Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data
Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2...
Saved in:
| Published in | PloS one Vol. 8; no. 5; p. e62732 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
17.05.2013
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0062732 |
Cover
| Abstract | Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-domains, freely available to the scientific community under the following URLs: http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/SH2PepInt.tar.gz and http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar.gz, respectively. |
|---|---|
| AbstractList | Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-domains, freely available to the scientific community under the following URLs: Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-domains, freely available to the scientific community under the following URLs: http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/SH2PepInt.tar.gz and http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar.gz, respectively.Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-domains, freely available to the scientific community under the following URLs: http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/SH2PepInt.tar.gz and http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar.gz, respectively. Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies) and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2 domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83 AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second, we improve performance when considering high order correlations between the ligand positions employing regularization techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding, uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-domains, freely available to the scientific community under the following URLs: http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/SH2PepInt.tar.gz and http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar.gz, respectively. |
| Audience | Academic |
| Author | Costa, Fabrizio Reth, Michael Kundu, Kousik Huber, Michael Backofen, Rolf |
| AuthorAffiliation | 5 Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany 4 Department of Molecular Immunology, Max Planck Institute of Immunology, Freiburg, Germany 2 Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany 1 Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany 6 Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark University of Alberta, Canada 3 Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Aachen, Germany |
| AuthorAffiliation_xml | – name: 6 Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark – name: University of Alberta, Canada – name: 5 Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany – name: 3 Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Aachen, Germany – name: 2 Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany – name: 4 Department of Molecular Immunology, Max Planck Institute of Immunology, Freiburg, Germany – name: 1 Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany |
| Author_xml | – sequence: 1 givenname: Kousik surname: Kundu fullname: Kundu, Kousik – sequence: 2 givenname: Fabrizio surname: Costa fullname: Costa, Fabrizio – sequence: 3 givenname: Michael surname: Huber fullname: Huber, Michael – sequence: 4 givenname: Michael surname: Reth fullname: Reth, Michael – sequence: 5 givenname: Rolf surname: Backofen fullname: Backofen, Rolf |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23690949$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttu1DAQhiNURA_wBggiISG4yOJD7MRcIFXlsCtVasUWbriwHMfJepXEwXYKfXu8u2m1qSpR-SLW-Js_M_PPcXTQmU5F0UsIZhBn8MPaDLYTzawP4RkAFGUYPYmOIMMooQjgg737YXTs3BoAgnNKn0WHCFMGWMqOol9L1epkOfTKXmunyvjSqlJLr00XmypezlFyqXqvSxUvOq-s2D65uLKmjRdtIRrRyZA21_UquVpZM9SrfvDxZ-HF8-hpJRqnXozfk-jH1y9XZ_Pk_OLb4uz0PJEZyX0CaYUKgVieSwSKimQFUpksGKAYlCSnKSRpQTAqGMlgyWBaAkUxSgsIAMgAxCfR651u3xjHx7k4DjFBeQoBzgKx2BGlEWveW90Ke8ON0HwbMLbmwnotG8UrTNKcSSIJUWlBMauYAllZsAyUTDIWtMhOa-h6cfNHNM2dIAR8Y81tCXxjDR-tCXmfxiqHolWlVJ23opkUM33p9IrX5ppjSmieb9p8NwpY83tQzvNWO6ma4IAyw7ZfzPIMpzSgb-6hD09lpGoRGtddZcJ_5UaUn6ZZjgIFSaBmD1DhlGFzZOiw0iE-SXg_SQiMV399LQbn-GL5_fHsxc8p-3aPXSnR-JUzzbBdyCn4an_SdyO-3foAfNwB0hrnrKq41F5sdEJruvmfj-m95EfZ_w_pdSd4 |
| CitedBy_id | crossref_primary_10_1093_bioinformatics_btx614 crossref_primary_10_1016_j_jtbi_2020_110278 crossref_primary_10_7554_eLife_82345 crossref_primary_10_1186_1471_2164_15_S1_S5 crossref_primary_10_1093_nar_gky329 crossref_primary_10_1124_molpharm_121_000287 crossref_primary_10_1074_jbc_RA120_012503 crossref_primary_10_1093_bioinformatics_btu350 crossref_primary_10_1074_mcp_O114_038695 crossref_primary_10_1016_j_jtbi_2015_03_029 crossref_primary_10_1038_ng_3138 crossref_primary_10_3389_fnins_2024_1436619 crossref_primary_10_1371_journal_pone_0200430 crossref_primary_10_1142_S0129065720500197 crossref_primary_10_1158_1078_0432_CCR_21_0023 crossref_primary_10_1074_mcp_RA118_000689 crossref_primary_10_1002_humu_23758 crossref_primary_10_1002_jcc_24314 crossref_primary_10_1186_1752_0509_9_S5_S1 |
| Cites_doi | 10.1016/S1074-7613(00)80187-9 10.1039/b801018h 10.1038/sj.onc.1202171 10.1038/sj.leu.2404189 10.1038/26683 10.1371/journal.pone.0014339 10.1016/j.bbapap.2007.10.003 10.1007/BF00994018 10.1038/nature04177 10.1038/sj.emboj.7601557 10.1038/ng772 10.1038/leu.2012.222 10.1038/35052073 10.1613/jair.953 10.1016/0092-8674(92)90437-H 10.1126/scisignal.1159433 10.1109/TKDE.2008.239 10.1038/75556 10.1038/leu.2012.243 10.1371/journal.pone.0025528 10.1093/database/bar009 10.1021/bi034113h 10.1038/nrm1960 10.1016/j.molcel.2006.06.001 10.1038/35077225 10.1242/jcs.1994.Supplement_18.18 10.1016/S0092-8674(03)01077-8 10.1126/stke.2003.191.re12 10.1110/ps.9.12.2377 10.1093/bioinformatics/btn580 10.1016/S0079-6107(98)00049-2 10.1074/mcp.M700312-MCP200 10.1016/S0006-291X(03)00932-X 10.1016/S1097-2765(00)80206-3 10.1038/86737 10.1002/bies.1062 10.1145/1007730.1007737 10.1017/CBO9780511801389.003 10.1371/journal.pcbi.1000052 10.1074/mcp.M110.001586 10.1038/358684a0 10.1016/0092-8674(93)90404-E 10.1038/ng1193-242 10.1110/ps.9.10.1975 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2013 Public Library of Science 2013 Kundu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2013 Kundu et al 2013 Kundu et al |
| Copyright_xml | – notice: COPYRIGHT 2013 Public Library of Science – notice: 2013 Kundu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2013 Kundu et al 2013 Kundu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0062732 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Computer Science Biology |
| DocumentTitleAlternate | Prediction of SH2-Peptide Interactions |
| EISSN | 1932-6203 |
| ExternalDocumentID | 1352841037 oai_doaj_org_article_f35489c5c55e4b639f9e07db970d9c99 10.1371/journal.pone.0062732 PMC3656881 2973405521 A478241015 23690949 10_1371_journal_pone_0062732 |
| Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPNFZ IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PYCSY RIG RNS RPM SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY CGR CUY CVF ECM EIF NPM PV9 RZL 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY - 02 AAPBV ABPTK ADACO BBAFP KM |
| ID | FETCH-LOGICAL-c758t-16f2ba2988c20bf57b2e7cb90630d5864154b532b9571d914d0e6324b10007013 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Fri Nov 26 17:12:42 EST 2021 Tue Oct 14 18:37:30 EDT 2025 Sun Oct 26 02:40:32 EDT 2025 Tue Sep 30 16:22:54 EDT 2025 Thu Oct 02 03:42:17 EDT 2025 Tue Oct 07 07:09:21 EDT 2025 Mon Oct 20 22:12:23 EDT 2025 Mon Oct 20 16:17:28 EDT 2025 Thu Oct 16 15:11:54 EDT 2025 Thu Oct 16 14:10:44 EDT 2025 Thu May 22 21:21:38 EDT 2025 Wed Feb 19 01:55:40 EST 2025 Thu Apr 24 23:03:33 EDT 2025 Wed Oct 01 01:55:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c758t-16f2ba2988c20bf57b2e7cb90630d5864154b532b9571d914d0e6324b10007013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Conceived and designed the experiments: KK FC MH MR RB. Performed the experiments: KK. Analyzed the data: KK FC RB. Contributed reagents/materials/analysis tools: KK. Wrote the paper: KK FC MH MR RB. Developed the models: KK. Competing Interests: The authors have declared that no competing interests exist. |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0062732 |
| PMID | 23690949 |
| PQID | 1352841037 |
| PQPubID | 1436336 |
| PageCount | e62732 |
| ParticipantIDs | plos_journals_1352841037 doaj_primary_oai_doaj_org_article_f35489c5c55e4b639f9e07db970d9c99 unpaywall_primary_10_1371_journal_pone_0062732 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3656881 proquest_miscellaneous_1353987346 proquest_journals_1352841037 gale_infotracmisc_A478241015 gale_infotracacademiconefile_A478241015 gale_incontextgauss_ISR_A478241015 gale_incontextgauss_IOV_A478241015 gale_healthsolutions_A478241015 pubmed_primary_23690949 crossref_citationtrail_10_1371_journal_pone_0062732 crossref_primary_10_1371_journal_pone_0062732 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05-17 |
| PublicationDateYYYYMMDD | 2013-05-17 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2013 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | ref57 R Guerois (ref27) 2002; 320 ref58 R Marone (ref46) 2008; 1784 ref55 M Tartaglia (ref12) 2001; 29 C Cortes (ref54) 1995; 20 P Blume-Jensen (ref5) 2001; 411 ref17 MG Tomlinson (ref47) 2004; 279 A Hamilton (ref44) 2006; 20 A Suenaga (ref30) 2003; 42 E Friedman (ref14) 1993; 5 Z Wunderlich (ref31) 2009; 37 T Pawson (ref7) 2005; 30 ref42 M Overduin (ref9) 1992; 70 Z Songyang (ref15) 1993; 72 JK Lee (ref25) 2003; 306 PV Hornbeck (ref38) 2012; 40 ref43 B Stork (ref50) 2007; 26 ML Miller (ref53) 2008; 1 M Rodriguez (ref22) 2004; 279 JC Obenauer (ref19) 2003; 31 I Tamir (ref49) 2000; 12 AC Porter (ref3) 1998; 17 M Ashburner (ref39) 2000; 25 BT Seet (ref1) 2006; 7 H Huang (ref23) 2008; 7 H Ogata (ref52) 1999; 27 N Chawla (ref59) 2002; 16 DW Huang (ref51) 2009; 37 SR Tzeng (ref13) 2000; 9 BA Liu (ref32) 2010; 9 GW Booker (ref8) 1992; 358 J Sayos (ref11) 1998; 395 J Schlessinger (ref2) 2003; 2003 A Kaushansky (ref35) 2008; 4 WA McLaughlin (ref29) 2006; 357 M Magrane (ref37) 2011; 2011 Z Songyang (ref16) 1995; 20 F Poy (ref18) 1999; 4 IE Sanchez (ref26) 2008; 4 RB Jones (ref34) 2006; 439 MB Yaffe (ref20) 2001; 19 Y Yarden (ref4) 2001; 2 T Pawson (ref6) 2004; 116 BA Liu (ref10) 2006; 22 F Diella (ref36) 2008; 36 L Li (ref24) 2011; 6 M Huber (ref48) 1999; 71 CA Tanase (ref40) 2010; 5 DA Henriques (ref28) 2000; 9 H He (ref56) 2009; 21 CI Smith (ref45) 2001; 23 ref60 L Li (ref21) 2008; 36 ref61 AV Persikov (ref33) 2009; 25 KH Faderl S (ref41) 1999; 13 11340625 - Bioessays. 2001 May;23(5):436-46 22858987 - Leukemia. 2013 Jan;27(1):118-29 16829979 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):473-83 11252954 - Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 18493663 - Mol Biosyst. 2008 Jun;4(6):643-53 21447597 - Database (Oxford). 2011;2011:bar009 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 16476443 - J Mol Biol. 2006 Apr 7;357(4):1322-34 17997386 - Biochim Biophys Acta. 2008 Jan;1784(1):159-85 1323062 - Nature. 1992 Aug 20;358(6388):684-7 10079468 - Oncology (Williston Park). 1999 Feb;13(2):169-80; discussion 181, 184 17290227 - EMBO J. 2007 Feb 21;26(4):1140-9 14744431 - Cell. 2004 Jan 23;116(2):191-203 1505033 - Cell. 1992 Aug 21;70(4):697-704 19008249 - Bioinformatics. 2009 Jan 1;25(1):22-9 7680959 - Cell. 1993 Mar 12;72(5):767-78 11206059 - Protein Sci. 2000 Dec;9(12):2377-85 9779982 - Oncogene. 1998 Sep 17;17(11 Reviews):1343-52 10549287 - Mol Cell. 1999 Oct;4(4):555-61 10802651 - Nat Genet. 2000 May;25(1):25-9 21179510 - PLoS One. 2010;5(12):e14339 7533766 - J Cell Sci Suppl. 1994;18:121-6 17956856 - Mol Cell Proteomics. 2008 Apr;7(4):768-84 9774102 - Nature. 1998 Oct 1;395(6701):462-9 20627867 - Mol Cell Proteomics. 2010 Nov;9(11):2391-404 16273093 - Nature. 2006 Jan 12;439(7073):168-74 16572205 - Leukemia. 2006 Jun;20(6):1035-9 11704759 - Nat Genet. 2001 Dec;29(4):465-8 18389064 - PLoS Comput Biol. 2008 Apr;4(4):e1000052 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 19502496 - Nucleic Acids Res. 2009 Aug;37(14):4629-41 9847135 - Nucleic Acids Res. 1999 Jan 1;27(1):29-34 22135298 - Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70 18424801 - Nucleic Acids Res. 2008 Jun;36(10):3263-73 22003397 - PLoS One. 2011;6(10):e25528 8275088 - Nat Genet. 1993 Nov;5(3):242-7 16793553 - Mol Cell. 2006 Jun 23;22(6):851-68 11283593 - Nat Biotechnol. 2001 Apr;19(4):348-53 10354708 - Prog Biophys Mol Biol. 1999;71(3-4):423-34 15492005 - J Biol Chem. 2004 Dec 31;279(53):55089-96 11357143 - Nature. 2001 May 17;411(6835):355-65 12788092 - Biochem Biophys Res Commun. 2003 Jun 20;306(1):225-30 15950870 - Trends Biochem Sci. 2005 Jun;30(6):286-90 12731860 - Biochemistry. 2003 May 13;42(18):5195-200 17962309 - Nucleic Acids Res. 2008 Jan;36(Database issue):D240-4 12865499 - Sci STKE. 2003 Jul 15;2003(191):RE12 22976128 - Leukemia. 2013 Mar;27(3):743-6 11106171 - Protein Sci. 2000 Oct;9(10):1975-85 10755621 - Immunity. 2000 Mar;12(3):347-58 12079393 - J Mol Biol. 2002 Jul 5;320(2):369-87 14679191 - J Biol Chem. 2004 Mar 5;279(10):8802-7 8578591 - Trends Biochem Sci. 1995 Nov;20(11):470-5 18765831 - Sci Signal. 2008;1(35):ra2 |
| References_xml | – volume: 37 start-page: 4629 year: 2009 ident: ref31 article-title: Using genome-wide measurements for computational prediction of SH2-peptide interactions – volume: 12 start-page: 347 year: 2000 ident: ref49 article-title: The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells publication-title: Immunity doi: 10.1016/S1074-7613(00)80187-9 – volume: 4 start-page: 643 year: 2008 ident: ref35 article-title: A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R publication-title: Mol Biosyst doi: 10.1039/b801018h – volume: 37 start-page: 1 year: 2009 ident: ref51 article-title: Bioinformatics enrichment tools: paths toward the com-prehensive functional analysis of large gene lists – volume: 17 start-page: 1343 year: 1998 ident: ref3 article-title: Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis publication-title: Oncogene doi: 10.1038/sj.onc.1202171 – volume: 20 start-page: 1035 year: 2006 ident: ref44 article-title: BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using ow cytometry publication-title: Leukemia doi: 10.1038/sj.leu.2404189 – ident: ref57 – volume: 31 start-page: 3635 year: 2003 ident: ref19 article-title: Scansite 2.0: Proteome-wide prediction of cell signaling inter-actions using short sequence motifs – volume: 279 start-page: 8802 year: 2004 ident: ref22 article-title: An oriented peptide array library (OPAL) strategy to study protein-protein interactions – volume: 395 start-page: 462 year: 1998 ident: ref11 article-title: The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM publication-title: Nature doi: 10.1038/26683 – volume: 5 start-page: e14339 year: 2010 ident: ref40 article-title: Histidine domain-protein tyrosine phosphatase interacts with Grb2 and GrpL publication-title: PLoS One doi: 10.1371/journal.pone.0014339 – volume: 1784 start-page: 159 year: 2008 ident: ref46 article-title: Targeting phosphoinositide 3-kinase: moving towards therapy publication-title: Biochim Biophys Acta doi: 10.1016/j.bbapap.2007.10.003 – volume: 20 start-page: 273 year: 1995 ident: ref54 article-title: Support-vector networks publication-title: Machine learning doi: 10.1007/BF00994018 – volume: 439 start-page: 168 year: 2006 ident: ref34 article-title: A quantitative protein interaction network for the ErbB receptors using protein microarrays publication-title: Nature doi: 10.1038/nature04177 – volume: 26 start-page: 1140 year: 2007 ident: ref50 article-title: Subcellular localization of Grb2 by the adaptor protein Dok-3 restricts the intensity of Ca2+ signaling in B cells publication-title: EMBO J doi: 10.1038/sj.emboj.7601557 – volume: 29 start-page: 465 year: 2001 ident: ref12 article-title: Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome publication-title: Nat Genet doi: 10.1038/ng772 – ident: ref42 doi: 10.1038/leu.2012.222 – volume: 2 start-page: 127 year: 2001 ident: ref4 article-title: Untangling the ErbB signalling network publication-title: Nat Rev Mol Cell Biol doi: 10.1038/35052073 – volume: 279 start-page: 55089 year: 2004 ident: ref47 article-title: SHIP family inositol phosphatases interact with and negatively regulate the Tec tyrosine kinase – volume: 16 start-page: 321 year: 2002 ident: ref59 article-title: Smote: synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 70 start-page: 697 year: 1992 ident: ref9 article-title: Three-dimensional solution structure of the src homology 2 domain of c-abl publication-title: Cell doi: 10.1016/0092-8674(92)90437-H – volume: 1 start-page: ra2 year: 2008 ident: ref53 article-title: Linear motif atlas for phosphorylation-dependent signaling publication-title: Sci Signal doi: 10.1126/scisignal.1159433 – volume: 21 start-page: 1263 year: 2009 ident: ref56 article-title: Learning from imbalanced data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.239 – volume: 25 start-page: 25 year: 2000 ident: ref39 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat Genet doi: 10.1038/75556 – ident: ref43 doi: 10.1038/leu.2012.243 – volume: 6 start-page: e25528 year: 2011 ident: ref24 article-title: DomPep–a general method for predicting modular domain-mediated protein-protein interactions publication-title: PLoS One doi: 10.1371/journal.pone.0025528 – volume: 2011 start-page: bar009 year: 2011 ident: ref37 article-title: UniProt Knowledgebase: a hub of integrated protein data publication-title: Database (Oxford) doi: 10.1093/database/bar009 – volume: 42 start-page: 5195 year: 2003 ident: ref30 article-title: Molecular dynamics, free energy, and SPR analyses of the interactions between the SH2 domain of Grb2 and ErbB phosphotyrosyl peptides publication-title: Biochemistry doi: 10.1021/bi034113h – volume: 7 start-page: 473 year: 2006 ident: ref1 article-title: Reading protein modifications with interaction domains publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm1960 – volume: 22 start-page: 851 year: 2006 ident: ref10 article-title: The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling publication-title: Mol Cell doi: 10.1016/j.molcel.2006.06.001 – volume: 411 start-page: 355 year: 2001 ident: ref5 article-title: Oncogenic kinase signalling publication-title: Nature doi: 10.1038/35077225 – volume: 320 start-page: 369 year: 2002 ident: ref27 article-title: Predicting changes in the stability of proteins and protein com-plexes: a study of more than 1000 mutations – ident: ref60 – ident: ref17 doi: 10.1242/jcs.1994.Supplement_18.18 – volume: 40 start-page: D261 year: 2012 ident: ref38 article-title: PhosphoSitePlus: a compre-hensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse – volume: 116 start-page: 191 year: 2004 ident: ref6 article-title: Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems publication-title: Cell doi: 10.1016/S0092-8674(03)01077-8 – volume: 357 start-page: 1322 year: 2006 ident: ref29 article-title: Prediction of binding sites of peptide recognition domains: an application on Grb2 and SAP SH2 domains – volume: 2003 start-page: RE12 year: 2003 ident: ref2 article-title: SH2 and PTB domains in tyrosine kinase signaling publication-title: Sci STKE doi: 10.1126/stke.2003.191.re12 – volume: 9 start-page: 2377 year: 2000 ident: ref13 article-title: Stability and peptide binding specificity of Btk SH2 domain: molecular basis for X-linked agammaglobulinemia publication-title: Protein Sci doi: 10.1110/ps.9.12.2377 – volume: 25 start-page: 22 year: 2009 ident: ref33 article-title: Predicting DNA recognition by Cys2His2 zinc finger proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn580 – ident: ref55 – volume: 71 start-page: 423 year: 1999 ident: ref48 article-title: The role of SHIP in growth factor induced signalling publication-title: Prog Biophys Mol Biol doi: 10.1016/S0079-6107(98)00049-2 – volume: 36 start-page: 3263 year: 2008 ident: ref21 article-title: Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach – volume: 7 start-page: 768 year: 2008 ident: ref23 article-title: Defining the specificity space of the human SRC homology 2 domain publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M700312-MCP200 – volume: 306 start-page: 225 year: 2003 ident: ref25 article-title: An investigation of phosphopeptide binding to sh2 domain publication-title: Biochem Biophys Res Commun doi: 10.1016/S0006-291X(03)00932-X – volume: 30 start-page: 286 year: 2005 ident: ref7 article-title: Protein phosphorylation in signaling–50 years and counting – volume: 4 start-page: 555 year: 1999 ident: ref18 article-title: Crystal structures of the XLP protein SAP reveal a class of SH2 domains with extended, phosphotyrosine-independent sequence recognition publication-title: Mol Cell doi: 10.1016/S1097-2765(00)80206-3 – volume: 19 start-page: 348 year: 2001 ident: ref20 article-title: A motif-based profile scanning approach for genome-wide prediction of signaling pathways publication-title: Nat Biotechnol doi: 10.1038/86737 – volume: 23 start-page: 436 year: 2001 ident: ref45 article-title: The Tec family of cytoplasmic tyrosine kinases: mammalian Btk, Bmx, Itk, Tec, Txk and homologs in other species publication-title: Bioessays doi: 10.1002/bies.1062 – volume: 27 start-page: 29 year: 1999 ident: ref52 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes – volume: 20 start-page: 470 year: 1995 ident: ref16 article-title: Recognition and specificity in protein tyrosine kinase-mediated signaling – volume: 13 start-page: 169 year: 1999 ident: ref41 article-title: Chronic myelogenous leukemia: Update on biology and treatment publication-title: Oncology (Williston Park) – ident: ref58 doi: 10.1145/1007730.1007737 – ident: ref61 doi: 10.1017/CBO9780511801389.003 – volume: 4 start-page: e1000052 year: 2008 ident: ref26 article-title: Genome-wide prediction of SH2 domain targets using structural information and the FoldX algorithm publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000052 – volume: 9 start-page: 2391 year: 2010 ident: ref32 article-title: SH2 domains recognize con-textual peptide sequence information to determine selectivity publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M110.001586 – volume: 358 start-page: 684 year: 1992 ident: ref8 article-title: Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase publication-title: Nature doi: 10.1038/358684a0 – volume: 72 start-page: 767 year: 1993 ident: ref15 article-title: SH2 domains recognize specific phosphopeptide sequences publication-title: Cell doi: 10.1016/0092-8674(93)90404-E – volume: 36 start-page: D240 year: 2008 ident: ref36 article-title: Phospho.ELM: a database of phosphorylation sites–update 2008 – volume: 5 start-page: 242 year: 1993 ident: ref14 article-title: Nonsense mutations in the C-terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours publication-title: Nat Genet doi: 10.1038/ng1193-242 – volume: 9 start-page: 1975 year: 2000 ident: ref28 article-title: Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization publication-title: Protein Sci doi: 10.1110/ps.9.10.1975 – reference: 12865499 - Sci STKE. 2003 Jul 15;2003(191):RE12 – reference: 7680959 - Cell. 1993 Mar 12;72(5):767-78 – reference: 8578591 - Trends Biochem Sci. 1995 Nov;20(11):470-5 – reference: 10549287 - Mol Cell. 1999 Oct;4(4):555-61 – reference: 18765831 - Sci Signal. 2008;1(35):ra2 – reference: 15950870 - Trends Biochem Sci. 2005 Jun;30(6):286-90 – reference: 11206059 - Protein Sci. 2000 Dec;9(12):2377-85 – reference: 16793553 - Mol Cell. 2006 Jun 23;22(6):851-68 – reference: 7533766 - J Cell Sci Suppl. 1994;18:121-6 – reference: 10755621 - Immunity. 2000 Mar;12(3):347-58 – reference: 17290227 - EMBO J. 2007 Feb 21;26(4):1140-9 – reference: 21447597 - Database (Oxford). 2011;2011:bar009 – reference: 17962309 - Nucleic Acids Res. 2008 Jan;36(Database issue):D240-4 – reference: 22003397 - PLoS One. 2011;6(10):e25528 – reference: 14744431 - Cell. 2004 Jan 23;116(2):191-203 – reference: 11357143 - Nature. 2001 May 17;411(6835):355-65 – reference: 22858987 - Leukemia. 2013 Jan;27(1):118-29 – reference: 12079393 - J Mol Biol. 2002 Jul 5;320(2):369-87 – reference: 16829979 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):473-83 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 14679191 - J Biol Chem. 2004 Mar 5;279(10):8802-7 – reference: 22976128 - Leukemia. 2013 Mar;27(3):743-6 – reference: 11340625 - Bioessays. 2001 May;23(5):436-46 – reference: 9774102 - Nature. 1998 Oct 1;395(6701):462-9 – reference: 15492005 - J Biol Chem. 2004 Dec 31;279(53):55089-96 – reference: 8275088 - Nat Genet. 1993 Nov;5(3):242-7 – reference: 11704759 - Nat Genet. 2001 Dec;29(4):465-8 – reference: 20627867 - Mol Cell Proteomics. 2010 Nov;9(11):2391-404 – reference: 17997386 - Biochim Biophys Acta. 2008 Jan;1784(1):159-85 – reference: 18389064 - PLoS Comput Biol. 2008 Apr;4(4):e1000052 – reference: 9779982 - Oncogene. 1998 Sep 17;17(11 Reviews):1343-52 – reference: 1505033 - Cell. 1992 Aug 21;70(4):697-704 – reference: 1323062 - Nature. 1992 Aug 20;358(6388):684-7 – reference: 21179510 - PLoS One. 2010;5(12):e14339 – reference: 10354708 - Prog Biophys Mol Biol. 1999;71(3-4):423-34 – reference: 9847135 - Nucleic Acids Res. 1999 Jan 1;27(1):29-34 – reference: 18424801 - Nucleic Acids Res. 2008 Jun;36(10):3263-73 – reference: 12824383 - Nucleic Acids Res. 2003 Jul 1;31(13):3635-41 – reference: 11283593 - Nat Biotechnol. 2001 Apr;19(4):348-53 – reference: 12788092 - Biochem Biophys Res Commun. 2003 Jun 20;306(1):225-30 – reference: 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 – reference: 16572205 - Leukemia. 2006 Jun;20(6):1035-9 – reference: 19502496 - Nucleic Acids Res. 2009 Aug;37(14):4629-41 – reference: 18493663 - Mol Biosyst. 2008 Jun;4(6):643-53 – reference: 19008249 - Bioinformatics. 2009 Jan 1;25(1):22-9 – reference: 16273093 - Nature. 2006 Jan 12;439(7073):168-74 – reference: 10079468 - Oncology (Williston Park). 1999 Feb;13(2):169-80; discussion 181, 184 – reference: 12731860 - Biochemistry. 2003 May 13;42(18):5195-200 – reference: 11106171 - Protein Sci. 2000 Oct;9(10):1975-85 – reference: 17956856 - Mol Cell Proteomics. 2008 Apr;7(4):768-84 – reference: 11252954 - Nat Rev Mol Cell Biol. 2001 Feb;2(2):127-37 – reference: 16476443 - J Mol Biol. 2006 Apr 7;357(4):1322-34 – reference: 22135298 - Nucleic Acids Res. 2012 Jan;40(Database issue):D261-70 |
| SSID | ssj0053866 |
| Score | 2.2345123 |
| Snippet | Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to phosphotyrosine containing peptides. Knowledge about... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e62732 |
| SubjectTerms | Amino acids Analysis Area Under Curve Artificial Intelligence Binding Bioinformatics Biology Complexity Computer applications Computer programs Computer Science Genomes Genomics Homology Humans Immunology Kinases Learning algorithms Leukemia Ligands Machine learning Mathematical models Models, Biological Peptides Performance prediction Phosphorylation Phosphotyrosine Predictive Value of Tests Protein Array Analysis - methods Protein Binding Protein Interaction Domains and Motifs - genetics Protein Interaction Mapping - methods Proteins Regularization ROC Curve Signal transduction src Homology Domains - genetics src Homology Domains - physiology Studies Tar |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKK8GChiEBBzcJo4dx8eCqBYOILEUVeIQxY-UlbbZaLMR4t8zk3ijRlRqD1zX45Uy75FnviHktTTGZ4o7ZioZM6G5ZaWsPPO2ghLXQoCxfbfFl2x-Kj6fybNLq76wJ2yABx4Yd1SlkFNrK62UXhiIp5X2sXJGq9hpq_vRvTjXu2Jq8MFgxVkWBuVSlRwFuRw269pjJxfEbD4JRD1e_-iVZ81q3V6Vcv7bOXm7q5vyz-9ytboUlk7ukbshn6THw3fskVu-vk_2gsW29G2AlX73gPxc-Isla7sGvUPrHW02-EiDgqHrii7mnDXY4uI8RQyJzTDx0FIcQKHLC4M9kBauIcAxC-t9mm5Lscf0ITk9-fj9w5yF1QrMQoGwZUlWcVNynYM4YhCTMtwrazQicDmZZxDWhZEpN1qqxOlEuNgjsLvB5wAFaeMjMquBmfuEZo6btIptLBIjKu9K78H55iWHzEvJMo9IuuNzYQPuOK6_WBX9Y5qC-mNgVYHSKYJ0IsLGW82Au3EN_XsU4UiLqNn9D6BLRdCl4jpdisgLVIBiGEEdbb84FpBHCXBeMiKvegpEzqixNee87Nq2-PT1xw2IFt8mRG8CUbUGdtgyjEPANyEi14TyYEIJ9m8nx_uorjuutMAjCTkHzn_CzZ0KX338cjzGP8V2u9qvu54m1blKRRaRx4PGj5zlaaZjLYBZamILE9ZPT-rlrx64PIXiIc-TiByOVnMj4T75H8J9Su7wfpWJZIk6ILPtpvPPIKHcmue97_gLmOhz4g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9wAvwMbHAgMCQgIevCVOHMcPCG2wqeOhVOuGJu0hih1nTOqS0LRC_PfcJU4gYoK9VfW5Ve7Ld_Hd7wh5zZUykWAZVTn3aCiZpinPDTU6hxRXwwGjm2qLSTQ-DT-f8bM1Mul6YbCssvOJjaPOSo3vyHd9hCEJsavtQ_Wd4tQovF3tRmikdrRC9r6BGLtF1hkiY43I-v7BZHrc-Waw7iiyDXSB8HetvHaqsjBY4QVnORscUA2Of--tR9W8rK8LRf-uqLy9Kqr05490Pv_juDq8T-7aONPdaxVjg6yZYpPc62Y4uNakN8mG_VS7by0C9bsH5Hxmri7pbFWhI6lN5k4XeJ-DMnTL3J2NGZ1iNUxm3OaNYtscUbvYq-IeXSksl9SwDYtI6Ek7CQj-1_2ULtOH5PTw4OTjmNopDFRDLrGkfpQzlTIZg-Q8kKhQzAitJIJ1ZTyOIAIIFQ-Yklz4mfTDzDOIAa_w5kBAhPmIjArg7xZxo4ypIPe0F_oqzE2WGgN-Ok4ZBGmCp7FDgo71ibYQ5TgpY540924CUpWWewkKLLECcwjtd1UtRMd_6PdRqj0tAmw3X5SLi8Taa5IHkMpJzTXnJlQQxuXSeCJTUniZ1FI65AXqRNJ2q_ZuItkLIeQCNfW5Q141FAiyUWAVz0W6quvk6MvXGxDNjgdEbyxRXgI7dGo7J-CZELxrQLk9oARXoQfLW6jBHVfq5LdRwc5Oq69fftkv449iZV5hylVDE8hYBGHkkMetEfScZUEkPRkCs8TAPAasH64Ul98ajPMA8ow49h2y0xvSjYT75N_P8ZTcYc08E059sU1Gy8XKPIOocqmeW1fxCwv7dxs priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nHwNnHiOD4uj2rLoazYFrVCKIodByq22VWTCMGB385M4kQEiigHbqt4HK0_j8cz8cxnQh5xpUwkWEZVzj0aSqZpynNDjc4hxNWwwegm22Ivmh6Erw_54Rr50NXCWAQhRlwsy-YkH38sC7NtkdxGvqL29HTsB8LveoxXIIRZWrAfs8cN4xB-GauwAOkCWY84uOojsn6wN5sctSfNjEbMC2w53Z_eNNiuGlb_3naP8J-d5Zj-nl95sS5W6dcv6WLx0-a1c4V874bd5qx8HteVGutvvzBC_jdcrpLL1u11J-1bNsiaKa6RDWtYSvepZb9-dp28n5uTYzqvV2jESpO5s1M8S0L9cZe5O58yOsNMnMy4zdfMtjCjdLFOxt09UZiqqaEbJrDQ_fYWolVduS_TKr1BDnZe7b-YUnsDBNUQx1TUj3KmUiZj0BoPtEkoZoRWEonCMh5H4H2EigdMSS78TPph5hnkn1d4aiHAu71JRgWMf5O4UcZUkHvaC30V5iZLjYE9Ik4ZOIiCp7FDgm6iE23p0fGWjkXSnPkJCJNaqBIENLGAOoT2vVYtPchf5J-jDvWySO7dPIAZTexMJnkAYaTUXHNuQgUuZC6NJzIlhZdJLaVD7qMGJm2lbG-ikkkI7l4INpY75GEjgQQfBWYQfUzrskx237w7h9D87UDoiRXKlwCHTm3VBowJFW4guTWQBDOlB82bqLEdKiVgxME1wjJV6NmtobObH_TN-FLMCizMsm5kAhmLIIwccqtdcj2yLIikJ0MASwwW4wD6YUtx_KnhVw8gxolj3yHjftmea3Jv_2uHO-QSa25X4dQXW2RUndbmLvi4lbpnLdUPyeSqBw priority: 102 providerName: Unpaywall |
| Title | Semi-Supervised Prediction of SH2-Peptide Interactions from Imbalanced High-Throughput Data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23690949 https://www.proquest.com/docview/1352841037 https://www.proquest.com/docview/1353987346 https://pubmed.ncbi.nlm.nih.gov/PMC3656881 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0062732&type=printable https://doaj.org/article/f35489c5c55e4b639f9e07db970d9c99 http://dx.doi.org/10.1371/journal.pone.0062732 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw0BrdA7wAGx8LjBIQEvCQKh92HD8g1I2NDolSrSsq4iGKHWdM6pLStIL9e-4SNyKiE3uJqviuUe58X_F9EPKKSalD7qeOzJjrUOErJ2GZdrTKIMRVYGBUlW0xDAcT-mnKpltkPbPVELDcGNrhPKnJYtb7_fPqPQj8u2pqA_fWSL15kWvM0wKLDEp5G2yVwGEOn2lzrgDSHYamgO46zJaBqvr4N9q6M58V5SZX9N-MyturfJ5c_Upms7_M1fF9ctf4mXa_3hg7ZEvnu-TeeoaDbUR6l-yYX6X9xnSgfvuAfB_rywtnvJqjIil1ao8WeJ6DPLSLzB4PfGeE2TCptqsvinVxRGljrYp9cikxXVIBGiaROGf1JCB4rv0hWSYPyeT46Oxw4JgpDI6CWGLpeGHmy8QXEXDOBY5y6WuupMBmXSmLQvAAqGSBLwXjXio8mroae8BLPDng4GE-Ip0c6LtH7DD1ZZC5yqWepJlOE61BT0eJD04aZ0lkkWBN-liZFuU4KWMWV-duHEKVmnoxMiw2DLOI02DN6xYd_4E_QK42sNhgu7pRLM5jI69xFkAoJxRTjGkqwY3LhHZ5KgV3U6GEsMhz3BNxXa3aqIm4T8HloqDnmEVeVhDYZCPHLJ7zZFWW8cmXrzcAGp-2gF4boKwAcqjEVE7AO2HzrhbkfgsSVIVqLe_hDl5TpQQaMXBPsFQUMNe7evPyi2YZ_xQz83JdrCqYQEQ8oKFFHtdC0FDWD0LhCgrE4i3xaJG-vZJf_Kh6nAcQZ0SRZ5FeI0g3Yu6T61_xKbnjV7NMmOPxfdJZLlb6GXiUS9klt_iUwzU69PB6_LFLtg-OhqPTbvWNplspEbg3GY763_4ASdJ7eQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFXCoVyAlkcNhRoEAg7b2muv13tAqFCqhJZSkRRF4mC863WplNohTlT1p_hGZvwCiwp66S3yjh173rM7D0KecaVMIFhCVcod6kumacxTQ41OIcTVYGB0mW1xEPSP_A9jPl4iP5taGEyrbHRiqaiTXOMe-ZaLbUh8rGp7M_1BcWoUnq42IzQqttgz52cQshWvBztA3-eM7b4fvevTeqoA1eAbz6kbpEzFTIbwJg68oVDMCK0kNp9KeBiARfMV95iSXLiJdP3EMdjTXOFOuACPCZ57jVz3PdAlID9i3AZ4oDuCoC7P84S7VXPD5jTPDOaPgafAOuavnBLQ2oLedJIXFzm6f-drLi-yaXx-Fk8mfxjD3dvkZu3F2tsV262QJZOtklvNhAi7VhirZKX-Vdgv6_7Wr-6Qr0NzekKHiymqqcIk9uEMT4uQQ-w8tYd9Rg8x1yYxdrlfWZVeFDZWwtiDU4XJmBpuwxQVOqrmDMH_2jvxPL5Ljq6EGvdILwP8rhE7SJjyUkc7vqv81CSxMWAFwpiBCyh4HFrEa1Af6boBOs7hmETlqZ6AQKjCXoQEi2qCWYS2d02rBiD_gX-LVG1hsX13eSGfHUe1NohSDwJFqbnm3PgKnMRUGkckSgonkVpKi2wgT0RVLWyrhKJtHxw6EAKXW-RpCYEtPDLMETqOF0URDT59uQTQ8HMH6EUNlOaADh3XdRnwTdgarAO53oEERaQ7y2vIwQ1Wiui3yMKdDVdfvPykXcaHYt5fZvJFCePJUHh-YJH7lRC0mGVeIB3pA7JERzw6qO-uZCffyw7qHkQxYehaZLMVpEsR98G_v2ODLPdHH_ej_cHB3kNyg5WTUzh1xTrpzWcL8wj817l6XCoNm3y7ai31C5ZCqmw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpDAi7AxscKgwUEAg7eEieO4wNCg1KtDI2KbmgShxA7zpjUJaVpNe2v8et4L3ECERPsslsVv6TJ-372-yDkGVfKhIKlVGXcpYFkmiY8M9ToDEJcDQZGV9kWe-HOQfDhkB8ukZ9NLQymVTY6sVLUaaFxj3zLwzYkQdWPJ7NpEaP-4M30B8UJUnjS2ozTqFlk15ydQvhWvh72gdbPGRu833-3Q-2EAarBT55TL8yYSpiM4K1ceFuhmBFaSWxElfIoBOsWKO4zJbnwUukFqWuwv7nCXXEB3hM89wq5KnxfYjqhOGyDPdAjYWhL9XzhbVnO2JwWucFcMvAaWMcUVhMDWruwPJ0U5XlO79-5m9cX-TQ5O00mkz8M4-A2uWk9Wme7ZsEVsmTyVXKrmRbhWOWxSlbsr9J5aXtdv7pDvo7NyTEdL6aoskqTOqMZnhwhtzhF5ox3GB1h3k1qnGrvsi7DKB2sinGGJwoTMzXchukqdL-eOQT_6_STeXKXHFwKNe6R5Rzwu0acMGXKz1ztBp4KMpMmxoBFiBIG7qDgSdQjfoP6WNtm6DiTYxJXJ3wCgqIaezESLLYE6xHa3jWtm4H8B_4tUrWFxVbe1YVidhRbzRBnPgSNUnPNuQkUOIyZNK5IlRRuKrWUPbKBPBHXdbGtQoq3A3DuQCA83iNPKwhs55GjYBwli7KMh5--XABo_LkD9MICZQWgQye2RgO-CduEdSDXO5CglHRneQ05uMFKGf8WX7iz4erzl5-0y_hQzAHMTbGoYHwZCT8Ie-R-LQQtZpkfSlcGgCzREY8O6rsr-fH3qpu6DxFNFHk9stkK0oWI--Df37FBroF-ij8O93YfkhusGqLCqSfWyfJ8tjCPwJWdq8eVznDIt8tWUr8AG2eurw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKBAQ4nHwNnHiOD4uj2rLoazYFrVCKIodByq22VWTCMGB385M4kQEiigHbqt4HK0_j8cz8cxnQh5xpUwkWEZVzj0aSqZpynNDjc4hxNWwwegm22Ivmh6Erw_54Rr50NXCWAQhRlwsy-YkH38sC7NtkdxGvqL29HTsB8LveoxXIIRZWrAfs8cN4xB-GauwAOkCWY84uOojsn6wN5sctSfNjEbMC2w53Z_eNNiuGlb_3naP8J-d5Zj-nl95sS5W6dcv6WLx0-a1c4V874bd5qx8HteVGutvvzBC_jdcrpLL1u11J-1bNsiaKa6RDWtYSvepZb9-dp28n5uTYzqvV2jESpO5s1M8S0L9cZe5O58yOsNMnMy4zdfMtjCjdLFOxt09UZiqqaEbJrDQ_fYWolVduS_TKr1BDnZe7b-YUnsDBNUQx1TUj3KmUiZj0BoPtEkoZoRWEonCMh5H4H2EigdMSS78TPph5hnkn1d4aiHAu71JRgWMf5O4UcZUkHvaC30V5iZLjYE9Ik4ZOIiCp7FDgm6iE23p0fGWjkXSnPkJCJNaqBIENLGAOoT2vVYtPchf5J-jDvWySO7dPIAZTexMJnkAYaTUXHNuQgUuZC6NJzIlhZdJLaVD7qMGJm2lbG-ikkkI7l4INpY75GEjgQQfBWYQfUzrskx237w7h9D87UDoiRXKlwCHTm3VBowJFW4guTWQBDOlB82bqLEdKiVgxME1wjJV6NmtobObH_TN-FLMCizMsm5kAhmLIIwccqtdcj2yLIikJ0MASwwW4wD6YUtx_KnhVw8gxolj3yHjftmea3Jv_2uHO-QSa25X4dQXW2RUndbmLvi4lbpnLdUPyeSqBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Prediction+of+SH2-Peptide+Interactions+from+Imbalanced+High-Throughput+Data&rft.jtitle=PloS+one&rft.au=Kundu%2C+Kousik&rft.au=Costa%2C+Fabrizio&rft.au=Huber%2C+Michael&rft.au=Reth%2C+Michael&rft.date=2013-05-17&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=8&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pone.0062732&rft.externalDocID=1352841037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |