Copynumber: Efficient algorithms for single- and multi-track copy number segmentation

Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offeri...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 13; no. 1; p. 591
Main Authors Nilsen, Gro, Liestøl, Knut, Van Loo, Peter, Moen Vollan, Hans Kristian, Eide, Marianne B, Rueda, Oscar M, Chin, Suet-Feung, Russell, Roslin, Baumbusch, Lars O, Caldas, Carlos, Børresen-Dale, Anne-Lise, Lingjærde, Ole Christian
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.11.2012
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-13-591

Cover

Abstract Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
AbstractList Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results: A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions: The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Keywords: Copy number, aCGH, Segmentation, Allele-specific segmentation, Penalized regression, Least squares, Bioconductor
Abstract Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number.BACKGROUNDCancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number.A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented.RESULTSA comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented.The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.CONCLUSIONSThe R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
Doc number: 591 Abstract Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results: A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions: The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.
ArticleNumber 591
Audience Academic
Author Baumbusch, Lars O
Lingjærde, Ole Christian
Rueda, Oscar M
Chin, Suet-Feung
Eide, Marianne B
Van Loo, Peter
Nilsen, Gro
Børresen-Dale, Anne-Lise
Liestøl, Knut
Caldas, Carlos
Moen Vollan, Hans Kristian
Russell, Roslin
AuthorAffiliation 7 Dept of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Radiumhospitalet, Oslo, Norway
8 Dept of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
1 Biomedical Informatics, Dept of Informatics, University of Oslo, Oslo, Norway
9 Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, UK
3 Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
4 Dept of Human Genetics, VIB and University of Leuven, Leuven, Belgium
10 Cambridge Breast Unit, Addenbrookes Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
2 Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
5 Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
6 Insti
AuthorAffiliation_xml – name: 4 Dept of Human Genetics, VIB and University of Leuven, Leuven, Belgium
– name: 7 Dept of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Radiumhospitalet, Oslo, Norway
– name: 6 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
– name: 8 Dept of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
– name: 5 Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
– name: 9 Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, UK
– name: 10 Cambridge Breast Unit, Addenbrookes Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
– name: 3 Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
– name: 2 Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway
– name: 1 Biomedical Informatics, Dept of Informatics, University of Oslo, Oslo, Norway
Author_xml – sequence: 1
  givenname: Gro
  surname: Nilsen
  fullname: Nilsen, Gro
  organization: Biomedical Informatics, Dept of Informatics, University of Oslo, Centre for Cancer Biomedicine, University of Oslo
– sequence: 2
  givenname: Knut
  surname: Liestøl
  fullname: Liestøl, Knut
  organization: Biomedical Informatics, Dept of Informatics, University of Oslo, Centre for Cancer Biomedicine, University of Oslo
– sequence: 3
  givenname: Peter
  surname: Van Loo
  fullname: Van Loo, Peter
  organization: Cancer Genome Project, Wellcome Trust Sanger Institute, Dept of Human Genetics, VIB and University of Leuven
– sequence: 4
  givenname: Hans Kristian
  surname: Moen Vollan
  fullname: Moen Vollan, Hans Kristian
  organization: Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Dept of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Radiumhospitalet
– sequence: 5
  givenname: Marianne B
  surname: Eide
  fullname: Eide, Marianne B
  organization: Centre for Cancer Biomedicine, University of Oslo, Dept of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet
– sequence: 6
  givenname: Oscar M
  surname: Rueda
  fullname: Rueda, Oscar M
  organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre
– sequence: 7
  givenname: Suet-Feung
  surname: Chin
  fullname: Chin, Suet-Feung
  organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre
– sequence: 8
  givenname: Roslin
  surname: Russell
  fullname: Russell, Roslin
  organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre
– sequence: 9
  givenname: Lars O
  surname: Baumbusch
  fullname: Baumbusch, Lars O
  organization: Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet
– sequence: 10
  givenname: Carlos
  surname: Caldas
  fullname: Caldas, Carlos
  organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge Breast Unit, Addenbrookes Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust
– sequence: 11
  givenname: Anne-Lise
  surname: Børresen-Dale
  fullname: Børresen-Dale, Anne-Lise
  organization: Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo
– sequence: 12
  givenname: Ole Christian
  surname: Lingjærde
  fullname: Lingjærde, Ole Christian
  email: ole@ifi.uio.no
  organization: Biomedical Informatics, Dept of Informatics, University of Oslo, Centre for Cancer Biomedicine, University of Oslo, Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23442169$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB-wZ4UisYFFih0_ErOoVI0KjFQJCeja8jg3qYfEHuwEmH-P0wzDpAJUeRHr5jvH9rn3NDmyzkKSPMfoHOOSv8G0wFmOOc0wyZjAj5KTfenoYH-cnIawRggXZc6eJMc5oTTWxUlys3CbrR26Ffi36VVdG23A9qlqG-dNf9uFtHY-DcY2LWSpslXaDW1vst4r_TXVUZxO6jRA00Wp6o2zT5PHtWoDPNt9z5Kbd1dfFh-y64_vl4vL60wXjPeZAiRwSTnPOWO8rnQuGChKKYYKUVyQosIlIQWLVS4orHKGaswEZxUtEGfkLFlOvpVTa7nxplN-K50y8q7gfCOV741uQWqB4_N5DURpirQqeUEAippzvBIIdPTCk9dgN2r7Q7Xt3hAjOcYtxzzlmKfERMa4o-Zi0myGVQeVju_3qp1dZP7HmlvZuO-SsNiIO4NXOwPvvg0QetmZoKFtlQU3hHhOPFdQQcRDUEJzwgSK6Mt76NoN3sZOjFROy4KV7A_VqJiPsbUbmzqayktGKMaMFDxS53-h4qqgMzqOY21ifSZ4PRNEpoeffaOGEOTy86c5--Iwv31wv-czAnwCtHcheKilNtOIxVuY9n-dQfeED2jmbgBCRG0D_iC1f2l-AUB_EmU
CitedBy_id crossref_primary_10_1126_science_1247167
crossref_primary_10_1158_2159_8290_CD_17_0368
crossref_primary_10_1016_j_modpat_2024_100625
crossref_primary_10_1186_s12885_017_3447_6
crossref_primary_10_1038_s41467_024_50727_w
crossref_primary_10_1016_j_cels_2020_08_012
crossref_primary_10_1186_s12935_022_02587_x
crossref_primary_10_1038_s41586_021_03357_x
crossref_primary_10_1038_s41592_020_01013_2
crossref_primary_10_1097_JBR_0000000000000116
crossref_primary_10_1038_s41523_021_00375_w
crossref_primary_10_1186_s13059_016_1109_7
crossref_primary_10_1093_bioinformatics_btz381
crossref_primary_10_1186_s13062_022_00324_y
crossref_primary_10_3389_fgene_2020_505441
crossref_primary_10_1038_s41525_020_0134_3
crossref_primary_10_1172_jci_insight_152789
crossref_primary_10_1038_s41467_024_45972_y
crossref_primary_10_1371_journal_pone_0087212
crossref_primary_10_1126_sciadv_abm4950
crossref_primary_10_1038_s41467_017_02800_w
crossref_primary_10_1158_0008_5472_CAN_16_0658
crossref_primary_10_1038_s41586_022_05202_1
crossref_primary_10_1038_s41467_021_25359_z
crossref_primary_10_1002_1878_0261_13656
crossref_primary_10_18632_oncotarget_10181
crossref_primary_10_3389_fgene_2022_987205
crossref_primary_10_1186_s12943_017_0691_y
crossref_primary_10_1158_0008_5472_CAN_20_4189
crossref_primary_10_1016_j_xpro_2024_103499
crossref_primary_10_1093_bioinformatics_btaa538
crossref_primary_10_1038_s41419_018_0500_6
crossref_primary_10_1093_bioinformatics_btw325
crossref_primary_10_1049_iet_syb_2013_0027
crossref_primary_10_1093_bioinformatics_btae454
crossref_primary_10_1080_10428194_2023_2240462
crossref_primary_10_1038_s41379_020_0591_3
crossref_primary_10_1016_j_labinv_2023_100283
crossref_primary_10_1038_s41388_019_0868_5
crossref_primary_10_1093_bioinformatics_btac041
crossref_primary_10_1038_s41586_022_04738_6
crossref_primary_10_1371_journal_pone_0142487
crossref_primary_10_1186_s12885_021_08811_7
crossref_primary_10_1002_cam4_1905
crossref_primary_10_1016_j_scr_2020_101806
crossref_primary_10_1186_s12859_016_1239_7
crossref_primary_10_1016_j_mrfmmm_2018_06_002
crossref_primary_10_1186_s13059_020_02119_8
crossref_primary_10_1016_j_isci_2021_102718
crossref_primary_10_1038_s41467_018_04924_z
crossref_primary_10_1002_path_4540
crossref_primary_10_1002_path_6289
crossref_primary_10_1093_nar_gkt345
crossref_primary_10_1016_j_ccell_2021_10_001
crossref_primary_10_1016_j_molonc_2014_07_019
crossref_primary_10_1016_j_xgen_2023_100389
crossref_primary_10_18632_oncotarget_2517
crossref_primary_10_1371_journal_pbio_3000926
crossref_primary_10_1186_s40659_017_0108_9
crossref_primary_10_1530_ERC_15_0086
crossref_primary_10_1016_j_cell_2019_02_012
crossref_primary_10_3389_fgene_2019_00888
crossref_primary_10_1186_gb_2013_14_11_r126
crossref_primary_10_1038_s41467_023_37092_w
crossref_primary_10_1186_s13073_022_01090_2
crossref_primary_10_18632_oncotarget_13025
crossref_primary_10_3390_diagnostics10070455
crossref_primary_10_1038_ng_3221
crossref_primary_10_1038_s41591_020_1125_8
crossref_primary_10_1016_j_gdata_2014_06_025
crossref_primary_10_1038_s41467_022_29342_0
crossref_primary_10_1038_s43018_024_00787_0
crossref_primary_10_1093_bioinformatics_btaa449
crossref_primary_10_1016_j_ebiom_2021_103559
crossref_primary_10_3389_fimmu_2022_921761
crossref_primary_10_1016_j_ccell_2019_05_013
crossref_primary_10_1016_j_jtho_2019_04_015
crossref_primary_10_1038_s41523_021_00365_y
crossref_primary_10_3390_cancers13020340
crossref_primary_10_1002_gcc_22272
crossref_primary_10_1371_journal_pcbi_1006596
crossref_primary_10_1002_1878_0261_12885
crossref_primary_10_1016_j_pneurobio_2022_102316
crossref_primary_10_1016_j_ajpath_2017_06_012
crossref_primary_10_1093_humrep_dez285
crossref_primary_10_1038_s41588_018_0086_z
crossref_primary_10_1186_s13059_014_0433_z
crossref_primary_10_1002_ijc_31761
crossref_primary_10_1038_s41598_020_57942_7
crossref_primary_10_1007_s00432_019_03078_9
crossref_primary_10_7554_eLife_75227
crossref_primary_10_1158_1078_0432_CCR_20_2268
crossref_primary_10_1158_2159_8290_CD_16_0607
crossref_primary_10_1186_gb_2013_14_10_r113
crossref_primary_10_1038_s41591_020_1033_y
crossref_primary_10_1182_blood_2013_07_512392
crossref_primary_10_1016_j_prp_2022_154018
crossref_primary_10_1101_gr_209973_116
crossref_primary_10_1093_bioinformatics_bty1022
crossref_primary_10_1093_jnci_djab069
crossref_primary_10_1126_science_abq6453
crossref_primary_10_1186_s12864_021_07696_x
crossref_primary_10_1038_s41467_020_15047_9
crossref_primary_10_1016_j_cell_2022_06_007
crossref_primary_10_1016_j_ccell_2019_06_002
crossref_primary_10_1016_j_biopha_2023_115630
crossref_primary_10_1038_s41598_020_75854_4
crossref_primary_10_1016_j_stem_2022_07_008
crossref_primary_10_1007_s00535_022_01937_w
crossref_primary_10_1038_srep19435
crossref_primary_10_1093_bioinformatics_btae284
crossref_primary_10_1126_science_aau8768
crossref_primary_10_1371_journal_pgen_1006225
crossref_primary_10_3390_ijms25115876
crossref_primary_10_1016_j_ebiom_2020_102793
crossref_primary_10_1002_gcc_22757
crossref_primary_10_1371_journal_pone_0053014
crossref_primary_10_1038_s41586_023_06872_1
crossref_primary_10_1038_s41467_019_12985_x
crossref_primary_10_1186_s13058_017_0812_y
crossref_primary_10_1038_ng_3659
crossref_primary_10_1038_s41467_024_47664_z
crossref_primary_10_3389_fonc_2020_01682
crossref_primary_10_1038_s41586_018_0024_3
crossref_primary_10_3390_ijms24021116
crossref_primary_10_3389_fgene_2021_655536
crossref_primary_10_1016_j_ccell_2021_08_011
crossref_primary_10_1038_s41467_019_13915_7
crossref_primary_10_1038_ng_3771
crossref_primary_10_1186_s12885_016_2899_4
crossref_primary_10_1186_s13058_021_01451_6
crossref_primary_10_1016_j_cell_2021_01_002
crossref_primary_10_1186_s13058_016_0789_y
crossref_primary_10_1002_gcc_22729
crossref_primary_10_1038_s41467_024_51508_1
crossref_primary_10_1101_gr_200527_115
crossref_primary_10_1126_science_1253462
crossref_primary_10_1093_bib_bbad297
crossref_primary_10_1038_ncomms14944
crossref_primary_10_1038_s41523_020_0167_x
crossref_primary_10_1126_sciadv_abp8901
crossref_primary_10_1038_s41467_020_15155_6
crossref_primary_10_1016_j_oraloncology_2020_104615
crossref_primary_10_1038_sdata_2018_240
crossref_primary_10_1186_s12859_022_04890_w
crossref_primary_10_1016_j_ebiom_2022_104169
crossref_primary_10_3390_biology13050350
crossref_primary_10_1016_j_ajhg_2015_04_011
crossref_primary_10_1186_s13046_021_02034_1
crossref_primary_10_1214_18_AOAS1223
crossref_primary_10_1038_s41388_017_0099_6
crossref_primary_10_2139_ssrn_4113366
crossref_primary_10_1038_s41591_019_0620_2
crossref_primary_10_1186_s13059_022_02693_z
crossref_primary_10_1093_nar_gks1352
crossref_primary_10_1038_s41598_022_05737_3
crossref_primary_10_1093_annonc_mdu479
crossref_primary_10_1093_bib_bbab292
crossref_primary_10_1158_0008_5472_CAN_23_0144
crossref_primary_10_1186_s12859_018_2565_8
crossref_primary_10_1016_j_celrep_2020_107550
crossref_primary_10_1002_path_6217
crossref_primary_10_1097_PAS_0000000000001804
crossref_primary_10_1038_s41523_019_0113_y
crossref_primary_10_1093_bib_bbac264
crossref_primary_10_1016_j_ccell_2023_11_007
crossref_primary_10_1038_s41587_022_01468_y
crossref_primary_10_1038_s41379_018_0074_y
crossref_primary_10_1016_j_cell_2018_03_057
crossref_primary_10_1016_j_heliyon_2024_e28071
crossref_primary_10_1038_ng_2891
crossref_primary_10_1371_journal_pone_0126371
crossref_primary_10_1371_journal_pone_0184425
crossref_primary_10_1101_gr_275453_121
crossref_primary_10_1038_s41467_017_02621_x
crossref_primary_10_1093_bioinformatics_btac586
crossref_primary_10_1038_s41598_020_67842_5
crossref_primary_10_1016_j_bspc_2021_103004
crossref_primary_10_1371_journal_pcbi_1008012
crossref_primary_10_1038_s41523_017_0026_6
crossref_primary_10_1038_s41525_024_00430_y
crossref_primary_10_1007_s00428_024_03935_0
crossref_primary_10_1038_nprot_2016_138
crossref_primary_10_1038_s41467_021_27079_w
crossref_primary_10_1101_gr_240705_118
crossref_primary_10_1158_1078_0432_CCR_21_1317
crossref_primary_10_1371_journal_pone_0207840
crossref_primary_10_1038_s42003_020_0884_6
crossref_primary_10_1016_j_molonc_2015_03_002
crossref_primary_10_1038_ncomms11111
crossref_primary_10_1038_ng_3641
crossref_primary_10_1038_s41598_017_09139_8
crossref_primary_10_1186_s13073_018_0601_y
crossref_primary_10_1002_gcc_22533
crossref_primary_10_1016_j_ebiom_2023_104829
crossref_primary_10_1016_j_celrep_2020_107669
crossref_primary_10_1371_journal_pone_0142294
crossref_primary_10_3390_cancers12061603
crossref_primary_10_1186_s13059_024_03267_x
crossref_primary_10_1016_j_cell_2018_03_043
crossref_primary_10_1016_j_modpat_2022_100044
crossref_primary_10_3390_cancers11050736
Cites_doi 10.1093/bioinformatics/bth418
10.1093/bioinformatics/btm221
10.1080/10485250211388
10.1093/biostatistics/kxq076
10.1126/scitranslmed.3000611
10.1073/pnas.0402932101
10.1093/bioinformatics/btp653
10.1038/ng2093
10.1093/bioinformatics/btn067
10.1073/pnas.1009843107
10.1182/blood-2010-03-272278
10.1186/1471-2105-8-145
10.1093/bioinformatics/bti611
10.1093/biostatistics/kxh008
10.1214/07-AOAS155
10.1093/bioinformatics/btr162
10.1101/gr.080069.108
10.1093/bioinformatics/btl646
10.1002/ijc.26444
10.1093/biomet/asq025
10.1056/NEJMoa1113205
10.1093/nar/gkm1143
10.1111/j.1541-0420.2006.00662.x
10.1093/biostatistics/kxm013
10.2174/157489310790596402
10.1186/gb-2007-8-10-r228
10.1038/nature08822
10.1186/1471-2105-6-27
10.1073/pnas.0710052104
10.1093/bioinformatics/btn272
10.1093/nar/gkq548
10.1093/bioinformatics/bti677
10.1093/nar/gkr137
10.1007/978-1-4899-2819-1
10.1093/biostatistics/kxh017
10.1200/JCO.2003.02.009
ContentType Journal Article
Copyright Nilsen et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2012 BioMed Central Ltd.
2012 Nilsen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2012 Nilsen et al.; licensee BioMed Central Ltd. 2012 Nilsen et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Nilsen et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2012 BioMed Central Ltd.
– notice: 2012 Nilsen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2012 Nilsen et al.; licensee BioMed Central Ltd. 2012 Nilsen et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2164-13-591
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts




MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 591
ExternalDocumentID oai_doaj_org_article_c910176fe3ac40ca8673ee7f661b90ec
10.1186/1471-2164-13-591
PMC3582591
2901691661
A534115376
23442169
10_1186_1471_2164_13_591
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Norway
GeographicLocations_xml – name: Norway
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
C1A
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c756t-ae091846626556fdc295ea4441ed041737d1833755ea694eb250f15965d470653
IEDL.DBID M48
ISSN 1471-2164
IngestDate Fri Oct 03 12:42:32 EDT 2025
Sun Oct 26 04:02:16 EDT 2025
Tue Sep 30 15:43:31 EDT 2025
Wed Oct 01 13:55:39 EDT 2025
Fri Sep 05 12:22:52 EDT 2025
Tue Oct 07 05:39:41 EDT 2025
Mon Oct 20 22:51:17 EDT 2025
Mon Oct 20 16:57:42 EDT 2025
Thu Oct 16 16:17:13 EDT 2025
Mon Jul 21 06:04:45 EDT 2025
Wed Oct 01 03:03:06 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Sat Sep 06 07:28:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bioconductor
Segmentation
Copy number
Least squares
Penalized regression
aCGH
Allele-specific segmentation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c756t-ae091846626556fdc295ea4441ed041737d1833755ea694eb250f15965d470653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://link.springer.com/10.1186/1471-2164-13-591
PMID 23442169
PQID 1312487585
PQPubID 44682
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c910176fe3ac40ca8673ee7f661b90ec
unpaywall_primary_10_1186_1471_2164_13_591
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3582591
proquest_miscellaneous_1318694939
proquest_miscellaneous_1313423590
proquest_journals_1312487585
gale_infotracmisc_A534115376
gale_infotracacademiconefile_A534115376
gale_incontextgauss_ISR_A534115376
pubmed_primary_23442169
crossref_citationtrail_10_1186_1471_2164_13_591
crossref_primary_10_1186_1471_2164_13_591
springer_journals_10_1186_1471_2164_13_591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-04
PublicationDateYYYYMMDD 2012-11-04
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2012
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References L Wang (4763_CR14) 2009; 19
C Chen (4763_CR16) 2011; 39
E Ben-Yaacov (4763_CR11) 2008; 24
BP Coe (4763_CR15) 2010; 38
ES Venkatraman (4763_CR36) 2007; 23
W Lai (4763_CR37) 2008; 24
F Picard (4763_CR22) 2011; 12
NR Zhang (4763_CR27) 2007; 63
NR Zhang (4763_CR21) 2010; 97
NR Zhang (4763_CR20) 2010; 26
G Wiedswang (4763_CR33) 2003; 21
C Klijn (4763_CR30) 2008; 36
AB Olshen (4763_CR4) 2004; 5
F Picard (4763_CR6) 2005; 6
H Willenbrock (4763_CR8) 2005; 21
SM Teo (4763_CR23) 2011; 27
JW Tukey (4763_CR35) 1960
SW Scherer (4763_CR17) 2007; 39
G Winkler (4763_CR24) 2002; 14
RB Scharpf (4763_CR13) 2008; 2
R Beroukhim (4763_CR29) 2007; 104
R Beroukhim (4763_CR1) 2010; 18
WR Lai (4763_CR5) 2005; 21
M Gerlinger (4763_CR28) 2012; 366
T Yu (4763_CR10) 2007; 8
WN Venables (4763_CR25) 1994
R Tibshirani (4763_CR12) 2008; 9
MB Eide (4763_CR34) 2010; 116
RR Mathiesen (4763_CR32) 2011; 131
HG Russnes (4763_CR2) 2010; 2
P Van Loo (4763_CR26) 2010; 107
OM Rueda (4763_CR18) 2010; 5
SP Shah (4763_CR19) 2007; 23
P Hupe (4763_CR3) 2004; 20
P Wang (4763_CR7) 2005; 6
JC Marioni (4763_CR9) 2007; 8
AJ Aguirre (4763_CR31) 2004; 101
17477871 - BMC Bioinformatics. 2007;8:145
20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5
16159913 - Bioinformatics. 2005 Nov 15;21(22):4084-91
17513312 - Biostatistics. 2008 Jan;9(1):18-29
20164920 - Nature. 2010 Feb 18;463(7283):899-905
18296463 - Bioinformatics. 2008 Apr 1;24(7):1014-5
21471018 - Bioinformatics. 2011 Jun 1;27(11):1555-61
19609370 - Ann Appl Stat. 2008 Jun 1;2(2):687-713
18077431 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12
17234643 - Bioinformatics. 2007 Mar 15;23(6):657-63
18187509 - Nucleic Acids Res. 2008 Feb;36(2):e13
15475419 - Biostatistics. 2004 Oct;5(4):557-72
22822250 - Biometrika. 2010 Sep;97(3):631-645
16081473 - Bioinformatics. 2005 Oct 1;21(19):3763-70
12972522 - J Clin Oncol. 2003 Sep 15;21(18):3469-78
20505157 - Blood. 2010 Sep 2;116(9):1489-97
17597783 - Nat Genet. 2007 Jul;39(7 Suppl):S7-15
17447926 - Biometrics. 2007 Mar;63(1):22-32
15705208 - BMC Bioinformatics. 2005;6:27
20592421 - Sci Transl Med. 2010 Jun 30;2(38):38ra47
21935921 - Int J Cancer. 2012 Aug 15;131(4):E405-15
17961237 - Genome Biol. 2007;8(10):R228
20551132 - Nucleic Acids Res. 2010 Aug;38(15):e157
21209153 - Biostatistics. 2011 Jul;12(3):413-28
17646330 - Bioinformatics. 2007 Jul 1;23(13):i450-8
19933593 - Bioinformatics. 2010 Jan 15;26(2):153-60
18689815 - Bioinformatics. 2008 Aug 15;24(16):i139-45
15199222 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9067-72
22397650 - N Engl J Med. 2012 Mar 8;366(10):883-92
15381628 - Bioinformatics. 2004 Dec 12;20(18):3413-22
15618527 - Biostatistics. 2005 Jan;6(1):45-58
21576227 - Nucleic Acids Res. 2011 Jul;39(13):e89
19037015 - Genome Res. 2009 Jan;19(1):106-17
References_xml – volume: 20
  start-page: 3413
  year: 2004
  ident: 4763_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth418
– start-page: 448
  volume-title: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling
  year: 1960
  ident: 4763_CR35
– volume: 23
  start-page: i450
  year: 2007
  ident: 4763_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm221
– volume: 14
  start-page: 203
  year: 2002
  ident: 4763_CR24
  publication-title: J Nonparametr Stat
  doi: 10.1080/10485250211388
– volume: 12
  start-page: 413
  year: 2011
  ident: 4763_CR22
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxq076
– volume: 2
  start-page: 38
  year: 2010
  ident: 4763_CR2
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3000611
– volume: 101
  start-page: 9067
  year: 2004
  ident: 4763_CR31
  publication-title: Proc Natl Acad Sci US
  doi: 10.1073/pnas.0402932101
– volume: 26
  start-page: 153
  year: 2010
  ident: 4763_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp653
– volume: 39
  start-page: S7
  year: 2007
  ident: 4763_CR17
  publication-title: Nat Genet
  doi: 10.1038/ng2093
– volume: 24
  start-page: 1014
  issue: 7
  year: 2008
  ident: 4763_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn067
– volume: 107
  start-page: 16910
  year: 2010
  ident: 4763_CR26
  publication-title: Proc Natl Acad Sci US
  doi: 10.1073/pnas.1009843107
– volume: 116
  start-page: 1489
  year: 2010
  ident: 4763_CR34
  publication-title: Blood
  doi: 10.1182/blood-2010-03-272278
– volume: 8
  start-page: 145
  year: 2007
  ident: 4763_CR10
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-8-145
– volume: 21
  start-page: 3763
  year: 2005
  ident: 4763_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti611
– volume: 5
  start-page: 557
  year: 2004
  ident: 4763_CR4
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh008
– volume: 2
  start-page: 687
  year: 2008
  ident: 4763_CR13
  publication-title: Ann Appl Stat
  doi: 10.1214/07-AOAS155
– volume: 27
  start-page: 1555
  year: 2011
  ident: 4763_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr162
– volume: 19
  start-page: 106
  year: 2009
  ident: 4763_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.080069.108
– volume: 23
  start-page: 657
  year: 2007
  ident: 4763_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl646
– volume: 131
  start-page: E405
  issue: 4
  year: 2011
  ident: 4763_CR32
  publication-title: Int J Cancer
  doi: 10.1002/ijc.26444
– volume: 97
  start-page: 631
  year: 2010
  ident: 4763_CR21
  publication-title: Biometrica
  doi: 10.1093/biomet/asq025
– volume: 366
  start-page: 883
  year: 2012
  ident: 4763_CR28
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 36
  start-page: e13
  year: 2008
  ident: 4763_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm1143
– volume: 63
  start-page: 22
  year: 2007
  ident: 4763_CR27
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00662.x
– volume: 9
  start-page: 18
  year: 2008
  ident: 4763_CR12
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm013
– volume: 5
  start-page: 1
  year: 2010
  ident: 4763_CR18
  publication-title: Curr Bioinf
  doi: 10.2174/157489310790596402
– volume: 8
  start-page: R228
  year: 2007
  ident: 4763_CR9
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-10-r228
– volume: 18
  start-page: 899
  year: 2010
  ident: 4763_CR1
  publication-title: Nature
  doi: 10.1038/nature08822
– volume: 6
  start-page: 27
  year: 2005
  ident: 4763_CR6
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-6-27
– volume: 104
  start-page: 20007
  year: 2007
  ident: 4763_CR29
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0710052104
– volume: 24
  start-page: i139
  issue: 16
  year: 2008
  ident: 4763_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn272
– volume: 38
  start-page: e157
  issue: 15
  year: 2010
  ident: 4763_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq548
– volume: 21
  start-page: 4084
  year: 2005
  ident: 4763_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti677
– volume: 39
  start-page: e89
  issue: 13
  year: 2011
  ident: 4763_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr137
– volume-title: Modern Applied Statistics with S-Plus
  year: 1994
  ident: 4763_CR25
  doi: 10.1007/978-1-4899-2819-1
– volume: 6
  start-page: 45
  year: 2005
  ident: 4763_CR7
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh017
– volume: 21
  start-page: 3469
  year: 2003
  ident: 4763_CR33
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2003.02.009
– reference: 17513312 - Biostatistics. 2008 Jan;9(1):18-29
– reference: 20551132 - Nucleic Acids Res. 2010 Aug;38(15):e157
– reference: 21209153 - Biostatistics. 2011 Jul;12(3):413-28
– reference: 15705208 - BMC Bioinformatics. 2005;6:27
– reference: 22397650 - N Engl J Med. 2012 Mar 8;366(10):883-92
– reference: 19609370 - Ann Appl Stat. 2008 Jun 1;2(2):687-713
– reference: 17447926 - Biometrics. 2007 Mar;63(1):22-32
– reference: 17961237 - Genome Biol. 2007;8(10):R228
– reference: 18296463 - Bioinformatics. 2008 Apr 1;24(7):1014-5
– reference: 20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5
– reference: 17234643 - Bioinformatics. 2007 Mar 15;23(6):657-63
– reference: 21935921 - Int J Cancer. 2012 Aug 15;131(4):E405-15
– reference: 16159913 - Bioinformatics. 2005 Nov 15;21(22):4084-91
– reference: 21471018 - Bioinformatics. 2011 Jun 1;27(11):1555-61
– reference: 22822250 - Biometrika. 2010 Sep;97(3):631-645
– reference: 19933593 - Bioinformatics. 2010 Jan 15;26(2):153-60
– reference: 21576227 - Nucleic Acids Res. 2011 Jul;39(13):e89
– reference: 12972522 - J Clin Oncol. 2003 Sep 15;21(18):3469-78
– reference: 15381628 - Bioinformatics. 2004 Dec 12;20(18):3413-22
– reference: 15618527 - Biostatistics. 2005 Jan;6(1):45-58
– reference: 20164920 - Nature. 2010 Feb 18;463(7283):899-905
– reference: 20505157 - Blood. 2010 Sep 2;116(9):1489-97
– reference: 18187509 - Nucleic Acids Res. 2008 Feb;36(2):e13
– reference: 19037015 - Genome Res. 2009 Jan;19(1):106-17
– reference: 18689815 - Bioinformatics. 2008 Aug 15;24(16):i139-45
– reference: 17597783 - Nat Genet. 2007 Jul;39(7 Suppl):S7-15
– reference: 17477871 - BMC Bioinformatics. 2007;8:145
– reference: 15199222 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9067-72
– reference: 16081473 - Bioinformatics. 2005 Oct 1;21(19):3763-70
– reference: 20592421 - Sci Transl Med. 2010 Jun 30;2(38):38ra47
– reference: 17646330 - Bioinformatics. 2007 Jul 1;23(13):i450-8
– reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72
– reference: 18077431 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12
SSID ssj0017825
Score 2.5044076
Snippet Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring...
Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic...
Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring...
Doc number: 591 Abstract Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing...
Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for...
Abstract Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 591
SubjectTerms aCGH
Algorithms
Allele-specific segmentation
Analysis
Animal Genetics and Genomics
Artificial chromosomes
Bioconductor
Biomedical and Life Sciences
Biomedical research
Breakpoints
Cancer
Case studies
Computer programs
Copy number
Copy number variations
Cytogenetics
Data processing
Development and progression
DNA
DNA - genetics
DNA Copy Number Variations
Dynamic programming
Gene Dosage
Genetic aspects
Genetics
Genome, Human
Genomes
Genomic Instability
Genomics
Human and rodent genomic
Humans
Least squares
Life Sciences
Lymphoma, Follicular - genetics
Medical research
Methods
Microarrays
Microbial Genetics and Genomics
Neoplasms - genetics
Oligonucleotide Array Sequence Analysis - methods
Penalized regression
Plant Genetics and Genomics
Polymorphism, Single Nucleotide
Programming languages
Proteomics
Segmentation
Single-nucleotide polymorphism
Software
Studies
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcUHk2tCCDkBCVos3Dj5hbqVoVJDgAK_VmOY6zrUiTVbMrtP-eGeehDYj2wtUeR8l8Y89MbH9DyFuWMacSQMCK2IQMS5uoIneQtZY5s8rJyOKO7pev4mzOPp_z861SX3gmrKMH7hQ3swqNRpQuNZZF1mRCps7JEvxKriJncfWNMjUkU_3-Afg97u8VyThMICMYNigzMRvbwjgNuYonDsnz9v-9Om-5pz-PTo77pw_IvXW9NJtfpqq2XNTpLnnYx5b0qPumR-SOqx-Tu121yc0TMj9ulpuuAsgHeuKpI-Dx1FSL5vpydXHVUghgKf47qFxITV1Qf9owhDewP6mFwbQbTVu3uOrvLNVPyfz05MfxWdhXVQit5GIVGgchAkQdkMlwLsrCJoo7wyAsckUEYKWygGmeSg6tQjHIvHlUQtAjeMFwTzR9RnbqpnZ7hDqWGZlY5hLw9LmRhhfKltbwUhXOZGlAZoNqte0px7HyRaV96pEJjWBoBEPHqQYwAvJ-HLHs6DZukP2IaI1ySJTtG8B8dG8--jbzCcgbxFojFUaNZ20WZt22-tP3b_qIg4ePke4mIO96obJBnZv-6gJoAdmzJpIHE0mYq3baPZiU7teKFr4GYqwM87aAvB67cSSef6tds_YySNXIVXSjTAaAqVQF5HlnpaNukpQxUB30yIn9TpQ37akvLzzbOF6l9to-HCx969X_Cc3hOBduxfHF_8Bxn9yHUDbxt0TZAdlZXa_dSwgXV_krvzL8BnhkX9s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELdGJwR8QLwXGMggJMSkqElsJzESQtvUaSBRoUGlfbMcx-nQuqSsrVD_e-6cBw2I8jU-V-nd-R658-8Iec1TbmUEEjBxqH2Oo01knlnIWouMG2mTwGBF9_M4Pp3wT-fifIeM27sw2FbZ2kRnqPPK4DfyYcjAE6UY3X6Y__BxahRWV9sRGroZrZC_dxBjN8huhMhYA7J7NBp_OevqCuAPRVusTONhCKbZjyBj8EPmCxn2nJPD8P_bUm-4qj_bKLta6h1ya1XO9fqnns023NXJPXK3iTPpYa0Y98mOLR-Qm_XkyfVDMjmu5ut6Gsg7OnIwEvDzVM-m8J-XF1cLCsEsxe8IM-tTXebUdR768AbmkhrYTOvddGGnV839pfIRmZyMvh2f-s2EBd8kIl762kK4ABEIZDVCxEVuIims5hAi2TwAwbEkhyPPEgFPY8khCxdBAQFQLHKO9VH2mAzKqrR7hFqe6iQy3Ebg9TOdaJFLUxgtCplbnTKPDFvWKtPAj-MUjJlyaUgaKxSGQmGokCkQhkfedjvmNfTGFtojlFZHh6DZ7kF1PVXNGVRGov2JC8u04YHRaZwwa5MCQpRMBtZ45BXKWiEsRol9N1O9WizUx69n6lCAtw8R-sYjbxqiokKe6-YaA3ABkbR6lPs9Sji3pr_cqpRq7MZC_dZyj7zslnEn9sKVtlo5GoRtFDLYSpOCwCSTHnlSa2nHm4hxDqyDlaSnvz3m9VfK7xcOeRyvVTtuH7SavvHq_xTNQXcW_ivHp9uZ8ozchoA1cndB-T4ZLK9X9jkEhcvsRXPSfwH8eFuO
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELaqIgR9QJwlUJBBSIhKUZP4SMzbUrUqSPAArNQ3y3GcbUWarPZQtf-eGefQhqOI13gmys7n8Xze8YwJecMz7lQCCFgZm5Dj1SaqyB3sWsucW-XSyGJG9_MXeTbln87F-Q5J-loYf9q9T0n6ldq7dSaPYlhGwwTYfRizUGDB-i2BzbxgDk-TyZA5gIgn-nTkH7RG4cd36f99Ld4KRr8elByypXvkzrqem821qaqtgHR6n9zrmCSdtNA_IDuufkhut3dLbh6R6XEz37T3fbynJ75RBLyemmrWLC5XF1dLCnSV4j8FlQupqQvqzxaG8AX2B7WgTFttunSzq65CqX5Mpqcn34_Pwu4OhdCmQq5C44AQAMeAfYsQsixsooQzHEiQKyKAhqUFODVLBTyVisM-W0QlUBwpCo4ZUPaE7NZN7Z4S6nhm0sRyl0Bcz01qRKFsaY0oVeFMxgJy1JtW267BON5zUWm_0cikRjA0gqFjpgGMgLwbNOZtc40bZD8gWoMctsX2D5rFTHdepq3CFUaWjhnLI2symTLn0hJISK4iZwPyGrHW2PiixpM1M7NeLvXHb1_1REA8j7G5TUDedkJlgzY3XaECWAF7ZY0kD0aS4Jl2PNxPKd2tDEv4NcCoMtylBeTVMIyaeNqtds3ay2BjRqGiG2UyAEwxFZD9dpYOtkkY52A6GElH83dkvPFIfXnhe4tj4bS39mE_07c-_a_QHA6-8E8cn_3Pm5-Tu0BQE1_7yQ_I7mqxdi-ABK7yl97rfwLxV1C0
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJwQ88HsQGMggJMSktGliJzFvZdo0kJgQUGk8WY7jdFXTpGpaofLXc5e4UTNgCInX-E5Nzr7z5_ruO0JesZgZ4cMM6HCoXIatTUSaGDi1ZgnTwkSexhvdj2fh6Zh9OOfnNv8Ja2GSuUZy0vlUV_3dAvS8qW_A_glmOVikWePucTgYQnh1fUD97jBwORay74UccHmP7I3PPo2-1eVFVmR7T_kbtc6-VNP3_xqkd3apyxmU7TXqLXJjXSzU5rvK852d6uQOmW2_sUlQmfXXq6Svf1yif_w_RrhLbltAS0fNCrxHrpniPrnetLjcPCDjo3KxadqOvKXHNV8F_AhV-aRcTlcX84oCaqb4h0VuXKqKlNYpji68h55RDcq00aaVmcxtoVTxkIxPjr8enbq2lYOrIx6uXGUAlwDUgeMT52GWal9woxhgMZN6sEKCKIXYEkQcnoaCwXGfexkgrZCnDC9ig33SK8rCPCbUsFhFvmbGB3iRqEjxVOhMK56J1Kg4cMhgO5FSW55zbLeRy_q8E4cSjSXRWHIYSDCWQ960GouG4-MK2Xe4Nlo5ZOeuH5TLibTOLrXAQBdmJlCaeVrFYRQYE2WAhRLhGe2Ql7iyJPJvFJjgM1HrqpLvv3yWIw6wYogcOw55bYWyEm2ubL0EWAEpuzqSBx1JCBC6O7xdwNIGqAq-BoBdjIdFh7xoh1ETk-4KU65rGeSH5MK7UiaGCROBcMijxida2_gBY2A6GIk63tIxXnekmF7UFOdYv11b-3DrVzuv_sepOWw976_z-ORfhJ-Sm4CT_boElR2Q3mq5Ns8Ai66S5zbI_ATWlH9W
  priority: 102
  providerName: Unpaywall
Title Copynumber: Efficient algorithms for single- and multi-track copy number segmentation
URI https://link.springer.com/article/10.1186/1471-2164-13-591
https://www.ncbi.nlm.nih.gov/pubmed/23442169
https://www.proquest.com/docview/1312487585
https://www.proquest.com/docview/1313423590
https://www.proquest.com/docview/1318694939
https://pubmed.ncbi.nlm.nih.gov/PMC3582591
https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-13-591
https://doaj.org/article/c910176fe3ac40ca8673ee7f661b90ec
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD : Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELe2VQj4gHgTGFVACMSksDzsJEZCqKs6DaRV0yBS-WS5jtMhsrTrQ9D_njvnQQNj8KVK47OV3Pns3-V8d4S8oDHV3AcJqNCTDsXSJjwda7BaszFVXEeuQo_u8TA8SujHERttkTq6pGLg4lLTDutJJfP8zY-L9XtQ-HdG4eNw34MF1vEB9zte4DDuvZxdOFhWCt2vVY2NbdKBrYtjbYdj-svNANsjM-FH1QC1H_OSQVv7lknv_-civrGL_X7CsnGz3iTXV8VMrr_LPN_YyQ5vk1sVBLV75Zy5Q7Z0cZdcK4tSru-RpD-drctCIW_tgckwAcPbMp_A2y7Pzhc24FwbPzHk2rFlkdrmUKIDT6C-2Qo622Vve6En51VoU3GfJIeDz_0jpyq-4KiIhUtHakASAE7A4GEszFLlc6YlBfSkUxdkGkQprAZBxOBuyCkY6MzNABuFLKXoOg0ekJ1iWuhHxNY0lpGvqPYBEIxlJFnKVaYky3iqZRxYZL9mrVBVZnIskJELY6HEoUBhCBSG8AIBwrDI66bHrMzKcQXtAUqrocN82ubGdD4RlXoKxXFpCjMdSEVdJeMwCrSOMkAvY-5qZZHnKGuBGTMKPJIzkavFQnz4dCp6DICAh1lxLPKqIsqmyHNZRTgAFzDJVotyt0UJKq3azfWUErVGwNsAFIvRvLPIs6YZe-IxuUJPV4YGMzoy7l5JE4PAeMAt8rCcpQ1v_IBSYB20RK3522Jeu6X4emaSkmPEteH2Xj3TNx79r6LZa3Thn3J8_B9v9ITcAEDrm1hRukt2lvOVfgqgcTnuku1oFHVJ52AwPDmFf_2w3zUfYLpmSYDfxIfrTjI86X35CURMaeg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAQCDEpaj7sJEaa0DY2tWyr0LZKezOu43SILilLq6n_HH8bd_miAVGe9hqfo-jufPe7nO-OkDcsYkZ4IAEduMpmONpExEMDUWsyZFqY0NGY0T3qB90B-3zGz1bIz7oWBq9V1jaxMNRxpvEfecf1wRNFiG4_Tn7YODUKs6v1CA1VjVaIt4oWY1Vhx4GZX0EIl2_1PoG833re_t7pbteupgzYOuTB1FYGXCZ4YUD2nAdJrD3BjWIAE0zswMf7YQxq74ccngaCQSTKnQRAQMBjhjlCH957g6wxnwkI_tZ29vpfjps8BvhfXidHo6DjgiuwPYhQbNe3uXBbzrCYGfC3Z1hwjX9e22xyt7fJ-iydqPmVGo8X3OP-XXKnwrV0u1TEe2TFpPfJzXLS5fwBGexmk3k5feQD3SvaVsDrqRqPgMfT84ucAnim-N9ibGyq0pgWNx1t-AL9nWrYTMvdNDeji6peKn1IBtfC60dkNc1S84RQwyIVepoZD1DGUIWKx0InWvFExEZFvkU6NWulrtqd49SNsSzCniiQKAyJwpCuL0EYFnnf7JiUrT6W0O6gtBo6bNJdPMguR7I681ILtHdBYnylmaNVFIS-MWECkGgoHKMt8hplLbENR4r3fEZqlueyd3IstzmgCxdb7VjkXUWUZMhzVZVNABewc1eLcqNFCXZCt5drlZKVncrl71NlkVfNMu7Eu3epyWYFDbaJ5MJZShOBwIQvLPK41NKGN57PGLAOVsKW_raY115Jv50Xnc6xjLvg9mat6Quf_k_RbDZn4b9yfLqcKS_Jevf06FAe9voHz8gtAMteUYfKNsjq9HJmngMgnQ5fVKeekq_XbWh-AabylXY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQEdcD4iZQwCAkRKVoc9hOzFtZumo5KgSs1DfLcZxtRZqsNlmh_ffM5NKGo4jXeBwlM7bns8fzDSEvWcysDMACRvjaZVjaRKaJhV1rljAjbeQZjOh-OhaHc_b-hJ90B25Vf9u9D0m2OQ3I0lTUk2WatVM8FhMfllQ3AKTv-qHLMXn9MgPfhhUMpmI6RBHA-_E-NPmHXiNX1DD2_74ubzmmXy9NDpHTG-TauljqzQ-d51vOaXaL3OxQJd1vh8FtcskWd8iVts7k5i6ZT8vlpq398YYeNKQR8Hqq80W5OqtPzysK0JXiqUFuXaqLlDb3DF34AvOdGuhM2960sovzLlupuEfms4Nv00O3q6fgmoiL2tUWwAHgDdjDcC6y1ASSW80AENnUAzOFUQoTPIw4PBWSwZ6bexnAHcFThtHQ8D7ZKcrCPiTUslhHgWE2AB-f6EjzVJrMaJ7J1Oo4dMikV60yHdk41rzIVbPpiIVCYyg0hvJDBcZwyOuhx7Il2rhA9i1aa5BDiuzmQblaqG7GKSNxtRGZDbVhntGxiEJrowwASSI9axzyAm2tkASjwFs2C72uKnX09Yva5-DbfSS6ccirTigrUee6S1oALSBv1khydyQJs9SMm_shpbpVooK_AXQV447NIc-HZuyJN98KW64bGSRp5NK7UCYGg8lQOuRBO0oH3QQhY6A6aIlG43ekvHFLcXba8IxjEnWj7b1-pG99-l9NszfMhX_a8dH_vPkZufr53Ux9PDr-8JhcB9waNCmhbJfs1Ku1fQLYsE6eNgvAT6NLV8Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJwQ88HsQGMggJMSktGliJzFvZdo0kJgQUGk8WY7jdFXTpGpaofLXc5e4UTNgCInX-E5Nzr7z5_ruO0JesZgZ4cMM6HCoXIatTUSaGDi1ZgnTwkSexhvdj2fh6Zh9OOfnNv8Ja2GSuUZy0vlUV_3dAvS8qW_A_glmOVikWePucTgYQnh1fUD97jBwORay74UccHmP7I3PPo2-1eVFVmR7T_kbtc6-VNP3_xqkd3apyxmU7TXqLXJjXSzU5rvK852d6uQOmW2_sUlQmfXXq6Svf1yif_w_RrhLbltAS0fNCrxHrpniPrnetLjcPCDjo3KxadqOvKXHNV8F_AhV-aRcTlcX84oCaqb4h0VuXKqKlNYpji68h55RDcq00aaVmcxtoVTxkIxPjr8enbq2lYOrIx6uXGUAlwDUgeMT52GWal9woxhgMZN6sEKCKIXYEkQcnoaCwXGfexkgrZCnDC9ig33SK8rCPCbUsFhFvmbGB3iRqEjxVOhMK56J1Kg4cMhgO5FSW55zbLeRy_q8E4cSjSXRWHIYSDCWQ960GouG4-MK2Xe4Nlo5ZOeuH5TLibTOLrXAQBdmJlCaeVrFYRQYE2WAhRLhGe2Ql7iyJPJvFJjgM1HrqpLvv3yWIw6wYogcOw55bYWyEm2ubL0EWAEpuzqSBx1JCBC6O7xdwNIGqAq-BoBdjIdFh7xoh1ETk-4KU65rGeSH5MK7UiaGCROBcMijxida2_gBY2A6GIk63tIxXnekmF7UFOdYv11b-3DrVzuv_sepOWw976_z-ORfhJ-Sm4CT_boElR2Q3mq5Ns8Ai66S5zbI_ATWlH9W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copynumber%3A+Efficient+algorithms+for+single-+and+multi-track+copy+number+segmentation&rft.jtitle=BMC+genomics&rft.au=Nilsen%2C+Gro&rft.au=Liestoel%2C+Knut&rft.au=Loo%2C+Peter+Van&rft.au=Moen+Vollan%2C+Hans+Kristian&rft.date=2012-11-04&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=13&rft.issue=1&rft.spage=591&rft.epage=591&rft_id=info:doi/10.1186%2F1471-2164-13-591&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon