Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells

Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 12; p. e0189974
Main Authors Kavitha, Muthu Subash, Kurita, Takio, Park, Soon-Yong, Chien, Sung-Il, Bae, Jae-Sung, Ahn, Byeong-Cheol
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.12.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0189974

Cover

More Information
Summary:Pluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies. In this study, we developed a new model of vector-based convolutional neural network (V-CNN) with respect to extracted features of the induced pluripotent stem cell (iPSC) colony for distinguishing colony characteristics. A transfer function from the feature vectors to the virtual image was generated at the front of the CNN in order for classification of feature vectors of healthy and unhealthy colonies. The robustness of the proposed V-CNN model in distinguishing colonies was compared with that of the competitive support vector machine (SVM) classifier based on morphological, textural, and combined features. Additionally, five-fold cross-validation was used to investigate the performance of the V-CNN model. The precision, recall, and F-measure values of the V-CNN model were comparatively higher than those of the SVM classifier, with a range of 87-93%, indicating fewer false positives and false negative rates. Furthermore, for determining the quality of colonies, the V-CNN model showed higher accuracy values based on morphological (95.5%), textural (91.0%), and combined (93.2%) features than those estimated with the SVM classifier (86.7, 83.3, and 83.4%, respectively). Similarly, the accuracy of the feature sets using five-fold cross-validation was above 90% for the V-CNN model, whereas that yielded by the SVM model was in the range of 75-77%. We thus concluded that the proposed V-CNN model outperforms the conventional SVM classifier, which strongly suggests that it as a reliable framework for robust colony classification of iPSCs. It can also serve as a cost-effective quality recognition tool during culture and other experimental procedures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0189974