COVID-19 detection using federated machine learning
The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data vi...
        Saved in:
      
    
          | Published in | PloS one Vol. 16; no. 6; p. e0252573 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Public Library of Science
    
        08.06.2021
     Public Library of Science (PLoS)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1932-6203 1932-6203  | 
| DOI | 10.1371/journal.pone.0252573 | 
Cover
| Abstract | The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models’ loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model. | 
    
|---|---|
| AbstractList | The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient’s private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models’ loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model. The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient's private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models' loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model.The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply machine learning models on COVID-19 case data to predict infectious cases and recovery rates using chest x-ray. Accessing patient's private data violates patient privacy and traditional machine learning model requires accessing or transferring whole data to train the model. In recent years, there has been increasing interest in federated machine learning, as it provides an effective solution for data privacy, centralized computation, and high computation power. In this paper, we studied the efficacy of federated learning versus traditional learning by developing two machine learning models (a federated learning model and a traditional machine learning model)using Keras and TensorFlow federated, we used a descriptive dataset and chest x-ray (CXR) images from COVID-19 patients. During the model training stage, we tried to identify which factors affect model prediction accuracy and loss like activation function, model optimizer, learning rate, number of rounds, and data Size, we kept recording and plotting the model loss and prediction accuracy per each training round, to identify which factors affect the model performance, and we found that softmax activation function and SGD optimizer give better prediction accuracy and loss, changing the number of rounds and learning rate has slightly effect on model prediction accuracy and prediction loss but increasing the data size did not have any effect on model prediction accuracy and prediction loss. finally, we build a comparison between the proposed models' loss, accuracy, and performance speed, the results demonstrate that the federated machine learning model has a better prediction accuracy and loss but higher performance time than the traditional machine learning model. Mustafa Abdul Salam, Sanaa Taha, Mohamed Ramadan Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Visualization, Writing – original draft, Writing – review & editing * E-mail: mustafa.abdo@fci.bu.edu.eg Affiliation: Computer Science Department, Faculty of Computers and Information- Egyptian E-Learning University, Giza, Egypt Introduction COVID-19 The current COVID-19 pandemic, caused by SARS CoV2, threatens human life, health, and productivity [1] and is rapidly spreading worldwide [2]. The global model collects local models updates. https://doi.org/10.1371/journal.pone.0252573.g001 Why federated machine learning should be used: * Decentralized model removes the need to transfer all the data to one server to train the model, as training each node occurs locally, unlike traditional machine learning which requires moving all the data to a centralized server, to build and train the model. * No data privacy violation as it applies methodologies including the differential privacy and the homographic Secure multiparty computation, unlike traditional machine learning. * A third-party can be part of the training process as long as there is no data privacy violation and data is secured, unlike traditional machine learning third-party could not be an option in case of military organizations. * Less computation power is needed as model training is performed on each client, and the centralized model’s primary role is to collect gradient update distributed models, unlike the traditional machine learning which one centralized server contains all the data, which requires high computational power for model training. * Decentralized algorithms may provide better or the same performance as centralized algorithms [5]. Federated learning can be applied in many disciplines like (Smart healthcare, sales, multi-party database, and smart retail) [6] Motivation and contributions Federated machine learning enables us to overcome the obstacles faced by the traditional machine learning model as: * Traditional machine learning occurs by moving all data source to a centralized server to train and build the model, but this may violate the rules of military organizations especially when third-party is used to create, train and maintain the model. * To train the model, the third-party should prepare, clean, and restructure the data to be suitable for model training, however, this may violate data privacy when the data are handled to create the model. * Traditional machine learning models also take much time to build the model with acceptable accuracy, which may cause a delay for organizations, especially recently opened ones. * Traditional machine learning also requires the existence of a massive amount of historical data to train the model to give acceptable accuracy (Cold Start) [7]. * There is a need for a secure distributed machine learning methodology that trains clients’ data on their servers without violating data privacy, saves computational power, and overcomes the cold start problem, enabling clients to get immediate results. [8] proposed a federated learning framework based on digital city twin concepts to study the effect of different prevention city plans to prevent a COVID-19 outbreak, and by building a federated model to predict the effect they traced the infection number from multiple cities over the periods from their digital city twin systems.  | 
    
| Audience | Academic | 
    
| Author | Taha, Sanaa Abdul Salam, Mustafa Ramadan, Mohamed  | 
    
| AuthorAffiliation | 2 Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt 3 Computer Science Department, Faculty of Computers and Information- Egyptian E-Learning University, Giza, Egypt 1 Artificial Intelligence Department, Faculty of Computers and Artificial intelligence, Benha University, Benha, Egypt Vellore Institute of Technology: VIT University, INDIA  | 
    
| AuthorAffiliation_xml | – name: Vellore Institute of Technology: VIT University, INDIA – name: 3 Computer Science Department, Faculty of Computers and Information- Egyptian E-Learning University, Giza, Egypt – name: 1 Artificial Intelligence Department, Faculty of Computers and Artificial intelligence, Benha University, Benha, Egypt – name: 2 Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt  | 
    
| Author_xml | – sequence: 1 givenname: Mustafa orcidid: 0000-0003-1673-6947 surname: Abdul Salam fullname: Abdul Salam, Mustafa – sequence: 2 givenname: Sanaa surname: Taha fullname: Taha, Sanaa – sequence: 3 givenname: Mohamed surname: Ramadan fullname: Ramadan, Mohamed  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34101762$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkl1r2zAUhs3oWNts_2BsgcHYLpLpw5KlXQxK9xUoBPbRWyHLx4mCIqWWva3_fvLilriUUXxhc_S87znntU6zIx88ZNlzjOaYFvjdJnSN126-S-U5Ioywgj7KTrCkZMYJokcH38fZaYwbhBgVnD_JjmmOES44Ocno-fJy8XGG5bSCFkxrg5920frVtIYKGt1CNd1qs7Yepg5049PR0-xxrV2EZ8N7kv38_OnH-dfZxfLL4vzsYmYKJtoZrquCVEVVYsg5rspcM1QjTSkRPBfaVEgwQbDRGAiSSKTpyqouEcOMIl4KOsle7n13LkQ17BsVYVQSkcvET7LFnqiC3qhdY7e6uVZBW_WvEJqV0k1rjQNVlMDKQsuaIsgN0xKBqEGDFDUnHNHkxfZend_p69_auVtDjFQf-c0Iqo9cDZEn3Ydhyq7cQmXAt412o2HGJ96u1Sr8UgILXkiZDN4MBk246iC2amujAee0h9Dt92WkkHnf69Ud9P5UBmql0-LW1yH1Nb2pOuM8Z1gSxBM1v4dKTwVba9KGtU31keDtSJCYFv60K93FqBbfvz2cXV6O2dcH7Bq0a9cxuK6_i3EMvjhM-jbim9ucgHwPmCbE2ED90D_4_o7M2Fb37VMi1v1f_BfWeBnD | 
    
| CitedBy_id | crossref_primary_10_1109_TETCI_2024_3371222 crossref_primary_10_1007_s11042_023_17086_y crossref_primary_10_3390_electronics11244117 crossref_primary_10_1145_3533708 crossref_primary_10_1111_exsy_13173 crossref_primary_10_47909_ijsmc_85 crossref_primary_10_1007_s11604_022_01268_z crossref_primary_10_1038_s41598_022_26467_6 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_3390_covid4120140 crossref_primary_10_1016_j_iswa_2022_200130 crossref_primary_10_1109_JIOT_2023_3329061 crossref_primary_10_3390_app13031911 crossref_primary_10_1007_s11227_023_05754_7 crossref_primary_10_3389_fpubh_2022_892499 crossref_primary_10_3934_mbe_2022466 crossref_primary_10_4018_IJEA_310001 crossref_primary_10_3233_JIFS_233633 crossref_primary_10_1371_journal_pone_0287755 crossref_primary_10_3390_bdcc9010011 crossref_primary_10_32604_cmc_2023_033252 crossref_primary_10_2174_0115680266282179240124072121 crossref_primary_10_3390_app112311191 crossref_primary_10_3390_bioengineering11040340 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_1016_j_artmed_2023_102691 crossref_primary_10_4018_IJSI_311505 crossref_primary_10_1371_journal_pone_0294289 crossref_primary_10_3390_bdcc6040127 crossref_primary_10_3390_sym14010016 crossref_primary_10_1002_ima_23001 crossref_primary_10_1016_j_iot_2023_100828 crossref_primary_10_24171_j_phrp_2023_0287 crossref_primary_10_32604_iasc_2022_023763 crossref_primary_10_4103_jehp_jehp_298_23 crossref_primary_10_3390_computers12050106 crossref_primary_10_1007_s13721_023_00423_4 crossref_primary_10_7717_peerj_cs_1333 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_3390_biomedicines10112791 crossref_primary_10_3390_bioengineering10080965 crossref_primary_10_1007_s11042_022_13710_5 crossref_primary_10_3390_diagnostics13203166 crossref_primary_10_3390_s21238045 crossref_primary_10_1007_s42979_024_03235_z crossref_primary_10_3390_s22103728 crossref_primary_10_1007_s00607_024_01317_7 crossref_primary_10_3390_sci6010002 crossref_primary_10_1002_mp_16964 crossref_primary_10_1007_s42979_023_01703_6 crossref_primary_10_1186_s12879_024_10230_5 crossref_primary_10_3390_app122312080 crossref_primary_10_3390_bdcc8090099 crossref_primary_10_1093_database_baaf016 crossref_primary_10_1038_s41598_025_89612_x crossref_primary_10_3390_diagnostics13193140 crossref_primary_10_1007_s00500_021_06514_6  | 
    
| Cites_doi | 10.1109/MSP.2020.2975749 10.1007/s00530-021-00774-w 10.1016/j.bbe.2021.05.013 10.1145/3298981 10.26599/TST.2021.9010026 10.3892/etm.2020.8797 10.1007/s41870-020-00495-9 10.1016/j.irbm.2020.07.001 10.5121/ijaia.2020.11406 10.1016/j.compag.2020.105802 10.1109/GCWkshps50303.2020.9367469 10.1007/s12065-019-00327-1 10.1093/ecco-jcc/jjaa058 10.1016/j.bspc.2020.102149 10.1016/j.chaos.2020.109944 10.1016/j.patrec.2020.09.010 10.3390/a13100249 10.2106/JBJS.20.00715 10.1016/j.chaos.2020.110203  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2021 Public Library of Science 2021 Salam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Salam et al 2021 Salam et al  | 
    
| Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Salam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Salam et al 2021 Salam et al  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1371/journal.pone.0252573 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (Proquest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitleAlternate | COVID-19 detection using federated machine learning | 
    
| EISSN | 1932-6203 | 
    
| ExternalDocumentID | 2539284905 oai_doaj_org_article_7be5b7a9f30e4c5a90e8feae98f62603 10.1371/journal.pone.0252573 PMC8186799 A664519206 34101762 10_1371_journal_pone_0252573  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Egypt Giza Egypt  | 
    
| GeographicLocations_xml | – name: Egypt – name: Giza Egypt  | 
    
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM  | 
    
| ID | FETCH-LOGICAL-c758t-1fd72d7db1e461db4a50f0a3328648acd085821ca1e20908053bdfb0515306b83 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1932-6203 | 
    
| IngestDate | Fri Nov 26 17:13:37 EST 2021 Tue Oct 14 18:59:32 EDT 2025 Sun Oct 26 03:46:23 EDT 2025 Tue Sep 30 16:48:48 EDT 2025 Fri Sep 05 11:37:58 EDT 2025 Tue Oct 07 07:47:35 EDT 2025 Mon Oct 20 21:55:53 EDT 2025 Mon Oct 20 16:38:37 EDT 2025 Thu Oct 16 14:33:42 EDT 2025 Thu Oct 16 15:02:40 EDT 2025 Thu May 22 21:21:52 EDT 2025 Wed Feb 19 02:06:20 EST 2025 Wed Oct 01 02:06:58 EDT 2025 Thu Apr 24 23:06:43 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c758t-1fd72d7db1e461db4a50f0a3328648acd085821ca1e20908053bdfb0515306b83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist.  | 
    
| ORCID | 0000-0003-1673-6947 | 
    
| OpenAccessLink | https://doaj.org/article/7be5b7a9f30e4c5a90e8feae98f62603 | 
    
| PMID | 34101762 | 
    
| PQID | 2539284905 | 
    
| PQPubID | 1436336 | 
    
| PageCount | e0252573 | 
    
| ParticipantIDs | plos_journals_2539284905 doaj_primary_oai_doaj_org_article_7be5b7a9f30e4c5a90e8feae98f62603 unpaywall_primary_10_1371_journal_pone_0252573 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8186799 proquest_miscellaneous_2539527943 proquest_journals_2539284905 gale_infotracmisc_A664519206 gale_infotracacademiconefile_A664519206 gale_incontextgauss_ISR_A664519206 gale_incontextgauss_IOV_A664519206 gale_healthsolutions_A664519206 pubmed_primary_34101762 crossref_primary_10_1371_journal_pone_0252573 crossref_citationtrail_10_1371_journal_pone_0252573  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-06-08 | 
    
| PublicationDateYYYYMMDD | 2021-06-08 | 
    
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-08 day: 08  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA  | 
    
| PublicationTitle | PloS one | 
    
| PublicationTitleAlternate | PLoS One | 
    
| PublicationYear | 2021 | 
    
| Publisher | Public Library of Science Public Library of Science (PLoS)  | 
    
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS)  | 
    
| References | Amir Ahmad (pone.0252573.ref011) 2020 F. Ardabili Sina (pone.0252573.ref026) 2020; 13 Qiang Yang (pone.0252573.ref006) 2019; 10 Harsh Panwar (pone.0252573.ref020) 2020; 138 pone.0252573.ref008 Abdul Rehman Javed (pone.0252573.ref029) 2020; 10 Nikos Tsiknakis (pone.0252573.ref012) 2020; 20 pone.0252573.ref001 pone.0252573.ref023 pone.0252573.ref021 Tian Li (pone.0252573.ref007) 2020; 37 pone.0252573.ref028 pone.0252573.ref005 pone.0252573.ref027 Ann Cavoukian (pone.0252573.ref034) 2009; 5 Rodrigo M. Carrillo-Larco (pone.0252573.ref022) 2020; 5 Parnian Afshar (pone.0252573.ref009) 2020; 138 Himadri Mukherjee (pone.0252573.ref018) 2020 R Manavalan (pone.0252573.ref025) 2020; 178 pone.0252573.ref031 Mwaffaq Otoom (pone.0252573.ref013) 2020; 62 Gionata Fiorino (pone.0252573.ref002) 2020; 14 G. Reddy Thippa (pone.0252573.ref032) 2020; 13 pone.0252573.ref019 Akib Mohi Ud Din Khanday (pone.0252573.ref024) 2020; 12 Michał Wieczorek (pone.0252573.ref003) 2020; 140 Sweta Bhattacharya (pone.0252573.ref030) 2021; 65 pone.0252573.ref033 pone.0252573.ref010 pone.0252573.ref017 pone.0252573.ref016 Weishan Zhang (pone.0252573.ref004) 2021 pone.0252573.ref015 pone.0252573.ref014  | 
    
| References_xml | – start-page: 1 year: 2020 ident: pone.0252573.ref018 article-title: Deep neural network to detect COVID-19: one architecture for both CT Scans and Chest X-rays publication-title: Applied Intelligence – volume: 10 start-page: 1 issue: 1 year: 2020 ident: pone.0252573.ref029 article-title: A collaborative healthcare framework for shared healthcare plan with ambient intelligence publication-title: Human-centric Computing and Information Sciences – volume: 37 start-page: 50 issue: 3 year: 2020 ident: pone.0252573.ref007 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2020.2975749 – ident: pone.0252573.ref028 doi: 10.1007/s00530-021-00774-w – ident: pone.0252573.ref027 doi: 10.1016/j.bbe.2021.05.013 – volume: 10 start-page: 1 issue: 2 year: 2019 ident: pone.0252573.ref006 article-title: Federated machine learning: Concept and applications publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) doi: 10.1145/3298981 – ident: pone.0252573.ref001 – year: 2021 ident: pone.0252573.ref004 article-title: Dynamic fusion-based federated learning for COVID-19 detection publication-title: IEEE Internet of Things Journal – ident: pone.0252573.ref008 doi: 10.26599/TST.2021.9010026 – start-page: 1 issue: 2020 year: 2020 ident: pone.0252573.ref011 article-title: The number of confirmed cases of covid-19 by using machine learning: Methods and challenges publication-title: Archives of Computational Methods in Engineering – volume: 20 start-page: 727 issue: 2 year: 2020 ident: pone.0252573.ref012 article-title: Interpretable artificial intelligence framework for COVID‑19 screening on chest X‑rays publication-title: Experimental and Therapeutic Medicine doi: 10.3892/etm.2020.8797 – volume: 12 start-page: 731 issue: 3 year: 2020 ident: pone.0252573.ref024 article-title: Machine learning based approaches for detecting COVID-19 using clinical text data publication-title: International Journal of Information Technology doi: 10.1007/s41870-020-00495-9 – ident: pone.0252573.ref016 doi: 10.1016/j.irbm.2020.07.001 – ident: pone.0252573.ref017 doi: 10.5121/ijaia.2020.11406 – volume: 178 start-page: 105802 year: 2020 ident: pone.0252573.ref025 article-title: Automatic identification of diseases in grains crops through computational approaches: A review publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105802 – ident: pone.0252573.ref019 – ident: pone.0252573.ref031 doi: 10.1109/GCWkshps50303.2020.9367469 – ident: pone.0252573.ref015 – volume: 5 year: 2020 ident: pone.0252573.ref022 article-title: Using country-level variables to classify countries according to the number of confirmed COVID-19 cases: An unsupervised machine learning approach publication-title: Wellcome Open Research – volume: 13 start-page: 185 issue: 2 year: 2020 ident: pone.0252573.ref032 article-title: Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00327-1 – volume: 14 start-page: 1330 issue: 9 year: 2020 ident: pone.0252573.ref002 article-title: Inflammatory bowel disease care in the COVID-19 pandemic era: the Humanitas, Milan, experience publication-title: Journal of Crohn’s and Colitis doi: 10.1093/ecco-jcc/jjaa058 – ident: pone.0252573.ref005 – ident: pone.0252573.ref023 – volume: 62 start-page: 102149 year: 2020 ident: pone.0252573.ref013 article-title: An IoT-based framework for early identification and monitoring of COVID-19 cases publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102149 – volume: 65 year: 2021 ident: pone.0252573.ref030 article-title: Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey publication-title: Sustainable cities and society – ident: pone.0252573.ref010 – volume: 138 start-page: 109944 year: 2020 ident: pone.0252573.ref020 article-title: Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.109944 – volume: 138 start-page: 638 year: 2020 ident: pone.0252573.ref009 article-title: Covid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray images publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2020.09.010 – volume: 13 start-page: 249 issue: 10 year: 2020 ident: pone.0252573.ref026 article-title: Covid-19 outbreak prediction with machine learning publication-title: Algorithms doi: 10.3390/a13100249 – volume: 5 start-page: 12 year: 2009 ident: pone.0252573.ref034 article-title: Privacy by design: The 7 foundational principles publication-title: Information and privacy commissioner of Ontario, Canada – ident: pone.0252573.ref021 doi: 10.2106/JBJS.20.00715 – volume: 140 start-page: 110203 year: 2020 ident: pone.0252573.ref003 article-title: Neural network powered COVID-19 spread forecasting model publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.110203 – ident: pone.0252573.ref014 – ident: pone.0252573.ref033  | 
    
| RelatedPersons | Taha, Mohamed | 
    
| RelatedPersons_xml | – fullname: Taha, Mohamed | 
    
| SSID | ssj0053866 | 
    
| Score | 2.6093926 | 
    
| Snippet | The current COVID-19 pandemic threatens human life, health, and productivity. AI plays an essential role in COVID-19 case classification as we can apply... Mustafa Abdul Salam, Sanaa Taha, Mohamed Ramadan Roles Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology,...  | 
    
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | e0252573 | 
    
| SubjectTerms | Algorithms Artificial intelligence Biology and Life Sciences Clients Cold starts Computation Computer and Information Sciences Computer applications Computer Simulation Computers Construction standards COVID-19 COVID-19 - diagnostic imaging Datasets Datasets as Topic Deep learning Distance learning Drafting software Evaluation Historical account Humans Image Processing, Computer-Assisted Learning algorithms Machine Learning Medicine and Health Sciences Model accuracy Organizations Pandemics Physical Sciences Privacy Research and Analysis Methods Servers Severe acute respiratory syndrome coronavirus 2 Taha, Mohamed Thorax - diagnostic imaging Thorax - pathology Tomography, X-Ray Computed Training Viral diseases  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCaHk0pYWAkIBDtn4kfhxLoWqRoBLQqrfIdpwFacmuyK4Q_56ZxBs1olJ74BpPIuWbGftzMv6GkFcyt4VXjGVeGvx0w0NmXVVn-OeECicKUeNG8dNneXKef7wsLq-0-sKasF4euAfuQLlQOGVNLWjIfWENDboONhhdIxfvdD6pNpvNVD8HQxZLGQ_KCcUOol-my0UTprDKQ5yK0ULU6fUPs_JkOV-011HOfysn766bpf3z287nV5al4wfkfuST6WH_HlvkTmi2yVbM2DZ9E2Wl3z4k4ujs4vR9xkxahVVXgNWkWPU-S2sUlADOWaU_u9LKkMZeErNH5Pz4w7ejkyy2TMg8EP9VxupK8UpVjoVcssqBJ2hNrRBcy1xbXwHD0px5ywKnBthiIcAzDhu9wN7BafGYTBoAaYekmlrFvGAVwJ0XqrZOeM84OIB7q7RLiNjgV_qoJ45tLeZl95NMwb6ih6BE1MuIekKy4a5lr6dxg_07dM1gi2rY3QWIkTLGSHlTjCTkOTq27I-WDjldHkqJ6jqcyoS87CxQEaPBkpuZXbdteXp2cQujr19GRq-jUb0AOLyNxxzgnVBpa2S5N7KEvPaj4R0Mww0qbckL4LI6N7SAOzehef3wi2EYH4pldE1YrHubgqMmYEKe9JE8IAt0BmZnyROiRjE-gn480vz43gmSd6qIxiRkOmTDrZy7-z-c-5Tc41hnhF_G9B6ZrH6twz4QxZV71s0JfwG6XmVR priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gCXivJqoEBASMAh29hO7OSAUFtatUhsUaFVb5FfWZCWZOnuCvHvmUmcQEQFvcbjKJmXZ-zxN4S8EIlKjaQ0MiLHrRvmIqVtGeHJScw1T3mJieKHiTg6S95fpBdrZNLdhcGyys4nNo7a1gb3yHdYCit5luRx-nb-PcKuUXi62rXQUL61gn3TQIzdIOsMkbFGZH3vYPLxtPPNYN1C-At0XNIdL6_xvK7cGFZ_0F8-WKAaHP_eW4_ms3pxVSj6d0XlzVU1Vz9_qNnsj-Xq8DbZ8HFmuNsqxiZZc9UdsukteRG-8nDTr-8Svn9yfvwuonlo3bIpzKpCrIafhiUCTUAsasNvTcmlC32Piek9cnZ48Hn_KPKtFCIDCcEyoqWVzEqrqUsEtRokFJex4pxlIsmUsRB5ZYwaRR2Lc4giUw4S09gABnIKnfH7ZFQBk7ZImMVKUsOpzUqXpLJUmhtDmcpjZpTMdEB4x7_CeJxxbHcxK5rDMwn5RsuCArleeK4HJOpnzVucjf_Q76FoelpEyW4e1JfTwhtdIbVLtVR5yWOXmBQ-0cFHK5dnJeZx8JKnKNiivXLa23qxKwSi7rBYBOR5Q4FIGRWW4kzVarEojk_Or0H06XRA9NITlTWwwyh__QH-CRG4BpTbA0qwdzMY3kI17LiyKH5bBszsVPPq4Wf9ML4Uy-sqV69ampQhVmBAHrSa3HMWwhzw2oIFRA50fMD64Uj19UsDVN6gJeZ5QMa9NVxLuA___R-PyC2GlUW4F5Ztk9HycuUeQ2i41E-8vf8CfpNiaA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFIGttxnByXQtUi0SJgq_aAIttxFsSSXbFZITjw25lJnIhAEeXALYrHlj0e2zOemc-EPEhiJYykNDBJhlc3zAZKF2WAnpOIay54iYbiy4NkbxK_OBbHa-RdlwvjOAg24my-bDz5-DGv7Lbj5DbiFbXe05BySbsa4QKIQjjBQQb5wwZxCG_GakxAOkfWEwGq-oisTw5ejU9aTzMLEhZxl073p5YGx1WD6t_v3SPs2WmK6e_xledX1UJ9_aJms58Or91L5Hs37DZm5WO4qnVovv2CCPnf-HKZXHRqrz9uW9kga7a6QjbcxrL0Hzv06ydXCd85PNp_FtDML2zdxIlVPgbnT_0ScS9ANS78T00EqPXdkxfTa2Sy-_ztzl7gXnYIDNgndUDLQrJCFpraOKGFBoGJykhxztIkTpUpQBFMGTWKWhZloNQKDgKk8T0aMHF0yq-TUQXj2iR-GilJDadFWtpYyFJpbgxlKouYUTLVHuHdBObGwZ7j6xuzvPHlSTB_WhbkyKjcMcojQV9r0cJ-_IX-KcpGT4ug3c0PmKnczVAutRVaqqzkkY2NgC5a6LSyWVqiWQmN3EXJytsM2H7rycdJgiBALEo8cr-hQOCOCiODpmq1XOb7h0dnIHrzekD0yBGVc2CHUS4bA8aEgjSg3BpQwvZjBsWbKIkdV5Y5E6Byp3EWCajZrY3Ti-_1xdgoRvtVdr5qaQRD6EKP3GiXUs9Z0LrgEEmYR-RgkQ1YPyypPrxvcNMb8MYs80jYL8czTe7Nf61wi1xgGPqEl3XpFhnVn1f2Nuiutb7jdqAfJWibkg priority: 102 providerName: Unpaywall  | 
    
| Title | COVID-19 detection using federated machine learning | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34101762 https://www.proquest.com/docview/2539284905 https://www.proquest.com/docview/2539527943 https://pubmed.ncbi.nlm.nih.gov/PMC8186799 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252573&type=printable https://doaj.org/article/7be5b7a9f30e4c5a90e8feae98f62603 http://dx.doi.org/10.1371/journal.pone.0252573  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry (Selected full-text) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Selected Fulltext) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELa27gFeEOPXAqMEhAQ8pIrtJE4eEOrKyoa0bhp0Kk-R4zgFqaSlaQX777lz3IiIIfqSh_hsJZ999p19_o6Ql1EgQyUo9VSU4NYN057M8sLDkxOfZzzkBTqKZ6PoZBx8nISTHbLJ2WoBrG507TCf1Hg56_36cf0OFP6tydog6KZSbzEvdQ_WcBiFfJfswVqVYDKHs6A5VwDtNqeXaLV4EfO5vUz3r1Zai5Xh9G9m7s5iNq9uMkv_jq68tS4X8vqnnM3-WLqGd8kda3O6_XqQ7JMdXd4j-1arK_e1pZ5-c5_wwfnV6XuPJm6uVyZIq3QxMn7qFkg6AXZp7n434Zfatfkmpg_IeHj8eXDi2bQKngLnYOXRIhcsF3lGdRDRPIPe8gtfcs7iKIilysEKixlVkmoGCMaAGvRehslgwL_IYv6QdEoA6YC4sS8FVZzmcaGDUBQy40pRJhOfKSnizCF8g1-qLOc4pr6YpeYgTYDvUUOQIuqpRd0hXlNrUXNu_Ef-CLumkUXGbPNivpymVgFTkekwEzIpuK8DFcInavhoqZO4QJ8OGnmGHZvW108bvU_7UYQMPMyPHPLCSCBrRolhOVO5rqr09PxqC6FPly2hV1aomAMcStqrEPBPyMbVkjxsSYLuq1bxAQ7DDSpVykKwd-Mg8UOouRmaNxc_b4qxUQy1K_V8XcuEDHkDHfKoHskNsmDywAweMYeI1hhvQd8uKb99NaTlhjkxSRzSa7Rhq859vA2gT8hthrFGuDsWH5LOarnWT8FYXGVdsismAp7xgOJz-KFL9o6ORxeXXbP90jXzA7wbjy76X34DI8FsXw | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcigXRHk1UGhAIOCQbWwncXJAqLRUXfqSoK32ZhzHWZCWZGl2VfVP8RuZSZxARAW99BpPLHs8L9vjbwh5EQUq1IJST0cJHt0w46k0yz28OfF5ykOe40bx4DDaPQk-jsPxEvnZvoXBtMrWJtaGOis1npFvsBA8eRwkfvhu9sPDqlF4u9qW0GjEYs9cnMOWrXo72ob1fcnYzofjrV3PVhXwNMTGc4_mmWCZyFJqgohmKQzWz33FOYujIFY6gyAkZlQrapifQEAVchh8irVQILxOYw793iA3A5gMVkwQ426DB7YjiuzzPC7ohpWG4awszBBiC9AO3nN_dZWAzhcMZtOyuizQ_Ttfc3lRzNTFuZpO_3CGO3fIbRvFupuN2K2QJVPcJSvWTlTuawtm_eYe4VtHp6NtjyZuZuZ12lfhYq79xM0RxgIi3cz9Xid0GtdWsJjcJyfXwtIHZFAAk1aJG_tKUM1pFucmCEWuUq41ZSrxmVYiTh3CW_5JbVHMsZjGVNZXcwJ2Mw0LJHJdWq47xOv-mjUoHv-hf49L09EiBnf9oTybSKvSUqQmTIVKcu6bQIcwRAODViaJc9wlQifruLCyedDaWRK5GUWI6cP8yCHPawrE4Sgw0WeiFlUlR0enVyD6_KlH9MoS5SWwQyv7uALmhPhePcq1HiVYE91rXkUxbLlSyd96B3-2onl587OuGTvF5L3ClIuGJmSIROiQh40kd5yFIAp8QsQcInoy3mN9v6X49rWGQa-xGJPEIcNOG660uI_-PY91srx7fLAv90eHe4_JLYY5THjqFq-RwfxsYZ5AEDpPn9aa75Iv121qfgFXsZeD | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIgEXRHk1UGhAIOCQ3dhO4uSAUOmy6lJoEdBqb8FxnAVpSUKzq6p_jV_HTOIEIiropdd4Ytnjedkef0PIk8CTvhKUOiqI8OiGaUcmaebgzYnLE-7zDDeK7_eD3UPv7cyfrZGf7VsYTKtsbWJtqNNC4Rn5iPngyUMvcv1RZtIiPownr8ofDlaQwpvWtpxGIyJ7-vQEtm_Vy-kY1vopY5M3n3d2HVNhwFEQJy8dmqWCpSJNqPYCmiYwcDdzJecsDLxQqhQCkpBRJalmbgTBlc9hIgnWRYFQOwk59HuJXBacR5hOKGbdZg_sSBCYp3pc0JGRjGFZ5HoIcQZoCu-5wrpiQOcXBuWiqM4Kev_O3by6ykt5eiIXiz8c4-QGuW4iWnu7EcF1sqbzm2Td2IzKfm6ArV_cInzn4Gg6dmhkp3pZp4DlNubdz-0MIS0g6k3t73Vyp7ZNNYv5bXJ4ISy9QwY5MGmD2KErBVWcpmGmPV9kMuFKUSYjlykpwsQivOVfrAyiORbWWMT1NZ2AnU3Dghi5HhuuW8Tp_iobRI__0L_GpeloEY-7_lAcz2Oj3rFItJ8IGWXc1Z7yYYgaBi11FGa4Y4ROtnBh4-Zxa2dV4u0gQHwf5gYWeVxTICZHjtI9l6uqiqcHR-cg-vSxR_TMEGUFsENJ89AC5oRYXz3KzR4lWBbVa95AMWy5UsW_dRD-bEXz7OZHXTN2iol8uS5WDY3PEJXQIncbSe44CwEV-IeAWUT0ZLzH-n5L_u1rDYle4zJGkUWGnTaca3Hv_XseW-QKGJn43XR_7z65xjCdCQ_gwk0yWB6v9AOIR5fJw1rxbfLloi3NL9RBm8Y | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nFIGttxnByXQtUi0SJgq_aAIttxFsSSXbFZITjw25lJnIhAEeXALYrHlj0e2zOemc-EPEhiJYykNDBJhlc3zAZKF2WAnpOIay54iYbiy4NkbxK_OBbHa-RdlwvjOAg24my-bDz5-DGv7Lbj5DbiFbXe05BySbsa4QKIQjjBQQb5wwZxCG_GakxAOkfWEwGq-oisTw5ejU9aTzMLEhZxl073p5YGx1WD6t_v3SPs2WmK6e_xledX1UJ9_aJms58Or91L5Hs37DZm5WO4qnVovv2CCPnf-HKZXHRqrz9uW9kga7a6QjbcxrL0Hzv06ydXCd85PNp_FtDML2zdxIlVPgbnT_0ScS9ANS78T00EqPXdkxfTa2Sy-_ztzl7gXnYIDNgndUDLQrJCFpraOKGFBoGJykhxztIkTpUpQBFMGTWKWhZloNQKDgKk8T0aMHF0yq-TUQXj2iR-GilJDadFWtpYyFJpbgxlKouYUTLVHuHdBObGwZ7j6xuzvPHlSTB_WhbkyKjcMcojQV9r0cJ-_IX-KcpGT4ug3c0PmKnczVAutRVaqqzkkY2NgC5a6LSyWVqiWQmN3EXJytsM2H7rycdJgiBALEo8cr-hQOCOCiODpmq1XOb7h0dnIHrzekD0yBGVc2CHUS4bA8aEgjSg3BpQwvZjBsWbKIkdV5Y5E6Byp3EWCajZrY3Ti-_1xdgoRvtVdr5qaQRD6EKP3GiXUs9Z0LrgEEmYR-RgkQ1YPyypPrxvcNMb8MYs80jYL8czTe7Nf61wi1xgGPqEl3XpFhnVn1f2Nuiutb7jdqAfJWibkg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+detection+using+federated+machine+learning&rft.jtitle=PloS+one&rft.au=Abdul+Salam%2C+Mustafa&rft.au=Taha%2C+Sanaa&rft.au=Ramadan%2C+Mohamed&rft.date=2021-06-08&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=6&rft.spage=e0252573&rft_id=info:doi/10.1371%2Fjournal.pone.0252573&rft.externalDBID=ISR&rft.externalDocID=A664519206 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |