Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis
Age-associated methylation changes in genomic DNA have been recently reported in spermatozoa, and these changes can contribute to decline in fertility. In a previous study, we analyzed the genome-wide DNA methylation profiles of bull spermatozoa using a human DNA methylation microarray and identifie...
        Saved in:
      
    
          | Published in | Journal of Reproduction and Development Vol. 65; no. 4; pp. 305 - 312 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Japan
          THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
    
        2019
     Japan Science and Technology Agency The Society for Reproduction and Development  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0916-8818 1348-4400 1348-4400  | 
| DOI | 10.1262/jrd.2018-146 | 
Cover
| Abstract | Age-associated methylation changes in genomic DNA have been recently reported in spermatozoa, and these changes can contribute to decline in fertility. In a previous study, we analyzed the genome-wide DNA methylation profiles of bull spermatozoa using a human DNA methylation microarray and identified one CpG site (CpG-1) that potentially reflects age-related methylation changes. In the present study, cryopreserved semen samples from a Japanese Black bull were collected at five different ages, which were referred to as JD1-5: 14, 19, 28, 54, and 162 months, respectively, and were used for genome-wide DNA methylation analysis and in vitro fertilization (IVF). Distinct age-related changes in methylation profiles were observed, and 77 CpG sites were found to be differently methylated between young and adult samples (JD1-2 vs. JD4-5). Using combined bisulfite restriction analysis (COBRA), nine CpG sites (including CpG-1) were confirmed to exhibit significant differences in their age-dependent methylation levels. Eight CpG sites showed an age-dependent increase in their methylation levels, whereas only one site showed age-dependent hypomethylation; in particular, these changes in methylation levels occurred rapidly at a young age. COBRA revealed low methylation levels in some CpG regions in the majority of the IVF blastocyst-stage embryos derived from spermatozoa at JD2-5. Interestingly, bulls with different ages did not show differences in their methylation levels. In conclusion, our findings indicated that methylation levels at nine CpG sites in spermatozoa changed with increasing age and that some CpG regions were demethylated after fertilization. Further studies are required to determine whether age-dependent different methylation levels in bull spermatozoa can affect fertility. | 
    
|---|---|
| AbstractList | Age-associated methylation changes in genomic DNA have been recently reported in spermatozoa, and these changes can contribute to decline in fertility. In a previous study, we analyzed the
genome-wide DNA methylation profiles of bull spermatozoa using a human DNA methylation microarray and identified one CpG site (CpG-1) that potentially reflects age-related methylation
changes. In the present study, cryopreserved semen samples from a Japanese Black bull were collected at five different ages, which were referred to as JD1-5: 14, 19, 28, 54, and 162 months,
respectively, and were used for genome-wide DNA methylation analysis and in vitro fertilization (IVF). Distinct age-related changes in methylation profiles were observed,
and 77 CpG sites were found to be differently methylated between young and adult samples (JD1-2 vs. JD4-5). Using combined bisulfite restriction analysis (COBRA), nine CpG
sites (including CpG-1) were confirmed to exhibit significant differences in their age-dependent methylation levels. Eight CpG sites showed an age-dependent increase in their methylation
levels, whereas only one site showed age-dependent hypomethylation; in particular, these changes in methylation levels occurred rapidly at a young age. COBRA revealed low methylation levels
in some CpG regions in the majority of the IVF blastocyst-stage embryos derived from spermatozoa at JD2-5. Interestingly, bulls with different ages did not show differences in their
methylation levels. In conclusion, our findings indicated that methylation levels at nine CpG sites in spermatozoa changed with increasing age and that some CpG regions were demethylated
after fertilization. Further studies are required to determine whether age-dependent different methylation levels in bull spermatozoa can affect fertility. Age-associated methylation changes in genomic DNA have been recently reported in spermatozoa, and these changes can contribute to decline in fertility. In a previous study, we analyzed the genome-wide DNA methylation profiles of bull spermatozoa using a human DNA methylation microarray and identified one CpG site (CpG-1) that potentially reflects age-related methylation changes. In the present study, cryopreserved semen samples from a Japanese Black bull were collected at five different ages, which were referred to as JD1-5: 14, 19, 28, 54, and 162 months, respectively, and were used for genome-wide DNA methylation analysis and in vitro fertilization (IVF). Distinct age-related changes in methylation profiles were observed, and 77 CpG sites were found to be differently methylated between young and adult samples (JD1-2 vs. JD4-5). Using combined bisulfite restriction analysis (COBRA), nine CpG sites (including CpG-1) were confirmed to exhibit significant differences in their age-dependent methylation levels. Eight CpG sites showed an age-dependent increase in their methylation levels, whereas only one site showed age-dependent hypomethylation; in particular, these changes in methylation levels occurred rapidly at a young age. COBRA revealed low methylation levels in some CpG regions in the majority of the IVF blastocyst-stage embryos derived from spermatozoa at JD2-5. Interestingly, bulls with different ages did not show differences in their methylation levels. In conclusion, our findings indicated that methylation levels at nine CpG sites in spermatozoa changed with increasing age and that some CpG regions were demethylated after fertilization. Further studies are required to determine whether age-dependent different methylation levels in bull spermatozoa can affect fertility.  | 
    
| Author | TAKEDA, Kumiko NISHINO, Kagetomo KOBAYASHI, Eiji HOSHINO, Yoichiro IMAI, Akira AKAGI, Satoshi ADACHI, Hiromichi IWAO, Ken WATANABE, Shinya KANEDA, Masahiro  | 
    
| Author_xml | – sequence: 1 fullname: KANEDA, Masahiro organization: Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan – sequence: 1 fullname: ADACHI, Hiromichi organization: Hida Beef Cattle Research, Gifu Prefectural Livestock Research Institute, Gifu 506-0101, Japan – sequence: 1 fullname: TAKEDA, Kumiko organization: Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan – sequence: 1 fullname: KOBAYASHI, Eiji organization: Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan – sequence: 1 fullname: HOSHINO, Yoichiro organization: Kyoto University, Kyoto 622-0203, Japan – sequence: 1 fullname: IWAO, Ken organization: Tottori Prefectural Livestock Research Institute, Tottori 689-2503, Japan – sequence: 1 fullname: AKAGI, Satoshi organization: Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan – sequence: 1 fullname: NISHINO, Kagetomo organization: Beef Cattle Institute, Ibaraki Prefectural Livestock Research Center, Ibaraki 319-2224, Japan – sequence: 1 fullname: IMAI, Akira organization: Hiroshima Prefectural Livestock Technology Research Center, Hiroshima 739-0151, Japan – sequence: 1 fullname: WATANABE, Shinya organization: Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31061296$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUk1v1DAQjVAR3RZunJElrqT4K05yQSoLlEoVXOBs-Su7XnnjxXYWpT-O34az6a4oEuJiWzNv3hvPm4virPe9KYqXCF4hzPDbTdBXGKKmRJQ9KRaI0KakFMKzYgFbxMqmQc15cRHjBkKCK0afFecEQYZwyxbFr-uVKYNxIhkN1Fr0KxOB7cGHL9dga9J6zBnre-DM3rgIRALL3Q2INs0wOTgH4s6ErUj-3gsgej3F9zYFDzoTknX2_kBRahPsPqtIJ2LyaoypjEmsDDBbGUYfQcgawk2IESi_lbaf3jYOrst6OR1TsOrQjuiFG6ONz4unnXDRvHi4L4vvnz5-W34u777e3C6v70pVV1Uqa81ox2qltJZt3eSRtE0tiZSdJLCtFW0VIgIaUXWESUY1koZiTBpIIRJQk8vidubVXmz4LtitCCP3wvJDwIcVF_mvyhlOa1hlXyoNO0yJJG2nW9xJVMlGs1Y2maucuYZ-J8afwrkTIYJ88pRnT_nkKc-eZvy7Gb8b5NZoZfoUhHvUxONMb9d85fec1bBpKpwJXj8QBP9jyFPkGz-EPMHIMa4ZRAyRSebVnzIn_uOuZMCbGaCCjzGY7n9t47_gyqbDJuQmrftX0fu5aHNYjZPCcbgTmFWcTsex6JTM6xu46clvctv9qA | 
    
| CitedBy_id | crossref_primary_10_1186_s13072_023_00495_6 crossref_primary_10_3390_genes11091084 crossref_primary_10_1080_10495398_2022_2065999 crossref_primary_10_1007_s00204_024_03713_6 crossref_primary_10_3390_agriculture13071426 crossref_primary_10_1186_s13148_022_01275_x crossref_primary_10_1007_s13353_020_00604_1 crossref_primary_10_3390_ijms22115925 crossref_primary_10_3389_fgene_2020_00922 crossref_primary_10_1089_cell_2019_0074 crossref_primary_10_1007_s00441_022_03659_0 crossref_primary_10_1093_humupd_dmac033 crossref_primary_10_1262_jrd_2020_137 crossref_primary_10_3389_fgene_2020_613636 crossref_primary_10_1186_s12864_020_07206_5 crossref_primary_10_1071_RD21266 crossref_primary_10_22456_1679_9216_125068 crossref_primary_10_1155_2024_4125118 crossref_primary_10_1139_cjas_2019_0071 crossref_primary_10_3389_fgene_2020_557846 crossref_primary_10_3389_fgene_2021_557934 crossref_primary_10_1262_jrd_2024_043 crossref_primary_10_3390_cells11040731  | 
    
| Cites_doi | 10.1016/j.yhbeh.2010.06.018 10.1111/acel.12349 10.1007/s10815-009-9346-2 10.1262/jrd.2016-160 10.1016/j.theriogenology.2018.02.012 10.5483/BMBRep.2017.50.11.175 10.1002/dvdy.21278 10.1186/gb-2013-14-10-r115 10.1016/j.ygeno.2011.07.007 10.1101/gr.125187.111 10.3389/fgene.2017.00106 10.1186/s12864-017-3673-y 10.1016/j.fertnstert.2013.05.039 10.1016/j.fertnstert.2015.08.019 10.1016/j.fertnstert.2011.12.036 10.1098/rstb.2011.0330 10.1016/j.cell.2014.04.017 10.1371/journal.pone.0167127 10.1038/nature02633 10.21037/tau.2018.06.10 10.1186/s13059-016-1066-1 10.1186/s12958-015-0028-x 10.1371/journal.pgen.1004458 10.5924/abgri.44.45  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Society for Reproduction and Development Copyright Japan Science and Technology Agency 2019 2019 Society for Reproduction and Development 2019  | 
    
| Copyright_xml | – notice: 2019 Society for Reproduction and Development – notice: Copyright Japan Science and Technology Agency 2019 – notice: 2019 Society for Reproduction and Development 2019  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1262/jrd.2018-146 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts  | 
    
| DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Biology  | 
    
| EISSN | 1348-4400 | 
    
| EndPage | 312 | 
    
| ExternalDocumentID | oai_doaj_org_article_47052625d0f243b39fd92fb15b8d69b8 10.1262/jrd.2018-146 PMC6708852 31061296 10_1262_jrd_2018_146 article_jrd_65_4_65_2018_146_article_char_en  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c755t-7d64f67ccddb978881987b3bbfb3097c49c13a0ea5f36b64d1be422380401a0d3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 0916-8818 1348-4400  | 
    
| IngestDate | Fri Oct 03 12:51:29 EDT 2025 Sun Oct 26 04:08:34 EDT 2025 Tue Sep 30 16:12:28 EDT 2025 Tue Oct 07 06:55:33 EDT 2025 Thu Jan 02 22:59:38 EST 2025 Tue Jul 01 02:55:19 EDT 2025 Thu Apr 24 23:04:23 EDT 2025 Wed Sep 03 06:13:58 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Age-related changes DNA methylation Bull spermatozoa Combined bisulfite restriction analysis (COBRA) In vitro fertilization (IVF) embryos  | 
    
| Language | English | 
    
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c755t-7d64f67ccddb978881987b3bbfb3097c49c13a0ea5f36b64d1be422380401a0d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2018-146 | 
    
| PMID | 31061296 | 
    
| PQID | 2276016136 | 
    
| PQPubID | 2048441 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_47052625d0f243b39fd92fb15b8d69b8 unpaywall_primary_10_1262_jrd_2018_146 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708852 proquest_journals_2276016136 pubmed_primary_31061296 crossref_primary_10_1262_jrd_2018_146 crossref_citationtrail_10_1262_jrd_2018_146 jstage_primary_article_jrd_65_4_65_2018_146_article_char_en  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-00-00 | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – year: 2019 text: 2019-00-00  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Japan | 
    
| PublicationPlace_xml | – name: Japan – name: Tokyo  | 
    
| PublicationTitle | Journal of Reproduction and Development | 
    
| PublicationTitleAlternate | J. Reprod. Dev. | 
    
| PublicationYear | 2019 | 
    
| Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT Japan Science and Technology Agency The Society for Reproduction and Development  | 
    
| Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT – name: Japan Science and Technology Agency – name: The Society for Reproduction and Development  | 
    
| References | 9. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet 2014; 10: e1004458. 12. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell 2015; 14: 924–932. 23. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14: R115. 19. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 2016; 17: 208. 16. Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, Khatib H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 2017; 18: 280. 11. Kobayashi N, Okae H, Hiura H, Chiba H, Shirakata Y, Hara K, Tanemura K, Arima T. Genome-Scale Assessment of Age-Related DNA Methylation Changes in Mouse Spermatozoa. PLoS One 2016; 11: e0167127. 18. Takeda K, Kobayashi E, Akagi S, Nishino K, Kaneda M, Watanabe S. Differentially methylated CpG sites in bull spermatozoa revealed by human DNA methylation arrays and bisulfite analysis. J Reprod Dev 2017; 63: 279–287. 4. Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet 2012; 3: 143. 25. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol 2015; 13: 35. 20. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98: 288–295. 7. Jung SE, Shin KJ, Lee HY. DNA methylation-based age prediction from various tissues and body fluids. BMB Rep 2017; 50: 546–553. 14. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20110330. 15. Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals. Cell 2014; 157: 979–991. 17. Kobayashi E, Takeda K. A data driven approach to utilizing Human Methylation arrays in genome-wide study for bovine DNA methylation. Journal of Animal Genetics 2016; 44: 45–52. 6. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429: 900–903. 8. Jenkins TG, Aston KI, Carrell DT. Sperm epigenetics and aging. Transl Androl Urol 2018; 7(Suppl 3): S328–S335. 21. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST. Age-associated DNA methylation in pediatric populations. Genome Res 2012; 22: 623–632. 13. Park JS, Jeong YS, Shin ST, Lee KK, Kang YK. Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn 2007; 236: 2523–2533. 1. Rahman MB, Schellander K, Luceño NL, Van Soom A. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018; 113: 102–112. 24. Freire-Aradas A, Phillips C, Lareu MV. Forensic individual age estimation with DNA: From initial approaches to methylation tests. Forensic Sci Rev 2017; 29: 121–144. 26. Atsem S, Reichenbach J, Potabattula R, Dittrich M, Nava C, Depienne C, Böhm L, Rost S, Hahn T, Schorsch M, Haaf T, El Hajj N. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet 2016; 25: 4996–5005. 5. Carrell DT. Epigenetics of the male gamete. Fertil Steril 2012; 97: 267–274. 22. De Paoli-Iseppi R, Deagle BE, McMahon CR, Hindell MA, Dickinson JL, Jarman SN. Measuring animal age with DNA methylation: from humans to wild animals. Front Genet 2017; 8: 106. 10. Jenkins TG, Aston KI, Cairns BR, Carrell DT. Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil Steril 2013; 100: 945–951. 27. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav 2011; 59: 306–314. 2. Tunc O, Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 2009; 26: 537–544. 3. Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, Carrell DT. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril 2015; 104: 1388–1397.e1–5. 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21  | 
    
| References_xml | – reference: 26. Atsem S, Reichenbach J, Potabattula R, Dittrich M, Nava C, Depienne C, Böhm L, Rost S, Hahn T, Schorsch M, Haaf T, El Hajj N. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet 2016; 25: 4996–5005. – reference: 20. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98: 288–295. – reference: 14. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20110330. – reference: 12. Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell 2015; 14: 924–932. – reference: 4. Jenkins TG, Carrell DT. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Genet 2012; 3: 143. – reference: 21. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST. Age-associated DNA methylation in pediatric populations. Genome Res 2012; 22: 623–632. – reference: 15. Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals. Cell 2014; 157: 979–991. – reference: 25. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol 2015; 13: 35. – reference: 7. Jung SE, Shin KJ, Lee HY. DNA methylation-based age prediction from various tissues and body fluids. BMB Rep 2017; 50: 546–553. – reference: 13. Park JS, Jeong YS, Shin ST, Lee KK, Kang YK. Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn 2007; 236: 2523–2533. – reference: 1. Rahman MB, Schellander K, Luceño NL, Van Soom A. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018; 113: 102–112. – reference: 16. Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, Song J, Khatib H. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 2017; 18: 280. – reference: 17. Kobayashi E, Takeda K. A data driven approach to utilizing Human Methylation arrays in genome-wide study for bovine DNA methylation. Journal of Animal Genetics 2016; 44: 45–52. – reference: 23. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013; 14: R115. – reference: 6. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429: 900–903. – reference: 2. Tunc O, Tremellen K. Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 2009; 26: 537–544. – reference: 5. Carrell DT. Epigenetics of the male gamete. Fertil Steril 2012; 97: 267–274. – reference: 19. Pidsley R, Zotenko E, Peters TJ, Lawrence MG, Risbridger GP, Molloy P, Van Djik S, Muhlhausler B, Stirzaker C, Clark SJ. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 2016; 17: 208. – reference: 24. Freire-Aradas A, Phillips C, Lareu MV. Forensic individual age estimation with DNA: From initial approaches to methylation tests. Forensic Sci Rev 2017; 29: 121–144. – reference: 8. Jenkins TG, Aston KI, Carrell DT. Sperm epigenetics and aging. Transl Androl Urol 2018; 7(Suppl 3): S328–S335. – reference: 18. Takeda K, Kobayashi E, Akagi S, Nishino K, Kaneda M, Watanabe S. Differentially methylated CpG sites in bull spermatozoa revealed by human DNA methylation arrays and bisulfite analysis. J Reprod Dev 2017; 63: 279–287. – reference: 3. Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, Carrell DT. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril 2015; 104: 1388–1397.e1–5. – reference: 10. Jenkins TG, Aston KI, Cairns BR, Carrell DT. Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil Steril 2013; 100: 945–951. – reference: 27. Curley JP, Mashoodh R, Champagne FA. Epigenetics and the origins of paternal effects. Horm Behav 2011; 59: 306–314. – reference: 22. De Paoli-Iseppi R, Deagle BE, McMahon CR, Hindell MA, Dickinson JL, Jarman SN. Measuring animal age with DNA methylation: from humans to wild animals. Front Genet 2017; 8: 106. – reference: 11. Kobayashi N, Okae H, Hiura H, Chiba H, Shirakata Y, Hara K, Tanemura K, Arima T. Genome-Scale Assessment of Age-Related DNA Methylation Changes in Mouse Spermatozoa. PLoS One 2016; 11: e0167127. – reference: 9. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet 2014; 10: e1004458. – ident: 27 doi: 10.1016/j.yhbeh.2010.06.018 – ident: 12 doi: 10.1111/acel.12349 – ident: 2 doi: 10.1007/s10815-009-9346-2 – ident: 18 doi: 10.1262/jrd.2016-160 – ident: 1 doi: 10.1016/j.theriogenology.2018.02.012 – ident: 4 – ident: 7 doi: 10.5483/BMBRep.2017.50.11.175 – ident: 13 doi: 10.1002/dvdy.21278 – ident: 23 doi: 10.1186/gb-2013-14-10-r115 – ident: 20 doi: 10.1016/j.ygeno.2011.07.007 – ident: 21 doi: 10.1101/gr.125187.111 – ident: 22 doi: 10.3389/fgene.2017.00106 – ident: 16 doi: 10.1186/s12864-017-3673-y – ident: 24 – ident: 26 – ident: 10 doi: 10.1016/j.fertnstert.2013.05.039 – ident: 3 doi: 10.1016/j.fertnstert.2015.08.019 – ident: 5 doi: 10.1016/j.fertnstert.2011.12.036 – ident: 14 doi: 10.1098/rstb.2011.0330 – ident: 15 doi: 10.1016/j.cell.2014.04.017 – ident: 11 doi: 10.1371/journal.pone.0167127 – ident: 6 doi: 10.1038/nature02633 – ident: 8 doi: 10.21037/tau.2018.06.10 – ident: 19 doi: 10.1186/s13059-016-1066-1 – ident: 25 doi: 10.1186/s12958-015-0028-x – ident: 9 doi: 10.1371/journal.pgen.1004458 – ident: 17 doi: 10.5924/abgri.44.45  | 
    
| SSID | ssj0032564 | 
    
| Score | 2.33868 | 
    
| Snippet | Age-associated methylation changes in genomic DNA have been recently reported in spermatozoa, and these changes can contribute to decline in fertility. In a... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref jstage  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 305 | 
    
| SubjectTerms | Age Age Factors Age-related changes Aging - genetics Animals Bisulfite Blastocyst - metabolism Bull spermatozoa Cattle Cells, Cultured Combinatorial Chemistry Techniques - methods Combined bisulfite restriction analysis (COBRA) CpG islands CpG Islands - genetics Cryopreservation Deoxyribonucleic acid DNA DNA methylation DNA Methylation - genetics DNA microarrays Embryo Culture Techniques Embryo, Mammalian Embryonic Development - genetics Embryos Female Fertility Fertilization in Vitro - veterinary Genomes Humans In vitro fertilization In vitro fertilization (IVF) embryos Male Oligonucleotide Array Sequence Analysis - methods Original Restriction Mapping - methods Semen Sequence Analysis, DNA - methods Sperm Spermatozoa - metabolism Sulfites - chemistry  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJR4XBOW1UJAPwAVFTRwn2YjTUigVEj1RqbfIYzslVZqsNtmi8OP4bczY2WhXvC5cVqvYa6_tycw3ycw3jL2MJer8TEeo_SAJZJbgPReFNphrdFaEUlBqFyB7mp6cyU_nyflWqS-KCfP0wH7jDmVGjCQiMWEpZAxxXppclBAlMDdpDi7NN5znG2fK6-AYDbkjjkLwE8zRJo0h7zjQ4eWKCEIj9J0I9G4ZI8fZj4boEmHZhf0d4vw1cPL2ulmq4Zuq6y2rdHyP3R3hJF_4ZdxnN2yzz276ApPDPrv1eXx1_oD9WFzYwGWuWMN9um_Hq4a_P11wKiM9-KA4XlMUUcdVz4-WHzm9W3bdAF1VTqziiHDb763iqjF0_brqVy0vKTq7HlM6A4NSfY2zACLzvtVD1wdusdxewWpoO060UWiYsMfAUeLROafvVbeuS5yPU7mQVeUSLnAaT5rykJ0df_hydBKMxRsCnSVJH2QmlWWaaW0M5ORn09MNiAFKiMM80zLXUaxCq5IyTiGVJgIrEavMUatEKjTxI7bXtI19wrgAhJkqVRIQjNhQKEBcpCOpQMoQRDpjbzanWOiR2ZwKbNQFeTh45gWeeUFnTo7OjL2aei89o8cf-r0jgZj6EA-3u4DSWYzSWfxLOmfsrRenaZjNL2mqNCkkfWymnBop4w7V1owdbGSwGFVLVwhBYUyIwvAfPvbiOA0ek4MvcmzJdgR1ZxG7LU311ZGKpxnam0TM2OtJpP-6PU__x_Y8Y3dwvNw_0jpge_1qbZ8jyOvhhbuffwJ2V1IC priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagKx4XHssChQX5AFxQ2sRxnEScysKyQqLiwErLKfLYSWkJSdWki7I_jt_G2HErykuISxMlUz-S8bwy85mQJyFHmR-rAKUfRB6PI1xzgZ97iUJnhUkJhbIJslNxcsrfnkVnLuDWuLTKBdpFs9wcRrN6tFiO3UMcLwwmajTm-JOh4kL3h4txttTFZbInIrTFB2TvdPp-8tEC7AXCSxIb4AtCEzVDbnWZ70ww09Zo08aOTrLQ_aiP-lH8zvD8NX_y2rpayu6rLMsflNPxTZJtptXnpHwerVsYqYufEB__f963yA1nt9JJT3ubXMqrfXKl38my2ydX37lv9HfIt8ks92yJTK5pX1fc0HlFX00n1OxX3fXZd7Q06UoNlS09Wr6h5iO2JQP0iamBL0dTur6oJZWVNtfP5-2qpoVJAy9d7aincfmcYy-ALkBbq65pPTs5mn-BVVc31OBToQZEio7i0gIcIJ7Pm3VZYH_U7EuymtvKDuymR2c5IKfHrz8cnXhulwhPxVHUerEWvBCxUlpDahx6E0aBEKCA0E9jxVMVhNLPZVSEAgTXAeQcjaIExVcgfR3eJYOqrvL7hDJAe1YKyQGtntxnEtAAUwGXgMwDTAzJ8w2fZMpBqJudPMrMuFLIVRm-KfuGjEc1JE-31MseOuQPdC8Ny21pDOC3vVCvZpljgYzHBpiHRdovGA8hTAudsgKCCBItUkiG5EXPPttmNv80XSHf8MwxT2bL0N1NU9qH8nFIDjdcnjkZ1mSMmXwpNPdwhPd6ht82HppIAkvxTryzFHYmsXunmn-y6OUiRsUWsSF5tl00f308D_6V8CG5jqdpHx87JIN2tc4focXYwmMnFr4Df2ds5w priority: 102 providerName: Unpaywall  | 
    
| Title | Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis | 
    
| URI | https://www.jstage.jst.go.jp/article/jrd/65/4/65_2018-146/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31061296 https://www.proquest.com/docview/2276016136 https://pubmed.ncbi.nlm.nih.gov/PMC6708852 https://www.jstage.jst.go.jp/article/jrd/65/4/65_2018-146/_pdf https://doaj.org/article/47052625d0f243b39fd92fb15b8d69b8  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 65 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Reproduction and Development, 2019, Vol.65(4), pp.305-312 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: KQ8 dateStart: 19920101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: DIK dateStart: 19920101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1348-4400 dateEnd: 20250630 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: M48 dateStart: 20130201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK0ovCMorUFY-ABcUmjiOsxFCaCmUAtpVD6xUTpHtJMtWIVmStBB-HL-NGeehLhQOXKJV4mQ28YznG3v8DSGPPA5jfqBdGP2Ub_PAB5tzncQeawhWmJQq1SZBdiaO5vz9iX-yQfpqo90HrC4N7bCe1LzMnn3_2rwEg39huBEE2z8tkfLThWiIiytkC3xUiEUcpnxYT_DAsRsiKQBD9hh8VJcC__vdO2TbwxiJIYf_BT9l6PzBR50CYlskl4HRP3Mqr53lK9l8k1l2wWEd3iDXO6RJJ61q3CQbSb5Lrra1J5tdsj3tVtVvkZ-TRWKbTS1JTNudwBVd5vT1bEKxwnTT5svRDBOMKiprerB6S3HZ2TRTEMVSJBwH8Fv8KCSVeYznz5d1WdAUE7ezbrenHYPCn4MUBaC9LnRT1bZ5WZp8UWVTVBQZpcBnQYuGgjFA3I6_l9VZloI8ipVEyqXZiwFiWj6V22R--ObjwZHd1XWwdeD7tR3Egqci0DqOVYghOE58KE-pVHlOGGgeateTTiL91BNK8NhVCQcYM4YBx5VO7N0hm3mRJ_cIZQoQqBSSK8ApicOkAsikXS4V545iwiJP-16MdEd6jrU3sgiDH-j-CLo_wu7HGMgij4fWq5bs4y_tXqFCDG2QotucKMpF1Fl8xAOk0mF-7KSMe8oL0zhkqXJ9NY5FqMYWed6q0_CY_k4UJfyI46EXOVzEzXgwollkr9fBqDeaiDHMcAKABv_wbquOw8N7vbZIsKaoay-xfiVffjZ84yIAV-QzizwZVPqfn-f-f4t4QHbgIWE7xbVHNuvyLHkIoK9WIwh33n0YmSmTkbFtOM6OpyOyNZ8dTz79AvS3Xmg | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagKx4XHssChQX5AFxQ2sRxnEScysKyQqLiwErLKfLYSWkJSdWki7I_jt_G2HErykuISxMlUz-S8bwy85mQJyFHmR-rAKUfRB6PI1xzgZ97iUJnhUkJhbIJslNxcsrfnkVnLuDWuLTKBdpFs9wcRrN6tFiO3UMcLwwmajTm-JOh4kL3h4txttTFZbInIrTFB2TvdPp-8tEC7AXCSxIb4AtCEzVDbnWZ70ww09Zo08aOTrLQ_aiP-lH8zvD8NX_y2rpayu6rLMsflNPxTZJtptXnpHwerVsYqYufEB__f963yA1nt9JJT3ubXMqrfXKl38my2ydX37lv9HfIt8ks92yJTK5pX1fc0HlFX00n1OxX3fXZd7Q06UoNlS09Wr6h5iO2JQP0iamBL0dTur6oJZWVNtfP5-2qpoVJAy9d7aincfmcYy-ALkBbq65pPTs5mn-BVVc31OBToQZEio7i0gIcIJ7Pm3VZYH_U7EuymtvKDuymR2c5IKfHrz8cnXhulwhPxVHUerEWvBCxUlpDahx6E0aBEKCA0E9jxVMVhNLPZVSEAgTXAeQcjaIExVcgfR3eJYOqrvL7hDJAe1YKyQGtntxnEtAAUwGXgMwDTAzJ8w2fZMpBqJudPMrMuFLIVRm-KfuGjEc1JE-31MseOuQPdC8Ny21pDOC3vVCvZpljgYzHBpiHRdovGA8hTAudsgKCCBItUkiG5EXPPttmNv80XSHf8MwxT2bL0N1NU9qH8nFIDjdcnjkZ1mSMmXwpNPdwhPd6ht82HppIAkvxTryzFHYmsXunmn-y6OUiRsUWsSF5tl00f308D_6V8CG5jqdpHx87JIN2tc4focXYwmMnFr4Df2ds5w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-related+changes+in+DNA+methylation+levels+at+CpG+sites+in+bull+spermatozoa+and+in+vitro+fertilization-derived+blastocyst-stage+embryos+revealed+by+combined+bisulfite+restriction+analysis&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=TAKEDA%2C+Kumiko&rft.au=KOBAYASHI%2C+Eiji&rft.au=NISHINO%2C+Kagetomo&rft.au=IMAI%2C+Akira&rft.date=2019&rft.pub=The+Society+for+Reproduction+and+Development&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=65&rft.issue=4&rft.spage=305&rft.epage=312&rft_id=info:doi/10.1262%2Fjrd.2018-146&rft_id=info%3Apmid%2F31061296&rft.externalDocID=PMC6708852 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |