32
  start-page: S178
  year: 2012
  ident: ref13
  article-title: Is the cerebellum the best reference region for a PET study with [F-18]-fallypride?
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
– volume: 32
  start-page: 1600
  issue: 8
  year: 2012
  ident: ref21
  article-title: Optimization of supervised cluster analysis for extracting reference tissue input curves in (R)-[(11)C]PK11195 brain PET studies
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2012.59
– volume: 5
  start-page: 67
  issue: 1
  year: 2001
  ident: ref34
  article-title: Simultaneous estimation of physiological parameters and the input function—in vivo PET data
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/4233.908397
– volume: 15
  start-page: 152
  issue: 1
  year: 1995
  ident: ref4
  article-title: Benzodiazepine receptor quantification in vivo in humans using [11C]flumazenil and PET: application of the steady-state principle
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.1995.17
– volume: 33
  start-page: 657
  issue: 6
  year: 2006
  ident: ref15
  article-title: Quantitative analyses of regional [11C]PE2I binding to the dopamine transporter in the human brain: a PET study
  publication-title: European journal of nuclear medicine and molecular imaging
  doi: 10.1007/s00259-005-0027-9
– volume: 131
  start-page: 1171
  issue: 5
  year: 2008
  ident: ref9
  article-title: Imaging of opioid receptors in the central nervous system
  publication-title: Brain
  doi: 10.1093/brain/awm255
– year: 2015
  ident: ref26
  article-title: Model-free quantification of dynamic PET data using nonparametric deconvolution
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
– volume: 59
  start-page: 821
  issue: 9
  year: 2006
  ident: ref11
  article-title: Acute occupancy of brain serotonin transporter by sertraline as measured by [11C]DASB and positron emission tomography
  publication-title: Biological psychiatry
  doi: 10.1016/j.biopsych.2005.08.010
– volume: 28
  start-page: 595
  issue: 5
  year: 2001
  ident: ref3
  article-title: Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers
  publication-title: Nuclear medicine and biology
  doi: 10.1016/S0969-8051(01)00214-1
– volume: 29
  start-page: 1332
  issue: 7
  year: 2009
  ident: ref7
  article-title: Modeling considerations for in vivo quantification of the dopamine transporter using [(11)C]PE2I and positron emission tomography
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.2009.49
– volume: 25
  start-page: 785
  issue: 7
  year: 2005
  ident: ref17
  article-title: Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600072
– volume: 46
  start-page: 81
  issue: 1
  year: 2010
  ident: ref40
  article-title: A new kernel-based approach for linear system identification
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.10.031
– volume: 49
  start-page: 707
  issue: 3
  year: 2002
  ident: ref36
  article-title: Estimation of input function and kinetic parameters using simulated annealing: application in a flow model
  publication-title: Nuclear Science, IEEE Transactions on
  doi: 10.1109/TNS.2002.1039552
– volume: 49
  start-page: 587
  issue: 4
  year: 2008
  ident: ref27
  article-title: Modeling considerations for 11C-CUMI-101, an agonist radiotracer for imaging serotonin 1A receptor in vivo with PET
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
  doi: 10.2967/jnumed.107.046540
– volume: 34
  start-page: 483
  issue: 5
  year: 2007
  ident: ref35
  article-title: An input function estimation method for FDG-PET human brain studies
  publication-title: Nuclear medicine and biology
  doi: 10.1016/j.nucmedbio.2007.03.008
– volume: 27
  start-page: 205
  issue: 1
  year: 2007
  ident: ref28
  article-title: In vivo quantification of serotonin transporters using [(11)C]DASB and positron emission tomography in humans: modeling considerations
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600329
– volume: 22
  start-page: 1425
  issue: 12
  year: 2002
  ident: ref43
  article-title: Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1097/01.wcb.0000045042.03034.42
– volume: 48
  start-page: 247
  issue: 2
  year: 2007
  ident: ref6
  article-title: Human PET studies of metabotropic glutamate receptor subtype 5 with 11C-ABP688
  publication-title: Journal of nuclear medicine: official publication, Society of Nuclear Medicine
– volume: 104
  start-page: 556
  issue: 486
  year: 2009
  ident: ref29
  article-title: Nonparametric Residue Analysis of Dynamic PET Data With Application to Cerebral FDG Studies in Normals
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.0021
– volume: 65
  start-page: 1319
  issue: 12
  year: 2011
  ident: ref22
  article-title: Translational characterization of [11C]GSK931145, a PET ligand for the glycine transporter type 1
  publication-title: Synapse
  doi: 10.1002/syn.20966
– volume: 22
  start-page: 3557
  issue: 22
  year: 2003
  ident: ref30
  article-title: Estimation of kinetic parameters in graphical analysis of PET imaging data
  publication-title: Statistics in medicine
  doi: 10.1002/sim.1562
– volume: 13
  start-page: 15
  issue: 1
  year: 1993
  ident: ref42
  article-title: Spectral analysis of dynamic PET studies
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/jcbfm.1993.5
– volume: 26
  start-page: 330
  issue: 3
  year: 2006
  ident: ref8
  article-title: Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase-A in the human brain
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600197
– volume: 27
  start-page: 1533
  issue: 9
  year: 2007
  ident: ref2
  article-title: Consensus nomenclature for in vivo imaging of reversibly binding radioligands
  publication-title: Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  doi: 10.1038/sj.jcbfm.9600493
SSID ssj0053866
Score 2.2521887
Snippet Estimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of interest. VND is...
Background and aim Estimation of a PET tracer's non-displaceable distribution volume (V.sub.ND) is required for quantification of specific binding to its...
Estimation of a PET tracer's non-displaceable distribution volume (V.sub.ND) is required for quantification of specific binding to its target of interest....
Background and aim Estimation of a PET tracer’s non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of...
BACKGROUND AND AIM:Estimation of a PET tracer's non-displaceable distribution volume (VND) is required for quantification of specific binding to its target of...
Background and aim Estimation of a PET tracer’s non-displaceable distribution volume (V ND ) is required for quantification of specific binding to its target...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0176636
SubjectTerms Algorithms
Animals
Benzylamines - pharmacokinetics
Binding
Biology and Life Sciences
Blood levels
Blood plasma
Brain
Brain - diagnostic imaging
Brain - metabolism
Brain research
Carbon Radioisotopes - pharmacokinetics
Computer and Information Sciences
Computer Simulation
Datasets as Topic
Deconvolution
Displacement
Estimates
Humans
Impulse response
In vivo methods and tests
Kinetics
Medicine and Health Sciences
Metabolites
Methods
Models, Neurological
Neuroimaging
Nuclear medicine
Papio
Parameter estimation
Positron emission tomography
Positron-Emission Tomography - methods
Radiation
Radiation effects
Radiopharmaceuticals - pharmacokinetics
Reproducibility
Reproducibility of Results
Singular value decomposition
Statistics, Nonparametric
Target recognition
Tomography
Tracers
Tuning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBByyzdOOjwtqVZB4CFrUW-RXaKRVsiK7i3rmjzPjOKERldoD1_U42szLn3dnviHkpUm1hOu_DJXhSZhZW4USqyyyzBapYikcwdjg_PETOzrJPpzmpxdGfWFNWE8P3CtuX1YFK7hQpkJmM1Op1ILb5bYwmhWMG8y-USGGy1SfgyGKGfONcimP971d5qu2sfMIOREdJfPfg8jx9Y9ZebZatt1lkPPfysmbm2Ylz3_J5fLCsXR4h9z2eJIu-vfYITdsc5fs-Ijt6GtPK_3mHvm9oGfn2J9FDV6Ct97n6MAqTgG-UuTc6JsZaVvRuqHbetvSpm1CU3eufgtbraiqXTOM26JwyAT9cnBM-6ryjuJvu-1mTSUdh5hQHADRNvfJyeHB8buj0I9gCDVcJNZhJYXVYIEKkIuWBgeTM61tHpskTYWqolgmkeW55CkTygqlE2ENM6YQTBoh0wdkBt_R7hIqmEH0ooQCBJPnubTMINiA52dKxiYg6WCPUnt-chyTsSzdn24c7im9Sku0YumtGJBw3LXq-TmukH-Lph5lkV3bfQA-V3qfK6_yuYA8Q0cp-1bVMUeUi0xEguNIgoC8cBLIsNFgCc8Puem68v3n79cQ-vZ1IvTKC1UtqENL3zYB74TMXRPJvYkk5Ak9Wd5Ftx600pUxQNUi5yJOYOfg6pcvPx-X8aFYltfYduNkkJ6I8yggD_vIGDULuCcXBS8CwicxM1H9dKWpzxzBeZ4BKGVZQOZjdF3LuI_-h3Efk1sJQjdX1LpHZuufG_sEgOdaPXU55g_KLYXE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHk1UMAgJOCQ7eZlxweEtmirgsRSlRb1FvmVdqVVvDS7i3rmj-NxnJSICnqNx1Hs8Yw_OzPfIPRaJZLb4z8PhaJxmGpdhhyiLNJU54kgid2CIcH5y5QcnKSfT7PTDTRtc2EgrLL1ic5RKyPhjnw3shtrnlEWxR8WP0KoGgV_V9sSGtyXVlDvHcXYLbQZAzPWAG3uTaaHR61vttZNiE-gS2i06_U1XJhKD0fAleiomq82KMfj33nrwWJu6uug6N8RlbdX1YJf_uTz-R_b1f49dNfjTDxuFsYW2tDVfbTlLbnGbz3d9LsH6NcYn19C3hZWcDhe-7WIW7ZxbGEtBi6OJskRmxLPKryerQ2uTBWqWe3iuiAFC4uZS5JxXQQUn8CHk2PcRJvXGO58zWqJOe6Km2AoDGGqh-hkf3L88SD0pRlCaQ8Yy7DkTMsyJ6VFNJIrKFhOpNRZpOIkYaIcRTweaZpxmhAmNBMyZloRpXJGuGI8eYQG9hv1NsKMKEA1ggmLbLIs45ooACH2_angkQpQ0uqjkJ63HMpnzAv3M47a80szpQVosfBaDFDY9Vo0vB3_kd8DVXeywLrtHpiLs8IbccHtiHPKhCqBZU-VItHWBWY6V5LkhNpPfQELpWhSWDvfUYxTNmIUShUE6JWTAOaNCkJ7zviqrotPX7_fQOjbUU_ojRcqjZ0OyX06hR0TMHr1JHd6ktZ_yF7zNizrdlbq4srSbM92qV_f_LJrhpdCuF6lzcrJAG0RpaMAPW4so5tZi4cyltM8QLRnM72p77dUs3NHfJ6lFqySNEDDzrpupNwn_x7HU3QnBrDmwlh30GB5sdLPLNRciufef_wGBYGDPQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsSJHR8X1KogUSroovaAIjt26IpVsiLJonLgwh_HkzgRgSLKgdsqHnvtsT35HM98g9AjRTJhjv_ClYqFbqR17grwsoginRBJiXkFQ4Dz6326N4teHcVHa-hDHwtjNWjOiIuyam_y4UdZ6G2ryW3gK-puT72AsKCv4S2NkOcD3yGhj1vGIfgyVkMA0gW0TmMD1SdofbZ_MD3ubppDl4Y-seF0f2pp9LpqWf0H2z2Bnp0FTH_3r7zYFEtx-kUsFj-9vHavoG_9sDuflU9eU0sv-_oLI-R_08tVdNnCXjztWtlAa7q4hjasYanwU8t-_ew6-j7FJ6cQRoYVnNVXdmvgnvwcG5SNgRqki7nEZY7nBV7NVyUuysJV86p1M4M_xnLexuy0VSTkwsAHO4e4c36vMHyCLpsaCzzkWsGQp6IsbqDZ7s7hiz3XZopwM3Peqd1ccJ3lCc0NwMqEgvzpNMt0HKiQEC5zPxChr1ksGKFcai6zkGtFlUo4FYoLchNNTB_1JsKcKgBZkksDtOI4FpoqwESm_UiKQDmI9AsizSyNOmTzWKTt3SAzx6lOpSkoPrWKd5A71Fp2NCJ_kX8Oa22QBRLw9oGZ-dTOeCrMiBPGpcqB9E_lkmhjkWOdqIwmlJmu3oeVmnYRtYMpS6cR9zmDzAkOethKABFIAZ5GH0VTVenLN-_PIfTu7UjoiRXKS6OOTNjoDjMmWJgjya2RpDFn2ah4E1Z2r5UqDQyiTmLGg9DU7Pfa2cUPhmJoFLwHC102rQywKDHmO-hWtzUHzRp4FvOEJQ5io007Uv24pJiftDzscWSwM40c5A3b-1yTe_tfK9xBl0JAk62f7Raa1J8bfddg4VresxbtBySsvGo
  priority: 102
  providerName: Unpaywall
Title A hybrid deconvolution approach for estimation of in vivo non-displaceable binding for brain PET targets without a reference region
URI https://www.ncbi.nlm.nih.gov/pubmed/28459878
https://www.proquest.com/docview/1893857912
https://www.proquest.com/docview/1894519770
https://pubmed.ncbi.nlm.nih.gov/PMC5411064
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0176636&type=printable
https://doaj.org/article/af86879bdf0444dfb3e4005e8dc6867d
http://dx.doi.org/10.1371/journal.pone.0176636
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELba7QEuiPJqoCwGIQGHrPK04wNC26qlILVUpYvaU2THTrvSKlk2u4We-ePMOA8RUUQvOcRjKxl77M_2zDeEvNZhJmH7L12leeBGxuSuRC-LKDJJqFgISzAGOB8esYNJ9PksPlsjbc7WRoHVjVs7zCc1WcxGP79ffwCDf2-zNnC_rTSal4UZech4GLJ1sgFrlcBkDodRd68A1m1vLxG1uCzwwiaY7l-t9BYry-nfzdyD-aysboKlf3tX3lkVc3n9Q85mfyxd-_fJvQZz0nE9SDbJmikekM3Gqiv6tqGefveQ_BrTy2uM4aIaN8pXzbikLfM4BYhLkZejDnikZU6nBb2aXpW0KAtXTyvr44XhWFRNbcCMraIwEQU93julted5RfH8t1wtqaRdohOKSSLK4hGZ7O-d7h64TZoGN4PNxtLNpTBZnrAc0E0mNSYvZ1lmYl8HYShU7vky8AyPJQ-ZUEaoLBBGM60TwaQWMnxMBvCNZotQwTQiHCUUoJw4jqVhGgEJtB8p6WuHhG1_pFnDYY6pNGapvZjjsJepVZpiL6ZNLzrE7WrNaw6P_8jvYFd3ssjAbV-Ui4u0MehUwh8nXCidI-OezlVoYDqMTaIzljAOn_oCB0pah7N280g6joQnOKYtcMgrK4EsHAW6-VzIVVWln758u4XQ15Oe0JtGKC9BHZlsQivgn5Ddqye53ZOEuSTrFW_hsG61UqU-wNkk5sIPoGY71G8uftkVY6PouleYcmVlkMKIc88hT2rL6DQL2CgWCU8cwns201N9v6SYXloS9DgC4Moih4w667pV5z69ta6ekbsBYjjr3bpNBsvFyjwHBLpUQ7LOzzg8k10fn_sfh2RjZ-_o-GRoz3SGdtKBd5Oj4_H5bw3nj00
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOJQLorwaKNQgEHDYNNmHvT4gFKBVSh8gSKvcFnvtbSNFu6GbpMqZ_8NvZMb7KCsq6KXX9dhaz4xnxrsz3xDyQnuxhOu_dJTmruMbkzgSsyx834SeYh64YCxwPjhkgyP_0ygYrZBfVS0MplVWNtEaap3F-I18qweONQy46Lnvpj8c7BqFf1erFhqFWuyZ5Tlc2fK3ux9Bvi9dd2d7-GHglF0FnBhi45mTSGHiJGQJOONYauy1zeLYBD3tep5QSbcn3a7hgeQeE8oIFbvCaKZ1KJjUQnqw7g1y0_fAlsD54aP6gge2g7GyPM_jva1SGzrTLDWdLiIxWiDoC_dnuwTUvqA1nWT5ZYHu3_maq_N0KpfncjL5wxnu3CG3yyiW9gu1WyMrJr1L1ko7kdPXJZj1m3vkZ5-eLrEqjGq8ei9KTacVljmFoJki0kdRQkmzhI5TuhgvMppmqaPHuc0awwIvqsa2BMdOUdjagn7ZHtIilz2n-EU5m8-opHXrFIptJ7L0Pjm6FhE9IC14R7NOqGAaYyYlFMRNQRBIwzSGOLC-r2RPt4lXySOKS1R0bM4xieyvPg63o4KlEUoxKqXYJk49a1qggvyH_j2KuqZFTG_7IDs7iUoTEUnYcciF0gli-OlEeQYMbGBCHbOQcXjVTVSUqCiQrS1T1PdFV3BshNAmzy0F4nqkmDh0Iud5Hu1-Pr4C0bevDaJXJVGSATtiWRZrwJ4QL6xBudGgBOsUN4bXUa0rruTRxTmGmZWqXz78rB7GRTEZMDXZ3NIgKBLn3TZ5WJyMmrMQbQUi5GGb8MaZabC-OZKOTy2seuBDKMz8NunUp-tKwn30731sktXB8GA_2t893HtMbrkYFtqE2Q3Smp3NzRMIamfqqbUklHy_btP1G9Tnu3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALory6UKhBIOCQfeRhxweECm3VUigVbdHegh077UqrZGl2W-2Zf8WvY8ZxUiIq6KXXeGzFM-OZcTLzDSEvdJBKuP5LT2nue6ExmScxyyIMTRwoFoALxgLnz7ts6zD8OIyGC-RXXQuDaZW1TbSGWhcpfiPvDcCxxhEXA7-XubSIvfXNd5MfHnaQwj-tdTuNSkV2zPwMrm_l2-11kPVL39_cOPiw5bkOA14KcfLUy6QwaRazDBxzKjX23WZpaqKB9oNAqKw_kH7f8EjygAllhEp9YTTTOhZMaiEDWPcauc6BGNMJ-bC57IEdYcyV6gV80HOa0Z0Uuen2EZXRgkKfu0LbMaDxC4uTcVFeFPT-nbt5c5ZP5PxMjsd_OMbNO-S2i2jpWqWCS2TB5HfJkrMZJX3tgK3f3CM_1-jxHCvEqMZr-KnTelrjmlMIoCmiflTllLTI6Cinp6PTguZF7ulRaTPIsNiLqpEtx7FTFLa5oHsbB7TKay8pfl0uZlMqadNGhWILiiK_Tw6vREQPyCK8o1kmVDCN8ZMSCmKoKIqkYRrDHVg_VHKgOySo5ZGkDiEdG3WME_vbj8NNqWJpglJMnBQ7xGtmTSqEkP_Qv0dRN7SI720fFCdHiTMXiYQdx1wonSGen85UYMDYRibWKYsZh1ddRUVJqmLZxkola6HoC45NETrkuaVAjI8cT8uRnJVlsv3l2yWI9r-2iF45oqwAdqTSFW7AnhA7rEW50qIES5W2hpdRrWuulMn5mYaZtapfPPysGcZFMTEwN8XM0iBAEuf9DnlYnYyGsxB5RSLmcYfw1plpsb49ko-OLcR6FEJYzMIO6Tan61LCffTvfaySG2C0kk_buzuPyS0fI0SbO7tCFqcnM_ME4tupemoNCSXfr9py_QaoZ7-_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nFImsSJHR8X1KogUSroovaAIjt26IpVsiLJonLgwh_HkzgRgSLKgdsqHnvtsT35HM98g9AjRTJhjv_ClYqFbqR17grwsoginRBJiXkFQ4Dz6326N4teHcVHa-hDHwtjNWjOiIuyam_y4UdZ6G2ryW3gK-puT72AsKCv4S2NkOcD3yGhj1vGIfgyVkMA0gW0TmMD1SdofbZ_MD3ubppDl4Y-seF0f2pp9LpqWf0H2z2Bnp0FTH_3r7zYFEtx-kUsFj-9vHavoG_9sDuflU9eU0sv-_oLI-R_08tVdNnCXjztWtlAa7q4hjasYanwU8t-_ew6-j7FJ6cQRoYVnNVXdmvgnvwcG5SNgRqki7nEZY7nBV7NVyUuysJV86p1M4M_xnLexuy0VSTkwsAHO4e4c36vMHyCLpsaCzzkWsGQp6IsbqDZ7s7hiz3XZopwM3Peqd1ccJ3lCc0NwMqEgvzpNMt0HKiQEC5zPxChr1ksGKFcai6zkGtFlUo4FYoLchNNTB_1JsKcKgBZkksDtOI4FpoqwESm_UiKQDmI9AsizSyNOmTzWKTt3SAzx6lOpSkoPrWKd5A71Fp2NCJ_kX8Oa22QBRLw9oGZ-dTOeCrMiBPGpcqB9E_lkmhjkWOdqIwmlJmu3oeVmnYRtYMpS6cR9zmDzAkOethKABFIAZ5GH0VTVenLN-_PIfTu7UjoiRXKS6OOTNjoDjMmWJgjya2RpDFn2ah4E1Z2r5UqDQyiTmLGg9DU7Pfa2cUPhmJoFLwHC102rQywKDHmO-hWtzUHzRp4FvOEJQ5io007Uv24pJiftDzscWSwM40c5A3b-1yTe_tfK9xBl0JAk62f7Raa1J8bfddg4VresxbtBySsvGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deconvolution+approach+for+estimation+of+in+vivo+non-displaceable+binding+for+brain+PET+targets+without+a+reference+region&rft.jtitle=PloS+one&rft.au=Zanderigo%2C+Francesca&rft.au=Mann%2C+J.+John&rft.au=Ogden%2C+R.+Todd&rft.date=2017-05-01&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=12&rft.issue=5&rft.spage=e0176636&rft_id=info:doi/10.1371%2Fjournal.pone.0176636&rft.externalDocID=A490970747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon