Targeted transcranial direct current stimulation for rehabilitation after stroke

Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 75; pp. 12 - 19
Main Authors Dmochowski, Jacek P., Datta, Abhishek, Huang, Yu, Richardson, Jessica D., Bikson, Marom, Fridriksson, Julius, Parra, Lucas C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.07.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2013.02.049

Cover

Abstract Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.
AbstractList Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional adosagea, consisting of a large (25 cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small ahigh-definitiona electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.
Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
Transcranial direct current stimulation (tDCS) is being investigated as an ad-junctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neurorehabilitation.
Author Parra, Lucas C.
Bikson, Marom
Fridriksson, Julius
Huang, Yu
Richardson, Jessica D.
Dmochowski, Jacek P.
Datta, Abhishek
AuthorAffiliation c Medical University of South Carolina, Columbia, SC
b Soterix Medical, New York, NY
a City College of New York, New York, NY
AuthorAffiliation_xml – name: a City College of New York, New York, NY
– name: c Medical University of South Carolina, Columbia, SC
– name: b Soterix Medical, New York, NY
Author_xml – sequence: 1
  givenname: Jacek P.
  surname: Dmochowski
  fullname: Dmochowski, Jacek P.
  email: dmochowski@gmail.com
  organization: City College of New York, New York, NY, USA
– sequence: 2
  givenname: Abhishek
  surname: Datta
  fullname: Datta, Abhishek
  organization: Soterix Medical, New York, NY, USA
– sequence: 3
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
  organization: City College of New York, New York, NY, USA
– sequence: 4
  givenname: Jessica D.
  surname: Richardson
  fullname: Richardson, Jessica D.
  organization: University of South Carolina, Columbia, SC, USA
– sequence: 5
  givenname: Marom
  surname: Bikson
  fullname: Bikson, Marom
  organization: City College of New York, New York, NY, USA
– sequence: 6
  givenname: Julius
  surname: Fridriksson
  fullname: Fridriksson, Julius
  organization: University of South Carolina, Columbia, SC, USA
– sequence: 7
  givenname: Lucas C.
  surname: Parra
  fullname: Parra, Lucas C.
  email: parra@ccny.cuny.edu
  organization: City College of New York, New York, NY, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27286918$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23473936$$D View this record in MEDLINE/PubMed
BookMark eNqVks2O0zAUhSM0iPmBV0CREBKbFl8nju0NAkbDjzQSLIa15do3HXdcu9jJoL79uGqh0AWUTRIl3z3K_XzOq5MQA1ZVDWQKBLrXi2nAMUW31HOcUgLNlNApaeWj6gyIZBPJOD3ZPLNmIgDkaXWe84IQIqEVT6pT2rS8kU13Vn290WmOA9p6SDpkUy5O-9q6hGaozZgShqHOg1uOXg8uhrqPqU54q2fOu2H7SvcDpgKleIdPq8e99hmf7e4X1bcPVzeXnybXXz5-vnx3PTGctcOEGSLNrGslk1SYlhsru7YDJEYIy9ES5NhTwjs2A7TcUi1127eUWNuA7XVzUclt7hhWev1De69WqQhJawVEbSyphdpbUhtLilBVLJXZN9vZ1ThbojVlxaT381E79eeX4G7VPN6rFiihfBPwaheQ4vcR86CWLhv0XgeMY1bQceioYKz9N8pI2ZKCPCK16bgQwDkv6IsDdBHHFIrwsigDRqWEv1LASgPKPzZQqOe_2_il4WdJCvByB-hstO9LR4zLe45T0UkQe60mxZwT9srsGlIkOn_MuYiDgP840vfbUSydu3eYVDYOg8Ftk5WN7piQtwchxrvgys53uD4u4gGKRSWX
CitedBy_id crossref_primary_10_1088_1741_2560_13_3_036022
crossref_primary_10_1109_TNSRE_2017_2748930
crossref_primary_10_1016_j_neulet_2017_12_057
crossref_primary_10_1007_s11517_021_02338_6
crossref_primary_10_1007_s11940_015_0362_5
crossref_primary_10_3390_biomedicines11102856
crossref_primary_10_1016_j_brs_2019_10_004
crossref_primary_10_1016_j_brs_2017_12_008
crossref_primary_10_1038_s41598_024_52355_2
crossref_primary_10_1016_j_isci_2024_109150
crossref_primary_10_1016_j_clinph_2015_11_012
crossref_primary_10_1097_WNN_0000000000000270
crossref_primary_10_1371_journal_pone_0298991
crossref_primary_10_3390_brainsci12111455
crossref_primary_10_1002_jnr_25154
crossref_primary_10_1016_j_neuroimage_2019_116403
crossref_primary_10_1016_j_brs_2017_10_012
crossref_primary_10_1109_ACCESS_2020_3028618
crossref_primary_10_1016_j_nicl_2024_103599
crossref_primary_10_3389_fnhum_2018_00268
crossref_primary_10_1038_s41598_020_61180_2
crossref_primary_10_1371_journal_pone_0125477
crossref_primary_10_1016_j_clinph_2016_08_016
crossref_primary_10_3389_fnhum_2023_1075741
crossref_primary_10_1016_j_neubiorev_2016_08_001
crossref_primary_10_1016_j_clinph_2017_06_001
crossref_primary_10_7554_eLife_18834
crossref_primary_10_1016_j_neuroimage_2015_12_019
crossref_primary_10_1155_2016_9674790
crossref_primary_10_2139_ssrn_4149489
crossref_primary_10_1002_hbm_23431
crossref_primary_10_1016_j_brs_2018_09_010
crossref_primary_10_1016_j_clinph_2019_12_003
crossref_primary_10_3233_RNN_231344
crossref_primary_10_3389_fnsys_2014_00147
crossref_primary_10_3389_fneur_2022_953939
crossref_primary_10_1016_j_brs_2023_06_013
crossref_primary_10_1038_s41598_020_64378_6
crossref_primary_10_1016_j_neurom_2024_09_475
crossref_primary_10_1016_j_clinph_2021_10_016
crossref_primary_10_3389_fnhum_2023_1239105
crossref_primary_10_1088_1741_2552_aba6dc
crossref_primary_10_3233_RNN_150569
crossref_primary_10_1016_j_biopsych_2021_07_008
crossref_primary_10_1016_j_brs_2019_07_010
crossref_primary_10_3390_jpm11090940
crossref_primary_10_1007_s00702_017_1808_6
crossref_primary_10_1038_s41598_023_48313_z
crossref_primary_10_1016_j_neurom_2022_12_007
crossref_primary_10_1177_1545968315595286
crossref_primary_10_1186_s12984_021_00972_7
crossref_primary_10_1016_j_neuron_2015_07_032
crossref_primary_10_1080_09602011_2020_1805335
crossref_primary_10_1016_j_brs_2016_06_004
crossref_primary_10_1038_s41598_019_47654_y
crossref_primary_10_1016_j_cct_2023_107142
crossref_primary_10_1109_TNSRE_2018_2890001
crossref_primary_10_12786_bn_2024_17_e21
crossref_primary_10_1016_j_neuroimage_2023_120379
crossref_primary_10_1371_journal_pone_0222995
crossref_primary_10_1038_s41598_023_45905_7
crossref_primary_10_1137_15M1026481
crossref_primary_10_1038_s41598_019_55157_z
crossref_primary_10_1371_journal_pone_0108028
crossref_primary_10_1016_j_jneumeth_2022_109761
crossref_primary_10_1088_1741_2552_abca15
crossref_primary_10_1016_j_nicl_2017_04_014
crossref_primary_10_1016_j_brs_2015_01_401
crossref_primary_10_1007_s10072_019_04229_z
crossref_primary_10_1088_1741_2552_aa8d8a
crossref_primary_10_1093_sleep_zsab275
crossref_primary_10_1088_1741_2560_10_6_066004
crossref_primary_10_1038_s41598_024_52874_y
crossref_primary_10_1007_s40473_021_00238_5
crossref_primary_10_1186_s12938_022_01026_2
crossref_primary_10_3389_fpsyt_2016_00087
crossref_primary_10_1088_1741_2552_ab549d
crossref_primary_10_3389_fneur_2020_545174
crossref_primary_10_1088_1741_2552_ab29c5
crossref_primary_10_3390_brainsci12050522
crossref_primary_10_1016_j_brs_2020_04_007
crossref_primary_10_1016_j_jneumeth_2013_07_016
crossref_primary_10_1016_j_neuroimage_2022_119501
crossref_primary_10_3389_fnhum_2015_00307
crossref_primary_10_3389_fnhum_2016_00394
crossref_primary_10_1016_j_tics_2014_10_003
crossref_primary_10_1016_j_brs_2022_12_011
crossref_primary_10_1186_s12984_019_0581_1
crossref_primary_10_1016_j_cmpb_2024_108429
crossref_primary_10_1212_WNL_0000000000012187
crossref_primary_10_1586_14737175_2014_864555
crossref_primary_10_3390_jcm12072601
crossref_primary_10_1093_brain_aww002
crossref_primary_10_1117_1_JBO_20_4_046007
crossref_primary_10_1016_j_brs_2023_05_020
crossref_primary_10_3390_brainsci14121162
crossref_primary_10_1088_0031_9155_61_12_4506
crossref_primary_10_1007_s10439_019_02254_9
crossref_primary_10_1162_nol_a_00025
crossref_primary_10_3390_jcm13113084
crossref_primary_10_1016_j_nicl_2022_103178
crossref_primary_10_3390_brainsci11020212
crossref_primary_10_1027_1016_9040_a000254
crossref_primary_10_3233_RNN_150633
crossref_primary_10_1016_j_cobeha_2015_04_002
crossref_primary_10_1016_j_neuroimage_2019_116183
crossref_primary_10_1162_imag_a_00431
Cites_doi 10.1016/j.brs.2009.03.005
10.1088/0031-9155/57/20/6459
10.1113/jphysiol.2007.137711
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1093/brain/awh369
10.1523/JNEUROSCI.0095-07.2007
10.1161/STROKEAHA.109.576785
10.1016/j.clinph.2006.04.009
10.1016/j.neuron.2010.03.035
10.1016/j.clinph.2006.02.020
10.3389/fpsyt.2012.00083
10.1016/j.clinph.2010.08.023
10.1586/17434440.5.6.759
10.1152/jn.01312.2006
10.1016/j.jneumeth.2003.10.009
10.1113/jphysiol.1964.sp007425
10.1113/jphysiol.2003.055772
10.1088/1741-2560/8/4/046011
10.1016/j.expneurol.2009.03.038
10.1097/01.wnr.0000177010.44602.5e
10.1136/jnnp.2007.135277
10.1161/STROKEAHA.110.600288
10.1016/S1474-4422(06)70525-7
10.1016/0014-4886(62)90056-0
10.1016/j.clinph.2009.01.022
10.1001/archneur.65.12.1571
ContentType Journal Article
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jul 15, 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jul 15, 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
7SP
7U5
L7M
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuroimage.2013.02.049
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList MEDLINE - Academic
Engineering Research Database
Solid State and Superconductivity Abstracts
ProQuest One Psychology

ProQuest One Psychology
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 19
ExternalDocumentID oai:pubmedcentral.nih.gov:4120279
PMC4120279
3380138181
23473936
27286918
10_1016_j_neuroimage_2013_02_049
S1053811913001833
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R41 NS076123
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
PUEGO
R2-
SEW
WUQ
XPP
ZMT
ALIPV
IQODW
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
7SP
7U5
L7M
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c754t-5c09cb6495928c47cd96461e0c88d7ed0e7ef20765b1ed7d2a9a4f420dd31dfa3
IEDL.DBID BENPR
ISSN 1053-8119
1095-9572
IngestDate Sun Oct 26 04:09:07 EDT 2025
Tue Sep 30 16:50:10 EDT 2025
Sun Sep 28 07:14:20 EDT 2025
Tue Oct 07 09:21:22 EDT 2025
Sun Sep 28 03:03:54 EDT 2025
Tue Oct 07 07:09:53 EDT 2025
Tue Oct 07 06:30:18 EDT 2025
Wed Feb 19 02:42:20 EST 2025
Wed Apr 02 07:26:44 EDT 2025
Thu Apr 24 22:57:57 EDT 2025
Wed Oct 01 02:58:13 EDT 2025
Fri Feb 23 02:36:05 EST 2024
Tue Oct 14 19:34:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stroke rehabilitation
Brain stimulation
Transcranial direct current stimulation
Neuromodulation
Nervous system diseases
Stroke
Central nervous system
Cardiovascular disease
Stimulation
Cerebral disorder
Encephalon
Vascular disease
Central nervous system disease
Cerebrovascular disease
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c754t-5c09cb6495928c47cd96461e0c88d7ed0e7ef20765b1ed7d2a9a4f420dd31dfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.neuroimage.2013.02.049
PMID 23473936
PQID 1547316231
PQPubID 2031077
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_neuroimage_2013_02_049
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4120279
proquest_miscellaneous_1671628554
proquest_miscellaneous_1500762199
proquest_miscellaneous_1367881777
proquest_journals_2051529917
proquest_journals_1547316231
pubmed_primary_23473936
pascalfrancis_primary_27286918
crossref_citationtrail_10_1016_j_neuroimage_2013_02_049
crossref_primary_10_1016_j_neuroimage_2013_02_049
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_02_049
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_02_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-15
PublicationDateYYYYMMDD 2013-07-15
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Dmochowski, Bikson, Parra (bb0060) 2012; 57
Baker, Rorden, Fridriksson (bb0010) 2010; 41
Monti, Cogiamanian, Marceglia, Ferrucci, Mameli, Mrakic-Sposta, Vergari, Zago, Priori (bb0125) 2008; 79
Radman, Su, An, Parra, Bikson (bb0150) 2007; 27
Deans, Powell, Jefferys (bb0045) 2007; 583
CVX Research (bb0035) 2012
Grant, Boyd (bb0085) 2008
Bindman, Lippold, Redfearn (bb0020) 1964; 172
Holdefer, Sadleir, Russell (bb0095) 2006; 117
Boyd, Vandenberghe (bb0025) 2004
Evans, Collins, Mills, Brown, Kelly, Peters (bb0065) 1993; vol. 3
Richardson, J., Fridriksson, J., Datta, A., Dmochowski, J., Parra, L., 2013. High-definition transcranial direct current stimulation (hd-tdcs) to enhance computerized treatment outcomes in persons with aphasia: A feasibility study. Brain submitted for publication.
Miranda, Lomarev, Hallett (bb0120) 2006; 117
Liebetanz, Koch, Mayenfels, König, Paulus, Nitsche (bb0115) 2009; 120
Ambrus, Antal, Paulus (bb0005) 2011; 122
Neuling, Wagner, Wolters, Zaehle, Herrmann (bb0130) 2012; 3
Creutzfeldt, Fromm, Kapp (bb0030) 1962; 5
Hummel, Cohen (bb0100) 2006; 5
Delorme, Makeig (bb0050) 2004; 134
Klem, Lüders, Jasper, Elger (bb0110) 1999
Nitsche, Paulus (bb0135) 2000; 527
Nitsche, Doemkes, Karaköse, Antal, Liebetanz, Lang, Tergau, Paulus (bb0140) 2007; 97
Fregni, Boggio, Mansur, Wagner, Ferreira, Lima, Rigonatti, Marcolin, Freedman, Nitsche, Pascual-Leone (bb0070) 2005; 16
Griffiths (bb0090) 1999
Schlaug, Renga (bb0160) 2008; 5
Schlaug, Renga, Nair (bb0165) 2008; 65
Datta, Bansal, Diaz, Patel, Reato, Bikson (bb0040) 2009; 2
Bikson, Inoue, Akiyama, Deans, Fox, Miyakawa, Jefferys (bb0015) 2004; 557
Fridriksson, Richardson, Baker, Rorden (bb0075) 2011; 42
Hummel, Celnik, Giraux, Floel, Wu, Gerloff, Cohen (bb0105) 2005; 128
Fritsch, Reis, Martinowich, Schambra, Ji, Cohen, Lu (bb0080) 2010; 66
Dmochowski, Datta, Bikson, Su, Parra (bb0055) 2011; 8
Nitsche, Boggio, Fregni, Pascual-Leone (bb0145) 2009; 219
Dmochowski (10.1016/j.neuroimage.2013.02.049_bb0055) 2011; 8
Holdefer (10.1016/j.neuroimage.2013.02.049_bb0095) 2006; 117
Ambrus (10.1016/j.neuroimage.2013.02.049_bb0005) 2011; 122
Hummel (10.1016/j.neuroimage.2013.02.049_bb0100) 2006; 5
Miranda (10.1016/j.neuroimage.2013.02.049_bb0120) 2006; 117
Nitsche (10.1016/j.neuroimage.2013.02.049_bb0135) 2000; 527
Monti (10.1016/j.neuroimage.2013.02.049_bb0125) 2008; 79
Schlaug (10.1016/j.neuroimage.2013.02.049_bb0160) 2008; 5
Schlaug (10.1016/j.neuroimage.2013.02.049_bb0165) 2008; 65
Fritsch (10.1016/j.neuroimage.2013.02.049_bb0080) 2010; 66
Fregni (10.1016/j.neuroimage.2013.02.049_bb0070) 2005; 16
Datta (10.1016/j.neuroimage.2013.02.049_bb0040) 2009; 2
Griffiths (10.1016/j.neuroimage.2013.02.049_bb0090) 1999
Delorme (10.1016/j.neuroimage.2013.02.049_bb0050) 2004; 134
Deans (10.1016/j.neuroimage.2013.02.049_bb0045) 2007; 583
Neuling (10.1016/j.neuroimage.2013.02.049_bb0130) 2012; 3
Bindman (10.1016/j.neuroimage.2013.02.049_bb0020) 1964; 172
Radman (10.1016/j.neuroimage.2013.02.049_bb0150) 2007; 27
Grant (10.1016/j.neuroimage.2013.02.049_bb0085) 2008
10.1016/j.neuroimage.2013.02.049_bb0155
Evans (10.1016/j.neuroimage.2013.02.049_bb0065) 1993; vol. 3
Hummel (10.1016/j.neuroimage.2013.02.049_bb0105) 2005; 128
CVX Research (10.1016/j.neuroimage.2013.02.049_bb0035)
Liebetanz (10.1016/j.neuroimage.2013.02.049_bb0115) 2009; 120
Klem (10.1016/j.neuroimage.2013.02.049_bb0110) 1999
Bikson (10.1016/j.neuroimage.2013.02.049_bb0015) 2004; 557
Baker (10.1016/j.neuroimage.2013.02.049_bb0010) 2010; 41
Nitsche (10.1016/j.neuroimage.2013.02.049_bb0140) 2007; 97
Boyd (10.1016/j.neuroimage.2013.02.049_bb0025) 2004
Fridriksson (10.1016/j.neuroimage.2013.02.049_bb0075) 2011; 42
Dmochowski (10.1016/j.neuroimage.2013.02.049_bb0060) 2012; 57
Nitsche (10.1016/j.neuroimage.2013.02.049_bb0145) 2009; 219
Creutzfeldt (10.1016/j.neuroimage.2013.02.049_bb0030) 1962; 5
25547776 - NeuroRehabilitation. 2015;36(1):115-26
16762592 - Clin Neurophysiol. 2006 Jul;117(7):1623-9
19025351 - Expert Rev Med Devices. 2008 Nov;5(6):759-68
14978199 - J Physiol. 2004 May 15;557(Pt 1):175-90
19403329 - Clin Neurophysiol. 2009 Jun;120(6):1161-7
20395612 - Stroke. 2010 Jun;41(6):1229-36
17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17
15634731 - Brain. 2005 Mar;128(Pt 3):490-9
16148743 - Neuroreport. 2005 Sep 28;16(14):1551-5
19348793 - Exp Neurol. 2009 Sep;219(1):14-9
13882165 - Exp Neurol. 1962 Jun;5:436-52
19064743 - Arch Neurol. 2008 Dec;65(12):1571-6
18096677 - J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3
10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6
17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65
16644273 - Clin Neurophysiol. 2006 Jun;117(6):1388-97
14199369 - J Physiol. 1964 Aug;172:369-82
23001485 - Phys Med Biol. 2012 Oct 21;57(20):6459-77
10990547 - J Physiol. 2000 Sep 15;527 Pt 3:633-9
23015792 - Front Psychiatry. 2012 Sep 24;3:83
20434997 - Neuron. 2010 Apr 29;66(2):198-204
16857577 - Lancet Neurol. 2006 Aug;5(8):708-12
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
20980196 - Clin Neurophysiol. 2011 Apr;122(4):803-7
20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1
17360926 - J Neurosci. 2007 Mar 14;27(11):3030-6
21233468 - Stroke. 2011 Mar;42(3):819-21
21659696 - J Neural Eng. 2011 Aug;8(4):046011
References_xml – volume: 3
  year: 2012
  ident: bb0130
  article-title: Finite element model predicts current density distribution for clinical applications of tdcs and tacs
  publication-title: Front. Psychiatry
– volume: 66
  start-page: 198
  year: 2010
  end-page: 204
  ident: bb0080
  article-title: Direct current stimulation promotes BDNF-Dependent synaptic plasticity: potential implications for motor learning
  publication-title: Neuron
– volume: 5
  start-page: 436
  year: 1962
  end-page: 452
  ident: bb0030
  article-title: Influence of transcortical d-c currents on cortical neuronal activity
  publication-title: Exp. Neurol.
– volume: 2
  start-page: 201
  year: 2009
  end-page: 207
  ident: bb0040
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul.
– volume: 41
  start-page: 1229
  year: 2010
  end-page: 1236
  ident: bb0010
  article-title: Using transcranial direct-current stimulation to treat stroke patients with aphasia
  publication-title: Stroke
– start-page: 3
  year: 1999
  end-page: 6
  ident: bb0110
  article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– start-page: 95
  year: 2008
  end-page: 110
  ident: bb0085
  article-title: Graph implementations for nonsmooth convex programs
  publication-title: Recent Advances in Learning and Control
– volume: 5
  start-page: 759
  year: 2008
  end-page: 768
  ident: bb0160
  article-title: Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery
  publication-title: Expert Rev. Med. Devices
– volume: 97
  start-page: 3109
  year: 2007
  end-page: 3117
  ident: bb0140
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J. Neurophysiol.
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bb0135
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J. Physiol.
– volume: 117
  start-page: 1623
  year: 2006
  end-page: 1629
  ident: bb0120
  article-title: Modeling the current distribution during transcranial direct current stimulation
  publication-title: Clin. Neurophysiol.
– volume: 557
  start-page: 175
  year: 2004
  end-page: 190
  ident: bb0015
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J. Physiol.
– volume: 122
  start-page: 803
  year: 2011
  end-page: 807
  ident: bb0005
  article-title: Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes
  publication-title: Clin. Neurophysiol.
– reference: Richardson, J., Fridriksson, J., Datta, A., Dmochowski, J., Parra, L., 2013. High-definition transcranial direct current stimulation (hd-tdcs) to enhance computerized treatment outcomes in persons with aphasia: A feasibility study. Brain submitted for publication.
– volume: 5
  start-page: 708
  year: 2006
  end-page: 712
  ident: bb0100
  article-title: Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?
  publication-title: Lancet Neurol.
– volume: 79
  start-page: 451
  year: 2008
  end-page: 453
  ident: bb0125
  article-title: Improved naming after transcranial direct current stimulation in aphasia
  publication-title: J. Neurol. Neurosurg. Psychiatry
– year: 2004
  ident: bb0025
  article-title: Convex Optimization
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bb0050
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– year: 2012
  ident: bb0035
  article-title: CVX: Matlab software for disciplined convex programming, version 2.0 beta
– volume: 42
  start-page: 819
  year: 2011
  end-page: 821
  ident: bb0075
  article-title: Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study
  publication-title: Stroke
– volume: 120
  start-page: 1161
  year: 2009
  end-page: 1167
  ident: bb0115
  article-title: Safety limits of cathodal transcranial direct current stimulation in rats
  publication-title: Clin. Neurophysiol.
– year: 1999
  ident: bb0090
  article-title: Introduction to Electrodynamics
– volume: 117
  start-page: 1388
  year: 2006
  end-page: 1397
  ident: bb0095
  article-title: Predicted current densities in the brain during transcranial electrical stimulation
  publication-title: Clin. Neurophysiol.
– volume: 172
  start-page: 369
  year: 1964
  end-page: 382
  ident: bb0020
  article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects
  publication-title: J. Physiol.
– volume: 128
  start-page: 490
  year: 2005
  end-page: 499
  ident: bb0105
  article-title: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke
  publication-title: Brain
– volume: 8
  start-page: 046011
  year: 2011
  ident: bb0055
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J. Neural Eng.
– volume: 219
  start-page: 14
  year: 2009
  end-page: 19
  ident: bb0145
  article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review
  publication-title: Exp. Neurol.
– volume: 65
  start-page: 1571
  year: 2008
  end-page: 1576
  ident: bb0165
  article-title: Transcranial direct current stimulation in stroke recovery
  publication-title: Arch. Neurol.
– volume: 57
  start-page: 6459
  year: 2012
  end-page: 6477
  ident: bb0060
  article-title: The point spread function of the human head and its implications for transcranial current stimulation
  publication-title: Phys. Med. Biol.
– volume: 583
  start-page: 555
  year: 2007
  end-page: 565
  ident: bb0045
  article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields
  publication-title: J. Physiol.
– volume: vol. 3
  start-page: 1813
  year: 1993
  end-page: 1817
  ident: bb0065
  article-title: 3D statistical neuroanatomical models from 305 MRI volumes
  publication-title: Nuclear Science Symposium and Medical Imaging Conference, 1993
– volume: 27
  start-page: 3030
  year: 2007
  end-page: 3036
  ident: bb0150
  article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects
  publication-title: J. Neurosci.
– volume: 16
  start-page: 1551
  year: 2005
  end-page: 1555
  ident: bb0070
  article-title: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients
  publication-title: Neuroreport
– volume: 2
  start-page: 201
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.049_bb0040
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2009.03.005
– volume: 57
  start-page: 6459
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.049_bb0060
  article-title: The point spread function of the human head and its implications for transcranial current stimulation
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/20/6459
– volume: 583
  start-page: 555
  year: 2007
  ident: 10.1016/j.neuroimage.2013.02.049_bb0045
  article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.137711
– volume: 527
  start-page: 633
  issue: Pt 3
  year: 2000
  ident: 10.1016/j.neuroimage.2013.02.049_bb0135
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 128
  start-page: 490
  year: 2005
  ident: 10.1016/j.neuroimage.2013.02.049_bb0105
  article-title: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke
  publication-title: Brain
  doi: 10.1093/brain/awh369
– ident: 10.1016/j.neuroimage.2013.02.049_bb0035
– volume: 27
  start-page: 3030
  year: 2007
  ident: 10.1016/j.neuroimage.2013.02.049_bb0150
  article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0095-07.2007
– year: 1999
  ident: 10.1016/j.neuroimage.2013.02.049_bb0090
– volume: 41
  start-page: 1229
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.049_bb0010
  article-title: Using transcranial direct-current stimulation to treat stroke patients with aphasia
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.576785
– volume: 117
  start-page: 1623
  year: 2006
  ident: 10.1016/j.neuroimage.2013.02.049_bb0120
  article-title: Modeling the current distribution during transcranial direct current stimulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.04.009
– volume: 66
  start-page: 198
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.049_bb0080
  article-title: Direct current stimulation promotes BDNF-Dependent synaptic plasticity: potential implications for motor learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.035
– volume: 117
  start-page: 1388
  year: 2006
  ident: 10.1016/j.neuroimage.2013.02.049_bb0095
  article-title: Predicted current densities in the brain during transcranial electrical stimulation
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.02.020
– volume: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.049_bb0130
  article-title: Finite element model predicts current density distribution for clinical applications of tdcs and tacs
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2012.00083
– volume: 122
  start-page: 803
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.049_bb0005
  article-title: Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.08.023
– volume: 5
  start-page: 759
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.049_bb0160
  article-title: Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.5.6.759
– start-page: 3
  issue: Supplement 52
  year: 1999
  ident: 10.1016/j.neuroimage.2013.02.049_bb0110
  article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 97
  start-page: 3109
  year: 2007
  ident: 10.1016/j.neuroimage.2013.02.049_bb0140
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01312.2006
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.neuroimage.2013.02.049_bb0050
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 172
  start-page: 369
  year: 1964
  ident: 10.1016/j.neuroimage.2013.02.049_bb0020
  article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1964.sp007425
– volume: 557
  start-page: 175
  year: 2004
  ident: 10.1016/j.neuroimage.2013.02.049_bb0015
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.055772
– volume: vol. 3
  start-page: 1813
  year: 1993
  ident: 10.1016/j.neuroimage.2013.02.049_bb0065
  article-title: 3D statistical neuroanatomical models from 305 MRI volumes
– year: 2004
  ident: 10.1016/j.neuroimage.2013.02.049_bb0025
– volume: 8
  start-page: 046011
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.049_bb0055
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/046011
– ident: 10.1016/j.neuroimage.2013.02.049_bb0155
– volume: 219
  start-page: 14
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.049_bb0145
  article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.03.038
– volume: 16
  start-page: 1551
  year: 2005
  ident: 10.1016/j.neuroimage.2013.02.049_bb0070
  article-title: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000177010.44602.5e
– volume: 79
  start-page: 451
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.049_bb0125
  article-title: Improved naming after transcranial direct current stimulation in aphasia
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.135277
– volume: 42
  start-page: 819
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.049_bb0075
  article-title: Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.600288
– start-page: 95
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.049_bb0085
  article-title: Graph implementations for nonsmooth convex programs
– volume: 5
  start-page: 708
  year: 2006
  ident: 10.1016/j.neuroimage.2013.02.049_bb0100
  article-title: Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(06)70525-7
– volume: 5
  start-page: 436
  year: 1962
  ident: 10.1016/j.neuroimage.2013.02.049_bb0030
  article-title: Influence of transcortical d-c currents on cortical neuronal activity
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(62)90056-0
– volume: 120
  start-page: 1161
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.049_bb0115
  article-title: Safety limits of cathodal transcranial direct current stimulation in rats
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.01.022
– volume: 65
  start-page: 1571
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.049_bb0165
  article-title: Transcranial direct current stimulation in stroke recovery
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.65.12.1571
– reference: 10990547 - J Physiol. 2000 Sep 15;527 Pt 3:633-9
– reference: 17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65
– reference: 16148743 - Neuroreport. 2005 Sep 28;16(14):1551-5
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 13882165 - Exp Neurol. 1962 Jun;5:436-52
– reference: 15634731 - Brain. 2005 Mar;128(Pt 3):490-9
– reference: 16762592 - Clin Neurophysiol. 2006 Jul;117(7):1623-9
– reference: 14978199 - J Physiol. 2004 May 15;557(Pt 1):175-90
– reference: 20434997 - Neuron. 2010 Apr 29;66(2):198-204
– reference: 18096677 - J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3
– reference: 17360926 - J Neurosci. 2007 Mar 14;27(11):3030-6
– reference: 21659696 - J Neural Eng. 2011 Aug;8(4):046011
– reference: 16857577 - Lancet Neurol. 2006 Aug;5(8):708-12
– reference: 14199369 - J Physiol. 1964 Aug;172:369-82
– reference: 21233468 - Stroke. 2011 Mar;42(3):819-21
– reference: 19025351 - Expert Rev Med Devices. 2008 Nov;5(6):759-68
– reference: 23001485 - Phys Med Biol. 2012 Oct 21;57(20):6459-77
– reference: 17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17
– reference: 25547776 - NeuroRehabilitation. 2015;36(1):115-26
– reference: 20395612 - Stroke. 2010 Jun;41(6):1229-36
– reference: 19403329 - Clin Neurophysiol. 2009 Jun;120(6):1161-7
– reference: 16644273 - Clin Neurophysiol. 2006 Jun;117(6):1388-97
– reference: 10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6
– reference: 19064743 - Arch Neurol. 2008 Dec;65(12):1571-6
– reference: 20980196 - Clin Neurophysiol. 2011 Apr;122(4):803-7
– reference: 23015792 - Front Psychiatry. 2012 Sep 24;3:83
– reference: 19348793 - Exp Neurol. 2009 Sep;219(1):14-9
– reference: 20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1
SSID ssj0009148
Score 2.4546816
Snippet Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The...
Transcranial direct current stimulation (tDCS) is being investigated as an ad-junctive technique to behavioral rehabilitation treatment after stroke. The...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12
SubjectTerms Algorithms
Aphasia
Biological and medical sciences
Brain stimulation
Cerebral Cortex - physiopathology
Direct current
Electric fields
Electrical stimulation of the brain
Electrodes
ESB
Functional magnetic resonance imaging
Fundamental and applied biological sciences. Psychology
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical sciences
Neural networks
Neurology
Neuromodulation
NMR
Nuclear magnetic resonance
Optimization algorithms
Optimization techniques
Pilot Projects
Position (location)
Rehabilitation
Stimulation
Stroke
Stroke - physiopathology
Stroke Rehabilitation
Strokes
Transcranial direct current stimulation
Transcranial Magnetic Stimulation - methods
Vascular diseases and vascular malformations of the nervous system
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-Oe1BBxG-r5xHB19jsdxaf5PA4hBPBO7i3ZbO7wWovLb0W8cW_3ZlkkxosR8GXPHRnm2RmMjPJzv5-hLx1TlBd1DwXxvlcSCchDvqQlz7IkntNq_ZjzvlndXYpPl3JqwNy0u-FwbbKFPu7mN5G6_TLNGlzupzNpl-hMoB0A-8bHJnlOCJ-CqGRxeDd722bh6Gi2w4neY7SqZun6_FqMSNn1_DkYpMXb9E7EVVzd4q6v3Q3oLi6Y7zYVZL-21l5d9Ms3a-fbj7_K22dPiQPUr2Zfehu6RE5iM1jcuc8rag_IV8u2lbwGLI1Zi0PB_DIrNNK5jv0pgziwHXi-cqgys1WI3zvrCUaB6HV4kd8Si5PP16cnOWJZSH3Wop1Ln1hfKXgRcmw0gvtg1FC0Vj4sgw6hiLqWLNCK1nRGHRgzjhRC1aEwGmoHX9GDptFE1-QLHCpTBkQUy6IICooRYLzvopQRbBK6wnRvWKtT5eITBhz2_eafbdbk1g0iS2YBZNMCB1mLjsYjj3mmN52tt9mCoHRQq7YY-77Ye7IHfecfTxyleGSmWalMrSckKPed2yKGTeWIg00hXKU7hxmyMYDxQMFNb4ZhiEY4AqPa-JiA3_BFdIDaH2bjMTVV0hU5hYZhcBi2ME4Ic87j97eAxeIoqjAmCNfHwQQsHw80sy-tcDlguKnNjgvG56Kva358r8s8orcYy2Pic6pPCKH69UmvoZqcl0dt-HiD43NdxM
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbpBtpC6fuxbRpc6NXBelv0FEpDKCTsIQvpSciSTNNsvMvGS2l_fUfyIzVJF9OLL9L4MRrNjD3j70PoozEMy6ykKVPGpowbDn7QujS3jufUSlzEjzknp-J4zr6e8_Md1DHTDcr3sQ0rwjpeXMHmCn1YNAJsMnUP7QoOyfcE7c5PZ4ffYk2T0zTHkcoDZ4GBkMuud2fbqf4VkB6tzDWoqWz4Le5KQG_3UT7YVCvz66dZLP4KUkdP0Kz71afpTbk82NTFgf19G_lx7PM_RY_bhDU5bCzsGdrx1XN0_6Qtyb9As7PYS-5dUoewZ-EAJp00oTKxDfxTAo7kqiUKSyBNTtYDgPAkMpXDpPXy0r9E86MvZ5-P05amIbWSszrlNlO2EPCmpUhumbROCSawz2yeO-ld5qUvSSYFL7B30hGjDCsZyZyj2JWGvkKTaln5NyhxlAuVuwBK55hjBeQyzlhbeEhDSCHlFMlurbRtbzFQaSx016z2Q98oTAeF6YxoUNgU4V5y1eB4jJBRnTno7j9V8KwaFmmE7Kdets1lGsWPlN4fWF9_y0SSXCicT9FeZ466dTrXGgceaQz5LL5zmAQ6H8g-MKjxQz8M3iSUiEzllxs4BRWBX0DKbXN4KN9CpFNb5oiATBZaIKfodbNJbp6BsgDDKGAxB9unnxAQz4cj1cX3iHzOcPhWB9cl_UYbvZpv_0foHXpIIv-JTDHfQ5N6vfHvIQuti_3W8_wBQOqGKg
  priority: 102
  providerName: Unpaywall
Title Targeted transcranial direct current stimulation for rehabilitation after stroke
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913001833
https://dx.doi.org/10.1016/j.neuroimage.2013.02.049
https://www.ncbi.nlm.nih.gov/pubmed/23473936
https://www.proquest.com/docview/1547316231
https://www.proquest.com/docview/2051529917
https://www.proquest.com/docview/1367881777
https://www.proquest.com/docview/1500762199
https://www.proquest.com/docview/1671628554
https://pubmed.ncbi.nlm.nih.gov/PMC4120279
http://doi.org/10.1016/j.neuroimage.2013.02.049
UnpaywallVersion submittedVersion
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AKRWK
  dateStart: 19920801
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1095-9572
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VgIkhPgaFEYVJF4DsePYsRBCZdpUPhZV0yqVp8ixHTHo0tK1Qrzwt3OXr1JRVX1JHuxr07vL3dU-_36EvNKaUxnkoc-VNj6PdARx0Fg_NjaKQyNpVi7mnCdiOOafJtHkgCTNWRhsq2xiYhmo7czgGvkbiiS5FJI1fT__6SNrFO6uNhQauqZWsO9KiLFD0mWIjNUh3Q-nyehiDcNLeXU4Lgr9mFJV9_ZUHV8lguTVNbzH2PIVllieiLG5PWHdnesbUGNe8V9sK1D_77O8vSrm-vcvPZ3-k8TO7pN7dfXpDSp3eUAOXPGQ3Dqv99cfkdFl2RjurLfEHGbgAv7pVXnPMxWWkwdR4bpm_fKg5vUWG2jfXkk7DpMWsx_uMRmfnV6eDP2ac8E3MuJLPzKBMpmAv02KxYZLY5XggrrAxLGVzgZOupwFUkQZdVZappXmOWeBtSG1uQ6PSKeYFe4p8WwYCRVbRJiz3PIMChMLdsoc1BQsk7JHZKPY1NSPiLwY07TpPPuerk2SoknSgKVgkh6hreS8AuXYQ0Y1tkubQ6cQJlPIHHvIvm1l68KkUvye0v0NV2kfmUkWC0XjHjlufCetI8hNuvb3rcMMuXmglKCgxpftMIQG3O_RhZut4CNCgWQBUu6aE-FeLKQttWOOQJgx7GfskSeVR69_Q8gRU1GAMTd8vZ2A8OWbI8XVtxLGnFNceIPvZe1bsbc1n-1W2XNyh5W0JdIP1DHpLBcr9wKKx2XWJ4ev_1C4yonsk-7g5OLLCO8fPw-Tfh0t4D5ORoOvfwEJRnjt
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJrFJCHGnMEaQ4DEivsWx0IS4bOrYWk2ok_ZmHNsVG11aetG0P8dv4zhxUiqqqi976Yt90sTn-Jxj-_j7EHqrNcMi6dOYSW1ixjUHP2hsnBnLM2oEzsvNnE43bZ-xb-f8fAP9qe_C-LLK2ieWjtoOjd8jf489SS6GYI0_jn7HnjXKn67WFBo6UCvY_RJiLFzsOHY317CEm-wffQV9vyPk8KD3pR0HloHYCM6mMTeJNHkKCwVJMsOEsTJlKXaJyTIrnE2ccH0Cy32eY2eFJVpq1mcksZZi29cUnnsHbTHKJCz-tj4fdE-_z2F_Masu43EaZxjLUEtUVZiViJUXV-A3fIkZLbFDPabn8gB5b6QnoLZ-xbexLCH-v65ze1aM9M21Hgz-CZqHD9D9kO1GnyrzfIg2XPEI3e2E8_zH6LRXFqI7G019zDTwA_MhquJsZCrsqAi80FVgGYsgx47GC-jiUUlzDp3Gw1_uCTq7ldF_ijaLYeGeo8hSnsrMekQ7yyzLIRGyYBe5gxyG5EK0kKgHVpnwip6HY6DqSrdLNVeJ8ipRCVGgkhbCjeSoAgFZQ0bWulP1JVdwywoi1RqyHxrZkAhVA7-m9N6CqTSvTATJUomzFtqtbUcFjzVR8_m1tJl4LiBIXTAM45umGVyRP1_ShRvO4BE09eQEQqzqw_3ZL4RJuaJP6mHNfP1kCz2rLHr-DZR5DMcUlLlg600HD5e-2FJc_Cxh0xn2G33wv6SZFWtr88XqIXuNttu9zok6Oeoev0Q7pKRMETHmu2hzOp65V5C4TvO94B0i9OO2HdJfsImv0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkQoSQrwJlLJIcFx1_VqvhRBClKiltOqhlXIzXtsrCukm5KGqf41fx8y-QkRU5dJLLvZsdj3jmbE9_j5C3lorqEoKHgttXSykleAHnY8z52XGnaJ5tZlzdJzun4mvAznYIH_auzBYVtn6xMpR-5HDPfJdiiS5FII13S2asoiTvf7H8e8YGaTwpLWl06hN5DBcXcLybfrhYA90_Y6x_pfTz_txwzAQOyXFLJYu0S5PYZGgWeaEcl6nIqUhcVnmVfBJUKFgsNSXOQ1eeWa1FYVgifec-sJyeO4tcltxrrGcUA3UAvCXivoanuRxRqluqojq2rIKq_L8AjwGFpfxCjUU0TxXh8Z7YzsFhRU108aqVPj_is4783Jsry7tcPhPuOw_IPebPDf6VBvmQ7IRykdk66g5yX9MTk6rEvTgoxlGSwc_MBOiOsJGrkaNisD_XDT8YhFk19FkCVc8qgjOodNk9Cs8IWc3MvZPyWY5KsNzEnkuU515xLLzwoscUiBvncsDZC8sV6pHVDuwxjWviAwcQ9PWuP00C5UYVIlJmAGV9AjtJMc1_McaMrrVnWmvt4JDNhCj1pB938k2KVA98GtK7yyZSvfKTLEs1TTrke3Wdkzjq6ZmMbNWNjNkAYKkhcIwvumawQnhyZItw2gOj-Ap0hIodV0fiae-ECD1NX1SBDTDyskeeVZb9OIbuED0xhSUuWTrXQcESl9uKc9_VIDpguIWH_wv62bF2tp8cf2QvSZb4IbMt4Pjw5fkLqu4UlRM5TbZnE3m4RVkrLN8p3INEfl-077oL_DjrWw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbpBtpC6fuxbRpc6NXBelv0FEpDKCTsIQvpSciSTNNsvMvGS2l_fUfyIzVJF9OLL9L4MRrNjD3j70PoozEMy6ykKVPGpowbDn7QujS3jufUSlzEjzknp-J4zr6e8_Md1DHTDcr3sQ0rwjpeXMHmCn1YNAJsMnUP7QoOyfcE7c5PZ4ffYk2T0zTHkcoDZ4GBkMuud2fbqf4VkB6tzDWoqWz4Le5KQG_3UT7YVCvz66dZLP4KUkdP0Kz71afpTbk82NTFgf19G_lx7PM_RY_bhDU5bCzsGdrx1XN0_6Qtyb9As7PYS-5dUoewZ-EAJp00oTKxDfxTAo7kqiUKSyBNTtYDgPAkMpXDpPXy0r9E86MvZ5-P05amIbWSszrlNlO2EPCmpUhumbROCSawz2yeO-ld5qUvSSYFL7B30hGjDCsZyZyj2JWGvkKTaln5NyhxlAuVuwBK55hjBeQyzlhbeEhDSCHlFMlurbRtbzFQaSx016z2Q98oTAeF6YxoUNgU4V5y1eB4jJBRnTno7j9V8KwaFmmE7Kdets1lGsWPlN4fWF9_y0SSXCicT9FeZ466dTrXGgceaQz5LL5zmAQ6H8g-MKjxQz8M3iSUiEzllxs4BRWBX0DKbXN4KN9CpFNb5oiATBZaIKfodbNJbp6BsgDDKGAxB9unnxAQz4cj1cX3iHzOcPhWB9cl_UYbvZpv_0foHXpIIv-JTDHfQ5N6vfHvIQuti_3W8_wBQOqGKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+transcranial+direct+current+stimulation+for+rehabilitation+after+stroke&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dmochowski%2C+Jacek&rft.au=Datta%2C+Abhishek&rft.au=Huang%2C+Yu&rft.au=Richardson%2C+Jessica&rft.date=2013-07-15&rft.issn=1053-8119&rft.volume=75&rft.spage=12&rft.epage=19&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.02.049&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon