A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis
We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published bet...
Saved in:
| Published in | PloS one Vol. 14; no. 9; p. e0221339 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
03.09.2019
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0221339 |
Cover
| Abstract | We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved. |
|---|---|
| AbstractList | We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods (“Development” studies) and 13 focused on evaluation of CAD (“Clinical” studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82–0.90]) versus Clinical studies (0.75 [0.66–0.87]; p-value 0.004); and with deep-learning (0.91 [0.88–0.99]) versus machine-learning (0.82 [0.75–0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved. We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved.We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities (computer-aided detection, or CAD) compatible with pulmonary tuberculosis on chest x-rays (CXRs). We searched four databases for articles published between January 2005-February 2019. We summarized data on CAD type, study design, and diagnostic accuracy. We assessed risk of bias with QUADAS-2. We included 53 of the 4712 articles reviewed: 40 focused on CAD design methods ("Development" studies) and 13 focused on evaluation of CAD ("Clinical" studies). Meta-analyses were not performed due to methodological differences. Development studies were more likely to use CXR databases with greater potential for bias as compared to Clinical studies. Areas under the receiver operating characteristic curve (median AUC [IQR]) were significantly higher: in Development studies AUC: 0.88 [0.82-0.90]) versus Clinical studies (0.75 [0.66-0.87]; p-value 0.004); and with deep-learning (0.91 [0.88-0.99]) versus machine-learning (0.82 [0.75-0.89]; p = 0.001). We conclude that CAD programs are promising, but the majority of work thus far has been on development rather than clinical evaluation. We provide concrete suggestions on what study design elements should be improved. |
| Audience | Academic |
| Author | Qi, Amy Korobitsyn, Alexei Jeagal, Luke Torabi, Nazi Pai, Madhukar Ahmad Khan, Faiz Harris, Miriam Menzies, Dick Nathavitharana, Ruvandhi R. |
| AuthorAffiliation | 3 Department of Medicine, Boston University–Boston Medical Center, Boston, Massachusetts, United States of America Medical University of Vienna, AUSTRIA 4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada 5 St. Michael's Hospital, Li Ka Shing International Healthcare Education Centre, Toronto, Canada 6 McGill International TB Centre, Montreal, Canada 7 Laboratories, Diagnostics & Drug Resistance Global TB Programme WHO, Geneva, Switzerland 1 Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada 2 Department of Medicine, McGill University Health Centre, Montreal, Canada 8 Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America |
| AuthorAffiliation_xml | – name: 8 Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America – name: 1 Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada – name: 2 Department of Medicine, McGill University Health Centre, Montreal, Canada – name: 5 St. Michael's Hospital, Li Ka Shing International Healthcare Education Centre, Toronto, Canada – name: 7 Laboratories, Diagnostics & Drug Resistance Global TB Programme WHO, Geneva, Switzerland – name: 4 Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & Research Institute of the McGill University Health Centre, Montreal, Canada – name: 6 McGill International TB Centre, Montreal, Canada – name: Medical University of Vienna, AUSTRIA – name: 3 Department of Medicine, Boston University–Boston Medical Center, Boston, Massachusetts, United States of America |
| Author_xml | – sequence: 1 givenname: Miriam orcidid: 0000-0003-3870-4858 surname: Harris fullname: Harris, Miriam – sequence: 2 givenname: Amy surname: Qi fullname: Qi, Amy – sequence: 3 givenname: Luke surname: Jeagal fullname: Jeagal, Luke – sequence: 4 givenname: Nazi orcidid: 0000-0001-5447-9123 surname: Torabi fullname: Torabi, Nazi – sequence: 5 givenname: Dick surname: Menzies fullname: Menzies, Dick – sequence: 6 givenname: Alexei surname: Korobitsyn fullname: Korobitsyn, Alexei – sequence: 7 givenname: Madhukar surname: Pai fullname: Pai, Madhukar – sequence: 8 givenname: Ruvandhi R. surname: Nathavitharana fullname: Nathavitharana, Ruvandhi R. – sequence: 9 givenname: Faiz surname: Ahmad Khan fullname: Ahmad Khan, Faiz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31479448$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNk9tq3DAQhk1JaQ7tG5RWUCjtxW5tyfLavSiE0EMgEOjpVoyl0a6CbG0kOcn2OfrAlbObkA2BBl9IjL755_Dj_Wyndz1m2csinxZsVnw4c4PvwU6XKTzNKS0Ya55ke0XD6KSiOdu5c9_N9kM4y3PO6qp6lu2yopw1ZVnvZX8PSViFiB1EI4nHC4OXxGkSF0iUgXnvwvgAUg4e5Gp8Ah-NNtKAJaaPaK2ZYy9x0kJARaTrlkNET5bezT10gURHIDW6-oNELjBEcjXxsApEuwQNtnM9-BWJQ4teDtYFE55nTzXYgC8250H268vnn0ffJienX4-PDk8mcsbrOOFljjmtaSF5LdO1QK6ozmkFgDUvNOeF0qhYgy1tNG15AywFUnLbslwrdpC9XusuU1mxWWgQlNas4ays80Qcrwnl4EwsvelSr8KBEdcB5-diXIe0KHgrFUCrVc6gLNuiKVVdUdU2tZrpvB2r8bXW0C9hdQnW3goWuRg9vWlBjJ6Kjacp79Omy6HtUEnsowe71cz2S28WYu4uRDUrmpqXSeDdRsC78yE5IDoTZDIOenTD9bwl5yXlVULf3EMf3sqGmkMa3PTapbpyFBWHvKlpxWcNS9T0ASp9Cjsj04TapPhWwvuthMREvIpzGEIQxz--P549_b3Nvr3DLhBsXARnh2hcH7bBV3c3fbvim98lAR_XgPQuBI9aSBNh1EmjGfs_H8t7yY-y_x9Z0UIo |
| CitedBy_id | crossref_primary_10_3390_diagnostics13081430 crossref_primary_10_3389_fpubh_2023_1254658 crossref_primary_10_1016_j_ebiom_2022_103928 crossref_primary_10_1155_2022_6902321 crossref_primary_10_1183_20734735_0149_2021 crossref_primary_10_1093_cid_ciab639 crossref_primary_10_1016_j_rcl_2021_07_001 crossref_primary_10_1016_j_eclinm_2022_101328 crossref_primary_10_1371_journal_pgph_0001272 crossref_primary_10_1142_S1793351X22400049 crossref_primary_10_1016_j_joen_2021_09_001 crossref_primary_10_1038_s41467_022_31514_x crossref_primary_10_52775_1810_200X_2022_96_4_56_63 crossref_primary_10_3390_children10081372 crossref_primary_10_3390_diseases12090202 crossref_primary_10_1016_j_cdtm_2021_02_001 crossref_primary_10_1016_j_nima_2021_165509 crossref_primary_10_1177_20552076241278211 crossref_primary_10_1002_14651858_CD013694_pub2 crossref_primary_10_1016_S2589_7500_20_30221_1 crossref_primary_10_1016_j_clbc_2021_07_002 crossref_primary_10_3389_frai_2021_708365 crossref_primary_10_3390_tropicalmed8110488 crossref_primary_10_1038_s41746_021_00544_y crossref_primary_10_1016_j_nima_2022_168003 crossref_primary_10_2196_27275 crossref_primary_10_1016_j_rx_2023_01_007 crossref_primary_10_1038_s43856_022_00086_8 crossref_primary_10_1016_j_ijmmb_2022_10_008 crossref_primary_10_1080_09720529_2021_1932910 crossref_primary_10_1002_emp2_12205 crossref_primary_10_2196_43154 crossref_primary_10_1016_S1473_3099_20_30177_8 crossref_primary_10_1038_s41598_021_03265_0 crossref_primary_10_3390_app12094459 crossref_primary_10_1016_j_eswa_2021_115519 crossref_primary_10_1371_journal_pgph_0000800 crossref_primary_10_1016_S2589_7500_21_00142_4 crossref_primary_10_1371_journal_pgph_0000402 crossref_primary_10_1016_j_tube_2020_102049 crossref_primary_10_1093_jamiaopen_ooae151 crossref_primary_10_1016_j_pcad_2024_10_003 crossref_primary_10_7717_peerj_10309 crossref_primary_10_1177_14413582231167882 crossref_primary_10_2196_25759 crossref_primary_10_1016_j_rxeng_2023_01_015 crossref_primary_10_1080_24745332_2022_2043055 crossref_primary_10_51758_AGJSR_02_2021_0012 crossref_primary_10_1088_1742_6596_1767_1_012004 crossref_primary_10_3389_fmed_2023_1195451 crossref_primary_10_1093_cid_ciae273 crossref_primary_10_3390_diagnostics12010188 crossref_primary_10_1371_journal_pone_0236621 crossref_primary_10_3390_app14146214 crossref_primary_10_1002_psp4_12643 crossref_primary_10_1093_ofid_ofab567 crossref_primary_10_1007_s00247_023_05606_9 crossref_primary_10_1097_COH_0000000000000879 crossref_primary_10_1016_j_procs_2023_12_213 crossref_primary_10_1007_s10278_023_00952_4 crossref_primary_10_1038_s41598_024_63885_0 crossref_primary_10_7717_peerj_cs_560 crossref_primary_10_1097_QAD_0000000000002715 crossref_primary_10_1007_s11831_023_09987_w crossref_primary_10_3348_kjr_2019_0821 crossref_primary_10_1371_journal_pone_0238908 crossref_primary_10_46871_eams_1497329 crossref_primary_10_1002_14651858_CD013694 crossref_primary_10_3390_jcm12010303 crossref_primary_10_14202_vetworld_2023_2143_2149 crossref_primary_10_1136_bmjopen_2023_074968 crossref_primary_10_1093_ofid_ofae020 crossref_primary_10_3390_children10030525 crossref_primary_10_3390_ijerph191912402 crossref_primary_10_1371_journal_pone_0251236 crossref_primary_10_1080_24745332_2023_2226008 crossref_primary_10_1007_s00420_021_01805_9 crossref_primary_10_1042_ETLS20200335 crossref_primary_10_3389_fpubh_2022_1023098 crossref_primary_10_1016_j_tube_2021_102143 crossref_primary_10_1007_s11042_024_20097_y crossref_primary_10_2196_69068 crossref_primary_10_1016_j_ijmedinf_2023_105159 crossref_primary_10_1093_cid_ciae528 crossref_primary_10_5124_jkma_2023_66_11_667 crossref_primary_10_35627_2219_5238_2023_31_11_23_32 crossref_primary_10_1186_s12938_022_01045_z crossref_primary_10_2139_ssrn_3967066 crossref_primary_10_3390_diagnostics13061075 crossref_primary_10_1007_s00431_021_04061_8 crossref_primary_10_1513_AnnalsATS_202008_1036ED crossref_primary_10_2139_ssrn_4349524 crossref_primary_10_3390_pathogens11010001 crossref_primary_10_1016_j_ijmedinf_2022_104855 crossref_primary_10_4274_dir_2024_242835 crossref_primary_10_1371_journal_pmed_1003752 crossref_primary_10_3233_XST_211019 crossref_primary_10_2196_40259 |
| Cites_doi | 10.1371/journal.pone.0106381 10.1183/13993003.01064-2015 10.1007/s11548-015-1242-x 10.5588/pha.15.0037 10.1371/journal.pone.0128044 10.1097/MD.0000000000001044 10.1117/12.2216198 10.1109/TMI.2013.2284099 10.3844/ajassp.2013.1616.1628 10.1148/radiol.2017162326 10.1016/j.compmedimag.2010.10.002 10.1109/TMI.2017.2775636 10.1002/mp.12127 10.5588/ijtld.15.0926 10.5588/ijtld.12.0829 10.5588/ijtld.13.0325 10.1109/TMI.2015.2505672 10.1371/journal.pone.0093757 10.1186/s12879-017-2388-7 10.1007/978-3-642-15711-0_77 10.1016/S0140-6736(13)62073-5 10.1038/srep12215 10.1183/09031936.00136609 10.1016/j.media.2015.09.004 10.1038/srep25265 10.1117/12.844409 10.7326/0003-4819-155-8-201110180-00009 10.2214/ajr.174.1.1740071 10.5588/ijtld.17.0492 10.1371/journal.pone.0112980 10.5588/ijtld.17.0827 10.5588/ijtld.16.0851 10.1001/jama.2017.18391 10.1183/13993003.02159-2016 10.1117/12.2252459 10.1109/TMI.2014.2350539 10.1016/j.compbiomed.2017.08.001 10.1371/journal.pone.0126376 10.1164/rccm.201004-0620OC 10.1109/WiSPNET.2016.7566243 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1109/IBIOMED.2018.8534784 10.1038/s41598-018-30810-1 10.1109/TMI.2015.2405761 10.1056/NEJM190712261572602 10.1007/s11548-016-1359-6 10.1007/s10916-018-0991-9 10.1371/journal.pmed.1000097 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2019 Public Library of Science 2019 Harris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Harris et al 2019 Harris et al |
| Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Harris et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Harris et al 2019 Harris et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0221339 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine |
| DocumentTitleAlternate | AI to detect TB on chest X-rays |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2283953480 oai_doaj_org_article_5bcdaabfd03a44b194d862db98d7f0bd 10.1371/journal.pone.0221339 PMC6719854 A598265793 31479448 10_1371_journal_pone_0221339 |
| Genre | Systematic Review Journal Article |
| GeographicLocations | Canada Montreal Quebec Canada United States--US Massachusetts |
| GeographicLocations_xml | – name: Canada – name: Montreal Quebec Canada – name: United States--US – name: Massachusetts |
| GrantInformation_xml | – fundername: World Health Organization grantid: 001 – fundername: NIAID NIH HHS grantid: K23 AI132648 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ ALIPV CGR CUY CVF ECM EIF IPNFZ NPM RIG BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c758t-540e02821c58c0e01e5d2f026aae851f551dfed39eb29f2b59a3dfec75bb30fd3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Sep 03 00:14:40 EDT 2023 Tue Oct 14 19:06:53 EDT 2025 Sun Oct 26 04:06:08 EDT 2025 Tue Sep 30 17:07:05 EDT 2025 Sun Sep 28 00:49:08 EDT 2025 Tue Oct 07 08:08:47 EDT 2025 Mon Oct 20 22:17:41 EDT 2025 Mon Oct 20 16:18:48 EDT 2025 Thu Oct 16 14:46:52 EDT 2025 Thu Oct 16 14:51:25 EDT 2025 Thu May 22 21:18:20 EDT 2025 Mon Jul 21 05:42:25 EDT 2025 Wed Oct 01 02:52:46 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c758t-540e02821c58c0e01e5d2f026aae851f551dfed39eb29f2b59a3dfec75bb30fd3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3870-4858 0000-0001-5447-9123 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0221339 |
| PMID | 31479448 |
| PQID | 2283953480 |
| PQPubID | 1436336 |
| PageCount | e0221339 |
| ParticipantIDs | plos_journals_2283953480 doaj_primary_oai_doaj_org_article_5bcdaabfd03a44b194d862db98d7f0bd unpaywall_primary_10_1371_journal_pone_0221339 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6719854 proquest_miscellaneous_2284554256 proquest_journals_2283953480 gale_infotracmisc_A598265793 gale_infotracacademiconefile_A598265793 gale_incontextgauss_ISR_A598265793 gale_incontextgauss_IOV_A598265793 gale_healthsolutions_A598265793 pubmed_primary_31479448 crossref_citationtrail_10_1371_journal_pone_0221339 crossref_primary_10_1371_journal_pone_0221339 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-03 |
| PublicationDateYYYYMMDD | 2019-09-03 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2019 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Muyoyeta (pone.0221339.ref069) 2017; 17 KM Sundaram (pone.0221339.ref048) 2013; 10 Y Arzhaeva (pone.0221339.ref055) 2009; 12 pone.0221339.ref005 J Melendez (pone.0221339.ref041) 2016; 35 A Requena-Mendez (pone.0221339.ref045) 2015; 10 J Melendez (pone.0221339.ref046) 2014 I Abubakar (pone.0221339.ref014) 2010; 35 RC Koesoemadinata (pone.0221339.ref070) 2018; 22 P Maduskar (pone.0221339.ref023) 2013; 17 B Chunhaswasdikul (pone.0221339.ref004) 1992; 23 J Melendez (pone.0221339.ref042) 2015; 34 MA Gianfrancesco (pone.0221339.ref008) 2018 NM Noor (pone.0221339.ref050) 2011; 35 J Melendez (pone.0221339.ref024) 2018; 22 S Jaeger (pone.0221339.ref033) 2014; 33 AL Beam (pone.0221339.ref007) 2018; 319 E Udayakumar (pone.0221339.ref030) 2017; 21 M Breuninger (pone.0221339.ref018) 2014; 9 J Melendez (pone.0221339.ref020) 2017; 21 MT Rahman (pone.0221339.ref067) 2017; 49 N Mohd Noor (pone.0221339.ref056) 2005; 3 J Shiraishi (pone.0221339.ref013) 2000; 174 G Theron (pone.0221339.ref015) 2014; 383 A Karargyris (pone.0221339.ref034) 2016; 11 S. Jaeger (pone.0221339.ref037) 2015 PF Whiting (pone.0221339.ref011) 2011; 155 SMA Zaidi (pone.0221339.ref025) 2018; 8 T Pande (pone.0221339.ref009) 2016; 20 M Muyoyeta (pone.0221339.ref017) 2015; 10 R Lieberman (pone.0221339.ref054) 2009; 7260 T Frieden (pone.0221339.ref016) 2004 FE HARRELL (pone.0221339.ref073) 1996; 15 pone.0221339.ref031 pone.0221339.ref032 P Maduskar (pone.0221339.ref040) 2016; 28 EJ Hwang (pone.0221339.ref061) 2018 T Samandari (pone.0221339.ref006) 2011; 183 pone.0221339.ref027 T Xu (pone.0221339.ref049) 2011; 2011 R Sivaramakrishnan (pone.0221339.ref064) 2018 MT Rahman (pone.0221339.ref072) 2017; 49 S Vajda (pone.0221339.ref065) 2018; 42 L Hogeweg (pone.0221339.ref043) 2015; 34 L Hogeweg (pone.0221339.ref039) 2017; 44 D Moher (pone.0221339.ref010) 2009; 6 M Muyoyeta (pone.0221339.ref022) 2014; 9 FH WILLIAMS (pone.0221339.ref002) 1907; 157 KC Santosh (pone.0221339.ref063) 2018; 37 M Muyoyeta (pone.0221339.ref071) 2017; 17 G Giacomini (pone.0221339.ref044) 2015; 94 pone.0221339.ref026 RH Philipsen (pone.0221339.ref068) 2015; 5 pone.0221339.ref066 A Chauhan (pone.0221339.ref047) 2014; 9 T Pande (pone.0221339.ref003) 2015; 46 J Melendez (pone.0221339.ref019) 2016; 6 SJ Heo (pone.0221339.ref060) 2019; 16 S Rajaraman (pone.0221339.ref062) 2018; 2018 S Jaeger (pone.0221339.ref012) 2014; 4 P Lakhani (pone.0221339.ref029); 284 UK Lopes (pone.0221339.ref028) 2017; 89 S Jaeger (pone.0221339.ref035) 2012; 2012 R Shen (pone.0221339.ref051) 2010; 57 A Steiner (pone.0221339.ref021) 2015; 5 JM Seixas (pone.0221339.ref038) 2013; 17 WHO (pone.0221339.ref001) 2017 pone.0221339.ref057 pone.0221339.ref058 KC Santosh (pone.0221339.ref036) 2016; 11 pone.0221339.ref059 pone.0221339.ref052 pone.0221339.ref053 |
| References_xml | – volume: 9 issue: 9 year: 2014 ident: pone.0221339.ref018 article-title: Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: A validation study from sub-Saharan Africa publication-title: PLoS One doi: 10.1371/journal.pone.0106381 – volume: 46 start-page: 1816 issue: 6 year: 2015 ident: pone.0221339.ref003 article-title: Use of chest radiography in the 22 highest tuberculosis burden countries publication-title: Eur Respir J doi: 10.1183/13993003.01064-2015 – volume: 11 start-page: 99 issue: 1 year: 2016 ident: pone.0221339.ref034 article-title: Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-015-1242-x – volume: 5 start-page: 249 issue: 4 year: 2015 ident: pone.0221339.ref021 article-title: Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays publication-title: Public health action doi: 10.5588/pha.15.0037 – volume: 10 start-page: e0128044 issue: 5 year: 2015 ident: pone.0221339.ref045 article-title: Robust and Reproducible Quantification of the Extent of Chest Radiographic Abnormalities (And It's Free!) publication-title: PLoS One doi: 10.1371/journal.pone.0128044 – volume: 2011 start-page: 5178 year: 2011 ident: pone.0221339.ref049 article-title: Automated cavity detection of infectious pulmonary tuberculosis in chest radiographs publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: pone.0221339.ref066 – year: 2018 ident: pone.0221339.ref064 article-title: Comparing deep learning models for population screening using chest radiography publication-title: Medical Imaging – volume: 12 start-page: 724 year: 2009 ident: pone.0221339.ref055 article-title: Global and local multi-valued dissimilarity-based classification: application to computer-aided detection of tuberculosis publication-title: Med Image Comput Comput Assist Interv – volume: 94 start-page: e1044 issue: 26 year: 2015 ident: pone.0221339.ref044 article-title: Quantification of Pulmonary Inflammatory Processes Using Chest Radiography: Tuberculosis as the Motivating Application publication-title: Medicine doi: 10.1097/MD.0000000000001044 – ident: pone.0221339.ref031 doi: 10.1117/12.2216198 – ident: pone.0221339.ref005 – volume: 33 start-page: 233 issue: 2 year: 2014 ident: pone.0221339.ref033 article-title: Automatic tuberculosis screening using chest radiographs publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2284099 – volume: 10 start-page: 1616 issue: 12 year: 2013 ident: pone.0221339.ref048 article-title: An adaptive region growing algorithm with support vector machine classifier for Tuberculosis cavity identification publication-title: American Journal of Applied Sciences doi: 10.3844/ajassp.2013.1616.1628 – volume: 284 start-page: 574 issue: 2 ident: pone.0221339.ref029 article-title: Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – volume: 35 start-page: 186 issue: 3 year: 2011 ident: pone.0221339.ref050 article-title: Applying a statistical PTB detection procedure to complement the gold standard publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2010.10.002 – volume: 37 start-page: 1168 issue: 5 year: 2018 ident: pone.0221339.ref063 article-title: Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect Pulmonary Abnormalities? publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2775636 – volume: 2018 start-page: 718 year: 2018 ident: pone.0221339.ref062 article-title: A novel stacked generalization of models for improved TB detection in chest radiographs publication-title: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference – volume: 44 start-page: 2242 issue: 6 year: 2017 ident: pone.0221339.ref039 article-title: Fast and effective quantification of symmetry in medical images for pathology detection: Application to chest radiography publication-title: Medical Physics doi: 10.1002/mp.12127 – volume: 20 start-page: 1226 issue: 9 year: 2016 ident: pone.0221339.ref009 article-title: Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: A systematic review publication-title: Int J Tuberc Lung Dis doi: 10.5588/ijtld.15.0926 – year: 2018 ident: pone.0221339.ref061 article-title: Development and Validation of a Deep Learning-Based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs publication-title: Clin Infect Dis – volume: 17 start-page: 682 issue: 5 year: 2013 ident: pone.0221339.ref038 article-title: Artificial neural network models to support the diagnosis of pleural tuberculosis in adult patients publication-title: Int J Tuberc Lung Dis doi: 10.5588/ijtld.12.0829 – volume-title: Medical Imaging 2014: Computer-Aided Diagnosis year: 2014 ident: pone.0221339.ref046 – year: 2018 ident: pone.0221339.ref008 article-title: Potential biases in machine learning algorithms using electronic health record data publication-title: JAMA Internal Medicine – volume: 17 start-page: 1613 issue: 12 year: 2013 ident: pone.0221339.ref023 article-title: Detection of tuberculosis using digital chest radiography: Automated reading vs. interpretation by clinical officers publication-title: Int J Tuberc Lung Dis doi: 10.5588/ijtld.13.0325 – start-page: 2015 year: 2015 ident: pone.0221339.ref037 article-title: Detecting Disease in Radiographs with Intuitive Confidence publication-title: Sci World J – volume: 35 start-page: 1013 issue: 4 year: 2016 ident: pone.0221339.ref041 article-title: On Combining Multiple-Instance Learning and Active Learning for Computer-Aided Detection of Tuberculosis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2505672 – volume: 9 issue: 4 year: 2014 ident: pone.0221339.ref022 article-title: The sensitivity and specificity of using a computer aided diagnosis program for automatically scoring chest X-rays of presumptive TB patients compared with Xpert MTB/RIF in Lusaka Zambia publication-title: PLoS One doi: 10.1371/journal.pone.0093757 – volume-title: Toman’s tuberculosis: case detection, treatment, and monitoring. Questions and answers year: 2004 ident: pone.0221339.ref016 – volume: 17 start-page: 301 issue: 1 year: 2017 ident: pone.0221339.ref069 article-title: Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis publication-title: BMC Infectious Diseases doi: 10.1186/s12879-017-2388-7 – ident: pone.0221339.ref052 doi: 10.1007/978-3-642-15711-0_77 – volume: 383 start-page: 424 issue: 9915 year: 2014 ident: pone.0221339.ref015 article-title: Feasibility, accuracy, and clinical effect of point-of-care Xpert MTB/RIF testing for tuberculosis in primary-care settings in Africa: a multicentre, randomised, controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(13)62073-5 – volume: 5 start-page: 12215 year: 2015 ident: pone.0221339.ref068 article-title: Automated chest-radiography as a triage for Xpert testing in resource-constrained settings: a prospective study of diagnostic accuracy and costs publication-title: Sci Rep doi: 10.1038/srep12215 – volume: 35 start-page: 689 issue: 3 year: 2010 ident: pone.0221339.ref014 article-title: Diagnostic accuracy of digital chest radiography for pulmonary tuberculosis in a UK urban population publication-title: Eur Respir J doi: 10.1183/09031936.00136609 – volume: 28 start-page: 22 year: 2016 ident: pone.0221339.ref040 article-title: Automatic detection of pleural effusion in chest radiographs publication-title: Med Image Anal doi: 10.1016/j.media.2015.09.004 – volume: 6 start-page: 25265 year: 2016 ident: pone.0221339.ref019 article-title: An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information publication-title: Sci Rep doi: 10.1038/srep25265 – ident: pone.0221339.ref053 doi: 10.1117/12.844409 – volume: 16 issue: 2 year: 2019 ident: pone.0221339.ref060 article-title: Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data publication-title: Int J Environ Res Public Health – volume: 155 start-page: 529 issue: 8 year: 2011 ident: pone.0221339.ref011 article-title: QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies publication-title: Ann Intern Med doi: 10.7326/0003-4819-155-8-201110180-00009 – volume: 21 start-page: 338 issue: 2 year: 2017 ident: pone.0221339.ref030 article-title: TB screening using SVM and CBC techniques publication-title: Current Pediatric Research – volume: 174 start-page: 71 issue: 1 year: 2000 ident: pone.0221339.ref013 article-title: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules publication-title: AJR Am J Roentgenol doi: 10.2214/ajr.174.1.1740071 – volume: 22 start-page: 567 issue: 5 year: 2018 ident: pone.0221339.ref024 article-title: Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening publication-title: The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease doi: 10.5588/ijtld.17.0492 – volume: 9 issue: 11 year: 2014 ident: pone.0221339.ref047 article-title: Role of gist and PHOG features in computer-aided diagnosis of tuberculosis without segmentation publication-title: PLoS One doi: 10.1371/journal.pone.0112980 – ident: pone.0221339.ref026 – volume: 22 start-page: 1088 issue: 9 year: 2018 ident: pone.0221339.ref070 article-title: Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus publication-title: The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease doi: 10.5588/ijtld.17.0827 – volume: 7260 start-page: 726030 year: 2009 ident: pone.0221339.ref054 article-title: Computer-assisted detection (CAD) methodology for early detection of response to pharmaceutical therapy in tuberculosis patients publication-title: Proceedings of SPIE—the International Society for Optical Engineering – volume: 21 start-page: 880 issue: 8 year: 2017 ident: pone.0221339.ref020 article-title: Automatic versus human reading of chest X-rays in the Zambia National Tuberculosis Prevalence Survey publication-title: International Journal of Tuberculosis & Lung Disease doi: 10.5588/ijtld.16.0851 – volume: 319 start-page: 1317 issue: 13 year: 2018 ident: pone.0221339.ref007 article-title: Big data and machine learning in health care publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: 4 start-page: 475 issue: 6 year: 2014 ident: pone.0221339.ref012 article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quantitative imaging in medicine and surgery – volume: 49 issue: 5 year: 2017 ident: pone.0221339.ref067 article-title: An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients publication-title: Eur Respir J doi: 10.1183/13993003.02159-2016 – ident: pone.0221339.ref027 doi: 10.1117/12.2252459 – volume: 17 start-page: 301 issue: 1 year: 2017 ident: pone.0221339.ref071 article-title: Digital CXR with computer aided diagnosis versus symptom screen to define presumptive tuberculosis among household contacts and impact on tuberculosis diagnosis publication-title: BMC Infect Dis doi: 10.1186/s12879-017-2388-7 – volume: 34 start-page: 179 issue: 1 year: 2015 ident: pone.0221339.ref042 article-title: A novel multiple-instance learning-based approach to computer-aided detection of tuberculosis on chest X-rays publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2350539 – volume: 89 start-page: 135 year: 2017 ident: pone.0221339.ref028 article-title: Pre-trained convolutional neural networks as feature extractors for tuberculosis detection publication-title: Computers in Biology & Medicine doi: 10.1016/j.compbiomed.2017.08.001 – volume-title: Global Tuberculosis Report 2017 year: 2017 ident: pone.0221339.ref001 – volume: 10 start-page: e0126376 issue: 6 year: 2015 ident: pone.0221339.ref017 article-title: Implementation Research to Inform the Use of Xpert MTB/RIF in Primary Health Care Facilities in High TB and HIV Settings in Resource Constrained Settings publication-title: PLoS One doi: 10.1371/journal.pone.0126376 – volume: 183 start-page: 1103 issue: 8 year: 2011 ident: pone.0221339.ref006 article-title: Costs and consequences of additional chest x-ray in a tuberculosis prevention program in Botswana publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201004-0620OC – volume: 3 start-page: 3320 year: 2005 ident: pone.0221339.ref056 article-title: Discrimination between two lung diseases using chest radiographs publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine & Biology Society – ident: pone.0221339.ref032 doi: 10.1109/WiSPNET.2016.7566243 – volume: 15 start-page: 361 issue: 4 year: 1996 ident: pone.0221339.ref073 article-title: MULTIVARIABLE PROGNOSTIC MODELS: ISSUES IN DEVELOPING MODELS, EVALUATING ASSUMPTIONS AND ADEQUACY, AND MEASURING AND REDUCING ERRORS publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: pone.0221339.ref059 doi: 10.1109/IBIOMED.2018.8534784 – volume: 8 start-page: 12339 issue: 1 year: 2018 ident: pone.0221339.ref025 article-title: Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan publication-title: Sci Rep doi: 10.1038/s41598-018-30810-1 – volume: 34 start-page: 2429 issue: 12 year: 2015 ident: pone.0221339.ref043 article-title: Automatic Detection of Tuberculosis in Chest Radiographs Using a Combination of Textural, Focal, and Shape Abnormality Analysis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2405761 – volume: 2012 start-page: 4978 year: 2012 ident: pone.0221339.ref035 article-title: Detecting tuberculosis in radiographs using combined lung masks publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 157 start-page: 850 issue: 26 year: 1907 ident: pone.0221339.ref002 article-title: The Use of X-Ray Examinations in Pulmonary Tuberculosis publication-title: The Boston Medical and Surgical Journal doi: 10.1056/NEJM190712261572602 – ident: pone.0221339.ref057 doi: 10.1117/12.844409 – volume: 11 start-page: 1637 issue: 9 year: 2016 ident: pone.0221339.ref036 article-title: Edge map analysis in chest X-rays for automatic pulmonary abnormality screening publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-016-1359-6 – volume: 57 issue: 11 year: 2010 ident: pone.0221339.ref051 article-title: A hybrid knowledge-guided detection technique for screening of infectious pulmonary tuberculosis from chest radiographs publication-title: IEEE transactions on bio-medical engineering – ident: pone.0221339.ref058 – volume: 42 start-page: 146 issue: 8 year: 2018 ident: pone.0221339.ref065 article-title: Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs publication-title: J Med Syst doi: 10.1007/s10916-018-0991-9 – volume: 23 start-page: 195 issue: 2 year: 1992 ident: pone.0221339.ref004 article-title: Anti-tuberculosis programs in Thailand: a cost analysis publication-title: Southeast Asian J Trop Med Public Health – volume: 6 start-page: e1000097 issue: 7 year: 2009 ident: pone.0221339.ref010 article-title: Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement publication-title: PLoS Med doi: 10.1371/journal.pmed.1000097 – volume: 49 issue: 5 year: 2017 ident: pone.0221339.ref072 article-title: An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients publication-title: European Respiratory Journal doi: 10.1183/13993003.02159-2016 |
| SSID | ssj0053866 |
| Score | 2.627191 |
| SecondaryResourceType | review_article |
| Snippet | We undertook a systematic review of the diagnostic accuracy of artificial intelligence-based software for identification of radiologic abnormalities... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0221339 |
| SubjectTerms | Abnormalities Accuracy Area Under Curve Artificial Intelligence Automation Bias Chest Chest x-rays Clinical trials Computer and Information Sciences Computer programs Computers Concretes Deep learning Design Diagnosis Diagnosis, Computer-Assisted - methods Diagnosis, Computer-Assisted - standards Diagnosis, Computer-Assisted - statistics & numerical data Diagnostic software Diagnostic systems Epidemiology Evaluation Humans Infectious diseases Learning algorithms Lung diseases Machine learning Medical diagnosis Medical research Medicine Medicine and Health Sciences People and Places Physical Sciences Predictive Value of Tests Pulmonary tuberculosis Quality Assurance, Health Care Radiography Reading Research and Analysis Methods Risk assessment Sensitivity and Specificity Software Studies Systematic review Tuberculosis Tuberculosis, Pulmonary - diagnostic imaging X-rays |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXOCCKK8aCiwICTi4tbPrxx4DoipIgAQU9Wbts0SK7CiOBeF38IOZ8W5MLCq1B26RZzaSZ2Znv0lmvyHkOUtM6YxVcWJLG3PheCxYruKU64QbkTre0zF8-JifnPL3Z9nZzqgv7Anz9MDecEeZ0kZK5UzCJOcKam4DINwoUZrCJcpg9k1KsS2mfA6GXZzn4aIcK9Kj4JfDZVPbQzi1oDATo4Oo5-sfsvJkuWjaiyDnv52T17t6KTc_5GKxcywd3yI3A56kM_8ee-SarW-TvbBjW_oy0Eq_ukN-z-hf2mbqr6zQxlFAgNT4hjsUSK27ldQbFKF1PMMEne9Qd8Z49Bmqw0AIGnq8WrpuqESSk1-W9nO46M94JTctBWBMl90CIl6uNnTdKbvSHbz8vL1LTo_ffn1zEoeZDLGGymKNfRQWy7RUZ6WGj6nNzNRBISelBfDmAIAZZw0TULELN1WZkAwewGKlWOIMu0cmNXhhn1BX5NoKXUyNdpwXheIMf4bKc50D8MhlRNjWQZUOhOU4N2NR9f_CFVC4eBtX6NYquDUi8bBq6Qk7LtF_jb4fdJFuu38AQViFIKwuC8KIPMHIqfzd1SFpVDOkR8wzyIERedZrIOVGjT0957Jr2-rdp29XUPryeaT0Iii5BsyhZbhHAe-EVF4jzYORJiQOPRLvY5xvrdJWyIQkMsbLBFZuY_9i8dNBjF-KfXq1bbpehwNABRwdkft-qwyWZSlOM-BlRIrRJhqZfiyp5997xvO8SEWZ8YgcDtvtSs598D-c-5DcAJTsGwvZAZmsV519BEh0rR73SecPrTeOeg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_qFdQXsVXbaNVVBPUh1-R28_Ug0kpLFVqlWulb2M9aOJLzckHPv8M_2JlkkzZYtG9HZvYgMzuzM9mZ3xDyggU6tdpIPzCp8XlmuZ-xWPohVwHXWWh5A8dweBQfnPAPp9HpCjnqemGwrLLziY2j1qXCb-TbCNOSRYynwdvZdx-nRuHtajdCQ7jRCvpNAzF2g6xOEBlrRFZ3944-HXe-Gaw7jl0DHUvCbaev8awszBhOM0jYssEB1eD49956NJuW1VWh6N8VlbfqYiaWP8R0eum42r9L7rg4k-60G2ONrJhindw8dDfp62TNGXVFXznk6df3yO8deoHsTNuuFlpaCkEi1W1NHhJADPVcqCWScOe1IBT0_BK6p4-no6bKzYygrgysoouSCsRB-WVoM6qL_vTnYllRiJ3prJ6ClMV8SRe1NHNVgxzOq_vkZH_vy7sD341t8BUkHwsstTCYyYUqShX8DE2kJxZyPSEMxHcWFKSt0SyDpD6zExllgsEDWCwlC6xmD8ioAIVsEmqTWJlMJROtLOdJIjnDL1VxrGKITWLhEdbpKlcO0xxHa0zz5qIugdymFXeOGs6dhj3i96tmLabHf_h3cRv0vIjI3Two52e5M_A8kkoLIa0OmOBchhnXkCxqmaU6sYHUHnmKmyhv21t7v5LvIIJiHIGb9MjzhgNROQos-zkTdVXl7z9-vQbT5-MB00vHZEsQhxKu1QLeCdG-BpxbA07wLWpA3sQt30mlyi-sEFZ2ZnA1-VlPxj_FUr7ClHXDwyGGhVDbIxut1fSSZSEOPOCpR5KBPQ1EP6QU598aUPQ4CbM04h4Z95Z3LeU-_Pd7PCK3IURuqwrZFhkt5rV5DGHoQj5xvuUP6gGN0A priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nHINlk7r-OCqAoSBQGLygFFfsKKVXa1SQTbA7-CH8xM4g0NFFEO3KLM2IrH4_FMPPOZkHss0KnVRvqBSY3PM8v9jMXSD7kKuM5Cyxs4hhcH8f6EPz-MDjfIh3UtjJMgxIizedmc5OPDvDC7TpK7iFfUnp4OQ5aE6xbDBTANYUeCoCu73yAO4Z-xCguQzpDNOAJXfUA2Jwevxu_bk-aRH48C5srp_tRTb7tqUP072z3ALzvJMf09v_JsXSzE6ouYzY5tXnsXyLf1sNuclc_DupJDdfQLIuR_k8tFct65vXTc9rJFNkxxiWw5w1LShw79-tFl8n1Mf6JL07ayhs4tBUeV6jYvEAlCqXop1ApJ-G0tEAadHkMY9XGH1lS5eyuoS0UraTWnArFYjgxtrgujX_2lWJUU_He6qGewMMVyRatamqWqYfzT8gqZ7D19-2Tfd1dH-AoCoArTPQxGk6GKUgWPoYn0yEK8KYQBH9OCn6it0SwzcpTZkYwyweAFNJaSBVazq2RQgOC2CbVJrEymkpFWlvMkkZzh37I4VjH4R7HwCFtrSK4crjpe7zHLm8PCBOKrVsY5zkTuZsIjftdq0eKK_IX_MSpfx4uo4M0LUIXcqUAeSaWFkFYHTHAuw4xrCFi1zFKd2EBqj9xG1c3bEtvOtuVjRHGMIzDVHrnbcCAySIGpRx9FXZb5s5fvTsH05nWP6YFjsnMQhxKu3APGhJra49zpcYJ9Uz3yNqr6WipljoBNWcR4GkDL9eI7mXynI2OnmE5YmHnd8HDwo8Hd98i1dq12kmUhXrrAU48kvVXcE32fUkw_NcDscRJmacQ9MuzW-6km9_q_NrhBzoHj3uY6sh0yqJa1uQnOcSVvORP3Awfiw7s priority: 102 providerName: Unpaywall |
| Title | A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31479448 https://www.proquest.com/docview/2283953480 https://www.proquest.com/docview/2284554256 https://pubmed.ncbi.nlm.nih.gov/PMC6719854 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221339&type=printable https://doaj.org/article/5bcdaabfd03a44b194d862db98d7f0bd http://dx.doi.org/10.1371/journal.pone.0221339 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZ6SNAXRLkaKItBSMBDVknjHH5AaFu1FKSWqrBoeYocH6XSKlmSjejyO_jBzCTe0IhW9CVaecarZA57Jhl_Q8jLwFOJUTpzPZ1ol3HDXB5Emesz6THFfcMaOIaj4-hwzD5OwskKWfZstQKsrkztsJ_UuJwOL34s3oHDv226NsT-ctJwVuR6CHsSpF18lazDXsWxmcMR674rgHdHkT1Ad93MDXIr8BF3HVsCXdqrGkj_buFem02L6qqo9N_iytt1PhOLn2I6vbRzHdwld2zISUetjWySFZ3fI5vWqSv62iJPv7lPfo_oX2Rn2p5qoYWhECRS1dbkIUFIWZdCLpCElteCUNDzS-ieLu6OikrbM4LaMrCKzgsqEAfll6ZNqy564ZZiUVGInemsnoJTiHJB53WmS1nDw59XD8j4YP_L3qFr2za4EpKPOZZaaMzkfBkmEn76OlQ7BnI9ITTEdwZiNGW0Cjgk9dzsZCEXAQzA5CwLPKOCh2QtB4VsEWriSGou4x0lDWNxnLEA31RFkYwgNomEQ4KlglJpMc2xtcY0bT7UxZDbtDJOUcOp1bBD3G7WrMX0-A__Luq-40VE7magKM9S6-BpmEklRGaUFwjGMp8zBcmiyniiYuNlyiHP0HLS9nhrt66kI0RQjEJYJh3youFAVI4cy37ORF1V6YdPX2_A9Pm0x_TKMpkCxCGFPWoBz4RoXz3O7R4nrC2yR95CO19KpUoRLImHAUs8mLm0_avJzzsy_imW8uW6qBseBjEshNoOedS6SifZpeM5JO45UU_0fUp-_r0BRY9inychc8iwc7cbKffxtTfxhGxAdNwWFAbbZG1e1vopRKDzbEBW40kM12TPx-vB-wFZ390_PjkdNO90Bs2iA2Pj45PRtz8fjJCV |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9VAEN4gJuKLEbxQRVmNRn0otGe3twdj8EJALiYKhre6VyQ5aY-np8Hj7_B3-BudafcUGo3ywlvTmTbp3HamO_sNIU9YoFOrjfQDkxqfZ5b7GYulH3IVcJ2FljdwDHv78dYhf38UHc2RX7OzMNhWOYuJTaDWpcJ_5OsI05JFjKfBq9E3H6dG4e7qbIRGaxY7ZnoKJVv1cvst6PfpYLD57uDNlu-mCvgKcuMJdgIYLDRCFaUKLkMT6YGFUkQIA-mHhRRCW6NZBjVnZgcyygSDG_CwlCywmsF7r5CrnEEsAf9JjroCD2JHHLvjeSwJ1501rI3KwqzBWgnlYNZb_popAd1aMD8altXfEt0_-zUX6mIkpqdiODy3GG7eJDdcFks3WrNbJHOmWCLX9tw-_RJZdCGjos8drvWLW-TnBj3DjabtmRlaWgopKNVtxx8ShFL1WKgpktCuW4gLenIOO9THtVdT5SZSUNdkVtFJSQWirPwwtBkERr_7YzGtKGTmdFQPQYdiPKWTWpqxqkEOJ9Vtcngp6rtD5gtQyDKhNomVyVQy0MpyniSSM_wPFscqhswnFh5hM13lyiGm4-COYd5sAyZQObXizlHDudOwR_zuqVGLGPIf_tdoBh0v4n03N8rxce7CRx5JpYWQVgdMcC7DjGsoRbXMUp3YQGqPrKIR5e3h2S5q5RuIzxhHEIQ98rjhQMyPApuKjkVdVfn2h88XYPr0scf0zDHZEsShhDvIAd-EWGI9zpUeJ0Qu1SMvo8nPpFLlZz4OT87c4O_kRx0ZX4qNgoUp64aHQ4YMibxH7rZe00mWhThOgaceSXr-1BN9n1KcfG0g1-MkzNKIe2St87wLKffev79jlSxsHezt5rvb-zv3yXVIxtv-RbZC5ifj2jyAhHciHzZRhpIvlx3WfgMFc8VT |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gJuiLEfygirIajfpQaG-3Xw_GoEhEBI2K4a3uJ5Jc2vN6DZ5_h3-Nf50z7V6hkSgvvF060-Y6XzvTnf0NIY9YoFOrjfQDkxqfZ5b7GYulH3IVcJ2FljdwDLt78Zt9_vYgOpgjv2dnYbCtchYTm0CtS4XfyNcRpiWLGE-DdevaIj5sbr0YffdxghTutM7GabQmsmOmx1C-Vc-3N0HXjweDrdefX73x3YQBX0GePMGuAINFR6iiVMHP0ER6YKEsEcJAKmIhndDWaJZB_ZnZgYwyweAC3CwlC6xm8NxL5HLC4K-BLyUHXbEHcSSO3VE9loTrzjLWRmVh1mDdhNIw6y2FzcSAbl2YHw3L6qyk9-_ezSt1MRLTYzEcnloYt66Tay6jpRutCS6SOVMskYVdt2e_RBZd-KjoU4dx_ewG-bVBTzCkaXt-hpaWQjpKddv9hwShVD0WaooktPEW7oIencIR9XEd1lS56RTUNZxVdFJSgYgrPw1thoLRH_5YTCsKWTod1UPQoRhP6aSWZqxqkMNRdZPsX4j6bpH5AhSyTKhNYmUylQy0spwnieQMv4nFsYohC4qFR9hMV7ly6Ok4xGOYN1uCCVRRrbhz1HDuNOwRv7tr1KKH_If_JZpBx4vY382FcnyYu1CSR1JpIaTVAROcyzDjGspSLbNUJzaQ2iOraER5e5C2i2D5BmI1xhEEZI88bDgQ_6NATzoUdVXl2--_nIPp08ce0xPHZEsQhxLuUAe8E-KK9ThXepwQxVSPvIwmP5NKlZ_4O9w5c4OzyQ86Mj4UmwYLU9YND4dsGZJ6j9xuvaaTLAtxtAJPPZL0_Kkn-j6lOPrWwK_HSZilEffIWud551LunX-_xypZgICWv9ve27lLrkJe3rYyshUyPxnX5h7kvhN5vwkylHy96Kj2B05iyZY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKGAQ4nHINlk7r-OCqAoSBQGLygFFfsKKVXa1SQTbA7-CH8xM4g0NFFEO3KLM2IrH4_FMPPOZkHss0KnVRvqBSY3PM8v9jMXSD7kKuM5Cyxs4hhcH8f6EPz-MDjfIh3UtjJMgxIizedmc5OPDvDC7TpK7iFfUnp4OQ5aE6xbDBTANYUeCoCu73yAO4Z-xCguQzpDNOAJXfUA2Jwevxu_bk-aRH48C5srp_tRTb7tqUP072z3ALzvJMf09v_JsXSzE6ouYzY5tXnsXyLf1sNuclc_DupJDdfQLIuR_k8tFct65vXTc9rJFNkxxiWw5w1LShw79-tFl8n1Mf6JL07ayhs4tBUeV6jYvEAlCqXop1ApJ-G0tEAadHkMY9XGH1lS5eyuoS0UraTWnArFYjgxtrgujX_2lWJUU_He6qGewMMVyRatamqWqYfzT8gqZ7D19-2Tfd1dH-AoCoArTPQxGk6GKUgWPoYn0yEK8KYQBH9OCn6it0SwzcpTZkYwyweAFNJaSBVazq2RQgOC2CbVJrEymkpFWlvMkkZzh37I4VjH4R7HwCFtrSK4crjpe7zHLm8PCBOKrVsY5zkTuZsIjftdq0eKK_IX_MSpfx4uo4M0LUIXcqUAeSaWFkFYHTHAuw4xrCFi1zFKd2EBqj9xG1c3bEtvOtuVjRHGMIzDVHrnbcCAySIGpRx9FXZb5s5fvTsH05nWP6YFjsnMQhxKu3APGhJra49zpcYJ9Uz3yNqr6WipljoBNWcR4GkDL9eI7mXynI2OnmE5YmHnd8HDwo8Hd98i1dq12kmUhXrrAU48kvVXcE32fUkw_NcDscRJmacQ9MuzW-6km9_q_NrhBzoHj3uY6sh0yqJa1uQnOcSVvORP3Awfiw7s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+the+diagnostic+accuracy+of+artificial+intelligence-based+computer+programs+to+analyze+chest+x-rays+for+pulmonary+tuberculosis&rft.jtitle=PloS+one&rft.au=Harris%2C+Miriam&rft.au=Qi%2C+Amy&rft.au=Jeagal%2C+Luke&rft.au=Torabi%2C+Nazi&rft.date=2019-09-03&rft.eissn=1932-6203&rft.volume=14&rft.issue=9&rft.spage=e0221339&rft_id=info:doi/10.1371%2Fjournal.pone.0221339&rft_id=info%3Apmid%2F31479448&rft.externalDocID=31479448 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |