Automated and real-time segmentation of suspicious breast masses using convolutional neural network

In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automati...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 5; p. e0195816
Main Authors Kumar, Viksit, Webb, Jeremy M., Gregory, Adriana, Denis, Max, Meixner, Duane D., Bayat, Mahdi, Whaley, Dana H., Fatemi, Mostafa, Alizad, Azra
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.05.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0195816

Cover

Abstract In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm.
AbstractList In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13–55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm.
In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm.In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm.
Audience Academic
Author Alizad, Azra
Bayat, Mahdi
Denis, Max
Whaley, Dana H.
Meixner, Duane D.
Fatemi, Mostafa
Kumar, Viksit
Webb, Jeremy M.
Gregory, Adriana
AuthorAffiliation 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
2 Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
University of Pennsylvania Perelman School of Medicine, UNITED STATES
AuthorAffiliation_xml – name: University of Pennsylvania Perelman School of Medicine, UNITED STATES
– name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
– name: 2 Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
Author_xml – sequence: 1
  givenname: Viksit
  orcidid: 0000-0003-0056-5223
  surname: Kumar
  fullname: Kumar, Viksit
– sequence: 2
  givenname: Jeremy M.
  surname: Webb
  fullname: Webb, Jeremy M.
– sequence: 3
  givenname: Adriana
  surname: Gregory
  fullname: Gregory, Adriana
– sequence: 4
  givenname: Max
  surname: Denis
  fullname: Denis, Max
– sequence: 5
  givenname: Duane D.
  surname: Meixner
  fullname: Meixner, Duane D.
– sequence: 6
  givenname: Mahdi
  surname: Bayat
  fullname: Bayat, Mahdi
– sequence: 7
  givenname: Dana H.
  surname: Whaley
  fullname: Whaley, Dana H.
– sequence: 8
  givenname: Mostafa
  surname: Fatemi
  fullname: Fatemi, Mostafa
– sequence: 9
  givenname: Azra
  surname: Alizad
  fullname: Alizad, Azra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29768415$$D View this record in MEDLINE/PubMed
BookMark eNqNkttq3DAQhk1JaZJt36C0hkJpL3YryZZs96KwhB4WAoGeboUsjb1KZWljyUnz9tVmnbAOgQZdSIy_-T0z_xwnB9ZZSJKXGC1wVuAP527orTCLTQwvEK5oidmT5AhXGZkzgrKDvfdhcuz9OUI0Kxl7lhySqmBljulRIpdDcJ0IoFJhVdqDMPOgO0g9tB3YIIJ2NnVN6ge_0VK7wad1pHxIO-E9-HTw2rapdPbSmWFLC5NaGPqbK1y5_s_z5GkjjIcX4z1Lfn35_PPk2_z07OvqZHk6lwUtw5yVhOSsQABM1SyWnlUky2qFCqKwyhEByBUrWdmUsqpZDoQ0GSllw5pCFgSyWfJ6p7sxzvNxPp7H_qvYLIuSs2S1I5QT53zT607019wJzW8Crm-56IOWBngOCjOMUCYblauGVYRiCqWAsoKsoXXUojutwW7E9ZUw5k4QI7616LYEvrWIjxbFvE9jlUPdgZJxyL0wk2KmX6xe89ZdclpRSlEeBd6NAr27GMAH3mkvwRhhIdoT-81RwQqKi4i-uYc-PJWRakVsXNvGxf_KrShfxo2pKKH5llo8QMWjoNPRfmh0jE8S3k8SIhPgb2jF4D1f_fj-ePbs95R9u8eu48aGtR93z0_BV_uTvhvx7fZH4OMOkL3zvoeGS73b-NiaNv_zMb-X_Cj7_wFFcy4L
CitedBy_id crossref_primary_10_1002_ima_22690
crossref_primary_10_1097_RCT_0000000000001474
crossref_primary_10_46268_jsu_2023_10_1_8
crossref_primary_10_1002_ima_22693
crossref_primary_10_1088_1742_6596_1924_1_012018
crossref_primary_10_1109_ACCESS_2021_3071301
crossref_primary_10_1109_ACCESS_2022_3232561
crossref_primary_10_3389_fonc_2021_600557
crossref_primary_10_3390_e24121775
crossref_primary_10_3390_s21227741
crossref_primary_10_1016_j_bspc_2023_105514
crossref_primary_10_1038_s41598_023_42000_9
crossref_primary_10_1002_EXP_20230007
crossref_primary_10_3390_computation11060113
crossref_primary_10_1016_j_ibmed_2025_100224
crossref_primary_10_3390_cancers15123139
crossref_primary_10_1016_j_jacr_2019_06_004
crossref_primary_10_1007_s11604_019_00831_5
crossref_primary_10_1016_j_compbiomed_2024_108794
crossref_primary_10_3389_fonc_2020_594580
crossref_primary_10_1002_acm2_13863
crossref_primary_10_1016_j_eswa_2022_119462
crossref_primary_10_1007_s10278_022_00613_y
crossref_primary_10_1109_ACCESS_2024_3394808
crossref_primary_10_1016_j_asoc_2021_107481
crossref_primary_10_3390_diagnostics10121055
crossref_primary_10_3390_tomography10050055
crossref_primary_10_1007_s00432_023_04956_z
crossref_primary_10_1053_j_semnuclmed_2022_02_003
crossref_primary_10_1007_s10489_022_03184_1
crossref_primary_10_1007_s11042_021_10515_w
crossref_primary_10_1016_j_media_2022_102687
crossref_primary_10_1038_s41598_022_18747_y
crossref_primary_10_1080_21681163_2024_2373996
crossref_primary_10_1016_j_bspc_2024_107482
crossref_primary_10_1016_j_patcog_2022_108675
crossref_primary_10_1088_1361_6560_ad1274
crossref_primary_10_3233_XST_230085
crossref_primary_10_1002_mp_15006
crossref_primary_10_1007_s11760_022_02408_8
crossref_primary_10_1007_s11831_020_09469_3
crossref_primary_10_1111_exsy_13355
crossref_primary_10_1016_j_ultras_2020_106271
crossref_primary_10_1016_j_knosys_2024_112580
crossref_primary_10_2957_kanzo_61_623
crossref_primary_10_1016_j_bbe_2021_05_007
crossref_primary_10_1016_j_compbiomed_2020_104036
crossref_primary_10_1109_JBHI_2024_3514134
crossref_primary_10_1109_TIP_2023_3304518
crossref_primary_10_14366_usg_20117
crossref_primary_10_1007_s40477_022_00726_8
crossref_primary_10_1155_2020_1645479
crossref_primary_10_1186_s41747_024_00480_y
crossref_primary_10_1109_TCBB_2020_2978470
crossref_primary_10_1109_TUFFC_2020_2993779
crossref_primary_10_1016_j_engappai_2023_106753
crossref_primary_10_1109_ACCESS_2020_2982390
crossref_primary_10_3390_biomedicines9070720
crossref_primary_10_4103_jcrt_jcrt_1796_23
crossref_primary_10_1016_j_media_2020_101657
crossref_primary_10_1109_ACCESS_2021_3056130
crossref_primary_10_1016_j_cej_2024_151016
crossref_primary_10_1016_j_compbiomed_2021_104966
crossref_primary_10_3390_cancers14030623
crossref_primary_10_1186_s42492_024_00155_w
crossref_primary_10_1016_j_eswa_2020_114161
crossref_primary_10_1088_2632_2153_ac9bcc
crossref_primary_10_1186_s12957_023_03286_1
crossref_primary_10_3389_fonc_2022_848271
crossref_primary_10_1242_bio_052936
crossref_primary_10_1007_s11517_023_02849_4
crossref_primary_10_1016_j_compbiomed_2024_109391
crossref_primary_10_1177_01617346221075769
Cites_doi 10.1148/rg.305095144
10.1109/TMI.2002.808364
10.1016/j.ultras.2016.08.004
10.1109/CCCRV.2004.1301473
10.1148/radiology.188.2.8327668
10.1109/IEMBS.1998.745618
10.1016/S0301-5629(03)00059-0
10.1007/s10278-011-9450-6
10.2214/ajr.170.1.9423610
10.2214/AJR.10.6049
10.1016/j.patcog.2010.01.002
10.1118/1.3110069
10.1007/978-3-319-24574-4_28
10.1109/34.537343
10.1118/1.1485995
10.1001/jama.2015.13086
10.1109/34.295913
10.1016/S0301-5629(03)00992-X
10.1186/1865-1380-4-72
10.1109/TIP.2010.2069690
10.1118/1.2012967
10.1155/2010/595167
10.1007/s10549-004-2043-z
10.1016/j.ultrasmedbio.2011.09.011
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Kumar et al 2018 Kumar et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Kumar et al 2018 Kumar et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0195816
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Agricultural Science Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Biology
DocumentTitleAlternate Automated and real-time breast mass segmentation using CNN
EISSN 1932-6203
ExternalDocumentID 2039841669
oai_doaj_org_article_4ed161003cfd4df692515e8ae89e3f5b
10.1371/journal.pone.0195816
PMC5955504
A538952549
29768415
10_1371_journal_pone_0195816
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Minnesota
GeographicLocations_xml – name: Minnesota
– name: United States--US
GrantInformation_xml – fundername: NIH HHS
  grantid: R01CA174723
– fundername: NIH HHS
  grantid: R01CA148994-S1
– fundername: NCI NIH HHS
  grantid: R01 CA168575
– fundername: NIH HHS
  grantid: R01CA168575
– fundername: NCI NIH HHS
  grantid: R01 CA174723
– fundername: NCI NIH HHS
  grantid: R01 CA195527
– fundername: NIH HHS
  grantid: R01CA195527
– fundername: NIH HHS
  grantid: R01CA148994
– fundername: NCI NIH HHS
  grantid: R01 CA148994
– fundername: ;
  grantid: R01CA168575
– fundername: ;
  grantid: R01CA148994
– fundername: ;
  grantid: R01CA174723
– fundername: ;
  grantid: R01CA195527
– fundername: ;
  grantid: EB17213
– fundername: ;
  grantid: R01CA148994-S1
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c758t-68224670ee6db693239233bd072d1d402ee4d6868f8c9b64e22f328cf6f7c72e3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:57 EST 2021
Tue Oct 14 14:59:40 EDT 2025
Sun Oct 26 03:52:35 EDT 2025
Tue Sep 30 16:59:44 EDT 2025
Thu Oct 02 07:17:00 EDT 2025
Tue Oct 07 07:47:53 EDT 2025
Mon Oct 20 22:03:24 EDT 2025
Mon Oct 20 16:24:14 EDT 2025
Thu Oct 16 14:30:36 EDT 2025
Thu Oct 16 14:32:12 EDT 2025
Thu May 22 21:24:18 EDT 2025
Thu Apr 03 07:00:34 EDT 2025
Wed Oct 01 01:32:31 EDT 2025
Thu Apr 24 23:05:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-68224670ee6db693239233bd072d1d402ee4d6868f8c9b64e22f328cf6f7c72e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Physical and Life Sciences Solutions LLC, Randolph, Massachusetts, United States of America
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-0056-5223
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0195816
PMID 29768415
PQID 2039841669
PQPubID 1436336
PageCount e0195816
ParticipantIDs plos_journals_2039841669
doaj_primary_oai_doaj_org_article_4ed161003cfd4df692515e8ae89e3f5b
unpaywall_primary_10_1371_journal_pone_0195816
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5955504
proquest_miscellaneous_2040767517
proquest_journals_2039841669
gale_infotracmisc_A538952549
gale_infotracacademiconefile_A538952549
gale_incontextgauss_ISR_A538952549
gale_incontextgauss_IOV_A538952549
gale_healthsolutions_A538952549
pubmed_primary_29768415
crossref_citationtrail_10_1371_journal_pone_0195816
crossref_primary_10_1371_journal_pone_0195816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-16
PublicationDateYYYYMMDD 2018-05-16
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References ref14
ref11
P Skaane (ref32) 1998; 170
Y Liu (ref22) 2012; 25
RL Siegel (ref1) 2015
R Adams (ref10) 1994; 16
S Sippel (ref6) 2011; 4
D-R Chen (ref16) 2003; 29
Z Song Chun (ref9) 1996; 18
J Cui (ref20) 2009; 36
R-F Chang (ref15) 2003; 29
R-F Chang (ref17) 2005; 89
N Srivastava (ref30) 2014; 15
ref26
K Drukker (ref13) 2002; 29
(ref7) 1998
C Li (ref19) 2010; 19
A Krizhevsky (ref23) 2012
AL Maas (ref27) 2013
NL Keating (ref3) 2015; 314
A Madabhushi (ref12) 2003; 22
B Liu (ref18) 2010; 43
T Tieleman (ref28) 2012; 4
YA LeCun (ref29) 2012
LN Shulman (ref2) 2010; 2010
CM Checka (ref5) 2012; 198
AR Jamieson (ref24) 2012
S Raza (ref31) 2010; 30
T Jia-Wei (ref21) 2012; 38
Q Zhang (ref25) 2016; 72
VP Jackson (ref4) 1993; 188
TW Cary (ref8) 2005; 32
References_xml – volume: 30
  start-page: 1199
  issue: 5
  year: 2010
  ident: ref31
  article-title: US of Breast Masses Categorized as BI-RADS 3, 4, and 5: Pictorial Review of Factors Influencing Clinical Management 1
  publication-title: Radiographics
  doi: 10.1148/rg.305095144
– year: 2015
  ident: ref1
  article-title: Cancer statistics, 2016
  publication-title: CA: a cancer journal for clinicians
– volume: 22
  start-page: 155
  issue: 2
  year: 2003
  ident: ref12
  article-title: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2002.808364
– volume: 72
  start-page: 150
  year: 2016
  ident: ref25
  article-title: Deep learning based classification of breast tumors with shear-wave elastography
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.08.004
– ident: ref14
  doi: 10.1109/CCCRV.2004.1301473
– volume: 188
  start-page: 297
  issue: 2
  year: 1993
  ident: ref4
  article-title: Imaging of the radiographically dense breast
  publication-title: Radiology
  doi: 10.1148/radiology.188.2.8327668
– ident: ref11
  doi: 10.1109/IEMBS.1998.745618
– volume: 29
  start-page: 1017
  issue: 7
  year: 2003
  ident: ref16
  article-title: 3-D breast ultrasound segmentation using active contour model
  publication-title: Ultrasound in medicine & biology
  doi: 10.1016/S0301-5629(03)00059-0
– volume: 25
  start-page: 580
  issue: 5
  year: 2012
  ident: ref22
  article-title: An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle
  publication-title: Journal of digital imaging
  doi: 10.1007/s10278-011-9450-6
– volume: 170
  start-page: 109
  issue: 1
  year: 1998
  ident: ref32
  article-title: Analysis of sonographic features in the differentiation of fibroadenoma and invasive ductal carcinoma
  publication-title: AJR American journal of roentgenology
  doi: 10.2214/ajr.170.1.9423610
– volume: 198
  start-page: W292
  issue: 3
  year: 2012
  ident: ref5
  article-title: The relationship of mammographic density and age: implications for breast cancer screening
  publication-title: American Journal of Roentgenology
  doi: 10.2214/AJR.10.6049
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 43
  start-page: 2028
  issue: 6
  year: 2010
  ident: ref18
  article-title: Probability density difference-based active contour for ultrasound image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.01.002
– volume: 36
  start-page: 1553
  issue: 5
  year: 2009
  ident: ref20
  article-title: A new automated method for the segmentation and characterization of breast masses on ultrasound images
  publication-title: Medical physics
  doi: 10.1118/1.3110069
– ident: ref26
  doi: 10.1007/978-3-319-24574-4_28
– volume: 18
  start-page: 884
  issue: 9
  year: 1996
  ident: ref9
  article-title: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.537343
– volume: 29
  start-page: 1438
  issue: 7
  year: 2002
  ident: ref13
  article-title: Computerized lesion detection on breast ultrasound
  publication-title: Medical Physics
  doi: 10.1118/1.1485995
– year: 2013
  ident: ref27
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc ICML
– volume: 4
  issue: 2
  year: 2012
  ident: ref28
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural networks for machine learning
– start-page: 9
  year: 2012
  ident: ref29
  article-title: Neural networks: Tricks of the trade
– volume: 314
  start-page: 1569
  issue: 15
  year: 2015
  ident: ref3
  article-title: New guidelines for breast cancer screening in us women
  publication-title: JAMA
  doi: 10.1001/jama.2015.13086
– volume: 16
  start-page: 641
  issue: 6
  year: 1994
  ident: ref10
  article-title: Seeded region growing
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.295913
– volume: 29
  start-page: 1571
  issue: 11
  year: 2003
  ident: ref15
  article-title: Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model
  publication-title: Ultrasound in medicine & biology
  doi: 10.1016/S0301-5629(03)00992-X
– year: 2012
  ident: ref23
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 4
  start-page: 72
  issue: 1
  year: 2011
  ident: ref6
  article-title: Review article: use of ultrasound in the developing world
  publication-title: International journal of emergency medicine
  doi: 10.1186/1865-1380-4-72
– volume: 19
  start-page: 3243
  issue: 12
  year: 2010
  ident: ref19
  article-title: Distance regularized level set evolution and its application to image segmentation
  publication-title: IEEE transactions on image processing
  doi: 10.1109/TIP.2010.2069690
– volume: 32
  start-page: 3318
  issue: 11
  year: 2005
  ident: ref8
  article-title: Diffuse boundary extraction of breast masses on ultrasound by leak plugging
  publication-title: Medical Physics
  doi: 10.1118/1.2012967
– volume: 2010
  year: 2010
  ident: ref2
  article-title: Breast Cancer in Developing Countries: Opportunities for Improved Survival
  publication-title: Journal of Oncology
  doi: 10.1155/2010/595167
– year: 1998
  ident: ref7
  article-title: Breast imaging reporting and data system
– year: 2012
  ident: ref24
  article-title: SPIE Medical Imaging
– volume: 89
  start-page: 179
  issue: 2
  year: 2005
  ident: ref17
  article-title: Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors
  publication-title: Breast Cancer Research and Treatment
  doi: 10.1007/s10549-004-2043-z
– volume: 38
  start-page: 119
  issue: 1
  year: 2012
  ident: ref21
  article-title: Effect of a novel segmentation algorithm on radiologists’ diagnosis of breast masses using ultrasound imaging
  publication-title: Ultrasound in medicine & biology
  doi: 10.1016/j.ultrasmedbio.2011.09.011
SSID ssj0053866
Score 2.5632432
Snippet In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0195816
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Analysis
Artificial intelligence
Artificial neural networks
Automation
Biology
Biomedical engineering
Biopsy
Breast
Breast - diagnostic imaging
Breast cancer
Breast Neoplasms - diagnostic imaging
Carcinoma, Ductal, Breast - diagnostic imaging
Carcinoma, Intraductal, Noninfiltrating - diagnostic imaging
Carcinoma, Lobular - diagnostic imaging
Diagnosis
Female
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Mammography
Mammography - methods
Medical imaging
Medical research
Medical screening
Medicine
Medicine and Health Sciences
Middle Aged
Morphology
Neural networks
Neural Networks, Computer
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated
Physical Sciences
Physiology
Prospective Studies
Real time
Research and Analysis Methods
Risk factors
Segmentation
Software
Therapeutic applications
Tumors
Ultrasonic imaging
Ultrasonography, Mammary - methods
Ultrasound
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF8NFDAICThkm8SJ4xwLoipIgAQU9Wb5c6mUJhHZFeLfM5N4o42o1B44rbSe7Cozz5OZ-PmZkJfMqiTxysZZbkSMvItYecvigkM74o32fljR_fSZn5zmH8-Ks52jvpATNsoDj447zJ2FogSwZ7zNrecVPJALJ5QTlWO-0Jh9E1Ftm6kxB8Ms5jxslGNlehjisuzaxi1xi5zA8813HkSDXv-UlRdd3faXlZz_MidvbppO_fmt6nrnsXR8h9wO9SQ9Gu9jj9xwzV2yF2ZsT18HWek39wi-DWuhPnWWqsZSKBbrGE-Wp71bXYQdSA1tPe03fXdukBtLNVLW1_RC4dIwRY78iiJPPeAV_hj1MIePgU1-n5wev__-7iQORyzEBhqFdcyRRMrLxDluNYdaDsolxrRNysymFnpL53LLBRdemErz3GWZZ5kwnvvSlJljD8iiAafuE6q8ETCfnS5GVUFtmEGt-FyLKneViwjb-luaoD-Ox2DUclhUK6EPGV0mMUoyRCki8XRVN-pvXGH_FkM52aJ69vAFYEoGTMmrMBWRZwgEOW5FnXKAPAJcVQW21BF5MViggkaDFJ2V2vS9_PDlxzWMvn2dGb0KRr4FdxgVtkXAPaEy18zyYGYJecDMhvcRtluv9DJLWIWLyhyv3EL58uHn0zD-KNLuGgcoAxvo96GlTMuIPByRP3k2q3ANNy0iUs7mxMz185Hm_OcgYF5UBTTGeUSW0-y5VnAf_Y_gPia3oOgVyABJ-QFZrH9t3BMoLNf66ZBD_gK1R3lo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVDwuiIZHDQUWhAQcHBKvvbYPCLWoVUFqQYWi3qz1PgJSaps6Eeq_Z8Zem1pU0FOk7NiK55UZz8w3AC-4ltOpldoPQpX41HfhS6u5HwlMR6zKrW0qugeHYv84_HgSnazBYTcLQ22VnU9sHLUuFb0jxySdp1QiE-m76qdPW6Ooutqt0JButYJ-20CMXYP1gJCxRrC-s3v4-ajzzWjdQrgBOh7P3jh5TaqyMBManUto7_mFP6gGx7_31qNqUdaXhaJ_d1TeXBWVPP8lF4sLf1d7d-C2izPZdqsYG7BmijFcbzdPno_hxoGrqY9hw5l3zV45DOrXd4FenZUYzBrNZKEZRpYLn9bQs9rMT924UsFKy-pVXeGNylXNcupvX7JTSXVkRg31c0ZN7U658dcQeGbz0bSe34Pjvd2v7_d9t4_BV5hVLH1BHacinhojdC4w8MPYivNcT-NAzzQmosaEWiQisYlKcxGaILA8SJQVNlZxYPh9GBXI6U1g0qoEjd_kUQtBmCuuCFg-zJM0NKnxgHdCyJQDK6edGYusqcDFmLS0fMxIdJkTnQd-f1XVgnX8h36H5NvTEtR280V5Ns-c5Wah0RgVo_NTVofaihQjwsgk0iSp4TbKPXhK2pG1c6u9w8i2UdnSiPJvD543FAS3UVA_z1yu6jr78OnbFYi-HA2IXjoiWyI7lHQzFPhMBOM1oNwaUKLTUIPjTdLljit19se88MpOvy8_ftYf002pR68wqGVIE04JGmgWe_CgNYees0FKBd9Z5EE8MJQB64cnxY_vDdp5lEaYRYceTHqTupJwH_77OR7BLYx9E2oEmYktGC3PVuYxxpfL_IlzGr8BcN59GQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIGIR6HZJM4cZJjQawWJBYEFC0HFDl-lIo0rUgqBAd-OzOJExFYxHLg1KoeO83YHs9kvvlCyD2mhO8bodwwkqmLuAtXGMXcmEM4YmRhTJvRfXHED2fR8-P4eIt86GthrAYhRixXdZvJxy-rSu9bTe4jX1GXPfUClgR9D28NQh6Wv6UBv98yDuGTsQYLkM6QbR6Dqz4h27OjV9P3XaY5dHnoM1tO96eRRsdVy-o_2O4J_rOTHNPf8ZVnN9VafP0iyvKnw-vgAvne33aHWfnkbZrCk99-YYT8b3q5SM5bt5dOu1F2yJauLpEda1hq-tCyXz-6TPCh3QrcaK2oqBQFn7Z0m8VS01rPl7ZQqqIrQ-tNvV5IhPDSApH1DV0KzGBThPLPKcLp7baCCyNtZ_vRgt6vkNnB07dPDl37JghXQjzTuByxrjzxteaq4DB14NUxVig_CVWgIATWOlI85alJZVbwSIehYWEqDTeJTELNrpJJBXrYJVQYmYLZ0UXckR8WkkmktI-KNIt0ph3C-gnPpaVJx7d1lHmb-0sgXOpUlqNic6tYh7hDr3VHE_IX-ce4lgZZJPluf4CZze2M5pFW4I-D2ZVGRcrwDHzRWKdCp5lmJi4cchtXYt5VzA6mKp_CIZbFGPk75G4rgUQfFSKJ5mJT1_mzl-9OIfTm9UjogRUyK1CHFLZ6A-4JF95Icm8kCeZKjpp3ceX2Wqlz2IMZ5r459uz30snNd4ZmHBTRgZWGVQYykY-kREHikGvd1hs0G2aYag5ihySjTTlS_bilWnxsedbjLIb4PXKIN2zfU03u9X_tcIOcAz88RVBKwPfIpPm80TfB122KW9Zi_QDKhbAr
  priority: 102
  providerName: Unpaywall
Title Automated and real-time segmentation of suspicious breast masses using convolutional neural network
URI https://www.ncbi.nlm.nih.gov/pubmed/29768415
https://www.proquest.com/docview/2039841669
https://www.proquest.com/docview/2040767517
https://pubmed.ncbi.nlm.nih.gov/PMC5955504
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195816&type=printable
https://doaj.org/article/4ed161003cfd4df692515e8ae89e3f5b
http://dx.doi.org/10.1371/journal.pone.0195816
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADD9t3QO8IMbXAqMcCAl4SJXPy-UBoW5aGUgr06BoPEXJfZRJWVKaVrD_Hju5RIvoxF5SKedrWp99Z8f2z4S89mXqODqVthcIbmPehZ1q6dshA3dEi0zrOqJ7MmXHs-DzeXi-RdqerYaB1UbXDvtJzZb56M-vqw-g8O_rrg2R204aLcpCjbAAjrtsm-zAWRVjM4eToIsrgHYzZgrobpqJ8MAxhqewU-61s6qG9O827sEiL6tNVum_yZV31sUivfqd5vm1k2tyn9wzJicdNzKyS7ZU8YDsGqWu6FuDPP3uIcEXZiWYsErStJAU7MncxubztFLzS1OkVNBS02pdLS4Eps_SDLPaV_QyxegxxTT6OcVUdiPS8GCEzKw_6oTzR2Q2Ofp2eGybLgy2AF9iZTPMM2WRoxSTGQNzDywq38-kE3nSleB-KhVIxhnXXMQZC5Tnad_jQjMdichT_mMyKIC_e4SmWnBQeZWFDfBgJnyBcPJBxuNAxcoifsvvRBiIcuyUkSd13C0CV6VhWYILlpgFs4jdzVo0EB3_oT_ApexoEWC7vlEu54nR1yRQEmxh2PKEloHULAY7MFQ8VTxWvg4zi7xAQUiaatVum0jGIGJxiF63RV7VFAiyUWAWzzxdV1Xy6cv3WxB9PesRvTFEugR2iNRUTsB_QvCuHuV-jxK2CtEb3kOxbblSJZ7jxxh3ZjizFeXNwy-7YfxSzMwrFEgZ0AQOAgK5kUWeNJLfcbbVI4tEPZ3osb4_Ulz8rDHOwzgE3zmwyKjTnlst7tMbf8QzcheMXY6ZHy7bJ4PVcq2eg0G5yoZkOzqP4MoPXbxOPg7JzsHR9PRsWL-iGdZ7CNybTU_HP_4Cuyp89Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VICgXRMOjhkIXBAIODokfa_uAUHlUCW2KBC3Kzdj7CEipbepEVf4Uv5EZe2NqUUEvPUXyjlfxzOznGc8L4Kkrk35fJ9J2PBHalHdhJ1q6ts_RHdEi1bqK6I4P-PDI-zjxJ2vwa1ULQ2mVK0ysgFrmgr6Ro5PuRhQi49Gb4qdNU6MouroaoVGrxZ5anqLLVr4evUf5PnOc3Q-H74a2mSpgC7SN5zanvEke9JXiMuVovqCF4Lqp7AeOHEh0p5TyJA95qEMRpdxTjqNdJxSa60AEjnJx3ytw1XMRS_D8BJPGwUPs4NyU57nB4JXRhl6RZ6pHhXkhTVU_8_qrpgQ074JOMcvL8wzdv_M11xdZkSxPk9nszMtw9xbcNFYs26nVbgPWVNaFa_Vcy2UXro9NxL4LGwY8SvbCdLh-eRvow1yOprKSLMkkQ7t1ZtOQe1aq6bEphspYrlm5KAvcKF-ULKXs-Tk7TihKzShdf8ooZd4cHfw31Jqz-qkS2-_A0aXI5S50MuT0JrBEixChRaV-3eAwFa6gtvVeGkaeipQF7koIsTCt0Gkixyyu4nsBukQ1H2MSXWxEZ4Hd3FXUrUD-Q_-W5NvQUiPv6kJ-Mo0NLsSekmhzI7QKLT2peYT2pq_CRIWRcrWfWrBN2hHXVbENHMU7qGyRT969BU8qCmrmkVG20DRZlGU8-vT1AkRfPreInhsinSM7RGIqNPCZqElYi3KrRYmQJFrLm6TLK66U8Z_Di3eu9Pv85cfNMm1KGYCZQi1DGq9PjYcGgQX36uPQcNaJKJw88C0IWgelxfr2Svbje9VL3Y989NE9C3rNkbqQcO__-zm2YX14ON6P90cHew_gBlrZIaWcDPgWdOYnC_UQLdl5-qiCDwbfLhuvfgPJbbJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLfGEIMXxMrHAoMdCAQ8ZGtzySV5QGgwqo2xgQZDfQvJfRSkLglLq2n_Gn8ddnINi5hgL3uqlHNOje1z7PhnG-ApV2m_b1Ller6MXMJduKlR3A0EhiNGZsbUGd29fbF96L8fBaMF-DWvhSFY5dwm1oZaFZK-kWOQzmNKkYl4w1hYxKet4evyp0sTpCjTOh-n0ajIrj49wfCterWzhbJ-5nnDd1_ebrt2woAr0U-euoIwlCLsay1UJtCVQW-B80z1Q08NFIZWWvtKRCIykYwz4WvPM9yLpBEmlKGnOe57Ba6GnMcEJwxHbbCHdkQIW6rHw8GG1Yz1ssj1OhXpRTRh_cyrsJ4Y0L4XFstJUZ3n9P6N3bw-y8v09CSdTM68GIe34Kb1aNlmo4LLsKDzHlxrZlye9mBpz2bve7BsDUnFXthu1y9vA32kK9Bt1oqluWLow05cGnjPKj0-soVROSsMq2ZViRsVs4plhKSfsqOUMtaMoPtjRvB5e4zw31CbzvqnBrnfgcNLkctdWMyR0yvAUiMjNDM6C5pmh5nkklrY-1kU-zrWDvC5EBJp26LTdI5JUuf6QgyPGj4mJLrEis4Bt72rbNqC_If-Dcm3paWm3vWF4nicWBuR-Fqh_41mVhrlKyNi9D0DHaU6ijU3QebAGmlH0lTItqYp2URliwOK9B14UlNQY4-cjsg4nVVVsvPx6wWIPh90iJ5bIlMgO2RqqzXwmahhWIdytUOJ5kl2lldIl-dcqZI_BxnvnOv3-cuP22XalNCAuUYtQxq_T02IBqED95rj0HLWiym1PAgcCDsHpcP67kr-43vdVz2IA4zXfQfW2yN1IeHe__dzrMESWqrkw87-7gO4gQ53ROiTgViFxenxTD9Ep3aaPaqtB4Nvl22ufgNzzbaP
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIGIR6HZJM4cZJjQawWJBYEFC0HFDl-lIo0rUgqBAd-OzOJExFYxHLg1KoeO83YHs9kvvlCyD2mhO8bodwwkqmLuAtXGMXcmEM4YmRhTJvRfXHED2fR8-P4eIt86GthrAYhRixXdZvJxy-rSu9bTe4jX1GXPfUClgR9D28NQh6Wv6UBv98yDuGTsQYLkM6QbR6Dqz4h27OjV9P3XaY5dHnoM1tO96eRRsdVy-o_2O4J_rOTHNPf8ZVnN9VafP0iyvKnw-vgAvne33aHWfnkbZrCk99-YYT8b3q5SM5bt5dOu1F2yJauLpEda1hq-tCyXz-6TPCh3QrcaK2oqBQFn7Z0m8VS01rPl7ZQqqIrQ-tNvV5IhPDSApH1DV0KzGBThPLPKcLp7baCCyNtZ_vRgt6vkNnB07dPDl37JghXQjzTuByxrjzxteaq4DB14NUxVig_CVWgIATWOlI85alJZVbwSIehYWEqDTeJTELNrpJJBXrYJVQYmYLZ0UXckR8WkkmktI-KNIt0ph3C-gnPpaVJx7d1lHmb-0sgXOpUlqNic6tYh7hDr3VHE_IX-ce4lgZZJPluf4CZze2M5pFW4I-D2ZVGRcrwDHzRWKdCp5lmJi4cchtXYt5VzA6mKp_CIZbFGPk75G4rgUQfFSKJ5mJT1_mzl-9OIfTm9UjogRUyK1CHFLZ6A-4JF95Icm8kCeZKjpp3ceX2Wqlz2IMZ5r459uz30snNd4ZmHBTRgZWGVQYykY-kREHikGvd1hs0G2aYag5ihySjTTlS_bilWnxsedbjLIb4PXKIN2zfU03u9X_tcIOcAz88RVBKwPfIpPm80TfB122KW9Zi_QDKhbAr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+and+real-time+segmentation+of+suspicious+breast+masses+using+convolutional+neural+network&rft.jtitle=PloS+one&rft.au=Kumar%2C+Viksit&rft.au=Webb%2C+Jeremy+M&rft.au=Gregory%2C+Adriana&rft.au=Denis%2C+Max&rft.date=2018-05-16&rft.eissn=1932-6203&rft.volume=13&rft.issue=5&rft.spage=e0195816&rft_id=info:doi/10.1371%2Fjournal.pone.0195816&rft_id=info%3Apmid%2F29768415&rft.externalDocID=29768415
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon