COVID-19 detection using federated machine learning

The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data vi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 6; p. e0252573
Main Authors Abdul Salam, Mustafa, Taha, Sanaa, Ramadan, Mohamed
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.06.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0252573

Cover

Abstract The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models’ loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model.
AbstractList The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models’ loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model.
The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient's private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models' loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model.The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient's private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models' loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model.
Mustafa Abdul Salam, Sanaa Taha, Mohamed Ramadan Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Visualization, Writing – original draft, Writing – review & editing * E-mail: mustafa.abdo@fci.bu.edu.eg Affiliation: Computer Science Department, Faculty of Computers and Information- Egyptian E-Learning University, Giza, Egypt Introduction COVID-19 The current COVID-19 pandemic, caused by SARS CoV2, threatens human life, health, and productivity [1] and is rapidly spreading worldwide [2]. The global model collects local models updates. https://doi.org/10.1371/journal.pone.0252573.g001 Why federated machine learning should be used: * Decentralized model removes the need to transfer all the data to one server to train the model, as training each node occurs locally, unlike traditional machine learning which requires moving all the data to a centralized server, to build and train the model. * No data privacy violation as it applies methodologies including the differential privacy and the homographic Secure multiparty computation, unlike traditional machine learning. * A third-party can be part of the training process as long as there is no data privacy violation and data is secured, unlike traditional machine learning third-party could not be an option in case of military organizations. * Less computation power is needed as model training is performed on each client, and the centralized model’s primary role is to collect gradient update distributed models, unlike the traditional machine learning which one centralized server contains all the data, which requires high computational power for model training. * Decentralized algorithms may provide better or the same performance as centralized algorithms [5]. Federated learning can be applied in many disciplines like (Smart healthcare, sales, multi-party database, and smart retail) [6] Motivation and contributions Federated machine learning enables us to overcome the obstacles faced by the traditional machine learning model as: * Traditional machine learning occurs by moving all data source to a centralized server to train and build the model, but this may violate the rules of military organizations especially when third-party is used to create, train and maintain the model. * To train the model, the third-party should prepare, clean, and restructure the data to be suitable for model training, however, this may violate data privacy when the data are handled to create the model. * Traditional machine learning models also take much time to build the model with acceptable accuracy, which may cause a delay for organizations, especially recently opened ones. * Traditional machine learning also requires the existence of a massive amount of historical data to train the model to give acceptable accuracy (Cold Start) [7]. * There is a need for a secure distributed machine learning methodology that trains clients’ data on their servers without violating data privacy, saves computational power, and overcomes the cold start problem, enabling clients to get immediate results. [8] proposed a federated learning framework based on digital city twin concepts to study the effect of different prevention city plans to prevent a COVID-19 outbreak, and by building a federated model to predict the effect they traced the infection number from multiple cities over the periods from their digital city twin systems.
Audience Academic
Author Taha, Sanaa
Abdul Salam, Mustafa
Ramadan, Mohamed
AuthorAffiliation 2 Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
3 Computer Science Department, Faculty of Computers and Information- Egyptian E-Learning University, Giza, Egypt
1 Artificial Intelligence Department, Faculty of Computers and Artificial intelligence, Benha University, Benha, Egypt
Vellore Institute of Technology: VIT University, INDIA
AuthorAffiliation_xml – name: Vellore Institute of Technology: VIT University, INDIA
– name: 3 Computer Science Department, Faculty of Computers and Information- Egyptian E-Learning University, Giza, Egypt
– name: 1 Artificial Intelligence Department, Faculty of Computers and Artificial intelligence, Benha University, Benha, Egypt
– name: 2 Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
Author_xml – sequence: 1
  givenname: Mustafa
  orcidid: 0000-0003-1673-6947
  surname: Abdul Salam
  fullname: Abdul Salam, Mustafa
– sequence: 2
  givenname: Sanaa
  surname: Taha
  fullname: Taha, Sanaa
– sequence: 3
  givenname: Mohamed
  surname: Ramadan
  fullname: Ramadan, Mohamed
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34101762$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r2zAUhs3oWNts_2BsgcHYLpLpw5KlXQxK9xUoBPbRWyHLx4mCIqWWva3_fvLilriUUXxhc_S87znntU6zIx88ZNlzjOaYFvjdJnSN126-S-U5Ioywgj7KTrCkZMYJokcH38fZaYwbhBgVnD_JjmmOES44Ocno-fJy8XGG5bSCFkxrg5920frVtIYKGt1CNd1qs7Yepg5049PR0-xxrV2EZ8N7kv38_OnH-dfZxfLL4vzsYmYKJtoZrquCVEVVYsg5rspcM1QjTSkRPBfaVEgwQbDRGAiSSKTpyqouEcOMIl4KOsle7n13LkQ17BsVYVQSkcvET7LFnqiC3qhdY7e6uVZBW_WvEJqV0k1rjQNVlMDKQsuaIsgN0xKBqEGDFDUnHNHkxfZend_p69_auVtDjFQf-c0Iqo9cDZEn3Ydhyq7cQmXAt412o2HGJ96u1Sr8UgILXkiZDN4MBk246iC2amujAee0h9Dt92WkkHnf69Ud9P5UBmql0-LW1yH1Nb2pOuM8Z1gSxBM1v4dKTwVba9KGtU31keDtSJCYFv60K93FqBbfvz2cXV6O2dcH7Bq0a9cxuK6_i3EMvjhM-jbim9ucgHwPmCbE2ED90D_4_o7M2Fb37VMi1v1f_BfWeBnD
CitedBy_id crossref_primary_10_1109_TETCI_2024_3371222
crossref_primary_10_1007_s11042_023_17086_y
crossref_primary_10_3390_electronics11244117
crossref_primary_10_1145_3533708
crossref_primary_10_1111_exsy_13173
crossref_primary_10_47909_ijsmc_85
crossref_primary_10_1007_s11604_022_01268_z
crossref_primary_10_1038_s41598_022_26467_6
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_3390_covid4120140
crossref_primary_10_1016_j_iswa_2022_200130
crossref_primary_10_1109_JIOT_2023_3329061
crossref_primary_10_3390_app13031911
crossref_primary_10_1007_s11227_023_05754_7
crossref_primary_10_3389_fpubh_2022_892499
crossref_primary_10_3934_mbe_2022466
crossref_primary_10_4018_IJEA_310001
crossref_primary_10_3233_JIFS_233633
crossref_primary_10_1371_journal_pone_0287755
crossref_primary_10_3390_bdcc9010011
crossref_primary_10_32604_cmc_2023_033252
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_3390_app112311191
crossref_primary_10_3390_bioengineering11040340
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1016_j_artmed_2023_102691
crossref_primary_10_4018_IJSI_311505
crossref_primary_10_1371_journal_pone_0294289
crossref_primary_10_3390_bdcc6040127
crossref_primary_10_3390_sym14010016
crossref_primary_10_1002_ima_23001
crossref_primary_10_1016_j_iot_2023_100828
crossref_primary_10_24171_j_phrp_2023_0287
crossref_primary_10_32604_iasc_2022_023763
crossref_primary_10_4103_jehp_jehp_298_23
crossref_primary_10_3390_computers12050106
crossref_primary_10_1007_s13721_023_00423_4
crossref_primary_10_7717_peerj_cs_1333
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_3390_biomedicines10112791
crossref_primary_10_3390_bioengineering10080965
crossref_primary_10_1007_s11042_022_13710_5
crossref_primary_10_3390_diagnostics13203166
crossref_primary_10_3390_s21238045
crossref_primary_10_1007_s42979_024_03235_z
crossref_primary_10_3390_s22103728
crossref_primary_10_1007_s00607_024_01317_7
crossref_primary_10_3390_sci6010002
crossref_primary_10_1002_mp_16964
crossref_primary_10_1007_s42979_023_01703_6
crossref_primary_10_1186_s12879_024_10230_5
crossref_primary_10_3390_app122312080
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_1093_database_baaf016
crossref_primary_10_1038_s41598_025_89612_x
crossref_primary_10_3390_diagnostics13193140
crossref_primary_10_1007_s00500_021_06514_6
Cites_doi 10.1109/MSP.2020.2975749
10.1007/s00530-021-00774-w
10.1016/j.bbe.2021.05.013
10.1145/3298981
10.26599/TST.2021.9010026
10.3892/etm.2020.8797
10.1007/s41870-020-00495-9
10.1016/j.irbm.2020.07.001
10.5121/ijaia.2020.11406
10.1016/j.compag.2020.105802
10.1109/GCWkshps50303.2020.9367469
10.1007/s12065-019-00327-1
10.1093/ecco-jcc/jjaa058
10.1016/j.bspc.2020.102149
10.1016/j.chaos.2020.109944
10.1016/j.patrec.2020.09.010
10.3390/a13100249
10.2106/JBJS.20.00715
10.1016/j.chaos.2020.110203
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Salam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Salam et al 2021 Salam et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Salam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Salam et al 2021 Salam et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0252573
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (Proquest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate COVID-19 detection using federated machine learning
EISSN 1932-6203
ExternalDocumentID 2539284905
oai_doaj_org_article_7be5b7a9f30e4c5a90e8feae98f62603
10.1371/journal.pone.0252573
PMC8186799
A664519206
34101762
10_1371_journal_pone_0252573
Genre Journal Article
GeographicLocations Egypt
Giza Egypt
GeographicLocations_xml – name: Egypt
– name: Giza Egypt
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c758t-1fd72d7db1e461db4a50f0a3328648acd085821ca1e20908053bdfb0515306b83
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:37 EST 2021
Tue Oct 14 18:59:32 EDT 2025
Sun Oct 26 03:46:23 EDT 2025
Tue Sep 30 16:48:48 EDT 2025
Fri Sep 05 11:37:58 EDT 2025
Tue Oct 07 07:47:35 EDT 2025
Mon Oct 20 21:55:53 EDT 2025
Mon Oct 20 16:38:37 EDT 2025
Thu Oct 16 14:33:42 EDT 2025
Thu Oct 16 15:02:40 EDT 2025
Thu May 22 21:21:52 EDT 2025
Wed Feb 19 02:06:20 EST 2025
Wed Oct 01 02:06:58 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c758t-1fd72d7db1e461db4a50f0a3328648acd085821ca1e20908053bdfb0515306b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0003-1673-6947
OpenAccessLink https://doaj.org/article/7be5b7a9f30e4c5a90e8feae98f62603
PMID 34101762
PQID 2539284905
PQPubID 1436336
PageCount e0252573
ParticipantIDs plos_journals_2539284905
doaj_primary_oai_doaj_org_article_7be5b7a9f30e4c5a90e8feae98f62603
unpaywall_primary_10_1371_journal_pone_0252573
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8186799
proquest_miscellaneous_2539527943
proquest_journals_2539284905
gale_infotracmisc_A664519206
gale_infotracacademiconefile_A664519206
gale_incontextgauss_ISR_A664519206
gale_incontextgauss_IOV_A664519206
gale_healthsolutions_A664519206
pubmed_primary_34101762
crossref_primary_10_1371_journal_pone_0252573
crossref_citationtrail_10_1371_journal_pone_0252573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-08
PublicationDateYYYYMMDD 2021-06-08
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Amir Ahmad (pone.0252573.ref011) 2020
F. Ardabili Sina (pone.0252573.ref026) 2020; 13
Qiang Yang (pone.0252573.ref006) 2019; 10
Harsh Panwar (pone.0252573.ref020) 2020; 138
pone.0252573.ref008
Abdul Rehman Javed (pone.0252573.ref029) 2020; 10
Nikos Tsiknakis (pone.0252573.ref012) 2020; 20
pone.0252573.ref001
pone.0252573.ref023
pone.0252573.ref021
Tian Li (pone.0252573.ref007) 2020; 37
pone.0252573.ref028
pone.0252573.ref005
pone.0252573.ref027
Ann Cavoukian (pone.0252573.ref034) 2009; 5
Rodrigo M. Carrillo-Larco (pone.0252573.ref022) 2020; 5
Parnian Afshar (pone.0252573.ref009) 2020; 138
Himadri Mukherjee (pone.0252573.ref018) 2020
R Manavalan (pone.0252573.ref025) 2020; 178
pone.0252573.ref031
Mwaffaq Otoom (pone.0252573.ref013) 2020; 62
Gionata Fiorino (pone.0252573.ref002) 2020; 14
G. Reddy Thippa (pone.0252573.ref032) 2020; 13
pone.0252573.ref019
Akib Mohi Ud Din Khanday (pone.0252573.ref024) 2020; 12
Michał Wieczorek (pone.0252573.ref003) 2020; 140
Sweta Bhattacharya (pone.0252573.ref030) 2021; 65
pone.0252573.ref033
pone.0252573.ref010
pone.0252573.ref017
pone.0252573.ref016
Weishan Zhang (pone.0252573.ref004) 2021
pone.0252573.ref015
pone.0252573.ref014
References_xml – start-page: 1
  year: 2020
  ident: pone.0252573.ref018
  article-title: Deep neural network to detect COVID-19: one architecture for both CT Scans and Chest X-rays
  publication-title: Applied Intelligence
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0252573.ref029
  article-title: A collaborative healthcare framework for shared healthcare plan with ambient intelligence
  publication-title: Human-centric Computing and Information Sciences
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: pone.0252573.ref007
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2020.2975749
– ident: pone.0252573.ref028
  doi: 10.1007/s00530-021-00774-w
– ident: pone.0252573.ref027
  doi: 10.1016/j.bbe.2021.05.013
– volume: 10
  start-page: 1
  issue: 2
  year: 2019
  ident: pone.0252573.ref006
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
  doi: 10.1145/3298981
– ident: pone.0252573.ref001
– year: 2021
  ident: pone.0252573.ref004
  article-title: Dynamic fusion-based federated learning for COVID-19 detection
  publication-title: IEEE Internet of Things Journal
– ident: pone.0252573.ref008
  doi: 10.26599/TST.2021.9010026
– start-page: 1
  issue: 2020
  year: 2020
  ident: pone.0252573.ref011
  article-title: The number of confirmed cases of covid-19 by using machine learning: Methods and challenges
  publication-title: Archives of Computational Methods in Engineering
– volume: 20
  start-page: 727
  issue: 2
  year: 2020
  ident: pone.0252573.ref012
  article-title: Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays
  publication-title: Experimental and Therapeutic Medicine
  doi: 10.3892/etm.2020.8797
– volume: 12
  start-page: 731
  issue: 3
  year: 2020
  ident: pone.0252573.ref024
  article-title: Machine learning based approaches for detecting COVID-19 using clinical text data
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-020-00495-9
– ident: pone.0252573.ref016
  doi: 10.1016/j.irbm.2020.07.001
– ident: pone.0252573.ref017
  doi: 10.5121/ijaia.2020.11406
– volume: 178
  start-page: 105802
  year: 2020
  ident: pone.0252573.ref025
  article-title: Automatic identification of diseases in grains crops through computational approaches: A review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105802
– ident: pone.0252573.ref019
– ident: pone.0252573.ref031
  doi: 10.1109/GCWkshps50303.2020.9367469
– ident: pone.0252573.ref015
– volume: 5
  year: 2020
  ident: pone.0252573.ref022
  article-title: Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach
  publication-title: Wellcome Open Research
– volume: 13
  start-page: 185
  issue: 2
  year: 2020
  ident: pone.0252573.ref032
  article-title: Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00327-1
– volume: 14
  start-page: 1330
  issue: 9
  year: 2020
  ident: pone.0252573.ref002
  article-title: Inflammatory bowel disease care in the COVID-19 pandemic era: the Humanitas, Milan, experience
  publication-title: Journal of Crohn’s and Colitis
  doi: 10.1093/ecco-jcc/jjaa058
– ident: pone.0252573.ref005
– ident: pone.0252573.ref023
– volume: 62
  start-page: 102149
  year: 2020
  ident: pone.0252573.ref013
  article-title: An IoT-based framework for early identification and monitoring of COVID-19 cases
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102149
– volume: 65
  year: 2021
  ident: pone.0252573.ref030
  article-title: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey
  publication-title: Sustainable cities and society
– ident: pone.0252573.ref010
– volume: 138
  start-page: 109944
  year: 2020
  ident: pone.0252573.ref020
  article-title: Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.109944
– volume: 138
  start-page: 638
  year: 2020
  ident: pone.0252573.ref009
  article-title: Covid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray images
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2020.09.010
– volume: 13
  start-page: 249
  issue: 10
  year: 2020
  ident: pone.0252573.ref026
  article-title: Covid-19 outbreak prediction with machine learning
  publication-title: Algorithms
  doi: 10.3390/a13100249
– volume: 5
  start-page: 12
  year: 2009
  ident: pone.0252573.ref034
  article-title: Privacy by design: The 7 foundational principles
  publication-title: Information and privacy commissioner of Ontario, Canada
– ident: pone.0252573.ref021
  doi: 10.2106/JBJS.20.00715
– volume: 140
  start-page: 110203
  year: 2020
  ident: pone.0252573.ref003
  article-title: Neural network powered COVID-19 spread forecasting model
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110203
– ident: pone.0252573.ref014
– ident: pone.0252573.ref033
RelatedPersons Taha, Mohamed
RelatedPersons_xml – fullname: Taha, Mohamed
SSID ssj0053866
Score 2.6093926
Snippet The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply...
Mustafa Abdul Salam, Sanaa Taha, Mohamed Ramadan Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology,...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0252573
SubjectTerms Algorithms
Artificial intelligence
Biology and Life Sciences
Clients
Cold starts
Computation
Computer and Information Sciences
Computer applications
Computer Simulation
Computers
Construction standards
COVID-19
COVID-19 - diagnostic imaging
Datasets
Datasets as Topic
Deep learning
Distance learning
Drafting software
Evaluation
Historical account
Humans
Image Processing, Computer-Assisted
Learning algorithms
Machine Learning
Medicine and Health Sciences
Model accuracy
Organizations
Pandemics
Physical Sciences
Privacy
Research and Analysis Methods
Servers
Severe acute respiratory syndrome coronavirus 2
Taha, Mohamed
Thorax - diagnostic imaging
Thorax - pathology
Tomography, X-Ray Computed
Training
Viral diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCaHk0pYWAkIBDtn4kfhxLoWqRoBLQqrfIdpwFacmuyK4Q_56ZxBs1olJ74BpPIuWbGftzMv6GkFcyt4VXjGVeGvx0w0NmXVVn-OeECicKUeNG8dNneXKef7wsLq-0-sKasF4euAfuQLlQOGVNLWjIfWENDboONhhdIxfvdD6pNpvNVD8HQxZLGQ_KCcUOol-my0UTprDKQ5yK0ULU6fUPs_JkOV-011HOfysn766bpf3z287nV5al4wfkfuST6WH_HlvkTmi2yVbM2DZ9E2Wl3z4k4ujs4vR9xkxahVVXgNWkWPU-S2sUlADOWaU_u9LKkMZeErNH5Pz4w7ejkyy2TMg8EP9VxupK8UpVjoVcssqBJ2hNrRBcy1xbXwHD0px5ywKnBthiIcAzDhu9wN7BafGYTBoAaYekmlrFvGAVwJ0XqrZOeM84OIB7q7RLiNjgV_qoJ45tLeZl95NMwb6ih6BE1MuIekKy4a5lr6dxg_07dM1gi2rY3QWIkTLGSHlTjCTkOTq27I-WDjldHkqJ6jqcyoS87CxQEaPBkpuZXbdteXp2cQujr19GRq-jUb0AOLyNxxzgnVBpa2S5N7KEvPaj4R0Mww0qbckL4LI6N7SAOzehef3wi2EYH4pldE1YrHubgqMmYEKe9JE8IAt0BmZnyROiRjE-gn480vz43gmSd6qIxiRkOmTDrZy7-z-c-5Tc41hnhF_G9B6ZrH6twz4QxZV71s0JfwG6XmVR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivJqoEBASMAh29hO7OSAUFtatUhsUaFVb5FfWZCWZOnuCvHvmUmcQEQFvcbjKJmXZ-zxN4S8EIlKjaQ0MiLHrRvmIqVtGeHJScw1T3mJieKHiTg6S95fpBdrZNLdhcGyys4nNo7a1gb3yHdYCit5luRx-nb-PcKuUXi62rXQUL61gn3TQIzdIOsMkbFGZH3vYPLxtPPNYN1C-At0XNIdL6_xvK7cGFZ_0F8-WKAaHP_eW4_ms3pxVSj6d0XlzVU1Vz9_qNnsj-Xq8DbZ8HFmuNsqxiZZc9UdsukteRG-8nDTr-8Svn9yfvwuonlo3bIpzKpCrIafhiUCTUAsasNvTcmlC32Piek9cnZ48Hn_KPKtFCIDCcEyoqWVzEqrqUsEtRokFJex4pxlIsmUsRB5ZYwaRR2Lc4giUw4S09gABnIKnfH7ZFQBk7ZImMVKUsOpzUqXpLJUmhtDmcpjZpTMdEB4x7_CeJxxbHcxK5rDMwn5RsuCArleeK4HJOpnzVucjf_Q76FoelpEyW4e1JfTwhtdIbVLtVR5yWOXmBQ-0cFHK5dnJeZx8JKnKNiivXLa23qxKwSi7rBYBOR5Q4FIGRWW4kzVarEojk_Or0H06XRA9NITlTWwwyh__QH-CRG4BpTbA0qwdzMY3kI17LiyKH5bBszsVPPq4Wf9ML4Uy-sqV69ampQhVmBAHrSa3HMWwhzw2oIFRA50fMD64Uj19UsDVN6gJeZ5QMa9NVxLuA___R-PyC2GlUW4F5Ztk9HycuUeQ2i41E-8vf8CfpNiaA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFIGttxnByXQtUi0SJgq_aAIttxFsSSXbFZITjw25lJnIhAEeXALYrHlj0e2zOemc-EPEhiJYykNDBJhlc3zAZKF2WAnpOIay54iYbiy4NkbxK_OBbHa-RdlwvjOAg24my-bDz5-DGv7Lbj5DbiFbXe05BySbsa4QKIQjjBQQb5wwZxCG_GakxAOkfWEwGq-oisTw5ejU9aTzMLEhZxl073p5YGx1WD6t_v3SPs2WmK6e_xledX1UJ9_aJms58Or91L5Hs37DZm5WO4qnVovv2CCPnf-HKZXHRqrz9uW9kga7a6QjbcxrL0Hzv06ydXCd85PNp_FtDML2zdxIlVPgbnT_0ScS9ANS78T00EqPXdkxfTa2Sy-_ztzl7gXnYIDNgndUDLQrJCFpraOKGFBoGJykhxztIkTpUpQBFMGTWKWhZloNQKDgKk8T0aMHF0yq-TUQXj2iR-GilJDadFWtpYyFJpbgxlKouYUTLVHuHdBObGwZ7j6xuzvPHlSTB_WhbkyKjcMcojQV9r0cJ-_IX-KcpGT4ug3c0PmKnczVAutRVaqqzkkY2NgC5a6LSyWVqiWQmN3EXJytsM2H7rycdJgiBALEo8cr-hQOCOCiODpmq1XOb7h0dnIHrzekD0yBGVc2CHUS4bA8aEgjSg3BpQwvZjBsWbKIkdV5Y5E6Byp3EWCajZrY3Ti-_1xdgoRvtVdr5qaQRD6EKP3GiXUs9Z0LrgEEmYR-RgkQ1YPyypPrxvcNMb8MYs80jYL8czTe7Nf61wi1xgGPqEl3XpFhnVn1f2Nuiutb7jdqAfJWibkg
  priority: 102
  providerName: Unpaywall
Title COVID-19 detection using federated machine learning
URI https://www.ncbi.nlm.nih.gov/pubmed/34101762
https://www.proquest.com/docview/2539284905
https://www.proquest.com/docview/2539527943
https://pubmed.ncbi.nlm.nih.gov/PMC8186799
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252573&type=printable
https://doaj.org/article/7be5b7a9f30e4c5a90e8feae98f62603
http://dx.doi.org/10.1371/journal.pone.0252573
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry (Selected full-text)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Selected Fulltext)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFeEOPXAqMEhAQ8pIrtJE4eEOrKyoa0bhp0Kk-R4zgFqaSlaQX777lz3IiIIfqSh_hsJZ999p19_o6Ql1EgQyUo9VSU4NYN057M8sLDkxOfZzzkBTqKZ6PoZBx8nISTHbLJ2WoBrG507TCf1Hg56_36cf0OFP6tydog6KZSbzEvdQ_WcBiFfJfswVqVYDKHs6A5VwDtNqeXaLV4EfO5vUz3r1Zai5Xh9G9m7s5iNq9uMkv_jq68tS4X8vqnnM3-WLqGd8kda3O6_XqQ7JMdXd4j-1arK_e1pZ5-c5_wwfnV6XuPJm6uVyZIq3QxMn7qFkg6AXZp7n434Zfatfkmpg_IeHj8eXDi2bQKngLnYOXRIhcsF3lGdRDRPIPe8gtfcs7iKIilysEKixlVkmoGCMaAGvRehslgwL_IYv6QdEoA6YC4sS8FVZzmcaGDUBQy40pRJhOfKSnizCF8g1-qLOc4pr6YpeYgTYDvUUOQIuqpRd0hXlNrUXNu_Ef-CLumkUXGbPNivpymVgFTkekwEzIpuK8DFcInavhoqZO4QJ8OGnmGHZvW108bvU_7UYQMPMyPHPLCSCBrRolhOVO5rqr09PxqC6FPly2hV1aomAMcStqrEPBPyMbVkjxsSYLuq1bxAQ7DDSpVykKwd-Mg8UOouRmaNxc_b4qxUQy1K_V8XcuEDHkDHfKoHskNsmDywAweMYeI1hhvQd8uKb99NaTlhjkxSRzSa7Rhq859vA2gT8hthrFGuDsWH5LOarnWT8FYXGVdsismAp7xgOJz-KFL9o6ORxeXXbP90jXzA7wbjy76X34DI8FsXw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UGhAIOCQbWwncXJAqLRUXfqSoK32ZhzHWZCWZGl2VfVP8RuZSZxARAW99BpPLHs8L9vjbwh5EQUq1IJST0cJHt0w46k0yz28OfF5ykOe40bx4DDaPQk-jsPxEvnZvoXBtMrWJtaGOis1npFvsBA8eRwkfvhu9sPDqlF4u9qW0GjEYs9cnMOWrXo72ob1fcnYzofjrV3PVhXwNMTGc4_mmWCZyFJqgohmKQzWz33FOYujIFY6gyAkZlQrapifQEAVchh8irVQILxOYw793iA3A5gMVkwQ426DB7YjiuzzPC7ohpWG4awszBBiC9AO3nN_dZWAzhcMZtOyuizQ_Ttfc3lRzNTFuZpO_3CGO3fIbRvFupuN2K2QJVPcJSvWTlTuawtm_eYe4VtHp6NtjyZuZuZ12lfhYq79xM0RxgIi3cz9Xid0GtdWsJjcJyfXwtIHZFAAk1aJG_tKUM1pFucmCEWuUq41ZSrxmVYiTh3CW_5JbVHMsZjGVNZXcwJ2Mw0LJHJdWq47xOv-mjUoHv-hf49L09EiBnf9oTybSKvSUqQmTIVKcu6bQIcwRAODViaJc9wlQifruLCyedDaWRK5GUWI6cP8yCHPawrE4Sgw0WeiFlUlR0enVyD6_KlH9MoS5SWwQyv7uALmhPhePcq1HiVYE91rXkUxbLlSyd96B3-2onl587OuGTvF5L3ClIuGJmSIROiQh40kd5yFIAp8QsQcInoy3mN9v6X49rWGQa-xGJPEIcNOG660uI_-PY91srx7fLAv90eHe4_JLYY5THjqFq-RwfxsYZ5AEDpPn9aa75Iv121qfgFXsZeD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UGhAIOCQ3dhO4uSAUOmy6lJoEdBqb8FxnAVpSUKzq6p_jV_HTOIEIiropdd4Ytnjedkef0PIk8CTvhKUOiqI8OiGaUcmaebgzYnLE-7zDDeK7_eD3UPv7cyfrZGf7VsYTKtsbWJtqNNC4Rn5iPngyUMvcv1RZtIiPownr8ofDlaQwpvWtpxGIyJ7-vQEtm_Vy-kY1vopY5M3n3d2HVNhwFEQJy8dmqWCpSJNqPYCmiYwcDdzJecsDLxQqhQCkpBRJalmbgTBlc9hIgnWRYFQOwk59HuJXBacR5hOKGbdZg_sSBCYp3pc0JGRjGFZ5HoIcQZoCu-5wrpiQOcXBuWiqM4Kev_O3by6ykt5eiIXiz8c4-QGuW4iWnu7EcF1sqbzm2Td2IzKfm6ArV_cInzn4Gg6dmhkp3pZp4DlNubdz-0MIS0g6k3t73Vyp7ZNNYv5bXJ4ISy9QwY5MGmD2KErBVWcpmGmPV9kMuFKUSYjlykpwsQivOVfrAyiORbWWMT1NZ2AnU3Dghi5HhuuW8Tp_iobRI__0L_GpeloEY-7_lAcz2Oj3rFItJ8IGWXc1Z7yYYgaBi11FGa4Y4ROtnBh4-Zxa2dV4u0gQHwf5gYWeVxTICZHjtI9l6uqiqcHR-cg-vSxR_TMEGUFsENJ89AC5oRYXz3KzR4lWBbVa95AMWy5UsW_dRD-bEXz7OZHXTN2iol8uS5WDY3PEJXQIncbSe44CwEV-IeAWUT0ZLzH-n5L_u1rDYle4zJGkUWGnTaca3Hv_XseW-QKGJn43XR_7z65xjCdCQ_gwk0yWB6v9AOIR5fJw1rxbfLloi3NL9RBm8Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFIGttxnByXQtUi0SJgq_aAIttxFsSSXbFZITjw25lJnIhAEeXALYrHlj0e2zOemc-EPEhiJYykNDBJhlc3zAZKF2WAnpOIay54iYbiy4NkbxK_OBbHa-RdlwvjOAg24my-bDz5-DGv7Lbj5DbiFbXe05BySbsa4QKIQjjBQQb5wwZxCG_GakxAOkfWEwGq-oisTw5ejU9aTzMLEhZxl073p5YGx1WD6t_v3SPs2WmK6e_xledX1UJ9_aJms58Or91L5Hs37DZm5WO4qnVovv2CCPnf-HKZXHRqrz9uW9kga7a6QjbcxrL0Hzv06ydXCd85PNp_FtDML2zdxIlVPgbnT_0ScS9ANS78T00EqPXdkxfTa2Sy-_ztzl7gXnYIDNgndUDLQrJCFpraOKGFBoGJykhxztIkTpUpQBFMGTWKWhZloNQKDgKk8T0aMHF0yq-TUQXj2iR-GilJDadFWtpYyFJpbgxlKouYUTLVHuHdBObGwZ7j6xuzvPHlSTB_WhbkyKjcMcojQV9r0cJ-_IX-KcpGT4ug3c0PmKnczVAutRVaqqzkkY2NgC5a6LSyWVqiWQmN3EXJytsM2H7rycdJgiBALEo8cr-hQOCOCiODpmq1XOb7h0dnIHrzekD0yBGVc2CHUS4bA8aEgjSg3BpQwvZjBsWbKIkdV5Y5E6Byp3EWCajZrY3Ti-_1xdgoRvtVdr5qaQRD6EKP3GiXUs9Z0LrgEEmYR-RgkQ1YPyypPrxvcNMb8MYs80jYL8czTe7Nf61wi1xgGPqEl3XpFhnVn1f2Nuiutb7jdqAfJWibkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+detection+using+federated+machine+learning&rft.jtitle=PloS+one&rft.au=Abdul+Salam%2C+Mustafa&rft.au=Taha%2C+Sanaa&rft.au=Ramadan%2C+Mohamed&rft.date=2021-06-08&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=6&rft.spage=e0252573&rft_id=info:doi/10.1371%2Fjournal.pone.0252573&rft.externalDBID=ISR&rft.externalDocID=A664519206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon