A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer

Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted featur...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 6; p. e0234871
Main Authors Demircioglu, Aydin, Grueneisen, Johannes, Ingenwerth, Marc, Hoffmann, Oliver, Pinker-Domenig, Katja, Morris, Elizabeth, Haubold, Johannes, Forsting, Michael, Nensa, Felix, Umutlu, Lale
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.06.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0234871

Cover

Abstract Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer. A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats. Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading. Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
AbstractList BackgroundRecently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer.MethodsA total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats.ResultsPredictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading.ConclusionOur preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer. A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats. Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading. Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Background Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer. Methods A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0–89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats. Results Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading. Conclusion Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Background Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer. Methods A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0–89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats. Results Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading. Conclusion Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer. A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats. Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading. Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer.BACKGROUNDRecently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and reproducible analysis lies in the inter-reader variability of the tumor annotations, which can potentially cause differences in the extracted feature sets and results. In this study, the diagnostic potential of a rapid and clinically feasible VOI (Volume of Interest)-based approach to radiomics is investigated to assess MR-derived parameters for predicting molecular subtype, hormonal receptor status, Ki67- and HER2-Expression, metastasis of lymph nodes and lymph vessel involvement as well as grading in patients with breast cancer.A total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats.METHODSA total of 98 treatment-naïve patients (mean 59.7 years, range 28.0-89.4) with BI-RADS 5 and 6 lesions who underwent a dedicated breast MRI prior to therapy were retrospectively included in this study. The imaging protocol comprised dynamic contrast-enhanced T1-weighted imaging and T2-weighted imaging. Tumor annotations were obtained by drawing VOIs around the primary tumor lesions followed by thresholding. From each segmentation, 13.118 quantitative imaging features were extracted and analyzed with machine learning methods. Validation was performed by 5-fold cross-validation with 25 repeats.Predictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading.RESULTSPredictions for molecular subtypes obtained AUCs of 0.75 (HER2-enriched), 0.73 (triple-negative), 0.65 (luminal A) and 0.69 (luminal B). Differentiating subtypes from one another was highest for HER2-enriched vs triple-negative (AUC 0.97), followed by luminal B vs triple-negative (0.86). Receptor status predictions for Estrogen Receptor (ER), Progesterone Receptor (PR) and Hormone receptor positivity yielded AUCs of 0.67, 0.69 and 0.69, while Ki67 and HER2 Expressions achieved 0.81 and 0.62. Involvement of the lymph vessels could be predicted with an AUC of 0.8, while lymph node metastasis yielded an AUC of 0.71. Models for grading performed similar with an AUC of 0.71 for Elston-Ellis grading and 0.74 for the histological grading.Our preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.CONCLUSIONOur preliminary results of a rapid approach to VOI-based tumor-annotations for radiomics provides comparable results to current publications with the perks of clinical suitability, enabling a comprehensive non-invasive platform for breast tumor decoding and phenotyping.
Audience Academic
Author Umutlu, Lale
Demircioglu, Aydin
Nensa, Felix
Forsting, Michael
Pinker-Domenig, Katja
Ingenwerth, Marc
Morris, Elizabeth
Hoffmann, Oliver
Haubold, Johannes
Grueneisen, Johannes
AuthorAffiliation 1 Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
2 Department of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
3 Department of Gynaecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
4 Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
Medical University of Vienna, AUSTRIA
AuthorAffiliation_xml – name: 4 Breast Imaging Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
– name: 1 Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
– name: 3 Department of Gynaecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
– name: Medical University of Vienna, AUSTRIA
– name: 2 Department of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
Author_xml – sequence: 1
  givenname: Aydin
  orcidid: 0000-0003-0349-5590
  surname: Demircioglu
  fullname: Demircioglu, Aydin
– sequence: 2
  givenname: Johannes
  surname: Grueneisen
  fullname: Grueneisen, Johannes
– sequence: 3
  givenname: Marc
  surname: Ingenwerth
  fullname: Ingenwerth, Marc
– sequence: 4
  givenname: Oliver
  surname: Hoffmann
  fullname: Hoffmann, Oliver
– sequence: 5
  givenname: Katja
  orcidid: 0000-0002-2722-7331
  surname: Pinker-Domenig
  fullname: Pinker-Domenig, Katja
– sequence: 6
  givenname: Elizabeth
  surname: Morris
  fullname: Morris, Elizabeth
– sequence: 7
  givenname: Johannes
  surname: Haubold
  fullname: Haubold, Johannes
– sequence: 8
  givenname: Michael
  surname: Forsting
  fullname: Forsting, Michael
– sequence: 9
  givenname: Felix
  orcidid: 0000-0002-5811-7100
  surname: Nensa
  fullname: Nensa, Felix
– sequence: 10
  givenname: Lale
  surname: Umutlu
  fullname: Umutlu, Lale
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32589681$$D View this record in MEDLINE/PubMed
BookMark eNqNk1trFDEYhgep2IP-A9EBQfRi1yRzyMQLoRQPC5VCPdyGTPJlN2U2mSaZ6l76z810t3W3FCwDc_jyvG--Q-Yw27POQpY9x2iKC4rfXbjBW9FN-xSeIlKUDcWPsgPMCjKpCSr2tt73s8MQLhCqiqaun2T7BakaVjf4IPtznHvRG5VfuW5YQu50bmwEDyFOWhFA5aLvvRNyMS55oYxbGhlykbZeBRPGaOtBhJh_PZ_l2vk8Dst0VyCdMnaeSJX3C7Aurvrx-59ACivBP80ea9EFeLZ5HmU_Pn38fvJlcnr2eXZyfDqRtGriRBOiq7JmElUCANoagSoEpapWLdMaq4oVCnDLgALGdSUFaNCsBtJoVLC2OMpern37zgW-6V7gpMSUpmaQJhGzNaGcuOC9N0vhV9wJw68Dzs-58NHIDpJKlrgqKWUVLZlULSqwolq2tMWKNCh5VWuvwfZi9Ut03a0hRnwc4E0KfBwg3www6T5sshzaJSgJNnrR7SSzu2LNgs_dFacFZjUaDd5sDLy7HNIY-dIECV0nLLjhut4GkxIxktBXd9D7u7Kh5iIVbqx2aV85mvLjmlBalqwsEjW9h0qXgnReUoXapPiO4O2OIDERfse5GELgs2_nD2fPfu6yr7fYBYguLkI629E4G3bBF9udvm3xzb-RgPdrQHoXggfNpYli9Emlme5_cyzviB80_r_Scjin
CitedBy_id crossref_primary_10_1007_s12149_021_01688_3
crossref_primary_10_1177_03000605241237867
crossref_primary_10_1259_bjro_20220002
crossref_primary_10_2217_fon_2022_0593
crossref_primary_10_1097_RLI_0000000000001010
crossref_primary_10_1007_s00330_024_10638_2
crossref_primary_10_1016_j_acra_2023_10_010
crossref_primary_10_3390_diagnostics10090708
crossref_primary_10_1186_s12880_021_00610_7
crossref_primary_10_3390_cancers14163905
crossref_primary_10_1007_s11547_021_01423_y
crossref_primary_10_1186_s13244_021_01034_1
crossref_primary_10_3390_cancers13122928
crossref_primary_10_1097_RLI_0000000000000855
crossref_primary_10_3390_jcm12041372
crossref_primary_10_1155_2022_1955512
crossref_primary_10_3390_diagnostics12102558
crossref_primary_10_1002_imo2_19
crossref_primary_10_1016_j_crad_2022_04_015
crossref_primary_10_1038_s41598_024_62585_z
crossref_primary_10_1097_MD_0000000000035830
crossref_primary_10_3390_cancers14071727
crossref_primary_10_1016_j_acra_2024_03_002
crossref_primary_10_1016_j_ejrad_2021_109996
crossref_primary_10_2174_1573405617666210303102526
crossref_primary_10_6009_jjrt_2021_JSRT_77_8_866
crossref_primary_10_1007_s11547_023_01718_2
crossref_primary_10_1007_s12094_023_03287_2
crossref_primary_10_3390_cancers16203480
crossref_primary_10_4236_ojapps_2021_119074
crossref_primary_10_1016_j_acra_2023_12_012
crossref_primary_10_1093_bjrai_ubae016
crossref_primary_10_1002_jmrs_709
crossref_primary_10_1088_1361_6560_ac7d8f
crossref_primary_10_3390_curroncol28040217
crossref_primary_10_3390_jpm13071150
crossref_primary_10_1016_j_jrras_2024_101260
crossref_primary_10_1016_j_compbiomed_2022_106147
crossref_primary_10_1186_s13244_022_01170_2
crossref_primary_10_1186_s13244_022_01328_y
crossref_primary_10_1007_s40846_024_00900_9
crossref_primary_10_1007_s10549_025_07614_9
Cites_doi 10.1007/978-1-4614-7657-3_19
10.3109/02841851.2010.498444
10.1118/1.4923882
10.1016/j.ejrad.2015.07.012
10.1016/j.canlet.2017.06.004
10.1007/s00261-018-1660-7
10.1016/j.acra.2008.06.005
10.1001/jama.295.21.2492
10.2214/AJR.18.20218
10.1148/radiol.14132641
10.1038/s41598-020-60393-9
10.1117/1.JMI.2.4.041007
10.1159/000351193
10.1088/0031-9155/61/13/R150
10.1007/s00261-019-02028-w
10.1371/journal.pone.0118261
10.1007/s00330-010-1722-x
10.1634/theoncologist.2011-S1-20
10.1002/mp.12925
10.1016/j.radonc.2016.04.004
10.1172/JCI33295
10.1016/j.acra.2005.08.035
10.1111/j.1365-2559.1991.tb00229.x
10.1158/0008-5472.CAN-17-0339
10.3389/fonc.2015.00272
10.1148/radiol.14131375
10.1002/mrm.22800
10.1148/radiol.14131332
10.1002/jmri.25870
10.1186/s13058-019-1187-z
10.20892/j.issn.2095-3941.2016.0066
10.1016/j.ejca.2011.11.036
10.1038/s41416-018-0185-8
10.1002/jmri.22268
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Demircioglu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Demircioglu et al 2020 Demircioglu et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Demircioglu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Demircioglu et al 2020 Demircioglu et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0234871
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (subscription)
ProQuest Nursing and Allied Health Premium
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (subscripiton)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Agricultural Science Database
MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A rapid VOI-based approach of radiomics analysis of breast MRI for tumor decoding of breast cancer
EISSN 1932-6203
ExternalDocumentID 2417789628
oai_doaj_org_article_24c41547795749cdb031d7fcb7b1d280
oai:escholarship.org:ark:/13030/qt0r7091nc
PMC7319601
A627744943
32589681
10_1371_journal_pone_0234871
Genre Validation Study
Journal Article
GeographicLocations Germany
New York
United States--US
GeographicLocations_xml – name: Germany
– name: New York
– name: United States--US
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c758t-f22f5469c05aeeeb60ed3a77d6db9ff1d593de1b9e7e1165caefef96e28f039b3
IEDL.DBID UNPAY
ISSN 1932-6203
IngestDate Sun Oct 01 00:11:26 EDT 2023
Fri Oct 03 12:50:39 EDT 2025
Sun Oct 26 04:14:23 EDT 2025
Tue Sep 30 16:33:09 EDT 2025
Wed Oct 01 14:43:02 EDT 2025
Tue Oct 07 07:40:27 EDT 2025
Mon Oct 20 21:45:02 EDT 2025
Mon Oct 20 16:15:50 EDT 2025
Thu Oct 16 14:47:49 EDT 2025
Thu Oct 16 14:06:53 EDT 2025
Thu May 22 20:33:47 EDT 2025
Mon Jul 21 05:33:01 EDT 2025
Thu Apr 24 22:56:12 EDT 2025
Wed Oct 01 04:29:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-f22f5469c05aeeeb60ed3a77d6db9ff1d593de1b9e7e1165caefef96e28f039b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0349-5590
0000-0002-5811-7100
0000-0002-2722-7331
OpenAccessLink https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/0r7091nc
PMID 32589681
PQID 2417789628
PQPubID 1436336
PageCount e0234871
ParticipantIDs plos_journals_2417789628
doaj_primary_oai_doaj_org_article_24c41547795749cdb031d7fcb7b1d280
unpaywall_primary_10_1371_journal_pone_0234871
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319601
proquest_miscellaneous_2418124092
proquest_journals_2417789628
gale_infotracmisc_A627744943
gale_infotracacademiconefile_A627744943
gale_incontextgauss_ISR_A627744943
gale_incontextgauss_IOV_A627744943
gale_healthsolutions_A627744943
pubmed_primary_32589681
crossref_citationtrail_10_1371_journal_pone_0234871
crossref_primary_10_1371_journal_pone_0234871
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-26
PublicationDateYYYYMMDD 2020-06-26
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References N Harbeck (pone.0234871.ref018) 2013; 8
PAT Baltzer (pone.0234871.ref030) 2010; 20
N Bhooshan (pone.0234871.ref037) 2011; 66
ME Mayerhoefer (pone.0234871.ref017) 2010; 32
JDC Hon (pone.0234871.ref019); 6
TP Coroller (pone.0234871.ref002) 2016; 119
M Dietzel (pone.0234871.ref031) 2010; 51
CW Elston (pone.0234871.ref022) 1991; 19
HJWL Aerts (pone.0234871.ref005) 2014; 5
A Saha (pone.0234871.ref009) 2018; 119
JJM van Griethuysen (pone.0234871.ref024) 2017; 77
Z Bodalal (pone.0234871.ref003) 2019; 44
J Haubold (pone.0234871.ref008) 2019
CP Smith (pone.0234871.ref006) 2019; 44
W Guo (pone.0234871.ref010) 2015; 2
M Dietzel (pone.0234871.ref034) 2020; 10
R Kikinis (pone.0234871.ref023) 2014
SSF Yip (pone.0234871.ref027) 2016; 61
MA Mazurowski (pone.0234871.ref012) 2015; 84
K. Polyak (pone.0234871.ref025) 2007; 117
NA Soliman (pone.0234871.ref033) 2016; 13
LA Carey (pone.0234871.ref020) 2006; 295
E Lotan (pone.0234871.ref007) 2019; 212
AB Ashraf (pone.0234871.ref016) 2014; 272
N Maforo (pone.0234871.ref032) 2015; 42
B Zhang (pone.0234871.ref035) 2017; 403
D Leithner (pone.0234871.ref029) 2019; 21
W Chen (pone.0234871.ref013) 2006; 13
K Pinker (pone.0234871.ref004) 2018; 47
P Lambin (pone.0234871.ref001) 2012; 48
O Grove (pone.0234871.ref028) 2015; 10
N Cho (pone.0234871.ref015) 2014; 272
MA Mazurowski (pone.0234871.ref021) 2014; 273
EA Perez (pone.0234871.ref026) 2011; 16
C Parmar (pone.0234871.ref036) 2015; 5
A Saha (pone.0234871.ref011) 2018; 45
K Nie (pone.0234871.ref014) 2008; 15
References_xml – volume: 6
  start-page: 1864
  ident: pone.0234871.ref019
  article-title: Breast cancer molecular subtypes: from TNBC to QNBC
  publication-title: Am J Cancer Res
– start-page: 277
  volume-title: Intraoperative Imaging and Image-Guided Therapy
  year: 2014
  ident: pone.0234871.ref023
  doi: 10.1007/978-1-4614-7657-3_19
– volume: 51
  start-page: 851
  year: 2010
  ident: pone.0234871.ref031
  article-title: Application of artificial neural networks for the prediction of lymph node metastases to the ipsilateral axilla–initial experience in 194 patients using magnetic resonance mammography
  publication-title: Acta Radiol
  doi: 10.3109/02841851.2010.498444
– volume: 42
  start-page: 3213
  year: 2015
  ident: pone.0234871.ref032
  article-title: SU-D-BRA-02: Radiomics of Multi-Parametric Breast MRI in Breast Cancer Diagnosis: A Quantitative Investigation of Diffusion Weighted Imaging, Dynamic Contrast-Enhanced, and T2-Weighted Magnetic Resonance Imaging
  publication-title: Medical Physics
  doi: 10.1118/1.4923882
– volume: 84
  start-page: 2117
  year: 2015
  ident: pone.0234871.ref012
  article-title: Recurrence-free survival in breast cancer is associated with MRI tumor enhancement dynamics quantified using computer algorithms
  publication-title: European Journal of Radiology
  doi: 10.1016/j.ejrad.2015.07.012
– volume: 403
  start-page: 21
  year: 2017
  ident: pone.0234871.ref035
  article-title: Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma
  publication-title: Cancer Letters
  doi: 10.1016/j.canlet.2017.06.004
– volume: 44
  start-page: 2021
  year: 2019
  ident: pone.0234871.ref006
  article-title: Radiomics and radiogenomics of prostate cancer
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-018-1660-7
– volume: 15
  start-page: 1513
  year: 2008
  ident: pone.0234871.ref014
  article-title: Quantitative Analysis of Lesion Morphology and Texture Features for Diagnostic Prediction in Breast MRI
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2008.06.005
– volume: 295
  start-page: 2492
  year: 2006
  ident: pone.0234871.ref020
  article-title: Race, Breast Cancer Subtypes, and Survival in the Carolina Breast Cancer Study
  publication-title: JAMA
  doi: 10.1001/jama.295.21.2492
– volume: 212
  start-page: 26
  year: 2019
  ident: pone.0234871.ref007
  article-title: State of the Art: Machine Learning Applications in Glioma Imaging
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.18.20218
– volume: 273
  start-page: 365
  year: 2014
  ident: pone.0234871.ref021
  article-title: Radiogenomic Analysis of Breast Cancer: Luminal B Molecular Subtype Is Associated with Enhancement Dynamics at MR Imaging
  publication-title: Radiology
  doi: 10.1148/radiol.14132641
– volume: 10
  start-page: 3664
  year: 2020
  ident: pone.0234871.ref034
  article-title: Automated volumetric radiomic analysis of breast cancer vascularization improves survival prediction in primary breast cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-60393-9
– volume: 2
  start-page: 041007
  year: 2015
  ident: pone.0234871.ref010
  article-title: Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data
  publication-title: J Med Imag
  doi: 10.1117/1.JMI.2.4.041007
– volume: 8
  start-page: 102
  year: 2013
  ident: pone.0234871.ref018
  article-title: St. Gallen 2013: Brief Preliminary Summary of the Consensus Discussion
  publication-title: Breast Care
  doi: 10.1159/000351193
– volume: 61
  start-page: R150
  year: 2016
  ident: pone.0234871.ref027
  article-title: Applications and limitations of radiomics
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/13/R150
– volume: 44
  start-page: 1960
  year: 2019
  ident: pone.0234871.ref003
  article-title: Radiogenomics: bridging imaging and genomics
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-019-02028-w
– volume: 10
  year: 2015
  ident: pone.0234871.ref028
  article-title: Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118261
– year: 2019
  ident: pone.0234871.ref008
  article-title: Non-invasive tumor decoding and phenotyping of cerebral gliomas utilizing multiparametric 18F-FET PET-MRI and MR Fingerprinting
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 20
  start-page: 1563
  year: 2010
  ident: pone.0234871.ref030
  article-title: Computer-aided interpretation of dynamic magnetic resonance imaging reflects histopathology of invasive breast cancer
  publication-title: Eur Radiol
  doi: 10.1007/s00330-010-1722-x
– volume: 16
  start-page: 20
  year: 2011
  ident: pone.0234871.ref026
  article-title: Breast Cancer Management: Opportunities and Barriers to an Individualized Approach
  publication-title: The Oncologist
  doi: 10.1634/theoncologist.2011-S1-20
– volume: 45
  start-page: 3076
  year: 2018
  ident: pone.0234871.ref011
  article-title: Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors
  publication-title: Med Phys
  doi: 10.1002/mp.12925
– volume: 119
  start-page: 480
  year: 2016
  ident: pone.0234871.ref002
  article-title: Radiomic phenotype features predict pathological response in non-small cell lung cancer
  publication-title: Radiotherapy and Oncology
  doi: 10.1016/j.radonc.2016.04.004
– volume: 117
  start-page: 3155
  year: 2007
  ident: pone.0234871.ref025
  article-title: Breast cancer: origins and evolution
  publication-title: J Clin Invest
  doi: 10.1172/JCI33295
– volume: 13
  start-page: 63
  year: 2006
  ident: pone.0234871.ref013
  article-title: A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images1
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2005.08.035
– volume: 19
  start-page: 403
  year: 1991
  ident: pone.0234871.ref022
  article-title: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.1991.tb00229.x
– volume: 77
  start-page: e104
  year: 2017
  ident: pone.0234871.ref024
  article-title: Computational Radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 5
  year: 2015
  ident: pone.0234871.ref036
  article-title: Aerts HJWL. Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
  publication-title: Front Oncol
  doi: 10.3389/fonc.2015.00272
– volume: 272
  start-page: 374
  year: 2014
  ident: pone.0234871.ref016
  article-title: Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles
  publication-title: Radiology
  doi: 10.1148/radiol.14131375
– volume: 66
  start-page: 555
  year: 2011
  ident: pone.0234871.ref037
  article-title: Combined use of T2-weighted MRI and T1-weighted dynamic contrast–enhanced MRI in the automated analysis of breast lesions
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22800
– volume: 272
  start-page: 385
  year: 2014
  ident: pone.0234871.ref015
  article-title: Breast Cancer: Early Prediction of Response to Neoadjuvant Chemotherapy Using Parametric Response Maps for MR Imaging
  publication-title: Radiology
  doi: 10.1148/radiol.14131332
– volume: 47
  start-page: 604
  year: 2018
  ident: pone.0234871.ref004
  article-title: Background, Current Role and Potential Applications of Radiogenomics
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25870
– volume: 5
  year: 2014
  ident: pone.0234871.ref005
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nature Communications
– volume: 21
  start-page: 106
  year: 2019
  ident: pone.0234871.ref029
  article-title: Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-019-1187-z
– volume: 13
  start-page: 496
  year: 2016
  ident: pone.0234871.ref033
  article-title: Ki-67 as a prognostic marker according to breast cancer molecular subtype
  publication-title: Cancer Biol Med
  doi: 10.20892/j.issn.2095-3941.2016.0066
– volume: 48
  start-page: 441
  year: 2012
  ident: pone.0234871.ref001
  article-title: Radiomics: Extracting more information from medical images using advanced feature analysis
  publication-title: European Journal of Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 119
  start-page: 508
  year: 2018
  ident: pone.0234871.ref009
  article-title: A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0185-8
– volume: 32
  start-page: 352
  year: 2010
  ident: pone.0234871.ref017
  article-title: Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: A feasibility study in cysts and hemangiomas
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.22268
SSID ssj0053866
Score 2.5047965
Snippet Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust and...
Background Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust...
BackgroundRecently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust...
Background Recently, radiomics has emerged as a non-invasive, imaging-based tissue characterization method in multiple cancer types. One limitation for robust...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0234871
SubjectTerms Adult
Aged
Aged, 80 and over
Analysis
Annotations
Biology and Life Sciences
Biomarkers, Tumor - metabolism
Breast - diagnostic imaging
Breast - pathology
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - pathology
Computer and Information Sciences
Computer assisted image interpretation
Diagnosis
Diagnostic systems
ErbB-2 protein
Estrogen receptors
Estrogens
Feature extraction
Female
Health aspects
Humans
Image Interpretation, Computer-Assisted - methods
Image segmentation
Learning algorithms
Lesions
Lymph nodes
Lymphatic system
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine and Health Sciences
Metastases
Metastasis
Middle Aged
Neoplasm Grading
Patients
Phenotyping
Progesterone
Radiomics
Receptors
Research and Analysis Methods
Retrospective Studies
Studies
Time Factors
Tumors
Vessels
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdQL3BBjK8VBhiEBBzSJXZix8eCmDakgTQY2i2yYxsqlaRqUqEd-c95L3GjRkzaDlxyiJ8j-X2_9r2fCXmd8tSXnhsoSzSPUid0pFJM5DiLuRUus90c9-lncXyefrrILnau-sKesB4euGfcIUtLiDGplCqTqSqtAS200pdGmsSyvKvW41xti6neB4MVCxEG5bhMDoNcZqu6cjOIUpClJ6NA1OH1D155slrWzVUp57-dk7c31Upf_tbL5U5YOrpH7oZ8ks77c-yRW666T_aCxTb0bYCVfveA_JnTtV4tLO0dEq09RawIvJsjwlhm6RZfHJfW2i5wYLmhOsCW4FuDLewtPT07oZDs0nbzC54WKliMgEBpKbaM1e0lTmHtbChRt9YPyfnRx28fjqNwAUNUQhnRRp4xn0H9XMaZds4ZETvLtZR4CZXyPrGZ4tYlRjnpEMan1M47r4RjuY-5MvwRmVTA8n1CldBg_BkILcbZusRI8MUWsjnnjXVGTgnfSqMoAzo5XpKxLLq_3CRUKT1DC5RhEWQ4JdGwa9Wjc1xD_x4FPdAitnb3AjSuCBpXXKdxU_IC1aToB1UHD1HMBYNcOlUpn5JXHQXia1TYwPNDb5qmOPny_QZEX89GRG8Cka-BHaUOQxNwJsTtGlEejCjBS5Sj5X1U6i1XGjhlImWuBMth51bRr15-OSzjR7Epr3L1pqPB9DBWbEoe93YxcJazDHbnwHE5spgR68cr1eJnB28uMSrEsHM22NaNhPvkfwj3KbnD8BeVWERMHJBJu964Z5B2tuZ552H-AhBkgcc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAviPG1wgCDkICHdKmdxPUDQh3atCGtoMLQ3iI7tsekkoSmFdoj_zl3iRMWMcFe-hCfo-bO95Xc_Y6QlxGPXOa4hrRE8SCyiQpkhIEcZyE3iY1N3cd9PEsOT6IPp_HpBpm1vTBYVtnaxNpQmyLDd-S74GmEmMiETd6VPwKcGoVfV9sRGsqPVjBva4ixG2STITLWgGzu7c8-zVvbDNqdJL6BjovxrpfXqCxyOwLvBdH7uOegahz_zloPykVRXRWK_l1ReXOdl-rip1osLrmrgzvkto8z6bQ5GFtkw-Z3yZbX5Iq-9nDTb-6RX1O6VOW5oY2hooWjiCGBMzsC9HGGtrjjuLRU5hwbmSuqPJwJXtVY2r6ix_MjCkEwXa2_w6-BzBY9I1AaiqVkxeoCu7MubcjwzC3vk5OD_S_vDwM_mCHIIL1YBY4xF0NenYWxstbqJLSGKyFwOJV0bmxiyY0da2mFRXifTFlnnUwsm7iQS80fkEEOLN8mVCYKjEIsNM4MBhlrATbaQJRnnTZWiyHhrTTSzKOW4_CMRVp_ihOQvTQMTVGGqZfhkATdrrJB7fgP_R4KuqNFzO36QrE8S70KpyzKINqJhJCxiGRmNNhDI1ym4c8bNgmH5Bkek7RpYO0sRzpNGMTYkYz4kLyoKRB3I8fCnjO1rqr06OPXaxB9nveIXnkiVwA7MuWbKeCZEM-rR7nTowTrkfWWt_FQt1yp0j96Bjvbg3718vNuGW-KxXq5LdY1DYaNoWRD8rDRi46znMWwewIcFz2N6bG-v5Kff6thzwV6ixB2jjrdupZwH_37OR6TWwzfoYRJwJIdMlgt1_YJBJor_dRbj9-c3ICI
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELem8gAviPG1wgCDkICHVKmdxPUDQgUxbUgFaVC0t8iO7a1SSUqSCvrIf85d4kaLKNpe-hDfRcmd7-53je-OkJcRj1zmuIa0RPEgsokKZIRAjrOQm8TGpqnjnn1OjufRp7P4bI9sZ7Z6AVY7UzucJzUvl6PfPzfvwODfNlMbxHjLNFoVuR1BDAIMDvnQDYhVEoc5zKLuuwJYd_P1ElFLkMDT-GK6_92lF6yanv6d5x6slkW1C5b-e7ry5jpfqc0vtVxeCl1Hd8htjznptN0k-2TP5nfJvrfqir72raff3CN_prRUq4WhrdOihaPYTwLndwQY7wzd9iDHpVKZBRY1V1T51iZ4VeMx95rOTk8oAGJar3_Ar4EsF6MkUBqKx8qKeoOVWpcYMtx_5X0yP_r47cNx4Ic0BBmkGnXgGHMx5NhZGCtrrU5Ca7gSAgdVSefGJpbc2LGWVlhs9ZMp66yTiWUTF3Kp-QMyyEHkB4TKRIGDiIXG-cGALLQAf20A8VmnjdViSPhWG2nmO5jjII1l2nyWE5DJtAJNUYep1-GQBB3Xqu3gcQX9e1R0R4v9t5sLRXmeenNOWZQB8omEkLGIZGY0-EYjXKbh4Q2bhEPyDLdJ2hazdl4knSYM8HYkIz4kLxoK7MGR4yGfc7WuqvTky_drEH097RG98kSuAHFkyhdWwDthb68e5WGPEjxJ1ls-wE29lUoFbzkWYiITNgHO7Ubfvfy8W8ab4sG93BbrhgYhZCjZkDxs7aKTLGcxcE9A4qJnMT3R91fyxUXTAl1g5AiBc9TZ1rWU--hKvTwmtxj-pRImAUsOyaAu1_YJ4M5aP21cyV8854K3
  priority: 102
  providerName: Scholars Portal
Title A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/32589681
https://www.proquest.com/docview/2417789628
https://www.proquest.com/docview/2418124092
https://pubmed.ncbi.nlm.nih.gov/PMC7319601
https://escholarship.org/uc/item/0r7091nc
https://doaj.org/article/24c41547795749cdb031d7fcb7b1d280
http://dx.doi.org/10.1371/journal.pone.0234871
UnpaywallVersion submittedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbo7gEuQHl1oSwGIQGHbLPOw8lxW7W0SC1Voag9RX7SFUt2tUmEyo1_zkzijRqoRLn4EM9EsT0vxzOfCXkdBqFVNpCwLRGBF5pYeGmIgVzA_EDHJtJ1HffhUbx_Gn44i84cWDTWwpjVnu5iuqgP8qvmTrItf8nBteVqjfTjCMLuHumfHh1PzptTY-bF8G5XGhfw8ZZbidFinpsR-CWIy8cd11Mj9Ld2uLeYzYvrgsy_cyVvV_lCXP4Qs9kVR7R3r0nhKmr8Qsw_-TaqSjlSP_9Ad7zRGO-Tuy4cpZNGftbJLZM_IOtO4Qv61qFSv3tIfk3oUiymmjb2jM4tRagJvNrDQ1eo6QqeHLuWQk-x3rmgwqGe4FOJGfAlPTw5oBAr07L6Dq2GDTA6UKDUFDPO5uUlFnFdYVAomstH5HRv9_POvufub_AU7EJKzzJmI9h-Kz8SxhgZ-0YHgnO8wyq1dqyjNNBmLFPDDaIAKWGssWlsWGL9IJXBY9LLYf02CE1jAbYj4hKvFoagQ3Iw5RqCQWOlNpIPSLBa2kw5cHO8Y2OW1Sd2HDY5zYRmKBCZE4gB8VquRQPu8Q_6bZSalhahuesHsIiZ0_SMhQqCopDzNOJhqrQEs6m5VRI-XrPEH5AXKHNZU-faGphsEjMIxcM0DAbkVU2B8Bw55v98FVVRZAcfv9yA6NNJh-iNI7JzmA4lXM0FjAlhvzqUmx1KMDKq072BGrKalQJGOeY8SWOWAOdKa67vftl240sxpy8386qmwejST9mAPGmUrJ3ZgEXAncCM8476daa-25NPL2p0dI5OxQfOUauoN1rcp__L8IzcYfjzxY89Fm-SXrmszHOIUEs5JGv8jEOb7Iyx3Xs_JP3t3aPjk2H9zwfawzAZOgv2G2iimtA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHk1UOiCQMDBqbNr78YHhMKjamhTpNKi3Mzau1siBdvEiaoc-UP8Rmb8ohYV9NJLDt5ZK56Z_WbGngchzzzu2djyCMISxR3PCOUEHjpynLlcC-Proo57fCj2TryPE3-yRn7VtTCYVlljYgHUOo3xHfkOWBopB4FggzfZDwenRuHX1XqERqkW-2Z1BiFb_nr0HuT7nLHdD8fv9pxqqoATg2-8cCxj1oegMHZ9ZYyJhGs0V1LiZKXA2r72A65NPwqMNNibJlbGGhsIwwbW5UHE4b7XyHWPA5bA-ZGTJsAD7BCiKs_jsr9TaUMvSxPTA9sIsUG_Zf6KKQGNLehkszS_yNH9O19zfZlkanWmZrNzxnD3FrlZebF0WKrdBlkzyW2yUeFETl9Wzaxf3SE_h3SusqmmJQzS1FLsUIETQRy0oJrWXc1xaa70FMukc6qqZil4NcLE-QUdH40ouNh0sfwOvxriZrS7QKkpJqqlixXWfp3bEKNGz--SkysR0D3SSYDlm4QGQgHk-DLCicSgQZEEC6DBhzQ20iaSXcJraYRx1RMdR3PMwuJDn4TYqGRoiDIMKxl2idPsysqeIP-hf4uCbmixo3dxIZ2fhhVAhMyLwZfypAx86QWxjgBttbRxBH9es4HbJduoJmFZHtvgUjgUDDx4L_B4lzwtKLCrR4JpQ6dqmefh6NOXSxB9PmoRvaiIbArsiFVVqgHPhN3CWpRbLUrApri1vIlKXXMlD_-cYthZK_rFy0-aZbwppgImJl0WNOiUugHrkvvluWg4y5kPuwfAcdk6MS3Wt1eS6beiqbpEW-TCzl5zti4l3Af_fo5tsr53PD4ID0aH-w_JDYZva1zhMLFFOov50jwCl3YRPS5whJKvVw1cvwGgt7l9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYALory6UKhBIOCQbdZO4vUBoUKpupQWVCjaW3Biu1RakrDZVbVH_ha_jpnECY2ooJde9hCPo83M-JuZZB6EPAl4YFPLEwhLFPcCEylPBujIceZzHZlQV3Xce_vRzmHwbhyOl8ivphYG0yobTKyAWucpviPfAEsjxFBGbLhhXVrEx63tV8UPDydI4ZfWZpxGrSK7ZnEC4Vv5crQFsn7K2Pbbz292PDdhwEvBT555ljEbQoCY-qEyxiSRbzRXQuCUJWntQIeSazNIpBEG-9SkylhjZWTY0PpcJhzue4lcFpxLTCcU4zbYAxyJIleqx8Vgw2lGv8gz0wc7CXHCoGMKq4kBrV1YLiZ5eZbT-3fu5tV5VqjFiZpMThnG7RvkuvNo6WatgitkyWQ3yYrDjJI-d42tX9wiPzfpVBXHmtaQSHNLsVsFTgfx0Jpq2nQ4x6Wp0sdYMl1S5Rqn4NUEk-hndO9gRMHdprP5d_jVEEOjDQZKTTFpLZ8tsA7s1IYUtXt6mxxeiIDukOUMWL5KqIwUwE8oEpxODNqUCLAGGvxJYxNtEtEjvJFGnLr-6DimYxJXH_0ExEk1Q2OUYexk2CNeu6uo-4P8h_41Crqlxe7e1YV8ehQ7sIhZkIJfFQghQxHIVCeAvFrYNIE_r9nQ75F1VJO4LpVtMSrejBh484EMeI88riiww0eGZ-VIzcsyHn34cg6iTwcdomeOyObAjlS5sg14Juwc1qFc61ACTqWd5VVU6oYrZfznRMPORtHPXn7ULuNNMS0wM_m8okEH1ZesR-7W56LlLGch7B4Cx0XnxHRY313Jjr9VDdYF2iUfdvbbs3Uu4d7793OskysAWfH70f7ufXKN4YsbP_JYtEaWZ9O5eQDe7Sx5WMEIJV8vGrd-A2cNvcA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegO8AFGF8rDDAICTikS-0kbo4FMW1IG2hQNE6RP1lFSaMmERo3_nPeS9xogUmUSw_xc1Tb7zN-7_cIeR7xyGnHFYQlkgeRTWSQRujIcRZyk9jYNHXcR8fJwSx6dxqferBorIWx65jubF40F_l125NsL1wJMG25vkq2khjc7gHZmh1_mH5pb41ZkMC7fWkcF-M9fxKjYpnbEdgl8MvHPdPTIPR3enhQLJblZU7m37mS1-q8kOc_5GJxwRDt32xTuMoGvxDzT76N6kqN9M8_0B03WuMtcsO7o3Ta8s82uWLz22TbC3xJX3pU6ld3yK8pXclibmirz-jSUYSawNYeAZpCQ9fw5Di0kmaO9c4llR71BJ8qzICv6NHJIQVfmVb1d_g1EACjAQVKQzHjbFmdYxHXhQkaWXN1l8z23356cxD4_g2BhiikChxjLobwW4extNaqJLSGSyGwh1Xq3NjEKTd2rFIrLKIAaWmddWli2cSFPFX8HhnkcH47hKaJBN0RC4WthcHpUAJUuQFn0DplrBJDwtdHm2kPbo49NhZZc2MnIMhpNzRDhsg8QwxJ0M0qWnCPf9C_Rq7paBGau3kAh5h5Sc9YpMEpioRIYxGl2ihQm0Y4reDPGzYJh-QJ8lzW1rl2CiabJgxc8SiN-JA8aygQniPH_J-vsi7L7PD95w2IPp70iF54IreE7dDS11zAmhD2q0e526MEJaN7wzsoIetdKWGVYyEmacImMHMtNZcPP-2G8aWY05fbZd3QoHcZpmxI7rdC1u0sZzHMnsCOi5749ba-P5LPzxp0dIFGJYSZo05QNzrcB_874SG5zvDjS5gELNklg2pV20fgoVbqsddNvwHzo5TN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+volume+of+interest-based+approach+of+radiomics+analysis+of+breast+MRI+for+tumor+decoding+and+phenotyping+of+breast+cancer&rft.jtitle=PloS+one&rft.au=Nensa%2C+Felix&rft.au=Umutlu%2C+Lale&rft.au=Grueneisen%2C+Johannes&rft.au=Forsting%2C+Michael&rft.date=2020-06-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=6&rft.spage=e0234871&rft_id=info:doi/10.1371%2Fjournal.pone.0234871&rft.externalDBID=n%2Fa&rft.externalDocID=A627744943
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon