A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis

We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published bet...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 9; p. e0221339
Main Authors Harris, Miriam, Qi, Amy, Jeagal, Luke, Torabi, Nazi, Menzies, Dick, Korobitsyn, Alexei, Pai, Madhukar, Nathavitharana, Ruvandhi R., Ahmad Khan, Faiz
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.09.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0221339

Cover

Abstract We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.
AbstractList We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods (“Development” studies) and 13 focused on evaluation of CAD (“Clinical” studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82–0.90]) versus Clinical studies (0.75 [0.66–0.87]; p-value 0.004); and with deep-learning (0.91 [0.88–0.99]) versus machine-learning (0.82 [0.75–0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.
We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.
Audience Academic
Author Qi, Amy
Korobitsyn, Alexei
Jeagal, Luke
Torabi, Nazi
Pai, Madhukar
Ahmad Khan, Faiz
Harris, Miriam
Menzies, Dick
Nathavitharana, Ruvandhi R.
AuthorAffiliation 3 Department of Medicine, Boston University–Boston Medical Center, Boston, Massachusetts, United States of America
Medical University of Vienna, AUSTRIA
4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
5 St. Michael's Hospital, Li Ka Shing International Healthcare Education Centre, Toronto, Canada
6 McGill International TB Centre, Montreal, Canada
7 Laboratories, Diagnostics & Drug Resistance Global TB Programme WHO, Geneva, Switzerland
1 Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada
2 Department of Medicine, McGill University Health Centre, Montreal, Canada
8 Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
AuthorAffiliation_xml – name: 8 Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
– name: 1 Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada
– name: 2 Department of Medicine, McGill University Health Centre, Montreal, Canada
– name: 5 St. Michael's Hospital, Li Ka Shing International Healthcare Education Centre, Toronto, Canada
– name: 7 Laboratories, Diagnostics & Drug Resistance Global TB Programme WHO, Geneva, Switzerland
– name: 4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada
– name: 6 McGill International TB Centre, Montreal, Canada
– name: Medical University of Vienna, AUSTRIA
– name: 3 Department of Medicine, Boston University–Boston Medical Center, Boston, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Miriam
  orcidid: 0000-0003-3870-4858
  surname: Harris
  fullname: Harris, Miriam
– sequence: 2
  givenname: Amy
  surname: Qi
  fullname: Qi, Amy
– sequence: 3
  givenname: Luke
  surname: Jeagal
  fullname: Jeagal, Luke
– sequence: 4
  givenname: Nazi
  orcidid: 0000-0001-5447-9123
  surname: Torabi
  fullname: Torabi, Nazi
– sequence: 5
  givenname: Dick
  surname: Menzies
  fullname: Menzies, Dick
– sequence: 6
  givenname: Alexei
  surname: Korobitsyn
  fullname: Korobitsyn, Alexei
– sequence: 7
  givenname: Madhukar
  surname: Pai
  fullname: Pai, Madhukar
– sequence: 8
  givenname: Ruvandhi R.
  surname: Nathavitharana
  fullname: Nathavitharana, Ruvandhi R.
– sequence: 9
  givenname: Faiz
  surname: Ahmad Khan
  fullname: Ahmad Khan, Faiz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31479448$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tq3DAQhk1JaQ7tG5RWUCjtxW5tyfLavSiE0EMgEOjpVoyl0a6CbG0kOcn2OfrAlbObkA2BBl9IjL755_Dj_Wyndz1m2csinxZsVnw4c4PvwU6XKTzNKS0Ya55ke0XD6KSiOdu5c9_N9kM4y3PO6qp6lu2yopw1ZVnvZX8PSViFiB1EI4nHC4OXxGkSF0iUgXnvwvgAUg4e5Gp8Ah-NNtKAJaaPaK2ZYy9x0kJARaTrlkNET5bezT10gURHIDW6-oNELjBEcjXxsApEuwQNtnM9-BWJQ4teDtYFE55nTzXYgC8250H268vnn0ffJienX4-PDk8mcsbrOOFljjmtaSF5LdO1QK6ozmkFgDUvNOeF0qhYgy1tNG15AywFUnLbslwrdpC9XusuU1mxWWgQlNas4ays80Qcrwnl4EwsvelSr8KBEdcB5-diXIe0KHgrFUCrVc6gLNuiKVVdUdU2tZrpvB2r8bXW0C9hdQnW3goWuRg9vWlBjJ6Kjacp79Omy6HtUEnsowe71cz2S28WYu4uRDUrmpqXSeDdRsC78yE5IDoTZDIOenTD9bwl5yXlVULf3EMf3sqGmkMa3PTapbpyFBWHvKlpxWcNS9T0ASp9Cjsj04TapPhWwvuthMREvIpzGEIQxz--P549_b3Nvr3DLhBsXARnh2hcH7bBV3c3fbvim98lAR_XgPQuBI9aSBNh1EmjGfs_H8t7yY-y_x9Z0UIo
CitedBy_id crossref_primary_10_3390_diagnostics13081430
crossref_primary_10_3389_fpubh_2023_1254658
crossref_primary_10_1016_j_ebiom_2022_103928
crossref_primary_10_1155_2022_6902321
crossref_primary_10_1183_20734735_0149_2021
crossref_primary_10_1093_cid_ciab639
crossref_primary_10_1016_j_rcl_2021_07_001
crossref_primary_10_1016_j_eclinm_2022_101328
crossref_primary_10_1371_journal_pgph_0001272
crossref_primary_10_1142_S1793351X22400049
crossref_primary_10_1016_j_joen_2021_09_001
crossref_primary_10_1038_s41467_022_31514_x
crossref_primary_10_52775_1810_200X_2022_96_4_56_63
crossref_primary_10_3390_children10081372
crossref_primary_10_3390_diseases12090202
crossref_primary_10_1016_j_cdtm_2021_02_001
crossref_primary_10_1016_j_nima_2021_165509
crossref_primary_10_1177_20552076241278211
crossref_primary_10_1002_14651858_CD013694_pub2
crossref_primary_10_1016_S2589_7500_20_30221_1
crossref_primary_10_1016_j_clbc_2021_07_002
crossref_primary_10_3389_frai_2021_708365
crossref_primary_10_3390_tropicalmed8110488
crossref_primary_10_1038_s41746_021_00544_y
crossref_primary_10_1016_j_nima_2022_168003
crossref_primary_10_2196_27275
crossref_primary_10_1016_j_rx_2023_01_007
crossref_primary_10_1038_s43856_022_00086_8
crossref_primary_10_1016_j_ijmmb_2022_10_008
crossref_primary_10_1080_09720529_2021_1932910
crossref_primary_10_1002_emp2_12205
crossref_primary_10_2196_43154
crossref_primary_10_1016_S1473_3099_20_30177_8
crossref_primary_10_1038_s41598_021_03265_0
crossref_primary_10_3390_app12094459
crossref_primary_10_1016_j_eswa_2021_115519
crossref_primary_10_1371_journal_pgph_0000800
crossref_primary_10_1016_S2589_7500_21_00142_4
crossref_primary_10_1371_journal_pgph_0000402
crossref_primary_10_1016_j_tube_2020_102049
crossref_primary_10_1093_jamiaopen_ooae151
crossref_primary_10_1016_j_pcad_2024_10_003
crossref_primary_10_7717_peerj_10309
crossref_primary_10_1177_14413582231167882
crossref_primary_10_2196_25759
crossref_primary_10_1016_j_rxeng_2023_01_015
crossref_primary_10_1080_24745332_2022_2043055
crossref_primary_10_51758_AGJSR_02_2021_0012
crossref_primary_10_1088_1742_6596_1767_1_012004
crossref_primary_10_3389_fmed_2023_1195451
crossref_primary_10_1093_cid_ciae273
crossref_primary_10_3390_diagnostics12010188
crossref_primary_10_1371_journal_pone_0236621
crossref_primary_10_3390_app14146214
crossref_primary_10_1002_psp4_12643
crossref_primary_10_1093_ofid_ofab567
crossref_primary_10_1007_s00247_023_05606_9
crossref_primary_10_1097_COH_0000000000000879
crossref_primary_10_1016_j_procs_2023_12_213
crossref_primary_10_1007_s10278_023_00952_4
crossref_primary_10_1038_s41598_024_63885_0
crossref_primary_10_7717_peerj_cs_560
crossref_primary_10_1097_QAD_0000000000002715
crossref_primary_10_1007_s11831_023_09987_w
crossref_primary_10_3348_kjr_2019_0821
crossref_primary_10_1371_journal_pone_0238908
crossref_primary_10_46871_eams_1497329
crossref_primary_10_1002_14651858_CD013694
crossref_primary_10_3390_jcm12010303
crossref_primary_10_14202_vetworld_2023_2143_2149
crossref_primary_10_1136_bmjopen_2023_074968
crossref_primary_10_1093_ofid_ofae020
crossref_primary_10_3390_children10030525
crossref_primary_10_3390_ijerph191912402
crossref_primary_10_1371_journal_pone_0251236
crossref_primary_10_1080_24745332_2023_2226008
crossref_primary_10_1007_s00420_021_01805_9
crossref_primary_10_1042_ETLS20200335
crossref_primary_10_3389_fpubh_2022_1023098
crossref_primary_10_1016_j_tube_2021_102143
crossref_primary_10_1007_s11042_024_20097_y
crossref_primary_10_2196_69068
crossref_primary_10_1016_j_ijmedinf_2023_105159
crossref_primary_10_1093_cid_ciae528
crossref_primary_10_5124_jkma_2023_66_11_667
crossref_primary_10_35627_2219_5238_2023_31_11_23_32
crossref_primary_10_1186_s12938_022_01045_z
crossref_primary_10_2139_ssrn_3967066
crossref_primary_10_3390_diagnostics13061075
crossref_primary_10_1007_s00431_021_04061_8
crossref_primary_10_1513_AnnalsATS_202008_1036ED
crossref_primary_10_2139_ssrn_4349524
crossref_primary_10_3390_pathogens11010001
crossref_primary_10_1016_j_ijmedinf_2022_104855
crossref_primary_10_4274_dir_2024_242835
crossref_primary_10_1371_journal_pmed_1003752
crossref_primary_10_3233_XST_211019
crossref_primary_10_2196_40259
Cites_doi 10.1371/journal.pone.0106381
10.1183/13993003.01064-2015
10.1007/s11548-015-1242-x
10.5588/pha.15.0037
10.1371/journal.pone.0128044
10.1097/MD.0000000000001044
10.1117/12.2216198
10.1109/TMI.2013.2284099
10.3844/ajassp.2013.1616.1628
10.1148/radiol.2017162326
10.1016/j.compmedimag.2010.10.002
10.1109/TMI.2017.2775636
10.1002/mp.12127
10.5588/ijtld.15.0926
10.5588/ijtld.12.0829
10.5588/ijtld.13.0325
10.1109/TMI.2015.2505672
10.1371/journal.pone.0093757
10.1186/s12879-017-2388-7
10.1007/978-3-642-15711-0_77
10.1016/S0140-6736(13)62073-5
10.1038/srep12215
10.1183/09031936.00136609
10.1016/j.media.2015.09.004
10.1038/srep25265
10.1117/12.844409
10.7326/0003-4819-155-8-201110180-00009
10.2214/ajr.174.1.1740071
10.5588/ijtld.17.0492
10.1371/journal.pone.0112980
10.5588/ijtld.17.0827
10.5588/ijtld.16.0851
10.1001/jama.2017.18391
10.1183/13993003.02159-2016
10.1117/12.2252459
10.1109/TMI.2014.2350539
10.1016/j.compbiomed.2017.08.001
10.1371/journal.pone.0126376
10.1164/rccm.201004-0620OC
10.1109/WiSPNET.2016.7566243
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1109/IBIOMED.2018.8534784
10.1038/s41598-018-30810-1
10.1109/TMI.2015.2405761
10.1056/NEJM190712261572602
10.1007/s11548-016-1359-6
10.1007/s10916-018-0991-9
10.1371/journal.pmed.1000097
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Harris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Harris et al 2019 Harris et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Harris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Harris et al 2019 Harris et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0221339
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Agricultural Science Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
DocumentTitleAlternate AI to detect TB on chest X-rays
EISSN 1932-6203
ExternalDocumentID 2283953480
oai_doaj_org_article_5bcdaabfd03a44b194d862db98d7f0bd
10.1371/journal.pone.0221339
PMC6719854
A598265793
31479448
10_1371_journal_pone_0221339
Genre Systematic Review
Journal Article
GeographicLocations Canada
Montreal Quebec Canada
United States--US
Massachusetts
GeographicLocations_xml – name: Canada
– name: Montreal Quebec Canada
– name: United States--US
– name: Massachusetts
GrantInformation_xml – fundername: World Health Organization
  grantid: 001
– fundername: NIAID NIH HHS
  grantid: K23 AI132648
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c758t-540e02821c58c0e01e5d2f026aae851f551dfed39eb29f2b59a3dfec75bb30fd3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Sep 03 00:14:40 EDT 2023
Tue Oct 14 19:06:53 EDT 2025
Sun Oct 26 04:06:08 EDT 2025
Tue Sep 30 17:07:05 EDT 2025
Sun Sep 28 00:49:08 EDT 2025
Tue Oct 07 08:08:47 EDT 2025
Mon Oct 20 22:17:41 EDT 2025
Mon Oct 20 16:18:48 EDT 2025
Thu Oct 16 14:46:52 EDT 2025
Thu Oct 16 14:51:25 EDT 2025
Thu May 22 21:18:20 EDT 2025
Mon Jul 21 05:42:25 EDT 2025
Wed Oct 01 02:52:46 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-540e02821c58c0e01e5d2f026aae851f551dfed39eb29f2b59a3dfec75bb30fd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-3870-4858
0000-0001-5447-9123
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0221339
PMID 31479448
PQID 2283953480
PQPubID 1436336
PageCount e0221339
ParticipantIDs plos_journals_2283953480
doaj_primary_oai_doaj_org_article_5bcdaabfd03a44b194d862db98d7f0bd
unpaywall_primary_10_1371_journal_pone_0221339
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6719854
proquest_miscellaneous_2284554256
proquest_journals_2283953480
gale_infotracmisc_A598265793
gale_infotracacademiconefile_A598265793
gale_incontextgauss_ISR_A598265793
gale_incontextgauss_IOV_A598265793
gale_healthsolutions_A598265793
pubmed_primary_31479448
crossref_citationtrail_10_1371_journal_pone_0221339
crossref_primary_10_1371_journal_pone_0221339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-03
PublicationDateYYYYMMDD 2019-09-03
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Muyoyeta (pone.0221339.ref069) 2017; 17
KM Sundaram (pone.0221339.ref048) 2013; 10
Y Arzhaeva (pone.0221339.ref055) 2009; 12
pone.0221339.ref005
J Melendez (pone.0221339.ref041) 2016; 35
A Requena-Mendez (pone.0221339.ref045) 2015; 10
J Melendez (pone.0221339.ref046) 2014
I Abubakar (pone.0221339.ref014) 2010; 35
RC Koesoemadinata (pone.0221339.ref070) 2018; 22
P Maduskar (pone.0221339.ref023) 2013; 17
B Chunhaswasdikul (pone.0221339.ref004) 1992; 23
J Melendez (pone.0221339.ref042) 2015; 34
MA Gianfrancesco (pone.0221339.ref008) 2018
NM Noor (pone.0221339.ref050) 2011; 35
J Melendez (pone.0221339.ref024) 2018; 22
S Jaeger (pone.0221339.ref033) 2014; 33
AL Beam (pone.0221339.ref007) 2018; 319
E Udayakumar (pone.0221339.ref030) 2017; 21
M Breuninger (pone.0221339.ref018) 2014; 9
J Melendez (pone.0221339.ref020) 2017; 21
MT Rahman (pone.0221339.ref067) 2017; 49
N Mohd Noor (pone.0221339.ref056) 2005; 3
J Shiraishi (pone.0221339.ref013) 2000; 174
G Theron (pone.0221339.ref015) 2014; 383
A Karargyris (pone.0221339.ref034) 2016; 11
S. Jaeger (pone.0221339.ref037) 2015
PF Whiting (pone.0221339.ref011) 2011; 155
SMA Zaidi (pone.0221339.ref025) 2018; 8
T Pande (pone.0221339.ref009) 2016; 20
M Muyoyeta (pone.0221339.ref017) 2015; 10
R Lieberman (pone.0221339.ref054) 2009; 7260
T Frieden (pone.0221339.ref016) 2004
FE HARRELL (pone.0221339.ref073) 1996; 15
pone.0221339.ref031
pone.0221339.ref032
P Maduskar (pone.0221339.ref040) 2016; 28
EJ Hwang (pone.0221339.ref061) 2018
T Samandari (pone.0221339.ref006) 2011; 183
pone.0221339.ref027
T Xu (pone.0221339.ref049) 2011; 2011
R Sivaramakrishnan (pone.0221339.ref064) 2018
MT Rahman (pone.0221339.ref072) 2017; 49
S Vajda (pone.0221339.ref065) 2018; 42
L Hogeweg (pone.0221339.ref043) 2015; 34
L Hogeweg (pone.0221339.ref039) 2017; 44
D Moher (pone.0221339.ref010) 2009; 6
M Muyoyeta (pone.0221339.ref022) 2014; 9
FH WILLIAMS (pone.0221339.ref002) 1907; 157
KC Santosh (pone.0221339.ref063) 2018; 37
M Muyoyeta (pone.0221339.ref071) 2017; 17
G Giacomini (pone.0221339.ref044) 2015; 94
pone.0221339.ref026
RH Philipsen (pone.0221339.ref068) 2015; 5
pone.0221339.ref066
A Chauhan (pone.0221339.ref047) 2014; 9
T Pande (pone.0221339.ref003) 2015; 46
J Melendez (pone.0221339.ref019) 2016; 6
SJ Heo (pone.0221339.ref060) 2019; 16
S Rajaraman (pone.0221339.ref062) 2018; 2018
S Jaeger (pone.0221339.ref012) 2014; 4
P Lakhani (pone.0221339.ref029); 284
UK Lopes (pone.0221339.ref028) 2017; 89
S Jaeger (pone.0221339.ref035) 2012; 2012
R Shen (pone.0221339.ref051) 2010; 57
A Steiner (pone.0221339.ref021) 2015; 5
JM Seixas (pone.0221339.ref038) 2013; 17
WHO (pone.0221339.ref001) 2017
pone.0221339.ref057
pone.0221339.ref058
KC Santosh (pone.0221339.ref036) 2016; 11
pone.0221339.ref059
pone.0221339.ref052
pone.0221339.ref053
References_xml – volume: 9
  issue: 9
  year: 2014
  ident: pone.0221339.ref018
  article-title: Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: A validation study from sub-Saharan Africa
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106381
– volume: 46
  start-page: 1816
  issue: 6
  year: 2015
  ident: pone.0221339.ref003
  article-title: Use of chest radiography in the 22 highest tuberculosis burden countries
  publication-title: Eur Respir J
  doi: 10.1183/13993003.01064-2015
– volume: 11
  start-page: 99
  issue: 1
  year: 2016
  ident: pone.0221339.ref034
  article-title: Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-015-1242-x
– volume: 5
  start-page: 249
  issue: 4
  year: 2015
  ident: pone.0221339.ref021
  article-title: Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays
  publication-title: Public health action
  doi: 10.5588/pha.15.0037
– volume: 10
  start-page: e0128044
  issue: 5
  year: 2015
  ident: pone.0221339.ref045
  article-title: Robust and Reproducible Quantification of the Extent of Chest Radiographic Abnormalities (And It's Free!)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128044
– volume: 2011
  start-page: 5178
  year: 2011
  ident: pone.0221339.ref049
  article-title: Automated cavity detection of infectious pulmonary tuberculosis in chest radiographs
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: pone.0221339.ref066
– year: 2018
  ident: pone.0221339.ref064
  article-title: Comparing deep learning models for population screening using chest radiography
  publication-title: Medical Imaging
– volume: 12
  start-page: 724
  year: 2009
  ident: pone.0221339.ref055
  article-title: Global and local multi-valued dissimilarity-based classification: application to computer-aided detection of tuberculosis
  publication-title: Med Image Comput Comput Assist Interv
– volume: 94
  start-page: e1044
  issue: 26
  year: 2015
  ident: pone.0221339.ref044
  article-title: Quantification of Pulmonary Inflammatory Processes Using Chest Radiography: Tuberculosis as the Motivating Application
  publication-title: Medicine
  doi: 10.1097/MD.0000000000001044
– ident: pone.0221339.ref031
  doi: 10.1117/12.2216198
– ident: pone.0221339.ref005
– volume: 33
  start-page: 233
  issue: 2
  year: 2014
  ident: pone.0221339.ref033
  article-title: Automatic tuberculosis screening using chest radiographs
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2284099
– volume: 10
  start-page: 1616
  issue: 12
  year: 2013
  ident: pone.0221339.ref048
  article-title: An adaptive region growing algorithm with support vector machine classifier for Tuberculosis cavity identification
  publication-title: American Journal of Applied Sciences
  doi: 10.3844/ajassp.2013.1616.1628
– volume: 284
  start-page: 574
  issue: 2
  ident: pone.0221339.ref029
  article-title: Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– volume: 35
  start-page: 186
  issue: 3
  year: 2011
  ident: pone.0221339.ref050
  article-title: Applying a statistical PTB detection procedure to complement the gold standard
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2010.10.002
– volume: 37
  start-page: 1168
  issue: 5
  year: 2018
  ident: pone.0221339.ref063
  article-title: Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2775636
– volume: 2018
  start-page: 718
  year: 2018
  ident: pone.0221339.ref062
  article-title: A novel stacked generalization of models for improved TB detection in chest radiographs
  publication-title: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference
– volume: 44
  start-page: 2242
  issue: 6
  year: 2017
  ident: pone.0221339.ref039
  article-title: Fast and effective quantification of symmetry in medical images for pathology detection: Application to chest radiography
  publication-title: Medical Physics
  doi: 10.1002/mp.12127
– volume: 20
  start-page: 1226
  issue: 9
  year: 2016
  ident: pone.0221339.ref009
  article-title: Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review
  publication-title: Int J Tuberc Lung Dis
  doi: 10.5588/ijtld.15.0926
– year: 2018
  ident: pone.0221339.ref061
  article-title: Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs
  publication-title: Clin Infect Dis
– volume: 17
  start-page: 682
  issue: 5
  year: 2013
  ident: pone.0221339.ref038
  article-title: Artificial neural network models to support the diagnosis of pleural tuberculosis in adult patients
  publication-title: Int J Tuberc Lung Dis
  doi: 10.5588/ijtld.12.0829
– volume-title: Medical Imaging 2014: Computer-Aided Diagnosis
  year: 2014
  ident: pone.0221339.ref046
– year: 2018
  ident: pone.0221339.ref008
  article-title: Potential biases in machine learning algorithms using electronic health record data
  publication-title: JAMA Internal Medicine
– volume: 17
  start-page: 1613
  issue: 12
  year: 2013
  ident: pone.0221339.ref023
  article-title: Detection of tuberculosis using digital chest radiography: Automated reading vs. interpretation by clinical officers
  publication-title: Int J Tuberc Lung Dis
  doi: 10.5588/ijtld.13.0325
– start-page: 2015
  year: 2015
  ident: pone.0221339.ref037
  article-title: Detecting Disease in Radiographs with Intuitive Confidence
  publication-title: Sci World J
– volume: 35
  start-page: 1013
  issue: 4
  year: 2016
  ident: pone.0221339.ref041
  article-title: On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2505672
– volume: 9
  issue: 4
  year: 2014
  ident: pone.0221339.ref022
  article-title: The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093757
– volume-title: Toman’s tuberculosis: case detection, treatment, and monitoring. Questions and answers
  year: 2004
  ident: pone.0221339.ref016
– volume: 17
  start-page: 301
  issue: 1
  year: 2017
  ident: pone.0221339.ref069
  article-title: Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis
  publication-title: BMC Infectious Diseases
  doi: 10.1186/s12879-017-2388-7
– ident: pone.0221339.ref052
  doi: 10.1007/978-3-642-15711-0_77
– volume: 383
  start-page: 424
  issue: 9915
  year: 2014
  ident: pone.0221339.ref015
  article-title: Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62073-5
– volume: 5
  start-page: 12215
  year: 2015
  ident: pone.0221339.ref068
  article-title: Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs
  publication-title: Sci Rep
  doi: 10.1038/srep12215
– volume: 35
  start-page: 689
  issue: 3
  year: 2010
  ident: pone.0221339.ref014
  article-title: Diagnostic accuracy of digital chest radiography for pulmonary tuberculosis in a UK urban population
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00136609
– volume: 28
  start-page: 22
  year: 2016
  ident: pone.0221339.ref040
  article-title: Automatic detection of pleural effusion in chest radiographs
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2015.09.004
– volume: 6
  start-page: 25265
  year: 2016
  ident: pone.0221339.ref019
  article-title: An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information
  publication-title: Sci Rep
  doi: 10.1038/srep25265
– ident: pone.0221339.ref053
  doi: 10.1117/12.844409
– volume: 16
  issue: 2
  year: 2019
  ident: pone.0221339.ref060
  article-title: Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data
  publication-title: Int J Environ Res Public Health
– volume: 155
  start-page: 529
  issue: 8
  year: 2011
  ident: pone.0221339.ref011
  article-title: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-155-8-201110180-00009
– volume: 21
  start-page: 338
  issue: 2
  year: 2017
  ident: pone.0221339.ref030
  article-title: TB screening using SVM and CBC techniques
  publication-title: Current Pediatric Research
– volume: 174
  start-page: 71
  issue: 1
  year: 2000
  ident: pone.0221339.ref013
  article-title: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/ajr.174.1.1740071
– volume: 22
  start-page: 567
  issue: 5
  year: 2018
  ident: pone.0221339.ref024
  article-title: Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening
  publication-title: The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease
  doi: 10.5588/ijtld.17.0492
– volume: 9
  issue: 11
  year: 2014
  ident: pone.0221339.ref047
  article-title: Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0112980
– ident: pone.0221339.ref026
– volume: 22
  start-page: 1088
  issue: 9
  year: 2018
  ident: pone.0221339.ref070
  article-title: Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus
  publication-title: The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease
  doi: 10.5588/ijtld.17.0827
– volume: 7260
  start-page: 726030
  year: 2009
  ident: pone.0221339.ref054
  article-title: Computer-assisted detection (CAD) methodology for early detection of response to pharmaceutical therapy in tuberculosis patients
  publication-title: Proceedings of SPIE—the International Society for Optical Engineering
– volume: 21
  start-page: 880
  issue: 8
  year: 2017
  ident: pone.0221339.ref020
  article-title: Automatic versus human reading of chest X-rays in the Zambia National Tuberculosis Prevalence Survey
  publication-title: International Journal of Tuberculosis & Lung Disease
  doi: 10.5588/ijtld.16.0851
– volume: 319
  start-page: 1317
  issue: 13
  year: 2018
  ident: pone.0221339.ref007
  article-title: Big data and machine learning in health care
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 4
  start-page: 475
  issue: 6
  year: 2014
  ident: pone.0221339.ref012
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quantitative imaging in medicine and surgery
– volume: 49
  issue: 5
  year: 2017
  ident: pone.0221339.ref067
  article-title: An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients
  publication-title: Eur Respir J
  doi: 10.1183/13993003.02159-2016
– ident: pone.0221339.ref027
  doi: 10.1117/12.2252459
– volume: 17
  start-page: 301
  issue: 1
  year: 2017
  ident: pone.0221339.ref071
  article-title: Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis
  publication-title: BMC Infect Dis
  doi: 10.1186/s12879-017-2388-7
– volume: 34
  start-page: 179
  issue: 1
  year: 2015
  ident: pone.0221339.ref042
  article-title: A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest X-rays
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2350539
– volume: 89
  start-page: 135
  year: 2017
  ident: pone.0221339.ref028
  article-title: Pre-trained convolutional neural networks as feature extractors for tuberculosis detection
  publication-title: Computers in Biology & Medicine
  doi: 10.1016/j.compbiomed.2017.08.001
– volume-title: Global Tuberculosis Report 2017
  year: 2017
  ident: pone.0221339.ref001
– volume: 10
  start-page: e0126376
  issue: 6
  year: 2015
  ident: pone.0221339.ref017
  article-title: Implementation Research to Inform the Use of Xpert MTB/RIF in Primary Health Care Facilities in High TB and HIV Settings in Resource Constrained Settings
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126376
– volume: 183
  start-page: 1103
  issue: 8
  year: 2011
  ident: pone.0221339.ref006
  article-title: Costs and consequences of additional chest x-ray in a tuberculosis prevention program in Botswana
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201004-0620OC
– volume: 3
  start-page: 3320
  year: 2005
  ident: pone.0221339.ref056
  article-title: Discrimination between two lung diseases using chest radiographs
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– ident: pone.0221339.ref032
  doi: 10.1109/WiSPNET.2016.7566243
– volume: 15
  start-page: 361
  issue: 4
  year: 1996
  ident: pone.0221339.ref073
  article-title: MULTIVARIABLE PROGNOSTIC MODELS: ISSUES IN DEVELOPING MODELS, EVALUATING ASSUMPTIONS AND ADEQUACY, AND MEASURING AND REDUCING ERRORS
  publication-title: Stat Med
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– ident: pone.0221339.ref059
  doi: 10.1109/IBIOMED.2018.8534784
– volume: 8
  start-page: 12339
  issue: 1
  year: 2018
  ident: pone.0221339.ref025
  article-title: Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30810-1
– volume: 34
  start-page: 2429
  issue: 12
  year: 2015
  ident: pone.0221339.ref043
  article-title: Automatic Detection of Tuberculosis in Chest Radiographs Using a Combination of Textural, Focal, and Shape Abnormality Analysis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2405761
– volume: 2012
  start-page: 4978
  year: 2012
  ident: pone.0221339.ref035
  article-title: Detecting tuberculosis in radiographs using combined lung masks
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 157
  start-page: 850
  issue: 26
  year: 1907
  ident: pone.0221339.ref002
  article-title: The Use of X-Ray Examinations in Pulmonary Tuberculosis
  publication-title: The Boston Medical and Surgical Journal
  doi: 10.1056/NEJM190712261572602
– ident: pone.0221339.ref057
  doi: 10.1117/12.844409
– volume: 11
  start-page: 1637
  issue: 9
  year: 2016
  ident: pone.0221339.ref036
  article-title: Edge map analysis in chest X-rays for automatic pulmonary abnormality screening
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-016-1359-6
– volume: 57
  issue: 11
  year: 2010
  ident: pone.0221339.ref051
  article-title: A hybrid knowledge-guided detection technique for screening of infectious pulmonary tuberculosis from chest radiographs
  publication-title: IEEE transactions on bio-medical engineering
– ident: pone.0221339.ref058
– volume: 42
  start-page: 146
  issue: 8
  year: 2018
  ident: pone.0221339.ref065
  article-title: Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0991-9
– volume: 23
  start-page: 195
  issue: 2
  year: 1992
  ident: pone.0221339.ref004
  article-title: Anti-tuberculosis programs in Thailand: a cost analysis
  publication-title: Southeast Asian J Trop Med Public Health
– volume: 6
  start-page: e1000097
  issue: 7
  year: 2009
  ident: pone.0221339.ref010
  article-title: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1000097
– volume: 49
  issue: 5
  year: 2017
  ident: pone.0221339.ref072
  article-title: An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients
  publication-title: European Respiratory Journal
  doi: 10.1183/13993003.02159-2016
SSID ssj0053866
Score 2.627191
SecondaryResourceType review_article
Snippet We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0221339
SubjectTerms Abnormalities
Accuracy
Area Under Curve
Artificial Intelligence
Automation
Bias
Chest
Chest x-rays
Clinical trials
Computer and Information Sciences
Computer programs
Computers
Concretes
Deep learning
Design
Diagnosis
Diagnosis, Computer-Assisted - methods
Diagnosis, Computer-Assisted - standards
Diagnosis, Computer-Assisted - statistics & numerical data
Diagnostic software
Diagnostic systems
Epidemiology
Evaluation
Humans
Infectious diseases
Learning algorithms
Lung diseases
Machine learning
Medical diagnosis
Medical research
Medicine
Medicine and Health Sciences
People and Places
Physical Sciences
Predictive Value of Tests
Pulmonary tuberculosis
Quality Assurance, Health Care
Radiography
Reading
Research and Analysis Methods
Risk assessment
Sensitivity and Specificity
Software
Studies
Systematic review
Tuberculosis
Tuberculosis, Pulmonary - diagnostic imaging
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXOCCKK8aCiwICTi4tbPrxx4DoipIgAQU9Wbts0SK7CiOBeF38IOZ8W5MLCq1B26RZzaSZ2Znv0lmvyHkOUtM6YxVcWJLG3PheCxYruKU64QbkTre0zF8-JifnPL3Z9nZzqgv7Anz9MDecEeZ0kZK5UzCJOcKam4DINwoUZrCJcpg9k1KsS2mfA6GXZzn4aIcK9Kj4JfDZVPbQzi1oDATo4Oo5-sfsvJkuWjaiyDnv52T17t6KTc_5GKxcywd3yI3A56kM_8ee-SarW-TvbBjW_oy0Eq_ukN-z-hf2mbqr6zQxlFAgNT4hjsUSK27ldQbFKF1PMMEne9Qd8Z49Bmqw0AIGnq8WrpuqESSk1-W9nO46M94JTctBWBMl90CIl6uNnTdKbvSHbz8vL1LTo_ffn1zEoeZDLGGymKNfRQWy7RUZ6WGj6nNzNRBISelBfDmAIAZZw0TULELN1WZkAwewGKlWOIMu0cmNXhhn1BX5NoKXUyNdpwXheIMf4bKc50D8MhlRNjWQZUOhOU4N2NR9f_CFVC4eBtX6NYquDUi8bBq6Qk7LtF_jb4fdJFuu38AQViFIKwuC8KIPMHIqfzd1SFpVDOkR8wzyIERedZrIOVGjT0957Jr2-rdp29XUPryeaT0Iii5BsyhZbhHAe-EVF4jzYORJiQOPRLvY5xvrdJWyIQkMsbLBFZuY_9i8dNBjF-KfXq1bbpehwNABRwdkft-qwyWZSlOM-BlRIrRJhqZfiyp5997xvO8SEWZ8YgcDtvtSs598D-c-5DcAJTsGwvZAZmsV519BEh0rR73SecPrTeOeg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFdQXsVXbaNVVBPUh1-R28_Ug0kpLFVqlWulb2M9aOJLzckHPv8M_2JlkkzZYtG9HZvYgMzuzM9mZ3xDyggU6tdpIPzCp8XlmuZ-xWPohVwHXWWh5A8dweBQfnPAPp9HpCjnqemGwrLLziY2j1qXCb-TbCNOSRYynwdvZdx-nRuHtajdCQ7jRCvpNAzF2g6xOEBlrRFZ3944-HXe-Gaw7jl0DHUvCbaev8awszBhOM0jYssEB1eD49956NJuW1VWh6N8VlbfqYiaWP8R0eum42r9L7rg4k-60G2ONrJhindw8dDfp62TNGXVFXznk6df3yO8deoHsTNuuFlpaCkEi1W1NHhJADPVcqCWScOe1IBT0_BK6p4-no6bKzYygrgysoouSCsRB-WVoM6qL_vTnYllRiJ3prJ6ClMV8SRe1NHNVgxzOq_vkZH_vy7sD341t8BUkHwsstTCYyYUqShX8DE2kJxZyPSEMxHcWFKSt0SyDpD6zExllgsEDWCwlC6xmD8ioAIVsEmqTWJlMJROtLOdJIjnDL1VxrGKITWLhEdbpKlcO0xxHa0zz5qIugdymFXeOGs6dhj3i96tmLabHf_h3cRv0vIjI3Two52e5M_A8kkoLIa0OmOBchhnXkCxqmaU6sYHUHnmKmyhv21t7v5LvIIJiHIGb9MjzhgNROQos-zkTdVXl7z9-vQbT5-MB00vHZEsQhxKu1QLeCdG-BpxbA07wLWpA3sQt30mlyi-sEFZ2ZnA1-VlPxj_FUr7ClHXDwyGGhVDbIxut1fSSZSEOPOCpR5KBPQ1EP6QU598aUPQ4CbM04h4Z95Z3LeU-_Pd7PCK3IURuqwrZFhkt5rV5DGHoQj5xvuUP6gGN0A
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nHINlk7r-OCqAoSBQGLygFFfsKKVXa1SQTbA7-CH8xM4g0NFFEO3KLM2IrH4_FMPPOZkHss0KnVRvqBSY3PM8v9jMXSD7kKuM5Cyxs4hhcH8f6EPz-MDjfIh3UtjJMgxIizedmc5OPDvDC7TpK7iFfUnp4OQ5aE6xbDBTANYUeCoCu73yAO4Z-xCguQzpDNOAJXfUA2Jwevxu_bk-aRH48C5srp_tRTb7tqUP072z3ALzvJMf09v_JsXSzE6ouYzY5tXnsXyLf1sNuclc_DupJDdfQLIuR_k8tFct65vXTc9rJFNkxxiWw5w1LShw79-tFl8n1Mf6JL07ayhs4tBUeV6jYvEAlCqXop1ApJ-G0tEAadHkMY9XGH1lS5eyuoS0UraTWnArFYjgxtrgujX_2lWJUU_He6qGewMMVyRatamqWqYfzT8gqZ7D19-2Tfd1dH-AoCoArTPQxGk6GKUgWPoYn0yEK8KYQBH9OCn6it0SwzcpTZkYwyweAFNJaSBVazq2RQgOC2CbVJrEymkpFWlvMkkZzh37I4VjH4R7HwCFtrSK4crjpe7zHLm8PCBOKrVsY5zkTuZsIjftdq0eKK_IX_MSpfx4uo4M0LUIXcqUAeSaWFkFYHTHAuw4xrCFi1zFKd2EBqj9xG1c3bEtvOtuVjRHGMIzDVHrnbcCAySIGpRx9FXZb5s5fvTsH05nWP6YFjsnMQhxKu3APGhJra49zpcYJ9Uz3yNqr6WipljoBNWcR4GkDL9eI7mXynI2OnmE5YmHnd8HDwo8Hd98i1dq12kmUhXrrAU48kvVXcE32fUkw_NcDscRJmacQ9MuzW-6km9_q_NrhBzoHj3uY6sh0yqJa1uQnOcSVvORP3Awfiw7s
  priority: 102
  providerName: Unpaywall
Title A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis
URI https://www.ncbi.nlm.nih.gov/pubmed/31479448
https://www.proquest.com/docview/2283953480
https://www.proquest.com/docview/2284554256
https://pubmed.ncbi.nlm.nih.gov/PMC6719854
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221339&type=printable
https://doaj.org/article/5bcdaabfd03a44b194d862db98d7f0bd
http://dx.doi.org/10.1371/journal.pone.0221339
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6SNAXRLkaKItBSMBDVknjHH5AaFu1FKSWqrBoeYocH6XSKlmSjejyO_jBzCTe0IhW9CVaecarZA57Jhl_Q8jLwFOJUTpzPZ1ol3HDXB5Emesz6THFfcMaOIaj4-hwzD5OwskKWfZstQKsrkztsJ_UuJwOL34s3oHDv226NsT-ctJwVuR6CHsSpF18lazDXsWxmcMR674rgHdHkT1Ad93MDXIr8BF3HVsCXdqrGkj_buFem02L6qqo9N_iytt1PhOLn2I6vbRzHdwld2zISUetjWySFZ3fI5vWqSv62iJPv7lPfo_oX2Rn2p5qoYWhECRS1dbkIUFIWZdCLpCElteCUNDzS-ieLu6OikrbM4LaMrCKzgsqEAfll6ZNqy564ZZiUVGInemsnoJTiHJB53WmS1nDw59XD8j4YP_L3qFr2za4EpKPOZZaaMzkfBkmEn76OlQ7BnI9ITTEdwZiNGW0Cjgk9dzsZCEXAQzA5CwLPKOCh2QtB4VsEWriSGou4x0lDWNxnLEA31RFkYwgNomEQ4KlglJpMc2xtcY0bT7UxZDbtDJOUcOp1bBD3G7WrMX0-A__Luq-40VE7magKM9S6-BpmEklRGaUFwjGMp8zBcmiyniiYuNlyiHP0HLS9nhrt66kI0RQjEJYJh3youFAVI4cy37ORF1V6YdPX2_A9Pm0x_TKMpkCxCGFPWoBz4RoXz3O7R4nrC2yR95CO19KpUoRLImHAUs8mLm0_avJzzsy_imW8uW6qBseBjEshNoOedS6SifZpeM5JO45UU_0fUp-_r0BRY9inychc8iwc7cbKffxtTfxhGxAdNwWFAbbZG1e1vopRKDzbEBW40kM12TPx-vB-wFZ390_PjkdNO90Bs2iA2Pj45PRtz8fjJCV
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4gJuKLEbxQRVmNRn0otGe3twdj8EJALiYKhre6VyQ5aY-np8Hj7_B3-BudafcUGo3ywlvTmTbp3HamO_sNIU9YoFOrjfQDkxqfZ5b7GYulH3IVcJ2FljdwDHv78dYhf38UHc2RX7OzMNhWOYuJTaDWpcJ_5OsI05JFjKfBq9E3H6dG4e7qbIRGaxY7ZnoKJVv1cvst6PfpYLD57uDNlu-mCvgKcuMJdgIYLDRCFaUKLkMT6YGFUkQIA-mHhRRCW6NZBjVnZgcyygSDG_CwlCywmsF7r5CrnEEsAf9JjroCD2JHHLvjeSwJ1501rI3KwqzBWgnlYNZb_popAd1aMD8altXfEt0_-zUX6mIkpqdiODy3GG7eJDdcFks3WrNbJHOmWCLX9tw-_RJZdCGjos8drvWLW-TnBj3DjabtmRlaWgopKNVtxx8ShFL1WKgpktCuW4gLenIOO9THtVdT5SZSUNdkVtFJSQWirPwwtBkERr_7YzGtKGTmdFQPQYdiPKWTWpqxqkEOJ9Vtcngp6rtD5gtQyDKhNomVyVQy0MpyniSSM_wPFscqhswnFh5hM13lyiGm4-COYd5sAyZQObXizlHDudOwR_zuqVGLGPIf_tdoBh0v4n03N8rxce7CRx5JpYWQVgdMcC7DjGsoRbXMUp3YQGqPrKIR5e3h2S5q5RuIzxhHEIQ98rjhQMyPApuKjkVdVfn2h88XYPr0scf0zDHZEsShhDvIAd-EWGI9zpUeJ0Qu1SMvo8nPpFLlZz4OT87c4O_kRx0ZX4qNgoUp64aHQ4YMibxH7rZe00mWhThOgaceSXr-1BN9n1KcfG0g1-MkzNKIe2St87wLKffev79jlSxsHezt5rvb-zv3yXVIxtv-RbZC5ifj2jyAhHciHzZRhpIvlx3WfgMFc8VT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gJuiLEfygirIajfpQaG-3Xw_GoEhEBI2K4a3uJ5Jc2vN6DZ5_h3-Nf50z7V6hkSgvvF060-Y6XzvTnf0NIY9YoFOrjfQDkxqfZ5b7GYulH3IVcJ2FljdwDLt78Zt9_vYgOpgjv2dnYbCtchYTm0CtS4XfyNcRpiWLGE-DdevaIj5sbr0YffdxghTutM7GabQmsmOmx1C-Vc-3N0HXjweDrdefX73x3YQBX0GePMGuAINFR6iiVMHP0ER6YKEsEcJAKmIhndDWaJZB_ZnZgYwyweAC3CwlC6xm8NxL5HLC4K-BLyUHXbEHcSSO3VE9loTrzjLWRmVh1mDdhNIw6y2FzcSAbl2YHw3L6qyk9-_ezSt1MRLTYzEcnloYt66Tay6jpRutCS6SOVMskYVdt2e_RBZd-KjoU4dx_ewG-bVBTzCkaXt-hpaWQjpKddv9hwShVD0WaooktPEW7oIencIR9XEd1lS56RTUNZxVdFJSgYgrPw1thoLRH_5YTCsKWTod1UPQoRhP6aSWZqxqkMNRdZPsX4j6bpH5AhSyTKhNYmUylQy0spwnieQMv4nFsYohC4qFR9hMV7ly6Ok4xGOYN1uCCVRRrbhz1HDuNOwRv7tr1KKH_If_JZpBx4vY382FcnyYu1CSR1JpIaTVAROcyzDjGspSLbNUJzaQ2iOraER5e5C2i2D5BmI1xhEEZI88bDgQ_6NATzoUdVXl2--_nIPp08ce0xPHZEsQhxLuUAe8E-KK9ThXepwQxVSPvIwmP5NKlZ_4O9w5c4OzyQ86Mj4UmwYLU9YND4dsGZJ6j9xuvaaTLAtxtAJPPZL0_Kkn-j6lOPrWwK_HSZilEffIWud551LunX-_xypZgICWv9ve27lLrkJe3rYyshUyPxnX5h7kvhN5vwkylHy96Kj2B05iyZY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nHINlk7r-OCqAoSBQGLygFFfsKKVXa1SQTbA7-CH8xM4g0NFFEO3KLM2IrH4_FMPPOZkHss0KnVRvqBSY3PM8v9jMXSD7kKuM5Cyxs4hhcH8f6EPz-MDjfIh3UtjJMgxIizedmc5OPDvDC7TpK7iFfUnp4OQ5aE6xbDBTANYUeCoCu73yAO4Z-xCguQzpDNOAJXfUA2Jwevxu_bk-aRH48C5srp_tRTb7tqUP072z3ALzvJMf09v_JsXSzE6ouYzY5tXnsXyLf1sNuclc_DupJDdfQLIuR_k8tFct65vXTc9rJFNkxxiWw5w1LShw79-tFl8n1Mf6JL07ayhs4tBUeV6jYvEAlCqXop1ApJ-G0tEAadHkMY9XGH1lS5eyuoS0UraTWnArFYjgxtrgujX_2lWJUU_He6qGewMMVyRatamqWqYfzT8gqZ7D19-2Tfd1dH-AoCoArTPQxGk6GKUgWPoYn0yEK8KYQBH9OCn6it0SwzcpTZkYwyweAFNJaSBVazq2RQgOC2CbVJrEymkpFWlvMkkZzh37I4VjH4R7HwCFtrSK4crjpe7zHLm8PCBOKrVsY5zkTuZsIjftdq0eKK_IX_MSpfx4uo4M0LUIXcqUAeSaWFkFYHTHAuw4xrCFi1zFKd2EBqj9xG1c3bEtvOtuVjRHGMIzDVHrnbcCAySIGpRx9FXZb5s5fvTsH05nWP6YFjsnMQhxKu3APGhJra49zpcYJ9Uz3yNqr6WipljoBNWcR4GkDL9eI7mXynI2OnmE5YmHnd8HDwo8Hd98i1dq12kmUhXrrAU48kvVXcE32fUkw_NcDscRJmacQ9MuzW-6km9_q_NrhBzoHj3uY6sh0yqJa1uQnOcSVvORP3Awfiw7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+the+diagnostic+accuracy+of+artificial+intelligence-based+computer+programs+to+analyze+chest+x-rays+for+pulmonary+tuberculosis&rft.jtitle=PloS+one&rft.au=Harris%2C+Miriam&rft.au=Qi%2C+Amy&rft.au=Jeagal%2C+Luke&rft.au=Torabi%2C+Nazi&rft.date=2019-09-03&rft.eissn=1932-6203&rft.volume=14&rft.issue=9&rft.spage=e0221339&rft_id=info:doi/10.1371%2Fjournal.pone.0221339&rft_id=info%3Apmid%2F31479448&rft.externalDocID=31479448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon