Automated and real-time segmentation of suspicious breast masses using convolutional neural network
In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automati...
Saved in:
| Published in | PloS one Vol. 13; no. 5; p. e0195816 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
16.05.2018
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0195816 |
Cover
| Abstract | In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm. |
|---|---|
| AbstractList | In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13–55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm. In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm.In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm. |
| Audience | Academic |
| Author | Alizad, Azra Bayat, Mahdi Denis, Max Whaley, Dana H. Meixner, Duane D. Fatemi, Mostafa Kumar, Viksit Webb, Jeremy M. Gregory, Adriana |
| AuthorAffiliation | 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America 2 Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America University of Pennsylvania Perelman School of Medicine, UNITED STATES |
| AuthorAffiliation_xml | – name: University of Pennsylvania Perelman School of Medicine, UNITED STATES – name: 1 Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America – name: 2 Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America |
| Author_xml | – sequence: 1 givenname: Viksit orcidid: 0000-0003-0056-5223 surname: Kumar fullname: Kumar, Viksit – sequence: 2 givenname: Jeremy M. surname: Webb fullname: Webb, Jeremy M. – sequence: 3 givenname: Adriana surname: Gregory fullname: Gregory, Adriana – sequence: 4 givenname: Max surname: Denis fullname: Denis, Max – sequence: 5 givenname: Duane D. surname: Meixner fullname: Meixner, Duane D. – sequence: 6 givenname: Mahdi surname: Bayat fullname: Bayat, Mahdi – sequence: 7 givenname: Dana H. surname: Whaley fullname: Whaley, Dana H. – sequence: 8 givenname: Mostafa surname: Fatemi fullname: Fatemi, Mostafa – sequence: 9 givenname: Azra surname: Alizad fullname: Alizad, Azra |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29768415$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttq3DAQhk1JaZJt36C0hkJpL3YryZZs96KwhB4WAoGeboUsjb1KZWljyUnz9tVmnbAOgQZdSIy_-T0z_xwnB9ZZSJKXGC1wVuAP527orTCLTQwvEK5oidmT5AhXGZkzgrKDvfdhcuz9OUI0Kxl7lhySqmBljulRIpdDcJ0IoFJhVdqDMPOgO0g9tB3YIIJ2NnVN6ge_0VK7wad1pHxIO-E9-HTw2rapdPbSmWFLC5NaGPqbK1y5_s_z5GkjjIcX4z1Lfn35_PPk2_z07OvqZHk6lwUtw5yVhOSsQABM1SyWnlUky2qFCqKwyhEByBUrWdmUsqpZDoQ0GSllw5pCFgSyWfJ6p7sxzvNxPp7H_qvYLIuSs2S1I5QT53zT607019wJzW8Crm-56IOWBngOCjOMUCYblauGVYRiCqWAsoKsoXXUojutwW7E9ZUw5k4QI7616LYEvrWIjxbFvE9jlUPdgZJxyL0wk2KmX6xe89ZdclpRSlEeBd6NAr27GMAH3mkvwRhhIdoT-81RwQqKi4i-uYc-PJWRakVsXNvGxf_KrShfxo2pKKH5llo8QMWjoNPRfmh0jE8S3k8SIhPgb2jF4D1f_fj-ePbs95R9u8eu48aGtR93z0_BV_uTvhvx7fZH4OMOkL3zvoeGS73b-NiaNv_zMb-X_Cj7_wFFcy4L |
| CitedBy_id | crossref_primary_10_1002_ima_22690 crossref_primary_10_1097_RCT_0000000000001474 crossref_primary_10_46268_jsu_2023_10_1_8 crossref_primary_10_1002_ima_22693 crossref_primary_10_1088_1742_6596_1924_1_012018 crossref_primary_10_1109_ACCESS_2021_3071301 crossref_primary_10_1109_ACCESS_2022_3232561 crossref_primary_10_3389_fonc_2021_600557 crossref_primary_10_3390_e24121775 crossref_primary_10_3390_s21227741 crossref_primary_10_1016_j_bspc_2023_105514 crossref_primary_10_1038_s41598_023_42000_9 crossref_primary_10_1002_EXP_20230007 crossref_primary_10_3390_computation11060113 crossref_primary_10_1016_j_ibmed_2025_100224 crossref_primary_10_3390_cancers15123139 crossref_primary_10_1016_j_jacr_2019_06_004 crossref_primary_10_1007_s11604_019_00831_5 crossref_primary_10_1016_j_compbiomed_2024_108794 crossref_primary_10_3389_fonc_2020_594580 crossref_primary_10_1002_acm2_13863 crossref_primary_10_1016_j_eswa_2022_119462 crossref_primary_10_1007_s10278_022_00613_y crossref_primary_10_1109_ACCESS_2024_3394808 crossref_primary_10_1016_j_asoc_2021_107481 crossref_primary_10_3390_diagnostics10121055 crossref_primary_10_3390_tomography10050055 crossref_primary_10_1007_s00432_023_04956_z crossref_primary_10_1053_j_semnuclmed_2022_02_003 crossref_primary_10_1007_s10489_022_03184_1 crossref_primary_10_1007_s11042_021_10515_w crossref_primary_10_1016_j_media_2022_102687 crossref_primary_10_1038_s41598_022_18747_y crossref_primary_10_1080_21681163_2024_2373996 crossref_primary_10_1016_j_bspc_2024_107482 crossref_primary_10_1016_j_patcog_2022_108675 crossref_primary_10_1088_1361_6560_ad1274 crossref_primary_10_3233_XST_230085 crossref_primary_10_1002_mp_15006 crossref_primary_10_1007_s11760_022_02408_8 crossref_primary_10_1007_s11831_020_09469_3 crossref_primary_10_1111_exsy_13355 crossref_primary_10_1016_j_ultras_2020_106271 crossref_primary_10_1016_j_knosys_2024_112580 crossref_primary_10_2957_kanzo_61_623 crossref_primary_10_1016_j_bbe_2021_05_007 crossref_primary_10_1016_j_compbiomed_2020_104036 crossref_primary_10_1109_JBHI_2024_3514134 crossref_primary_10_1109_TIP_2023_3304518 crossref_primary_10_14366_usg_20117 crossref_primary_10_1007_s40477_022_00726_8 crossref_primary_10_1155_2020_1645479 crossref_primary_10_1186_s41747_024_00480_y crossref_primary_10_1109_TCBB_2020_2978470 crossref_primary_10_1109_TUFFC_2020_2993779 crossref_primary_10_1016_j_engappai_2023_106753 crossref_primary_10_1109_ACCESS_2020_2982390 crossref_primary_10_3390_biomedicines9070720 crossref_primary_10_4103_jcrt_jcrt_1796_23 crossref_primary_10_1016_j_media_2020_101657 crossref_primary_10_1109_ACCESS_2021_3056130 crossref_primary_10_1016_j_cej_2024_151016 crossref_primary_10_1016_j_compbiomed_2021_104966 crossref_primary_10_3390_cancers14030623 crossref_primary_10_1186_s42492_024_00155_w crossref_primary_10_1016_j_eswa_2020_114161 crossref_primary_10_1088_2632_2153_ac9bcc crossref_primary_10_1186_s12957_023_03286_1 crossref_primary_10_3389_fonc_2022_848271 crossref_primary_10_1242_bio_052936 crossref_primary_10_1007_s11517_023_02849_4 crossref_primary_10_1016_j_compbiomed_2024_109391 crossref_primary_10_1177_01617346221075769 |
| Cites_doi | 10.1148/rg.305095144 10.1109/TMI.2002.808364 10.1016/j.ultras.2016.08.004 10.1109/CCCRV.2004.1301473 10.1148/radiology.188.2.8327668 10.1109/IEMBS.1998.745618 10.1016/S0301-5629(03)00059-0 10.1007/s10278-011-9450-6 10.2214/ajr.170.1.9423610 10.2214/AJR.10.6049 10.1016/j.patcog.2010.01.002 10.1118/1.3110069 10.1007/978-3-319-24574-4_28 10.1109/34.537343 10.1118/1.1485995 10.1001/jama.2015.13086 10.1109/34.295913 10.1016/S0301-5629(03)00992-X 10.1186/1865-1380-4-72 10.1109/TIP.2010.2069690 10.1118/1.2012967 10.1155/2010/595167 10.1007/s10549-004-2043-z 10.1016/j.ultrasmedbio.2011.09.011 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Kumar et al 2018 Kumar et al |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Kumar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Kumar et al 2018 Kumar et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0195816 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine Biology |
| DocumentTitleAlternate | Automated and real-time breast mass segmentation using CNN |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2039841669 oai_doaj_org_article_4ed161003cfd4df692515e8ae89e3f5b 10.1371/journal.pone.0195816 PMC5955504 A538952549 29768415 10_1371_journal_pone_0195816 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Minnesota |
| GeographicLocations_xml | – name: Minnesota – name: United States--US |
| GrantInformation_xml | – fundername: NIH HHS grantid: R01CA174723 – fundername: NIH HHS grantid: R01CA148994-S1 – fundername: NCI NIH HHS grantid: R01 CA168575 – fundername: NIH HHS grantid: R01CA168575 – fundername: NCI NIH HHS grantid: R01 CA174723 – fundername: NCI NIH HHS grantid: R01 CA195527 – fundername: NIH HHS grantid: R01CA195527 – fundername: NIH HHS grantid: R01CA148994 – fundername: NCI NIH HHS grantid: R01 CA148994 – fundername: ; grantid: R01CA168575 – fundername: ; grantid: R01CA148994 – fundername: ; grantid: R01CA174723 – fundername: ; grantid: R01CA195527 – fundername: ; grantid: EB17213 – fundername: ; grantid: R01CA148994-S1 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c758t-68224670ee6db693239233bd072d1d402ee4d6868f8c9b64e22f328cf6f7c72e3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:13:57 EST 2021 Tue Oct 14 14:59:40 EDT 2025 Sun Oct 26 03:52:35 EDT 2025 Tue Sep 30 16:59:44 EDT 2025 Thu Oct 02 07:17:00 EDT 2025 Tue Oct 07 07:47:53 EDT 2025 Mon Oct 20 22:03:24 EDT 2025 Mon Oct 20 16:24:14 EDT 2025 Thu Oct 16 14:30:36 EDT 2025 Thu Oct 16 14:32:12 EDT 2025 Thu May 22 21:24:18 EDT 2025 Thu Apr 03 07:00:34 EDT 2025 Wed Oct 01 01:32:31 EDT 2025 Thu Apr 24 23:05:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c758t-68224670ee6db693239233bd072d1d402ee4d6868f8c9b64e22f328cf6f7c72e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current address: Physical and Life Sciences Solutions LLC, Randolph, Massachusetts, United States of America Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-0056-5223 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0195816 |
| PMID | 29768415 |
| PQID | 2039841669 |
| PQPubID | 1436336 |
| PageCount | e0195816 |
| ParticipantIDs | plos_journals_2039841669 doaj_primary_oai_doaj_org_article_4ed161003cfd4df692515e8ae89e3f5b unpaywall_primary_10_1371_journal_pone_0195816 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5955504 proquest_miscellaneous_2040767517 proquest_journals_2039841669 gale_infotracmisc_A538952549 gale_infotracacademiconefile_A538952549 gale_incontextgauss_ISR_A538952549 gale_incontextgauss_IOV_A538952549 gale_healthsolutions_A538952549 pubmed_primary_29768415 crossref_citationtrail_10_1371_journal_pone_0195816 crossref_primary_10_1371_journal_pone_0195816 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-16 |
| PublicationDateYYYYMMDD | 2018-05-16 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | ref14 ref11 P Skaane (ref32) 1998; 170 Y Liu (ref22) 2012; 25 RL Siegel (ref1) 2015 R Adams (ref10) 1994; 16 S Sippel (ref6) 2011; 4 D-R Chen (ref16) 2003; 29 Z Song Chun (ref9) 1996; 18 J Cui (ref20) 2009; 36 R-F Chang (ref15) 2003; 29 R-F Chang (ref17) 2005; 89 N Srivastava (ref30) 2014; 15 ref26 K Drukker (ref13) 2002; 29 (ref7) 1998 C Li (ref19) 2010; 19 A Krizhevsky (ref23) 2012 AL Maas (ref27) 2013 NL Keating (ref3) 2015; 314 A Madabhushi (ref12) 2003; 22 B Liu (ref18) 2010; 43 T Tieleman (ref28) 2012; 4 YA LeCun (ref29) 2012 LN Shulman (ref2) 2010; 2010 CM Checka (ref5) 2012; 198 AR Jamieson (ref24) 2012 S Raza (ref31) 2010; 30 T Jia-Wei (ref21) 2012; 38 Q Zhang (ref25) 2016; 72 VP Jackson (ref4) 1993; 188 TW Cary (ref8) 2005; 32 |
| References_xml | – volume: 30 start-page: 1199 issue: 5 year: 2010 ident: ref31 article-title: US of Breast Masses Categorized as BI-RADS 3, 4, and 5: Pictorial Review of Factors Influencing Clinical Management 1 publication-title: Radiographics doi: 10.1148/rg.305095144 – year: 2015 ident: ref1 article-title: Cancer statistics, 2016 publication-title: CA: a cancer journal for clinicians – volume: 22 start-page: 155 issue: 2 year: 2003 ident: ref12 article-title: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2002.808364 – volume: 72 start-page: 150 year: 2016 ident: ref25 article-title: Deep learning based classification of breast tumors with shear-wave elastography publication-title: Ultrasonics doi: 10.1016/j.ultras.2016.08.004 – ident: ref14 doi: 10.1109/CCCRV.2004.1301473 – volume: 188 start-page: 297 issue: 2 year: 1993 ident: ref4 article-title: Imaging of the radiographically dense breast publication-title: Radiology doi: 10.1148/radiology.188.2.8327668 – ident: ref11 doi: 10.1109/IEMBS.1998.745618 – volume: 29 start-page: 1017 issue: 7 year: 2003 ident: ref16 article-title: 3-D breast ultrasound segmentation using active contour model publication-title: Ultrasound in medicine & biology doi: 10.1016/S0301-5629(03)00059-0 – volume: 25 start-page: 580 issue: 5 year: 2012 ident: ref22 article-title: An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle publication-title: Journal of digital imaging doi: 10.1007/s10278-011-9450-6 – volume: 170 start-page: 109 issue: 1 year: 1998 ident: ref32 article-title: Analysis of sonographic features in the differentiation of fibroadenoma and invasive ductal carcinoma publication-title: AJR American journal of roentgenology doi: 10.2214/ajr.170.1.9423610 – volume: 198 start-page: W292 issue: 3 year: 2012 ident: ref5 article-title: The relationship of mammographic density and age: implications for breast cancer screening publication-title: American Journal of Roentgenology doi: 10.2214/AJR.10.6049 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: ref30 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 43 start-page: 2028 issue: 6 year: 2010 ident: ref18 article-title: Probability density difference-based active contour for ultrasound image segmentation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.01.002 – volume: 36 start-page: 1553 issue: 5 year: 2009 ident: ref20 article-title: A new automated method for the segmentation and characterization of breast masses on ultrasound images publication-title: Medical physics doi: 10.1118/1.3110069 – ident: ref26 doi: 10.1007/978-3-319-24574-4_28 – volume: 18 start-page: 884 issue: 9 year: 1996 ident: ref9 article-title: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.537343 – volume: 29 start-page: 1438 issue: 7 year: 2002 ident: ref13 article-title: Computerized lesion detection on breast ultrasound publication-title: Medical Physics doi: 10.1118/1.1485995 – year: 2013 ident: ref27 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc ICML – volume: 4 issue: 2 year: 2012 ident: ref28 article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural networks for machine learning – start-page: 9 year: 2012 ident: ref29 article-title: Neural networks: Tricks of the trade – volume: 314 start-page: 1569 issue: 15 year: 2015 ident: ref3 article-title: New guidelines for breast cancer screening in us women publication-title: JAMA doi: 10.1001/jama.2015.13086 – volume: 16 start-page: 641 issue: 6 year: 1994 ident: ref10 article-title: Seeded region growing publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.295913 – volume: 29 start-page: 1571 issue: 11 year: 2003 ident: ref15 article-title: Segmentation of breast tumor in three-dimensional ultrasound images using three-dimensional discrete active contour model publication-title: Ultrasound in medicine & biology doi: 10.1016/S0301-5629(03)00992-X – year: 2012 ident: ref23 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – volume: 4 start-page: 72 issue: 1 year: 2011 ident: ref6 article-title: Review article: use of ultrasound in the developing world publication-title: International journal of emergency medicine doi: 10.1186/1865-1380-4-72 – volume: 19 start-page: 3243 issue: 12 year: 2010 ident: ref19 article-title: Distance regularized level set evolution and its application to image segmentation publication-title: IEEE transactions on image processing doi: 10.1109/TIP.2010.2069690 – volume: 32 start-page: 3318 issue: 11 year: 2005 ident: ref8 article-title: Diffuse boundary extraction of breast masses on ultrasound by leak plugging publication-title: Medical Physics doi: 10.1118/1.2012967 – volume: 2010 year: 2010 ident: ref2 article-title: Breast Cancer in Developing Countries: Opportunities for Improved Survival publication-title: Journal of Oncology doi: 10.1155/2010/595167 – year: 1998 ident: ref7 article-title: Breast imaging reporting and data system – year: 2012 ident: ref24 article-title: SPIE Medical Imaging – volume: 89 start-page: 179 issue: 2 year: 2005 ident: ref17 article-title: Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors publication-title: Breast Cancer Research and Treatment doi: 10.1007/s10549-004-2043-z – volume: 38 start-page: 119 issue: 1 year: 2012 ident: ref21 article-title: Effect of a novel segmentation algorithm on radiologists’ diagnosis of breast masses using ultrasound imaging publication-title: Ultrasound in medicine & biology doi: 10.1016/j.ultrasmedbio.2011.09.011 |
| SSID | ssj0053866 |
| Score | 2.5632432 |
| Snippet | In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0195816 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Analysis Artificial intelligence Artificial neural networks Automation Biology Biomedical engineering Biopsy Breast Breast - diagnostic imaging Breast cancer Breast Neoplasms - diagnostic imaging Carcinoma, Ductal, Breast - diagnostic imaging Carcinoma, Intraductal, Noninfiltrating - diagnostic imaging Carcinoma, Lobular - diagnostic imaging Diagnosis Female Humans Image processing Image Processing, Computer-Assisted - methods Image segmentation Mammography Mammography - methods Medical imaging Medical research Medical screening Medicine Medicine and Health Sciences Middle Aged Morphology Neural networks Neural Networks, Computer NMR Nuclear magnetic resonance Pattern Recognition, Automated Physical Sciences Physiology Prospective Studies Real time Research and Analysis Methods Risk factors Segmentation Software Therapeutic applications Tumors Ultrasonic imaging Ultrasonography, Mammary - methods Ultrasound Young Adult |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQXuCCKF8NFDAICThkm8SJ4xwLoipIgAQU9Wb5c6mUJhHZFeLfM5N4o42o1B44rbSe7Cozz5OZ-PmZkJfMqiTxysZZbkSMvItYecvigkM74o32fljR_fSZn5zmH8-Ks52jvpATNsoDj447zJ2FogSwZ7zNrecVPJALJ5QTlWO-0Jh9E1Ftm6kxB8Ms5jxslGNlehjisuzaxi1xi5zA8813HkSDXv-UlRdd3faXlZz_MidvbppO_fmt6nrnsXR8h9wO9SQ9Gu9jj9xwzV2yF2ZsT18HWek39wi-DWuhPnWWqsZSKBbrGE-Wp71bXYQdSA1tPe03fXdukBtLNVLW1_RC4dIwRY78iiJPPeAV_hj1MIePgU1-n5wev__-7iQORyzEBhqFdcyRRMrLxDluNYdaDsolxrRNysymFnpL53LLBRdemErz3GWZZ5kwnvvSlJljD8iiAafuE6q8ETCfnS5GVUFtmEGt-FyLKneViwjb-luaoD-Ox2DUclhUK6EPGV0mMUoyRCki8XRVN-pvXGH_FkM52aJ69vAFYEoGTMmrMBWRZwgEOW5FnXKAPAJcVQW21BF5MViggkaDFJ2V2vS9_PDlxzWMvn2dGb0KRr4FdxgVtkXAPaEy18zyYGYJecDMhvcRtluv9DJLWIWLyhyv3EL58uHn0zD-KNLuGgcoAxvo96GlTMuIPByRP3k2q3ANNy0iUs7mxMz185Hm_OcgYF5UBTTGeUSW0-y5VnAf_Y_gPia3oOgVyABJ-QFZrH9t3BMoLNf66ZBD_gK1R3lo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVDwuiIZHDQUWhAQcHBKvvbYPCLWoVUFqQYWi3qz1PgJSaps6Eeq_Z8Zem1pU0FOk7NiK55UZz8w3AC-4ltOpldoPQpX41HfhS6u5HwlMR6zKrW0qugeHYv84_HgSnazBYTcLQ22VnU9sHLUuFb0jxySdp1QiE-m76qdPW6Ooutqt0JButYJ-20CMXYP1gJCxRrC-s3v4-ajzzWjdQrgBOh7P3jh5TaqyMBManUto7_mFP6gGx7_31qNqUdaXhaJ_d1TeXBWVPP8lF4sLf1d7d-C2izPZdqsYG7BmijFcbzdPno_hxoGrqY9hw5l3zV45DOrXd4FenZUYzBrNZKEZRpYLn9bQs9rMT924UsFKy-pVXeGNylXNcupvX7JTSXVkRg31c0ZN7U658dcQeGbz0bSe34Pjvd2v7_d9t4_BV5hVLH1BHacinhojdC4w8MPYivNcT-NAzzQmosaEWiQisYlKcxGaILA8SJQVNlZxYPh9GBXI6U1g0qoEjd_kUQtBmCuuCFg-zJM0NKnxgHdCyJQDK6edGYusqcDFmLS0fMxIdJkTnQd-f1XVgnX8h36H5NvTEtR280V5Ns-c5Wah0RgVo_NTVofaihQjwsgk0iSp4TbKPXhK2pG1c6u9w8i2UdnSiPJvD543FAS3UVA_z1yu6jr78OnbFYi-HA2IXjoiWyI7lHQzFPhMBOM1oNwaUKLTUIPjTdLljit19se88MpOvy8_ftYf002pR68wqGVIE04JGmgWe_CgNYees0FKBd9Z5EE8MJQB64cnxY_vDdp5lEaYRYceTHqTupJwH_77OR7BLYx9E2oEmYktGC3PVuYxxpfL_IlzGr8BcN59GQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIGIR6HZJM4cZJjQawWJBYEFC0HFDl-lIo0rUgqBAd-OzOJExFYxHLg1KoeO83YHs9kvvlCyD2mhO8bodwwkqmLuAtXGMXcmEM4YmRhTJvRfXHED2fR8-P4eIt86GthrAYhRixXdZvJxy-rSu9bTe4jX1GXPfUClgR9D28NQh6Wv6UBv98yDuGTsQYLkM6QbR6Dqz4h27OjV9P3XaY5dHnoM1tO96eRRsdVy-o_2O4J_rOTHNPf8ZVnN9VafP0iyvKnw-vgAvne33aHWfnkbZrCk99-YYT8b3q5SM5bt5dOu1F2yJauLpEda1hq-tCyXz-6TPCh3QrcaK2oqBQFn7Z0m8VS01rPl7ZQqqIrQ-tNvV5IhPDSApH1DV0KzGBThPLPKcLp7baCCyNtZ_vRgt6vkNnB07dPDl37JghXQjzTuByxrjzxteaq4DB14NUxVig_CVWgIATWOlI85alJZVbwSIehYWEqDTeJTELNrpJJBXrYJVQYmYLZ0UXckR8WkkmktI-KNIt0ph3C-gnPpaVJx7d1lHmb-0sgXOpUlqNic6tYh7hDr3VHE_IX-ce4lgZZJPluf4CZze2M5pFW4I-D2ZVGRcrwDHzRWKdCp5lmJi4cchtXYt5VzA6mKp_CIZbFGPk75G4rgUQfFSKJ5mJT1_mzl-9OIfTm9UjogRUyK1CHFLZ6A-4JF95Icm8kCeZKjpp3ceX2Wqlz2IMZ5r459uz30snNd4ZmHBTRgZWGVQYykY-kREHikGvd1hs0G2aYag5ihySjTTlS_bilWnxsedbjLIb4PXKIN2zfU03u9X_tcIOcAz88RVBKwPfIpPm80TfB122KW9Zi_QDKhbAr priority: 102 providerName: Unpaywall |
| Title | Automated and real-time segmentation of suspicious breast masses using convolutional neural network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29768415 https://www.proquest.com/docview/2039841669 https://www.proquest.com/docview/2040767517 https://pubmed.ncbi.nlm.nih.gov/PMC5955504 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0195816&type=printable https://doaj.org/article/4ed161003cfd4df692515e8ae89e3f5b http://dx.doi.org/10.1371/journal.pone.0195816 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADD9t3QO8IMbXAqMcCAl4SJXPy-UBoW5aGUgr06BoPEXJfZRJWVKaVrD_Hju5RIvoxF5SKedrWp99Z8f2z4S89mXqODqVthcIbmPehZ1q6dshA3dEi0zrOqJ7MmXHs-DzeXi-RdqerYaB1UbXDvtJzZb56M-vqw-g8O_rrg2R204aLcpCjbAAjrtsm-zAWRVjM4eToIsrgHYzZgrobpqJ8MAxhqewU-61s6qG9O827sEiL6tNVum_yZV31sUivfqd5vm1k2tyn9wzJicdNzKyS7ZU8YDsGqWu6FuDPP3uIcEXZiWYsErStJAU7MncxubztFLzS1OkVNBS02pdLS4Eps_SDLPaV_QyxegxxTT6OcVUdiPS8GCEzKw_6oTzR2Q2Ofp2eGybLgy2AF9iZTPMM2WRoxSTGQNzDywq38-kE3nSleB-KhVIxhnXXMQZC5Tnad_jQjMdichT_mMyKIC_e4SmWnBQeZWFDfBgJnyBcPJBxuNAxcoifsvvRBiIcuyUkSd13C0CV6VhWYILlpgFs4jdzVo0EB3_oT_ApexoEWC7vlEu54nR1yRQEmxh2PKEloHULAY7MFQ8VTxWvg4zi7xAQUiaatVum0jGIGJxiF63RV7VFAiyUWAWzzxdV1Xy6cv3WxB9PesRvTFEugR2iNRUTsB_QvCuHuV-jxK2CtEb3kOxbblSJZ7jxxh3ZjizFeXNwy-7YfxSzMwrFEgZ0AQOAgK5kUWeNJLfcbbVI4tEPZ3osb4_Ulz8rDHOwzgE3zmwyKjTnlst7tMbf8QzcheMXY6ZHy7bJ4PVcq2eg0G5yoZkOzqP4MoPXbxOPg7JzsHR9PRsWL-iGdZ7CNybTU_HP_4Cuyp89Q |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VICgXRMOjhkIXBAIODokfa_uAUHlUCW2KBC3Kzdj7CEipbepEVf4Uv5EZe2NqUUEvPUXyjlfxzOznGc8L4Kkrk35fJ9J2PBHalHdhJ1q6ts_RHdEi1bqK6I4P-PDI-zjxJ2vwa1ULQ2mVK0ysgFrmgr6Ro5PuRhQi49Gb4qdNU6MouroaoVGrxZ5anqLLVr4evUf5PnOc3Q-H74a2mSpgC7SN5zanvEke9JXiMuVovqCF4Lqp7AeOHEh0p5TyJA95qEMRpdxTjqNdJxSa60AEjnJx3ytw1XMRS_D8BJPGwUPs4NyU57nB4JXRhl6RZ6pHhXkhTVU_8_qrpgQ074JOMcvL8wzdv_M11xdZkSxPk9nszMtw9xbcNFYs26nVbgPWVNaFa_Vcy2UXro9NxL4LGwY8SvbCdLh-eRvow1yOprKSLMkkQ7t1ZtOQe1aq6bEphspYrlm5KAvcKF-ULKXs-Tk7TihKzShdf8ooZd4cHfw31Jqz-qkS2-_A0aXI5S50MuT0JrBEixChRaV-3eAwFa6gtvVeGkaeipQF7koIsTCt0Gkixyyu4nsBukQ1H2MSXWxEZ4Hd3FXUrUD-Q_-W5NvQUiPv6kJ-Mo0NLsSekmhzI7QKLT2peYT2pq_CRIWRcrWfWrBN2hHXVbENHMU7qGyRT969BU8qCmrmkVG20DRZlGU8-vT1AkRfPreInhsinSM7RGIqNPCZqElYi3KrRYmQJFrLm6TLK66U8Z_Di3eu9Pv85cfNMm1KGYCZQi1DGq9PjYcGgQX36uPQcNaJKJw88C0IWgelxfr2Svbje9VL3Y989NE9C3rNkbqQcO__-zm2YX14ON6P90cHew_gBlrZIaWcDPgWdOYnC_UQLdl5-qiCDwbfLhuvfgPJbbJM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9NADLfGEIMXxMrHAoMdCAQ8ZGtzySV5QGgwqo2xgQZDfQvJfRSkLglLq2n_Gn8ddnINi5hgL3uqlHNOje1z7PhnG-ApV2m_b1Ller6MXMJduKlR3A0EhiNGZsbUGd29fbF96L8fBaMF-DWvhSFY5dwm1oZaFZK-kWOQzmNKkYl4w1hYxKet4evyp0sTpCjTOh-n0ajIrj49wfCterWzhbJ-5nnDd1_ebrt2woAr0U-euoIwlCLsay1UJtCVQW-B80z1Q08NFIZWWvtKRCIykYwz4WvPM9yLpBEmlKGnOe57Ba6GnMcEJwxHbbCHdkQIW6rHw8GG1Yz1ssj1OhXpRTRh_cyrsJ4Y0L4XFstJUZ3n9P6N3bw-y8v09CSdTM68GIe34Kb1aNlmo4LLsKDzHlxrZlye9mBpz2bve7BsDUnFXthu1y9vA32kK9Bt1oqluWLow05cGnjPKj0-soVROSsMq2ZViRsVs4plhKSfsqOUMtaMoPtjRvB5e4zw31CbzvqnBrnfgcNLkctdWMyR0yvAUiMjNDM6C5pmh5nkklrY-1kU-zrWDvC5EBJp26LTdI5JUuf6QgyPGj4mJLrEis4Bt72rbNqC_If-Dcm3paWm3vWF4nicWBuR-Fqh_41mVhrlKyNi9D0DHaU6ijU3QebAGmlH0lTItqYp2URliwOK9B14UlNQY4-cjsg4nVVVsvPx6wWIPh90iJ5bIlMgO2RqqzXwmahhWIdytUOJ5kl2lldIl-dcqZI_BxnvnOv3-cuP22XalNCAuUYtQxq_T02IBqED95rj0HLWiym1PAgcCDsHpcP67kr-43vdVz2IA4zXfQfW2yN1IeHe__dzrMESWqrkw87-7gO4gQ53ROiTgViFxenxTD9Ep3aaPaqtB4Nvl22ufgNzzbaP |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW7gEuwPLawAIGIR6HZJM4cZJjQawWJBYEFC0HFDl-lIo0rUgqBAd-OzOJExFYxHLg1KoeO83YHs9kvvlCyD2mhO8bodwwkqmLuAtXGMXcmEM4YmRhTJvRfXHED2fR8-P4eIt86GthrAYhRixXdZvJxy-rSu9bTe4jX1GXPfUClgR9D28NQh6Wv6UBv98yDuGTsQYLkM6QbR6Dqz4h27OjV9P3XaY5dHnoM1tO96eRRsdVy-o_2O4J_rOTHNPf8ZVnN9VafP0iyvKnw-vgAvne33aHWfnkbZrCk99-YYT8b3q5SM5bt5dOu1F2yJauLpEda1hq-tCyXz-6TPCh3QrcaK2oqBQFn7Z0m8VS01rPl7ZQqqIrQ-tNvV5IhPDSApH1DV0KzGBThPLPKcLp7baCCyNtZ_vRgt6vkNnB07dPDl37JghXQjzTuByxrjzxteaq4DB14NUxVig_CVWgIATWOlI85alJZVbwSIehYWEqDTeJTELNrpJJBXrYJVQYmYLZ0UXckR8WkkmktI-KNIt0ph3C-gnPpaVJx7d1lHmb-0sgXOpUlqNic6tYh7hDr3VHE_IX-ce4lgZZJPluf4CZze2M5pFW4I-D2ZVGRcrwDHzRWKdCp5lmJi4cchtXYt5VzA6mKp_CIZbFGPk75G4rgUQfFSKJ5mJT1_mzl-9OIfTm9UjogRUyK1CHFLZ6A-4JF95Icm8kCeZKjpp3ceX2Wqlz2IMZ5r459uz30snNd4ZmHBTRgZWGVQYykY-kREHikGvd1hs0G2aYag5ihySjTTlS_bilWnxsedbjLIb4PXKIN2zfU03u9X_tcIOcAz88RVBKwPfIpPm80TfB122KW9Zi_QDKhbAr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+and+real-time+segmentation+of+suspicious+breast+masses+using+convolutional+neural+network&rft.jtitle=PloS+one&rft.au=Kumar%2C+Viksit&rft.au=Webb%2C+Jeremy+M&rft.au=Gregory%2C+Adriana&rft.au=Denis%2C+Max&rft.date=2018-05-16&rft.eissn=1932-6203&rft.volume=13&rft.issue=5&rft.spage=e0195816&rft_id=info:doi/10.1371%2Fjournal.pone.0195816&rft_id=info%3Apmid%2F29768415&rft.externalDocID=29768415 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |