Lactobacillus plantarum improves LPS-induced Caco2 cell line intestinal barrier damage via cyclic AMP-PKA signaling

Lactobacillus plantarum (LP) has been shown to exhibit protective effects on intestinal barrier function in septic rats, although the regulatory mechanism has not been established. We determined whether LP imparts such protective effects in a lipopolysaccharide (LPS)-induced Caco2 cell monolayer mod...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 5; p. e0267831
Main Authors Wei, Chen-Xiang, Wu, Ju-Hua, Huang, Yue-Hong, Wang, Xiao-Zhong, Li, Jian-Ying
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 31.05.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0267831

Cover

More Information
Summary:Lactobacillus plantarum (LP) has been shown to exhibit protective effects on intestinal barrier function in septic rats, although the regulatory mechanism has not been established. We determined whether LP imparts such protective effects in a lipopolysaccharide (LPS)-induced Caco2 cell monolayer model and whether cAMP-PKA signaling is the underlying mechanism of action. The cyclic adenosine monophosphate (cAMP) agonist, forskolin (FSK), and the protein kinase A (PKA) inhibitor, HT89, were used to study the protective effect of LP on the destruction of the tight junction (TJ) structure of cells treated with LPS and the corresponding changes in cAMP-PKA signaling. Our experimental results demonstrated that LP promoted the expression of TJ proteins between Caco2 cells after LPS treatment, and increased the electrical barrier detection (TEER) between Caco2 cells. Moreover, transmission electron microscopy (TEM) revealed that the TJ structural integrity of cells treated with LPS + LP was improved compared to cells treated with LPS alone. In addition, our findings were consistent between the FSK and LP intervention group, while HT89 inhibited LP influence. Taken together, our results indicate that LP has an improved protective effect on LPS-induced damage to the monolayer membrane barrier function of Caco2 cells and is regulated by the cAMP-PKA pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0267831