Copynumber: Efficient algorithms for single- and multi-track copy number segmentation
Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offeri...
Saved in:
| Published in | BMC genomics Vol. 13; no. 1; p. 591 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
04.11.2012
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2164 1471-2164 |
| DOI | 10.1186/1471-2164-13-591 |
Cover
| Abstract | Background
Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number.
Results
A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented.
Conclusions
The R package
copynumber
is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. |
|---|---|
| AbstractList | Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number.
A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented.
The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results: A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions: The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Keywords: Copy number, aCGH, Segmentation, Allele-specific segmentation, Penalized regression, Least squares, Bioconductor Abstract Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number.BACKGROUNDCancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number.A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented.RESULTSA comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented.The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles.CONCLUSIONSThe R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. Doc number: 591 Abstract Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic copy numbers, including various types of array-CGH, SNP arrays and high-throughput sequencing, calls for a coherent framework offering unified and consistent handling of single- and multi-track segmentation problems. In addition, there is a demand for highly computationally efficient segmentation algorithms, due to the emergence of very high density scans of copy number. Results: A comprehensive Bioconductor package for copy number analysis is presented. The package offers a unified framework for single sample, multi-sample and multi-track segmentation and is based on statistically sound penalized least squares principles. Conditional on the number of breakpoints, the estimates are optimal in the least squares sense. A novel and computationally highly efficient algorithm is proposed that utilizes vector-based operations in R. Three case studies are presented. Conclusions: The R package copynumber is a software suite for segmentation of single- and multi-track copy number data using algorithms based on coherent least squares principles. |
| ArticleNumber | 591 |
| Audience | Academic |
| Author | Baumbusch, Lars O Lingjærde, Ole Christian Rueda, Oscar M Chin, Suet-Feung Eide, Marianne B Van Loo, Peter Nilsen, Gro Børresen-Dale, Anne-Lise Liestøl, Knut Caldas, Carlos Moen Vollan, Hans Kristian Russell, Roslin |
| AuthorAffiliation | 7 Dept of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Radiumhospitalet, Oslo, Norway 8 Dept of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway 1 Biomedical Informatics, Dept of Informatics, University of Oslo, Oslo, Norway 9 Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, UK 3 Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK 4 Dept of Human Genetics, VIB and University of Leuven, Leuven, Belgium 10 Cambridge Breast Unit, Addenbrookes Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK 2 Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway 5 Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway 6 Insti |
| AuthorAffiliation_xml | – name: 4 Dept of Human Genetics, VIB and University of Leuven, Leuven, Belgium – name: 7 Dept of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Radiumhospitalet, Oslo, Norway – name: 6 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway – name: 8 Dept of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway – name: 5 Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway – name: 9 Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge, UK – name: 10 Cambridge Breast Unit, Addenbrookes Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK – name: 3 Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK – name: 2 Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway – name: 1 Biomedical Informatics, Dept of Informatics, University of Oslo, Oslo, Norway |
| Author_xml | – sequence: 1 givenname: Gro surname: Nilsen fullname: Nilsen, Gro organization: Biomedical Informatics, Dept of Informatics, University of Oslo, Centre for Cancer Biomedicine, University of Oslo – sequence: 2 givenname: Knut surname: Liestøl fullname: Liestøl, Knut organization: Biomedical Informatics, Dept of Informatics, University of Oslo, Centre for Cancer Biomedicine, University of Oslo – sequence: 3 givenname: Peter surname: Van Loo fullname: Van Loo, Peter organization: Cancer Genome Project, Wellcome Trust Sanger Institute, Dept of Human Genetics, VIB and University of Leuven – sequence: 4 givenname: Hans Kristian surname: Moen Vollan fullname: Moen Vollan, Hans Kristian organization: Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Dept of Oncology, Division of Cancer, Surgery and Transplantation, Oslo University Hospital Radiumhospitalet – sequence: 5 givenname: Marianne B surname: Eide fullname: Eide, Marianne B organization: Centre for Cancer Biomedicine, University of Oslo, Dept of Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet – sequence: 6 givenname: Oscar M surname: Rueda fullname: Rueda, Oscar M organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre – sequence: 7 givenname: Suet-Feung surname: Chin fullname: Chin, Suet-Feung organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre – sequence: 8 givenname: Roslin surname: Russell fullname: Russell, Roslin organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre – sequence: 9 givenname: Lars O surname: Baumbusch fullname: Baumbusch, Lars O organization: Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet – sequence: 10 givenname: Carlos surname: Caldas fullname: Caldas, Carlos organization: Breast Cancer Functional Genomics, Cancer Research UK Cambridge Research Institute and Dept of Oncology, University of Cambridge, Li Ka-Shing Centre, Cambridge Breast Unit, Addenbrookes Hospital and Cambridge National Institute for Health Research Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust – sequence: 11 givenname: Anne-Lise surname: Børresen-Dale fullname: Børresen-Dale, Anne-Lise organization: Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo – sequence: 12 givenname: Ole Christian surname: Lingjærde fullname: Lingjærde, Ole Christian email: ole@ifi.uio.no organization: Biomedical Informatics, Dept of Informatics, University of Oslo, Centre for Cancer Biomedicine, University of Oslo, Dept of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23442169$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB-wZ4UisYFFih0_ErOoVI0KjFQJCeja8jg3qYfEHuwEmH-P0wzDpAJUeRHr5jvH9rn3NDmyzkKSPMfoHOOSv8G0wFmOOc0wyZjAj5KTfenoYH-cnIawRggXZc6eJMc5oTTWxUlys3CbrR26Ffi36VVdG23A9qlqG-dNf9uFtHY-DcY2LWSpslXaDW1vst4r_TXVUZxO6jRA00Wp6o2zT5PHtWoDPNt9z5Kbd1dfFh-y64_vl4vL60wXjPeZAiRwSTnPOWO8rnQuGChKKYYKUVyQosIlIQWLVS4orHKGaswEZxUtEGfkLFlOvpVTa7nxplN-K50y8q7gfCOV741uQWqB4_N5DURpirQqeUEAippzvBIIdPTCk9dgN2r7Q7Xt3hAjOcYtxzzlmKfERMa4o-Zi0myGVQeVju_3qp1dZP7HmlvZuO-SsNiIO4NXOwPvvg0QetmZoKFtlQU3hHhOPFdQQcRDUEJzwgSK6Mt76NoN3sZOjFROy4KV7A_VqJiPsbUbmzqayktGKMaMFDxS53-h4qqgMzqOY21ifSZ4PRNEpoeffaOGEOTy86c5--Iwv31wv-czAnwCtHcheKilNtOIxVuY9n-dQfeED2jmbgBCRG0D_iC1f2l-AUB_EmU |
| CitedBy_id | crossref_primary_10_1126_science_1247167 crossref_primary_10_1158_2159_8290_CD_17_0368 crossref_primary_10_1016_j_modpat_2024_100625 crossref_primary_10_1186_s12885_017_3447_6 crossref_primary_10_1038_s41467_024_50727_w crossref_primary_10_1016_j_cels_2020_08_012 crossref_primary_10_1186_s12935_022_02587_x crossref_primary_10_1038_s41586_021_03357_x crossref_primary_10_1038_s41592_020_01013_2 crossref_primary_10_1097_JBR_0000000000000116 crossref_primary_10_1038_s41523_021_00375_w crossref_primary_10_1186_s13059_016_1109_7 crossref_primary_10_1093_bioinformatics_btz381 crossref_primary_10_1186_s13062_022_00324_y crossref_primary_10_3389_fgene_2020_505441 crossref_primary_10_1038_s41525_020_0134_3 crossref_primary_10_1172_jci_insight_152789 crossref_primary_10_1038_s41467_024_45972_y crossref_primary_10_1371_journal_pone_0087212 crossref_primary_10_1126_sciadv_abm4950 crossref_primary_10_1038_s41467_017_02800_w crossref_primary_10_1158_0008_5472_CAN_16_0658 crossref_primary_10_1038_s41586_022_05202_1 crossref_primary_10_1038_s41467_021_25359_z crossref_primary_10_1002_1878_0261_13656 crossref_primary_10_18632_oncotarget_10181 crossref_primary_10_3389_fgene_2022_987205 crossref_primary_10_1186_s12943_017_0691_y crossref_primary_10_1158_0008_5472_CAN_20_4189 crossref_primary_10_1016_j_xpro_2024_103499 crossref_primary_10_1093_bioinformatics_btaa538 crossref_primary_10_1038_s41419_018_0500_6 crossref_primary_10_1093_bioinformatics_btw325 crossref_primary_10_1049_iet_syb_2013_0027 crossref_primary_10_1093_bioinformatics_btae454 crossref_primary_10_1080_10428194_2023_2240462 crossref_primary_10_1038_s41379_020_0591_3 crossref_primary_10_1016_j_labinv_2023_100283 crossref_primary_10_1038_s41388_019_0868_5 crossref_primary_10_1093_bioinformatics_btac041 crossref_primary_10_1038_s41586_022_04738_6 crossref_primary_10_1371_journal_pone_0142487 crossref_primary_10_1186_s12885_021_08811_7 crossref_primary_10_1002_cam4_1905 crossref_primary_10_1016_j_scr_2020_101806 crossref_primary_10_1186_s12859_016_1239_7 crossref_primary_10_1016_j_mrfmmm_2018_06_002 crossref_primary_10_1186_s13059_020_02119_8 crossref_primary_10_1016_j_isci_2021_102718 crossref_primary_10_1038_s41467_018_04924_z crossref_primary_10_1002_path_4540 crossref_primary_10_1002_path_6289 crossref_primary_10_1093_nar_gkt345 crossref_primary_10_1016_j_ccell_2021_10_001 crossref_primary_10_1016_j_molonc_2014_07_019 crossref_primary_10_1016_j_xgen_2023_100389 crossref_primary_10_18632_oncotarget_2517 crossref_primary_10_1371_journal_pbio_3000926 crossref_primary_10_1186_s40659_017_0108_9 crossref_primary_10_1530_ERC_15_0086 crossref_primary_10_1016_j_cell_2019_02_012 crossref_primary_10_3389_fgene_2019_00888 crossref_primary_10_1186_gb_2013_14_11_r126 crossref_primary_10_1038_s41467_023_37092_w crossref_primary_10_1186_s13073_022_01090_2 crossref_primary_10_18632_oncotarget_13025 crossref_primary_10_3390_diagnostics10070455 crossref_primary_10_1038_ng_3221 crossref_primary_10_1038_s41591_020_1125_8 crossref_primary_10_1016_j_gdata_2014_06_025 crossref_primary_10_1038_s41467_022_29342_0 crossref_primary_10_1038_s43018_024_00787_0 crossref_primary_10_1093_bioinformatics_btaa449 crossref_primary_10_1016_j_ebiom_2021_103559 crossref_primary_10_3389_fimmu_2022_921761 crossref_primary_10_1016_j_ccell_2019_05_013 crossref_primary_10_1016_j_jtho_2019_04_015 crossref_primary_10_1038_s41523_021_00365_y crossref_primary_10_3390_cancers13020340 crossref_primary_10_1002_gcc_22272 crossref_primary_10_1371_journal_pcbi_1006596 crossref_primary_10_1002_1878_0261_12885 crossref_primary_10_1016_j_pneurobio_2022_102316 crossref_primary_10_1016_j_ajpath_2017_06_012 crossref_primary_10_1093_humrep_dez285 crossref_primary_10_1038_s41588_018_0086_z crossref_primary_10_1186_s13059_014_0433_z crossref_primary_10_1002_ijc_31761 crossref_primary_10_1038_s41598_020_57942_7 crossref_primary_10_1007_s00432_019_03078_9 crossref_primary_10_7554_eLife_75227 crossref_primary_10_1158_1078_0432_CCR_20_2268 crossref_primary_10_1158_2159_8290_CD_16_0607 crossref_primary_10_1186_gb_2013_14_10_r113 crossref_primary_10_1038_s41591_020_1033_y crossref_primary_10_1182_blood_2013_07_512392 crossref_primary_10_1016_j_prp_2022_154018 crossref_primary_10_1101_gr_209973_116 crossref_primary_10_1093_bioinformatics_bty1022 crossref_primary_10_1093_jnci_djab069 crossref_primary_10_1126_science_abq6453 crossref_primary_10_1186_s12864_021_07696_x crossref_primary_10_1038_s41467_020_15047_9 crossref_primary_10_1016_j_cell_2022_06_007 crossref_primary_10_1016_j_ccell_2019_06_002 crossref_primary_10_1016_j_biopha_2023_115630 crossref_primary_10_1038_s41598_020_75854_4 crossref_primary_10_1016_j_stem_2022_07_008 crossref_primary_10_1007_s00535_022_01937_w crossref_primary_10_1038_srep19435 crossref_primary_10_1093_bioinformatics_btae284 crossref_primary_10_1126_science_aau8768 crossref_primary_10_1371_journal_pgen_1006225 crossref_primary_10_3390_ijms25115876 crossref_primary_10_1016_j_ebiom_2020_102793 crossref_primary_10_1002_gcc_22757 crossref_primary_10_1371_journal_pone_0053014 crossref_primary_10_1038_s41586_023_06872_1 crossref_primary_10_1038_s41467_019_12985_x crossref_primary_10_1186_s13058_017_0812_y crossref_primary_10_1038_ng_3659 crossref_primary_10_1038_s41467_024_47664_z crossref_primary_10_3389_fonc_2020_01682 crossref_primary_10_1038_s41586_018_0024_3 crossref_primary_10_3390_ijms24021116 crossref_primary_10_3389_fgene_2021_655536 crossref_primary_10_1016_j_ccell_2021_08_011 crossref_primary_10_1038_s41467_019_13915_7 crossref_primary_10_1038_ng_3771 crossref_primary_10_1186_s12885_016_2899_4 crossref_primary_10_1186_s13058_021_01451_6 crossref_primary_10_1016_j_cell_2021_01_002 crossref_primary_10_1186_s13058_016_0789_y crossref_primary_10_1002_gcc_22729 crossref_primary_10_1038_s41467_024_51508_1 crossref_primary_10_1101_gr_200527_115 crossref_primary_10_1126_science_1253462 crossref_primary_10_1093_bib_bbad297 crossref_primary_10_1038_ncomms14944 crossref_primary_10_1038_s41523_020_0167_x crossref_primary_10_1126_sciadv_abp8901 crossref_primary_10_1038_s41467_020_15155_6 crossref_primary_10_1016_j_oraloncology_2020_104615 crossref_primary_10_1038_sdata_2018_240 crossref_primary_10_1186_s12859_022_04890_w crossref_primary_10_1016_j_ebiom_2022_104169 crossref_primary_10_3390_biology13050350 crossref_primary_10_1016_j_ajhg_2015_04_011 crossref_primary_10_1186_s13046_021_02034_1 crossref_primary_10_1214_18_AOAS1223 crossref_primary_10_1038_s41388_017_0099_6 crossref_primary_10_2139_ssrn_4113366 crossref_primary_10_1038_s41591_019_0620_2 crossref_primary_10_1186_s13059_022_02693_z crossref_primary_10_1093_nar_gks1352 crossref_primary_10_1038_s41598_022_05737_3 crossref_primary_10_1093_annonc_mdu479 crossref_primary_10_1093_bib_bbab292 crossref_primary_10_1158_0008_5472_CAN_23_0144 crossref_primary_10_1186_s12859_018_2565_8 crossref_primary_10_1016_j_celrep_2020_107550 crossref_primary_10_1002_path_6217 crossref_primary_10_1097_PAS_0000000000001804 crossref_primary_10_1038_s41523_019_0113_y crossref_primary_10_1093_bib_bbac264 crossref_primary_10_1016_j_ccell_2023_11_007 crossref_primary_10_1038_s41587_022_01468_y crossref_primary_10_1038_s41379_018_0074_y crossref_primary_10_1016_j_cell_2018_03_057 crossref_primary_10_1016_j_heliyon_2024_e28071 crossref_primary_10_1038_ng_2891 crossref_primary_10_1371_journal_pone_0126371 crossref_primary_10_1371_journal_pone_0184425 crossref_primary_10_1101_gr_275453_121 crossref_primary_10_1038_s41467_017_02621_x crossref_primary_10_1093_bioinformatics_btac586 crossref_primary_10_1038_s41598_020_67842_5 crossref_primary_10_1016_j_bspc_2021_103004 crossref_primary_10_1371_journal_pcbi_1008012 crossref_primary_10_1038_s41523_017_0026_6 crossref_primary_10_1038_s41525_024_00430_y crossref_primary_10_1007_s00428_024_03935_0 crossref_primary_10_1038_nprot_2016_138 crossref_primary_10_1038_s41467_021_27079_w crossref_primary_10_1101_gr_240705_118 crossref_primary_10_1158_1078_0432_CCR_21_1317 crossref_primary_10_1371_journal_pone_0207840 crossref_primary_10_1038_s42003_020_0884_6 crossref_primary_10_1016_j_molonc_2015_03_002 crossref_primary_10_1038_ncomms11111 crossref_primary_10_1038_ng_3641 crossref_primary_10_1038_s41598_017_09139_8 crossref_primary_10_1186_s13073_018_0601_y crossref_primary_10_1002_gcc_22533 crossref_primary_10_1016_j_ebiom_2023_104829 crossref_primary_10_1016_j_celrep_2020_107669 crossref_primary_10_1371_journal_pone_0142294 crossref_primary_10_3390_cancers12061603 crossref_primary_10_1186_s13059_024_03267_x crossref_primary_10_1016_j_cell_2018_03_043 crossref_primary_10_1016_j_modpat_2022_100044 crossref_primary_10_3390_cancers11050736 |
| Cites_doi | 10.1093/bioinformatics/bth418 10.1093/bioinformatics/btm221 10.1080/10485250211388 10.1093/biostatistics/kxq076 10.1126/scitranslmed.3000611 10.1073/pnas.0402932101 10.1093/bioinformatics/btp653 10.1038/ng2093 10.1093/bioinformatics/btn067 10.1073/pnas.1009843107 10.1182/blood-2010-03-272278 10.1186/1471-2105-8-145 10.1093/bioinformatics/bti611 10.1093/biostatistics/kxh008 10.1214/07-AOAS155 10.1093/bioinformatics/btr162 10.1101/gr.080069.108 10.1093/bioinformatics/btl646 10.1002/ijc.26444 10.1093/biomet/asq025 10.1056/NEJMoa1113205 10.1093/nar/gkm1143 10.1111/j.1541-0420.2006.00662.x 10.1093/biostatistics/kxm013 10.2174/157489310790596402 10.1186/gb-2007-8-10-r228 10.1038/nature08822 10.1186/1471-2105-6-27 10.1073/pnas.0710052104 10.1093/bioinformatics/btn272 10.1093/nar/gkq548 10.1093/bioinformatics/bti677 10.1093/nar/gkr137 10.1007/978-1-4899-2819-1 10.1093/biostatistics/kxh017 10.1200/JCO.2003.02.009 |
| ContentType | Journal Article |
| Copyright | Nilsen et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2012 BioMed Central Ltd. 2012 Nilsen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2012 Nilsen et al.; licensee BioMed Central Ltd. 2012 Nilsen et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Nilsen et al.; licensee BioMed Central Ltd. 2012 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2012 BioMed Central Ltd. – notice: 2012 Nilsen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2012 Nilsen et al.; licensee BioMed Central Ltd. 2012 Nilsen et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2164-13-591 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2164 |
| EndPage | 591 |
| ExternalDocumentID | oai_doaj_org_article_c910176fe3ac40ca8673ee7f661b90ec 10.1186/1471-2164-13-591 PMC3582591 2901691661 A534115376 23442169 10_1186_1471_2164_13_591 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Norway |
| GeographicLocations_xml | – name: Norway |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADTOC C1A H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c756t-ae091846626556fdc295ea4441ed041737d1833755ea694eb250f15965d470653 |
| IEDL.DBID | M48 |
| ISSN | 1471-2164 |
| IngestDate | Fri Oct 03 12:42:32 EDT 2025 Sun Oct 26 04:02:16 EDT 2025 Tue Sep 30 15:43:31 EDT 2025 Wed Oct 01 13:55:39 EDT 2025 Fri Sep 05 12:22:52 EDT 2025 Tue Oct 07 05:39:41 EDT 2025 Mon Oct 20 22:51:17 EDT 2025 Mon Oct 20 16:57:42 EDT 2025 Thu Oct 16 16:17:13 EDT 2025 Mon Jul 21 06:04:45 EDT 2025 Wed Oct 01 03:03:06 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Sat Sep 06 07:28:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Bioconductor Segmentation Copy number Least squares Penalized regression aCGH Allele-specific segmentation |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c756t-ae091846626556fdc295ea4441ed041737d1833755ea694eb250f15965d470653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://link.springer.com/10.1186/1471-2164-13-591 |
| PMID | 23442169 |
| PQID | 1312487585 |
| PQPubID | 44682 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c910176fe3ac40ca8673ee7f661b90ec unpaywall_primary_10_1186_1471_2164_13_591 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3582591 proquest_miscellaneous_1318694939 proquest_miscellaneous_1313423590 proquest_journals_1312487585 gale_infotracmisc_A534115376 gale_infotracacademiconefile_A534115376 gale_incontextgauss_ISR_A534115376 pubmed_primary_23442169 crossref_citationtrail_10_1186_1471_2164_13_591 crossref_primary_10_1186_1471_2164_13_591 springer_journals_10_1186_1471_2164_13_591 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-11-04 |
| PublicationDateYYYYMMDD | 2012-11-04 |
| PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC genomics |
| PublicationTitleAbbrev | BMC Genomics |
| PublicationTitleAlternate | BMC Genomics |
| PublicationYear | 2012 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | L Wang (4763_CR14) 2009; 19 C Chen (4763_CR16) 2011; 39 E Ben-Yaacov (4763_CR11) 2008; 24 BP Coe (4763_CR15) 2010; 38 ES Venkatraman (4763_CR36) 2007; 23 W Lai (4763_CR37) 2008; 24 F Picard (4763_CR22) 2011; 12 NR Zhang (4763_CR27) 2007; 63 NR Zhang (4763_CR21) 2010; 97 NR Zhang (4763_CR20) 2010; 26 G Wiedswang (4763_CR33) 2003; 21 C Klijn (4763_CR30) 2008; 36 AB Olshen (4763_CR4) 2004; 5 F Picard (4763_CR6) 2005; 6 H Willenbrock (4763_CR8) 2005; 21 SM Teo (4763_CR23) 2011; 27 JW Tukey (4763_CR35) 1960 SW Scherer (4763_CR17) 2007; 39 G Winkler (4763_CR24) 2002; 14 RB Scharpf (4763_CR13) 2008; 2 R Beroukhim (4763_CR29) 2007; 104 R Beroukhim (4763_CR1) 2010; 18 WR Lai (4763_CR5) 2005; 21 M Gerlinger (4763_CR28) 2012; 366 T Yu (4763_CR10) 2007; 8 WN Venables (4763_CR25) 1994 R Tibshirani (4763_CR12) 2008; 9 MB Eide (4763_CR34) 2010; 116 RR Mathiesen (4763_CR32) 2011; 131 HG Russnes (4763_CR2) 2010; 2 P Van Loo (4763_CR26) 2010; 107 OM Rueda (4763_CR18) 2010; 5 SP Shah (4763_CR19) 2007; 23 P Hupe (4763_CR3) 2004; 20 P Wang (4763_CR7) 2005; 6 JC Marioni (4763_CR9) 2007; 8 AJ Aguirre (4763_CR31) 2004; 101 17477871 - BMC Bioinformatics. 2007;8:145 20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5 16159913 - Bioinformatics. 2005 Nov 15;21(22):4084-91 17513312 - Biostatistics. 2008 Jan;9(1):18-29 20164920 - Nature. 2010 Feb 18;463(7283):899-905 18296463 - Bioinformatics. 2008 Apr 1;24(7):1014-5 21471018 - Bioinformatics. 2011 Jun 1;27(11):1555-61 19609370 - Ann Appl Stat. 2008 Jun 1;2(2):687-713 18077431 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12 17234643 - Bioinformatics. 2007 Mar 15;23(6):657-63 18187509 - Nucleic Acids Res. 2008 Feb;36(2):e13 15475419 - Biostatistics. 2004 Oct;5(4):557-72 22822250 - Biometrika. 2010 Sep;97(3):631-645 16081473 - Bioinformatics. 2005 Oct 1;21(19):3763-70 12972522 - J Clin Oncol. 2003 Sep 15;21(18):3469-78 20505157 - Blood. 2010 Sep 2;116(9):1489-97 17597783 - Nat Genet. 2007 Jul;39(7 Suppl):S7-15 17447926 - Biometrics. 2007 Mar;63(1):22-32 15705208 - BMC Bioinformatics. 2005;6:27 20592421 - Sci Transl Med. 2010 Jun 30;2(38):38ra47 21935921 - Int J Cancer. 2012 Aug 15;131(4):E405-15 17961237 - Genome Biol. 2007;8(10):R228 20551132 - Nucleic Acids Res. 2010 Aug;38(15):e157 21209153 - Biostatistics. 2011 Jul;12(3):413-28 17646330 - Bioinformatics. 2007 Jul 1;23(13):i450-8 19933593 - Bioinformatics. 2010 Jan 15;26(2):153-60 18689815 - Bioinformatics. 2008 Aug 15;24(16):i139-45 15199222 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9067-72 22397650 - N Engl J Med. 2012 Mar 8;366(10):883-92 15381628 - Bioinformatics. 2004 Dec 12;20(18):3413-22 15618527 - Biostatistics. 2005 Jan;6(1):45-58 21576227 - Nucleic Acids Res. 2011 Jul;39(13):e89 19037015 - Genome Res. 2009 Jan;19(1):106-17 |
| References_xml | – volume: 20 start-page: 3413 year: 2004 ident: 4763_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth418 – start-page: 448 volume-title: Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling year: 1960 ident: 4763_CR35 – volume: 23 start-page: i450 year: 2007 ident: 4763_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm221 – volume: 14 start-page: 203 year: 2002 ident: 4763_CR24 publication-title: J Nonparametr Stat doi: 10.1080/10485250211388 – volume: 12 start-page: 413 year: 2011 ident: 4763_CR22 publication-title: Biostatistics doi: 10.1093/biostatistics/kxq076 – volume: 2 start-page: 38 year: 2010 ident: 4763_CR2 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3000611 – volume: 101 start-page: 9067 year: 2004 ident: 4763_CR31 publication-title: Proc Natl Acad Sci US doi: 10.1073/pnas.0402932101 – volume: 26 start-page: 153 year: 2010 ident: 4763_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp653 – volume: 39 start-page: S7 year: 2007 ident: 4763_CR17 publication-title: Nat Genet doi: 10.1038/ng2093 – volume: 24 start-page: 1014 issue: 7 year: 2008 ident: 4763_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn067 – volume: 107 start-page: 16910 year: 2010 ident: 4763_CR26 publication-title: Proc Natl Acad Sci US doi: 10.1073/pnas.1009843107 – volume: 116 start-page: 1489 year: 2010 ident: 4763_CR34 publication-title: Blood doi: 10.1182/blood-2010-03-272278 – volume: 8 start-page: 145 year: 2007 ident: 4763_CR10 publication-title: BMC Bioinf doi: 10.1186/1471-2105-8-145 – volume: 21 start-page: 3763 year: 2005 ident: 4763_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti611 – volume: 5 start-page: 557 year: 2004 ident: 4763_CR4 publication-title: Biostatistics doi: 10.1093/biostatistics/kxh008 – volume: 2 start-page: 687 year: 2008 ident: 4763_CR13 publication-title: Ann Appl Stat doi: 10.1214/07-AOAS155 – volume: 27 start-page: 1555 year: 2011 ident: 4763_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr162 – volume: 19 start-page: 106 year: 2009 ident: 4763_CR14 publication-title: Genome Res doi: 10.1101/gr.080069.108 – volume: 23 start-page: 657 year: 2007 ident: 4763_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl646 – volume: 131 start-page: E405 issue: 4 year: 2011 ident: 4763_CR32 publication-title: Int J Cancer doi: 10.1002/ijc.26444 – volume: 97 start-page: 631 year: 2010 ident: 4763_CR21 publication-title: Biometrica doi: 10.1093/biomet/asq025 – volume: 366 start-page: 883 year: 2012 ident: 4763_CR28 publication-title: N Engl J Med doi: 10.1056/NEJMoa1113205 – volume: 36 start-page: e13 year: 2008 ident: 4763_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm1143 – volume: 63 start-page: 22 year: 2007 ident: 4763_CR27 publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00662.x – volume: 9 start-page: 18 year: 2008 ident: 4763_CR12 publication-title: Biostatistics doi: 10.1093/biostatistics/kxm013 – volume: 5 start-page: 1 year: 2010 ident: 4763_CR18 publication-title: Curr Bioinf doi: 10.2174/157489310790596402 – volume: 8 start-page: R228 year: 2007 ident: 4763_CR9 publication-title: Genome Biol doi: 10.1186/gb-2007-8-10-r228 – volume: 18 start-page: 899 year: 2010 ident: 4763_CR1 publication-title: Nature doi: 10.1038/nature08822 – volume: 6 start-page: 27 year: 2005 ident: 4763_CR6 publication-title: BMC Bioinf doi: 10.1186/1471-2105-6-27 – volume: 104 start-page: 20007 year: 2007 ident: 4763_CR29 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0710052104 – volume: 24 start-page: i139 issue: 16 year: 2008 ident: 4763_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn272 – volume: 38 start-page: e157 issue: 15 year: 2010 ident: 4763_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq548 – volume: 21 start-page: 4084 year: 2005 ident: 4763_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti677 – volume: 39 start-page: e89 issue: 13 year: 2011 ident: 4763_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr137 – volume-title: Modern Applied Statistics with S-Plus year: 1994 ident: 4763_CR25 doi: 10.1007/978-1-4899-2819-1 – volume: 6 start-page: 45 year: 2005 ident: 4763_CR7 publication-title: Biostatistics doi: 10.1093/biostatistics/kxh017 – volume: 21 start-page: 3469 year: 2003 ident: 4763_CR33 publication-title: J Clin Oncol doi: 10.1200/JCO.2003.02.009 – reference: 17513312 - Biostatistics. 2008 Jan;9(1):18-29 – reference: 20551132 - Nucleic Acids Res. 2010 Aug;38(15):e157 – reference: 21209153 - Biostatistics. 2011 Jul;12(3):413-28 – reference: 15705208 - BMC Bioinformatics. 2005;6:27 – reference: 22397650 - N Engl J Med. 2012 Mar 8;366(10):883-92 – reference: 19609370 - Ann Appl Stat. 2008 Jun 1;2(2):687-713 – reference: 17447926 - Biometrics. 2007 Mar;63(1):22-32 – reference: 17961237 - Genome Biol. 2007;8(10):R228 – reference: 18296463 - Bioinformatics. 2008 Apr 1;24(7):1014-5 – reference: 20837533 - Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5 – reference: 17234643 - Bioinformatics. 2007 Mar 15;23(6):657-63 – reference: 21935921 - Int J Cancer. 2012 Aug 15;131(4):E405-15 – reference: 16159913 - Bioinformatics. 2005 Nov 15;21(22):4084-91 – reference: 21471018 - Bioinformatics. 2011 Jun 1;27(11):1555-61 – reference: 22822250 - Biometrika. 2010 Sep;97(3):631-645 – reference: 19933593 - Bioinformatics. 2010 Jan 15;26(2):153-60 – reference: 21576227 - Nucleic Acids Res. 2011 Jul;39(13):e89 – reference: 12972522 - J Clin Oncol. 2003 Sep 15;21(18):3469-78 – reference: 15381628 - Bioinformatics. 2004 Dec 12;20(18):3413-22 – reference: 15618527 - Biostatistics. 2005 Jan;6(1):45-58 – reference: 20164920 - Nature. 2010 Feb 18;463(7283):899-905 – reference: 20505157 - Blood. 2010 Sep 2;116(9):1489-97 – reference: 18187509 - Nucleic Acids Res. 2008 Feb;36(2):e13 – reference: 19037015 - Genome Res. 2009 Jan;19(1):106-17 – reference: 18689815 - Bioinformatics. 2008 Aug 15;24(16):i139-45 – reference: 17597783 - Nat Genet. 2007 Jul;39(7 Suppl):S7-15 – reference: 17477871 - BMC Bioinformatics. 2007;8:145 – reference: 15199222 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):9067-72 – reference: 16081473 - Bioinformatics. 2005 Oct 1;21(19):3763-70 – reference: 20592421 - Sci Transl Med. 2010 Jun 30;2(38):38ra47 – reference: 17646330 - Bioinformatics. 2007 Jul 1;23(13):i450-8 – reference: 15475419 - Biostatistics. 2004 Oct;5(4):557-72 – reference: 18077431 - Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):20007-12 |
| SSID | ssj0017825 |
| Score | 2.5044076 |
| Snippet | Background
Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring... Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring genomic... Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for measuring... Doc number: 591 Abstract Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing... Background: Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for... Abstract Background Cancer progression is associated with genomic instability and an accumulation of gains and losses of DNA. The growing variety of tools for... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 591 |
| SubjectTerms | aCGH Algorithms Allele-specific segmentation Analysis Animal Genetics and Genomics Artificial chromosomes Bioconductor Biomedical and Life Sciences Biomedical research Breakpoints Cancer Case studies Computer programs Copy number Copy number variations Cytogenetics Data processing Development and progression DNA DNA - genetics DNA Copy Number Variations Dynamic programming Gene Dosage Genetic aspects Genetics Genome, Human Genomes Genomic Instability Genomics Human and rodent genomic Humans Least squares Life Sciences Lymphoma, Follicular - genetics Medical research Methods Microarrays Microbial Genetics and Genomics Neoplasms - genetics Oligonucleotide Array Sequence Analysis - methods Penalized regression Plant Genetics and Genomics Polymorphism, Single Nucleotide Programming languages Proteomics Segmentation Single-nucleotide polymorphism Software Studies |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcUHk2tCCDkBCVos3Dj5hbqVoVJDgAK_VmOY6zrUiTVbMrtP-eGeehDYj2wtUeR8l8Y89MbH9DyFuWMacSQMCK2IQMS5uoIneQtZY5s8rJyOKO7pev4mzOPp_z861SX3gmrKMH7hQ3swqNRpQuNZZF1mRCps7JEvxKriJncfWNMjUkU_3-Afg97u8VyThMICMYNigzMRvbwjgNuYonDsnz9v-9Om-5pz-PTo77pw_IvXW9NJtfpqq2XNTpLnnYx5b0qPumR-SOqx-Tu121yc0TMj9ulpuuAsgHeuKpI-Dx1FSL5vpydXHVUghgKf47qFxITV1Qf9owhDewP6mFwbQbTVu3uOrvLNVPyfz05MfxWdhXVQit5GIVGgchAkQdkMlwLsrCJoo7wyAsckUEYKWygGmeSg6tQjHIvHlUQtAjeMFwTzR9RnbqpnZ7hDqWGZlY5hLw9LmRhhfKltbwUhXOZGlAZoNqte0px7HyRaV96pEJjWBoBEPHqQYwAvJ-HLHs6DZukP2IaI1ySJTtG8B8dG8--jbzCcgbxFojFUaNZ20WZt22-tP3b_qIg4ePke4mIO96obJBnZv-6gJoAdmzJpIHE0mYq3baPZiU7teKFr4GYqwM87aAvB67cSSef6tds_YySNXIVXSjTAaAqVQF5HlnpaNukpQxUB30yIn9TpQ37akvLzzbOF6l9to-HCx969X_Cc3hOBduxfHF_8Bxn9yHUDbxt0TZAdlZXa_dSwgXV_krvzL8BnhkX9s priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELdGJwR8QLwXGMggJMSkqElsJzESQtvUaSBRoUGlfbMcx-nQuqSsrVD_e-6cBw2I8jU-V-nd-R658-8Iec1TbmUEEjBxqH2Oo01knlnIWouMG2mTwGBF9_M4Pp3wT-fifIeM27sw2FbZ2kRnqPPK4DfyYcjAE6UY3X6Y__BxahRWV9sRGroZrZC_dxBjN8huhMhYA7J7NBp_OevqCuAPRVusTONhCKbZjyBj8EPmCxn2nJPD8P_bUm-4qj_bKLta6h1ya1XO9fqnns023NXJPXK3iTPpYa0Y98mOLR-Qm_XkyfVDMjmu5ut6Gsg7OnIwEvDzVM-m8J-XF1cLCsEsxe8IM-tTXebUdR768AbmkhrYTOvddGGnV839pfIRmZyMvh2f-s2EBd8kIl762kK4ABEIZDVCxEVuIims5hAi2TwAwbEkhyPPEgFPY8khCxdBAQFQLHKO9VH2mAzKqrR7hFqe6iQy3Ebg9TOdaJFLUxgtCplbnTKPDFvWKtPAj-MUjJlyaUgaKxSGQmGokCkQhkfedjvmNfTGFtojlFZHh6DZ7kF1PVXNGVRGov2JC8u04YHRaZwwa5MCQpRMBtZ45BXKWiEsRol9N1O9WizUx69n6lCAtw8R-sYjbxqiokKe6-YaA3ABkbR6lPs9Sji3pr_cqpRq7MZC_dZyj7zslnEn9sKVtlo5GoRtFDLYSpOCwCSTHnlSa2nHm4hxDqyDlaSnvz3m9VfK7xcOeRyvVTtuH7SavvHq_xTNQXcW_ivHp9uZ8ozchoA1cndB-T4ZLK9X9jkEhcvsRXPSfwH8eFuO priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELaqIgR9QJwlUJBBSIhKUZP4SMzbUrUqSPAArNQ3y3GcbUWarPZQtf-eGefQhqOI13gmys7n8Xze8YwJecMz7lQCCFgZm5Dj1SaqyB3sWsucW-XSyGJG9_MXeTbln87F-Q5J-loYf9q9T0n6ldq7dSaPYlhGwwTYfRizUGDB-i2BzbxgDk-TyZA5gIgn-nTkH7RG4cd36f99Ld4KRr8elByypXvkzrqem821qaqtgHR6n9zrmCSdtNA_IDuufkhut3dLbh6R6XEz37T3fbynJ75RBLyemmrWLC5XF1dLCnSV4j8FlQupqQvqzxaG8AX2B7WgTFttunSzq65CqX5Mpqcn34_Pwu4OhdCmQq5C44AQAMeAfYsQsixsooQzHEiQKyKAhqUFODVLBTyVisM-W0QlUBwpCo4ZUPaE7NZN7Z4S6nhm0sRyl0Bcz01qRKFsaY0oVeFMxgJy1JtW267BON5zUWm_0cikRjA0gqFjpgGMgLwbNOZtc40bZD8gWoMctsX2D5rFTHdepq3CFUaWjhnLI2symTLn0hJISK4iZwPyGrHW2PiixpM1M7NeLvXHb1_1REA8j7G5TUDedkJlgzY3XaECWAF7ZY0kD0aS4Jl2PNxPKd2tDEv4NcCoMtylBeTVMIyaeNqtds3ay2BjRqGiG2UyAEwxFZD9dpYOtkkY52A6GElH83dkvPFIfXnhe4tj4bS39mE_07c-_a_QHA6-8E8cn_3Pm5-Tu0BQE1_7yQ_I7mqxdi-ABK7yl97rfwLxV1C0 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJwQ88HsQGMggJMSktGliJzFvZdo0kJgQUGk8WY7jdFXTpGpaofLXc5e4UTNgCInX-E5Nzr7z5_ruO0JesZgZ4cMM6HCoXIatTUSaGDi1ZgnTwkSexhvdj2fh6Zh9OOfnNv8Ja2GSuUZy0vlUV_3dAvS8qW_A_glmOVikWePucTgYQnh1fUD97jBwORay74UccHmP7I3PPo2-1eVFVmR7T_kbtc6-VNP3_xqkd3apyxmU7TXqLXJjXSzU5rvK852d6uQOmW2_sUlQmfXXq6Svf1yif_w_RrhLbltAS0fNCrxHrpniPrnetLjcPCDjo3KxadqOvKXHNV8F_AhV-aRcTlcX84oCaqb4h0VuXKqKlNYpji68h55RDcq00aaVmcxtoVTxkIxPjr8enbq2lYOrIx6uXGUAlwDUgeMT52GWal9woxhgMZN6sEKCKIXYEkQcnoaCwXGfexkgrZCnDC9ig33SK8rCPCbUsFhFvmbGB3iRqEjxVOhMK56J1Kg4cMhgO5FSW55zbLeRy_q8E4cSjSXRWHIYSDCWQ960GouG4-MK2Xe4Nlo5ZOeuH5TLibTOLrXAQBdmJlCaeVrFYRQYE2WAhRLhGe2Ql7iyJPJvFJjgM1HrqpLvv3yWIw6wYogcOw55bYWyEm2ubL0EWAEpuzqSBx1JCBC6O7xdwNIGqAq-BoBdjIdFh7xoh1ETk-4KU65rGeSH5MK7UiaGCROBcMijxida2_gBY2A6GIk63tIxXnekmF7UFOdYv11b-3DrVzuv_sepOWw976_z-ORfhJ-Sm4CT_boElR2Q3mq5Ns8Ai66S5zbI_ATWlH9W priority: 102 providerName: Unpaywall |
| Title | Copynumber: Efficient algorithms for single- and multi-track copy number segmentation |
| URI | https://link.springer.com/article/10.1186/1471-2164-13-591 https://www.ncbi.nlm.nih.gov/pubmed/23442169 https://www.proquest.com/docview/1312487585 https://www.proquest.com/docview/1313423590 https://www.proquest.com/docview/1318694939 https://pubmed.ncbi.nlm.nih.gov/PMC3582591 https://bmcgenomics.biomedcentral.com/counter/pdf/10.1186/1471-2164-13-591 https://doaj.org/article/c910176fe3ac40ca8673ee7f661b90ec |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD : Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwELe2VQj4gHgTGFVACMSksDzsJEZCqKs6DaRV0yBS-WS5jtMhsrTrQ9D_njvnQQNj8KVK47OV3Pns3-V8d4S8oDHV3AcJqNCTDsXSJjwda7BaszFVXEeuQo_u8TA8SujHERttkTq6pGLg4lLTDutJJfP8zY-L9XtQ-HdG4eNw34MF1vEB9zte4DDuvZxdOFhWCt2vVY2NbdKBrYtjbYdj-svNANsjM-FH1QC1H_OSQVv7lknv_-civrGL_X7CsnGz3iTXV8VMrr_LPN_YyQ5vk1sVBLV75Zy5Q7Z0cZdcK4tSru-RpD-drctCIW_tgckwAcPbMp_A2y7Pzhc24FwbPzHk2rFlkdrmUKIDT6C-2Qo622Vve6En51VoU3GfJIeDz_0jpyq-4KiIhUtHakASAE7A4GEszFLlc6YlBfSkUxdkGkQprAZBxOBuyCkY6MzNABuFLKXoOg0ekJ1iWuhHxNY0lpGvqPYBEIxlJFnKVaYky3iqZRxYZL9mrVBVZnIskJELY6HEoUBhCBSG8AIBwrDI66bHrMzKcQXtAUqrocN82ubGdD4RlXoKxXFpCjMdSEVdJeMwCrSOMkAvY-5qZZHnKGuBGTMKPJIzkavFQnz4dCp6DICAh1lxLPKqIsqmyHNZRTgAFzDJVotyt0UJKq3azfWUErVGwNsAFIvRvLPIs6YZe-IxuUJPV4YGMzoy7l5JE4PAeMAt8rCcpQ1v_IBSYB20RK3522Jeu6X4emaSkmPEteH2Xj3TNx79r6LZa3Thn3J8_B9v9ITcAEDrm1hRukt2lvOVfgqgcTnuku1oFHVJ52AwPDmFf_2w3zUfYLpmSYDfxIfrTjI86X35CURMaeg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAQCDEpaj7sJEaa0DY2tWyr0LZKezOu43SILilLq6n_HH8bd_miAVGe9hqfo-jufPe7nO-OkDcsYkZ4IAEduMpmONpExEMDUWsyZFqY0NGY0T3qB90B-3zGz1bIz7oWBq9V1jaxMNRxpvEfecf1wRNFiG4_Tn7YODUKs6v1CA1VjVaIt4oWY1Vhx4GZX0EIl2_1PoG833re_t7pbteupgzYOuTB1FYGXCZ4YUD2nAdJrD3BjWIAE0zswMf7YQxq74ccngaCQSTKnQRAQMBjhjlCH957g6wxnwkI_tZ29vpfjps8BvhfXidHo6DjgiuwPYhQbNe3uXBbzrCYGfC3Z1hwjX9e22xyt7fJ-iydqPmVGo8X3OP-XXKnwrV0u1TEe2TFpPfJzXLS5fwBGexmk3k5feQD3SvaVsDrqRqPgMfT84ucAnim-N9ibGyq0pgWNx1t-AL9nWrYTMvdNDeji6peKn1IBtfC60dkNc1S84RQwyIVepoZD1DGUIWKx0InWvFExEZFvkU6NWulrtqd49SNsSzCniiQKAyJwpCuL0EYFnnf7JiUrT6W0O6gtBo6bNJdPMguR7I681ILtHdBYnylmaNVFIS-MWECkGgoHKMt8hplLbENR4r3fEZqlueyd3IstzmgCxdb7VjkXUWUZMhzVZVNABewc1eLcqNFCXZCt5drlZKVncrl71NlkVfNMu7Eu3epyWYFDbaJ5MJZShOBwIQvLPK41NKGN57PGLAOVsKW_raY115Jv50Xnc6xjLvg9mat6Quf_k_RbDZn4b9yfLqcKS_Jevf06FAe9voHz8gtAMteUYfKNsjq9HJmngMgnQ5fVKeekq_XbWh-AabylXY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQEdcD4iZQwCAkRKVoc9hOzFtZumo5KgSs1DfLcZxtRZqsNlmh_ffM5NKGo4jXeBwlM7bns8fzDSEvWcysDMACRvjaZVjaRKaJhV1rljAjbeQZjOh-OhaHc_b-hJ90B25Vf9u9D0m2OQ3I0lTUk2WatVM8FhMfllQ3AKTv-qHLMXn9MgPfhhUMpmI6RBHA-_E-NPmHXiNX1DD2_74ubzmmXy9NDpHTG-TauljqzQ-d51vOaXaL3OxQJd1vh8FtcskWd8iVts7k5i6ZT8vlpq398YYeNKQR8Hqq80W5OqtPzysK0JXiqUFuXaqLlDb3DF34AvOdGuhM2960sovzLlupuEfms4Nv00O3q6fgmoiL2tUWwAHgDdjDcC6y1ASSW80AENnUAzOFUQoTPIw4PBWSwZ6bexnAHcFThtHQ8D7ZKcrCPiTUslhHgWE2AB-f6EjzVJrMaJ7J1Oo4dMikV60yHdk41rzIVbPpiIVCYyg0hvJDBcZwyOuhx7Il2rhA9i1aa5BDiuzmQblaqG7GKSNxtRGZDbVhntGxiEJrowwASSI9axzyAm2tkASjwFs2C72uKnX09Yva5-DbfSS6ccirTigrUee6S1oALSBv1khydyQJs9SMm_shpbpVooK_AXQV447NIc-HZuyJN98KW64bGSRp5NK7UCYGg8lQOuRBO0oH3QQhY6A6aIlG43ekvHFLcXba8IxjEnWj7b1-pG99-l9NszfMhX_a8dH_vPkZufr53Ux9PDr-8JhcB9waNCmhbJfs1Ku1fQLYsE6eNgvAT6NLV8Y |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZQJwQ88HsQGMggJMSktGliJzFvZdo0kJgQUGk8WY7jdFXTpGpaofLXc5e4UTNgCInX-E5Nzr7z5_ruO0JesZgZ4cMM6HCoXIatTUSaGDi1ZgnTwkSexhvdj2fh6Zh9OOfnNv8Ja2GSuUZy0vlUV_3dAvS8qW_A_glmOVikWePucTgYQnh1fUD97jBwORay74UccHmP7I3PPo2-1eVFVmR7T_kbtc6-VNP3_xqkd3apyxmU7TXqLXJjXSzU5rvK852d6uQOmW2_sUlQmfXXq6Svf1yif_w_RrhLbltAS0fNCrxHrpniPrnetLjcPCDjo3KxadqOvKXHNV8F_AhV-aRcTlcX84oCaqb4h0VuXKqKlNYpji68h55RDcq00aaVmcxtoVTxkIxPjr8enbq2lYOrIx6uXGUAlwDUgeMT52GWal9woxhgMZN6sEKCKIXYEkQcnoaCwXGfexkgrZCnDC9ig33SK8rCPCbUsFhFvmbGB3iRqEjxVOhMK56J1Kg4cMhgO5FSW55zbLeRy_q8E4cSjSXRWHIYSDCWQ960GouG4-MK2Xe4Nlo5ZOeuH5TLibTOLrXAQBdmJlCaeVrFYRQYE2WAhRLhGe2Ql7iyJPJvFJjgM1HrqpLvv3yWIw6wYogcOw55bYWyEm2ubL0EWAEpuzqSBx1JCBC6O7xdwNIGqAq-BoBdjIdFh7xoh1ETk-4KU65rGeSH5MK7UiaGCROBcMijxida2_gBY2A6GIk63tIxXnekmF7UFOdYv11b-3DrVzuv_sepOWw976_z-ORfhJ-Sm4CT_boElR2Q3mq5Ns8Ai66S5zbI_ATWlH9W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copynumber%3A+Efficient+algorithms+for+single-+and+multi-track+copy+number+segmentation&rft.jtitle=BMC+genomics&rft.au=Nilsen%2C+Gro&rft.au=Liestoel%2C+Knut&rft.au=Loo%2C+Peter+Van&rft.au=Moen+Vollan%2C+Hans+Kristian&rft.date=2012-11-04&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=13&rft.issue=1&rft.spage=591&rft.epage=591&rft_id=info:doi/10.1186%2F1471-2164-13-591&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |