Targeted transcranial direct current stimulation for rehabilitation after stroke
Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously...
Saved in:
| Published in | NeuroImage (Orlando, Fla.) Vol. 75; pp. 12 - 19 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Inc
15.07.2013
Elsevier Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2013.02.049 |
Cover
| Abstract | Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
•An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location. |
|---|---|
| AbstractList | Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional adosagea, consisting of a large (25 cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small ahigh-definitiona electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location. Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional "dosage", consisting of a large (25 cm(2)) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small "high-definition" electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. Transcranial direct current stimulation (tDCS) is being investigated as an ad-junctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neurorehabilitation. |
| Author | Parra, Lucas C. Bikson, Marom Fridriksson, Julius Huang, Yu Richardson, Jessica D. Dmochowski, Jacek P. Datta, Abhishek |
| AuthorAffiliation | c Medical University of South Carolina, Columbia, SC b Soterix Medical, New York, NY a City College of New York, New York, NY |
| AuthorAffiliation_xml | – name: a City College of New York, New York, NY – name: c Medical University of South Carolina, Columbia, SC – name: b Soterix Medical, New York, NY |
| Author_xml | – sequence: 1 givenname: Jacek P. surname: Dmochowski fullname: Dmochowski, Jacek P. email: dmochowski@gmail.com organization: City College of New York, New York, NY, USA – sequence: 2 givenname: Abhishek surname: Datta fullname: Datta, Abhishek organization: Soterix Medical, New York, NY, USA – sequence: 3 givenname: Yu surname: Huang fullname: Huang, Yu organization: City College of New York, New York, NY, USA – sequence: 4 givenname: Jessica D. surname: Richardson fullname: Richardson, Jessica D. organization: University of South Carolina, Columbia, SC, USA – sequence: 5 givenname: Marom surname: Bikson fullname: Bikson, Marom organization: City College of New York, New York, NY, USA – sequence: 6 givenname: Julius surname: Fridriksson fullname: Fridriksson, Julius organization: University of South Carolina, Columbia, SC, USA – sequence: 7 givenname: Lucas C. surname: Parra fullname: Parra, Lucas C. email: parra@ccny.cuny.edu organization: City College of New York, New York, NY, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27286918$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23473936$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVks2O0zAUhSM0iPmBV0CREBKbFl8nju0NAkbDjzQSLIa15do3HXdcu9jJoL79uGqh0AWUTRIl3z3K_XzOq5MQA1ZVDWQKBLrXi2nAMUW31HOcUgLNlNApaeWj6gyIZBPJOD3ZPLNmIgDkaXWe84IQIqEVT6pT2rS8kU13Vn290WmOA9p6SDpkUy5O-9q6hGaozZgShqHOg1uOXg8uhrqPqU54q2fOu2H7SvcDpgKleIdPq8e99hmf7e4X1bcPVzeXnybXXz5-vnx3PTGctcOEGSLNrGslk1SYlhsru7YDJEYIy9ES5NhTwjs2A7TcUi1127eUWNuA7XVzUclt7hhWev1De69WqQhJawVEbSyphdpbUhtLilBVLJXZN9vZ1ThbojVlxaT381E79eeX4G7VPN6rFiihfBPwaheQ4vcR86CWLhv0XgeMY1bQceioYKz9N8pI2ZKCPCK16bgQwDkv6IsDdBHHFIrwsigDRqWEv1LASgPKPzZQqOe_2_il4WdJCvByB-hstO9LR4zLe45T0UkQe60mxZwT9srsGlIkOn_MuYiDgP840vfbUSydu3eYVDYOg8Ftk5WN7piQtwchxrvgys53uD4u4gGKRSWX |
| CitedBy_id | crossref_primary_10_1088_1741_2560_13_3_036022 crossref_primary_10_1109_TNSRE_2017_2748930 crossref_primary_10_1016_j_neulet_2017_12_057 crossref_primary_10_1007_s11517_021_02338_6 crossref_primary_10_1007_s11940_015_0362_5 crossref_primary_10_3390_biomedicines11102856 crossref_primary_10_1016_j_brs_2019_10_004 crossref_primary_10_1016_j_brs_2017_12_008 crossref_primary_10_1038_s41598_024_52355_2 crossref_primary_10_1016_j_isci_2024_109150 crossref_primary_10_1016_j_clinph_2015_11_012 crossref_primary_10_1097_WNN_0000000000000270 crossref_primary_10_1371_journal_pone_0298991 crossref_primary_10_3390_brainsci12111455 crossref_primary_10_1002_jnr_25154 crossref_primary_10_1016_j_neuroimage_2019_116403 crossref_primary_10_1016_j_brs_2017_10_012 crossref_primary_10_1109_ACCESS_2020_3028618 crossref_primary_10_1016_j_nicl_2024_103599 crossref_primary_10_3389_fnhum_2018_00268 crossref_primary_10_1038_s41598_020_61180_2 crossref_primary_10_1371_journal_pone_0125477 crossref_primary_10_1016_j_clinph_2016_08_016 crossref_primary_10_3389_fnhum_2023_1075741 crossref_primary_10_1016_j_neubiorev_2016_08_001 crossref_primary_10_1016_j_clinph_2017_06_001 crossref_primary_10_7554_eLife_18834 crossref_primary_10_1016_j_neuroimage_2015_12_019 crossref_primary_10_1155_2016_9674790 crossref_primary_10_2139_ssrn_4149489 crossref_primary_10_1002_hbm_23431 crossref_primary_10_1016_j_brs_2018_09_010 crossref_primary_10_1016_j_clinph_2019_12_003 crossref_primary_10_3233_RNN_231344 crossref_primary_10_3389_fnsys_2014_00147 crossref_primary_10_3389_fneur_2022_953939 crossref_primary_10_1016_j_brs_2023_06_013 crossref_primary_10_1038_s41598_020_64378_6 crossref_primary_10_1016_j_neurom_2024_09_475 crossref_primary_10_1016_j_clinph_2021_10_016 crossref_primary_10_3389_fnhum_2023_1239105 crossref_primary_10_1088_1741_2552_aba6dc crossref_primary_10_3233_RNN_150569 crossref_primary_10_1016_j_biopsych_2021_07_008 crossref_primary_10_1016_j_brs_2019_07_010 crossref_primary_10_3390_jpm11090940 crossref_primary_10_1007_s00702_017_1808_6 crossref_primary_10_1038_s41598_023_48313_z crossref_primary_10_1016_j_neurom_2022_12_007 crossref_primary_10_1177_1545968315595286 crossref_primary_10_1186_s12984_021_00972_7 crossref_primary_10_1016_j_neuron_2015_07_032 crossref_primary_10_1080_09602011_2020_1805335 crossref_primary_10_1016_j_brs_2016_06_004 crossref_primary_10_1038_s41598_019_47654_y crossref_primary_10_1016_j_cct_2023_107142 crossref_primary_10_1109_TNSRE_2018_2890001 crossref_primary_10_12786_bn_2024_17_e21 crossref_primary_10_1016_j_neuroimage_2023_120379 crossref_primary_10_1371_journal_pone_0222995 crossref_primary_10_1038_s41598_023_45905_7 crossref_primary_10_1137_15M1026481 crossref_primary_10_1038_s41598_019_55157_z crossref_primary_10_1371_journal_pone_0108028 crossref_primary_10_1016_j_jneumeth_2022_109761 crossref_primary_10_1088_1741_2552_abca15 crossref_primary_10_1016_j_nicl_2017_04_014 crossref_primary_10_1016_j_brs_2015_01_401 crossref_primary_10_1007_s10072_019_04229_z crossref_primary_10_1088_1741_2552_aa8d8a crossref_primary_10_1093_sleep_zsab275 crossref_primary_10_1088_1741_2560_10_6_066004 crossref_primary_10_1038_s41598_024_52874_y crossref_primary_10_1007_s40473_021_00238_5 crossref_primary_10_1186_s12938_022_01026_2 crossref_primary_10_3389_fpsyt_2016_00087 crossref_primary_10_1088_1741_2552_ab549d crossref_primary_10_3389_fneur_2020_545174 crossref_primary_10_1088_1741_2552_ab29c5 crossref_primary_10_3390_brainsci12050522 crossref_primary_10_1016_j_brs_2020_04_007 crossref_primary_10_1016_j_jneumeth_2013_07_016 crossref_primary_10_1016_j_neuroimage_2022_119501 crossref_primary_10_3389_fnhum_2015_00307 crossref_primary_10_3389_fnhum_2016_00394 crossref_primary_10_1016_j_tics_2014_10_003 crossref_primary_10_1016_j_brs_2022_12_011 crossref_primary_10_1186_s12984_019_0581_1 crossref_primary_10_1016_j_cmpb_2024_108429 crossref_primary_10_1212_WNL_0000000000012187 crossref_primary_10_1586_14737175_2014_864555 crossref_primary_10_3390_jcm12072601 crossref_primary_10_1093_brain_aww002 crossref_primary_10_1117_1_JBO_20_4_046007 crossref_primary_10_1016_j_brs_2023_05_020 crossref_primary_10_3390_brainsci14121162 crossref_primary_10_1088_0031_9155_61_12_4506 crossref_primary_10_1007_s10439_019_02254_9 crossref_primary_10_1162_nol_a_00025 crossref_primary_10_3390_jcm13113084 crossref_primary_10_1016_j_nicl_2022_103178 crossref_primary_10_3390_brainsci11020212 crossref_primary_10_1027_1016_9040_a000254 crossref_primary_10_3233_RNN_150633 crossref_primary_10_1016_j_cobeha_2015_04_002 crossref_primary_10_1016_j_neuroimage_2019_116183 crossref_primary_10_1162_imag_a_00431 |
| Cites_doi | 10.1016/j.brs.2009.03.005 10.1088/0031-9155/57/20/6459 10.1113/jphysiol.2007.137711 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1093/brain/awh369 10.1523/JNEUROSCI.0095-07.2007 10.1161/STROKEAHA.109.576785 10.1016/j.clinph.2006.04.009 10.1016/j.neuron.2010.03.035 10.1016/j.clinph.2006.02.020 10.3389/fpsyt.2012.00083 10.1016/j.clinph.2010.08.023 10.1586/17434440.5.6.759 10.1152/jn.01312.2006 10.1016/j.jneumeth.2003.10.009 10.1113/jphysiol.1964.sp007425 10.1113/jphysiol.2003.055772 10.1088/1741-2560/8/4/046011 10.1016/j.expneurol.2009.03.038 10.1097/01.wnr.0000177010.44602.5e 10.1136/jnnp.2007.135277 10.1161/STROKEAHA.110.600288 10.1016/S1474-4422(06)70525-7 10.1016/0014-4886(62)90056-0 10.1016/j.clinph.2009.01.022 10.1001/archneur.65.12.1571 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 15, 2013 |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 15, 2013 |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 7SP 7U5 L7M 5PM ADTOC UNPAY |
| DOI | 10.1016/j.neuroimage.2013.02.049 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Solid State and Superconductivity Abstracts ProQuest One Psychology ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 19 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4120279 PMC4120279 3380138181 23473936 27286918 10_1016_j_neuroimage_2013_02_049 S1053811913001833 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R41 NS076123 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 PUEGO R2- SEW WUQ XPP ZMT ALIPV IQODW 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 7SP 7U5 L7M 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c754t-5c09cb6495928c47cd96461e0c88d7ed0e7ef20765b1ed7d2a9a4f420dd31dfa3 |
| IEDL.DBID | BENPR |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sun Oct 26 04:09:07 EDT 2025 Tue Sep 30 16:50:10 EDT 2025 Sun Sep 28 07:14:20 EDT 2025 Tue Oct 07 09:21:22 EDT 2025 Sun Sep 28 03:03:54 EDT 2025 Tue Oct 07 07:09:53 EDT 2025 Tue Oct 07 06:30:18 EDT 2025 Wed Feb 19 02:42:20 EST 2025 Wed Apr 02 07:26:44 EDT 2025 Thu Apr 24 22:57:57 EDT 2025 Wed Oct 01 02:58:13 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Oct 14 19:34:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stroke rehabilitation Brain stimulation Transcranial direct current stimulation Neuromodulation Nervous system diseases Stroke Central nervous system Cardiovascular disease Stimulation Cerebral disorder Encephalon Vascular disease Central nervous system disease Cerebrovascular disease |
| Language | English |
| License | CC BY 4.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c754t-5c09cb6495928c47cd96461e0c88d7ed0e7ef20765b1ed7d2a9a4f420dd31dfa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.neuroimage.2013.02.049 |
| PMID | 23473936 |
| PQID | 1547316231 |
| PQPubID | 2031077 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neuroimage_2013_02_049 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4120279 proquest_miscellaneous_1671628554 proquest_miscellaneous_1500762199 proquest_miscellaneous_1367881777 proquest_journals_2051529917 proquest_journals_1547316231 pubmed_primary_23473936 pascalfrancis_primary_27286918 crossref_citationtrail_10_1016_j_neuroimage_2013_02_049 crossref_primary_10_1016_j_neuroimage_2013_02_049 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_02_049 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_02_049 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-15 |
| PublicationDateYYYYMMDD | 2013-07-15 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: United States |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
| References | Dmochowski, Bikson, Parra (bb0060) 2012; 57 Baker, Rorden, Fridriksson (bb0010) 2010; 41 Monti, Cogiamanian, Marceglia, Ferrucci, Mameli, Mrakic-Sposta, Vergari, Zago, Priori (bb0125) 2008; 79 Radman, Su, An, Parra, Bikson (bb0150) 2007; 27 Deans, Powell, Jefferys (bb0045) 2007; 583 CVX Research (bb0035) 2012 Grant, Boyd (bb0085) 2008 Bindman, Lippold, Redfearn (bb0020) 1964; 172 Holdefer, Sadleir, Russell (bb0095) 2006; 117 Boyd, Vandenberghe (bb0025) 2004 Evans, Collins, Mills, Brown, Kelly, Peters (bb0065) 1993; vol. 3 Richardson, J., Fridriksson, J., Datta, A., Dmochowski, J., Parra, L., 2013. High-definition transcranial direct current stimulation (hd-tdcs) to enhance computerized treatment outcomes in persons with aphasia: A feasibility study. Brain submitted for publication. Miranda, Lomarev, Hallett (bb0120) 2006; 117 Liebetanz, Koch, Mayenfels, König, Paulus, Nitsche (bb0115) 2009; 120 Ambrus, Antal, Paulus (bb0005) 2011; 122 Neuling, Wagner, Wolters, Zaehle, Herrmann (bb0130) 2012; 3 Creutzfeldt, Fromm, Kapp (bb0030) 1962; 5 Hummel, Cohen (bb0100) 2006; 5 Delorme, Makeig (bb0050) 2004; 134 Klem, Lüders, Jasper, Elger (bb0110) 1999 Nitsche, Paulus (bb0135) 2000; 527 Nitsche, Doemkes, Karaköse, Antal, Liebetanz, Lang, Tergau, Paulus (bb0140) 2007; 97 Fregni, Boggio, Mansur, Wagner, Ferreira, Lima, Rigonatti, Marcolin, Freedman, Nitsche, Pascual-Leone (bb0070) 2005; 16 Griffiths (bb0090) 1999 Schlaug, Renga (bb0160) 2008; 5 Schlaug, Renga, Nair (bb0165) 2008; 65 Datta, Bansal, Diaz, Patel, Reato, Bikson (bb0040) 2009; 2 Bikson, Inoue, Akiyama, Deans, Fox, Miyakawa, Jefferys (bb0015) 2004; 557 Fridriksson, Richardson, Baker, Rorden (bb0075) 2011; 42 Hummel, Celnik, Giraux, Floel, Wu, Gerloff, Cohen (bb0105) 2005; 128 Fritsch, Reis, Martinowich, Schambra, Ji, Cohen, Lu (bb0080) 2010; 66 Dmochowski, Datta, Bikson, Su, Parra (bb0055) 2011; 8 Nitsche, Boggio, Fregni, Pascual-Leone (bb0145) 2009; 219 Dmochowski (10.1016/j.neuroimage.2013.02.049_bb0055) 2011; 8 Holdefer (10.1016/j.neuroimage.2013.02.049_bb0095) 2006; 117 Ambrus (10.1016/j.neuroimage.2013.02.049_bb0005) 2011; 122 Hummel (10.1016/j.neuroimage.2013.02.049_bb0100) 2006; 5 Miranda (10.1016/j.neuroimage.2013.02.049_bb0120) 2006; 117 Nitsche (10.1016/j.neuroimage.2013.02.049_bb0135) 2000; 527 Monti (10.1016/j.neuroimage.2013.02.049_bb0125) 2008; 79 Schlaug (10.1016/j.neuroimage.2013.02.049_bb0160) 2008; 5 Schlaug (10.1016/j.neuroimage.2013.02.049_bb0165) 2008; 65 Fritsch (10.1016/j.neuroimage.2013.02.049_bb0080) 2010; 66 Fregni (10.1016/j.neuroimage.2013.02.049_bb0070) 2005; 16 Datta (10.1016/j.neuroimage.2013.02.049_bb0040) 2009; 2 Griffiths (10.1016/j.neuroimage.2013.02.049_bb0090) 1999 Delorme (10.1016/j.neuroimage.2013.02.049_bb0050) 2004; 134 Deans (10.1016/j.neuroimage.2013.02.049_bb0045) 2007; 583 Neuling (10.1016/j.neuroimage.2013.02.049_bb0130) 2012; 3 Bindman (10.1016/j.neuroimage.2013.02.049_bb0020) 1964; 172 Radman (10.1016/j.neuroimage.2013.02.049_bb0150) 2007; 27 Grant (10.1016/j.neuroimage.2013.02.049_bb0085) 2008 10.1016/j.neuroimage.2013.02.049_bb0155 Evans (10.1016/j.neuroimage.2013.02.049_bb0065) 1993; vol. 3 Hummel (10.1016/j.neuroimage.2013.02.049_bb0105) 2005; 128 CVX Research (10.1016/j.neuroimage.2013.02.049_bb0035) Liebetanz (10.1016/j.neuroimage.2013.02.049_bb0115) 2009; 120 Klem (10.1016/j.neuroimage.2013.02.049_bb0110) 1999 Bikson (10.1016/j.neuroimage.2013.02.049_bb0015) 2004; 557 Baker (10.1016/j.neuroimage.2013.02.049_bb0010) 2010; 41 Nitsche (10.1016/j.neuroimage.2013.02.049_bb0140) 2007; 97 Boyd (10.1016/j.neuroimage.2013.02.049_bb0025) 2004 Fridriksson (10.1016/j.neuroimage.2013.02.049_bb0075) 2011; 42 Dmochowski (10.1016/j.neuroimage.2013.02.049_bb0060) 2012; 57 Nitsche (10.1016/j.neuroimage.2013.02.049_bb0145) 2009; 219 Creutzfeldt (10.1016/j.neuroimage.2013.02.049_bb0030) 1962; 5 25547776 - NeuroRehabilitation. 2015;36(1):115-26 16762592 - Clin Neurophysiol. 2006 Jul;117(7):1623-9 19025351 - Expert Rev Med Devices. 2008 Nov;5(6):759-68 14978199 - J Physiol. 2004 May 15;557(Pt 1):175-90 19403329 - Clin Neurophysiol. 2009 Jun;120(6):1161-7 20395612 - Stroke. 2010 Jun;41(6):1229-36 17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17 15634731 - Brain. 2005 Mar;128(Pt 3):490-9 16148743 - Neuroreport. 2005 Sep 28;16(14):1551-5 19348793 - Exp Neurol. 2009 Sep;219(1):14-9 13882165 - Exp Neurol. 1962 Jun;5:436-52 19064743 - Arch Neurol. 2008 Dec;65(12):1571-6 18096677 - J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3 10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65 16644273 - Clin Neurophysiol. 2006 Jun;117(6):1388-97 14199369 - J Physiol. 1964 Aug;172:369-82 23001485 - Phys Med Biol. 2012 Oct 21;57(20):6459-77 10990547 - J Physiol. 2000 Sep 15;527 Pt 3:633-9 23015792 - Front Psychiatry. 2012 Sep 24;3:83 20434997 - Neuron. 2010 Apr 29;66(2):198-204 16857577 - Lancet Neurol. 2006 Aug;5(8):708-12 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 20980196 - Clin Neurophysiol. 2011 Apr;122(4):803-7 20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1 17360926 - J Neurosci. 2007 Mar 14;27(11):3030-6 21233468 - Stroke. 2011 Mar;42(3):819-21 21659696 - J Neural Eng. 2011 Aug;8(4):046011 |
| References_xml | – volume: 3 year: 2012 ident: bb0130 article-title: Finite element model predicts current density distribution for clinical applications of tdcs and tacs publication-title: Front. Psychiatry – volume: 66 start-page: 198 year: 2010 end-page: 204 ident: bb0080 article-title: Direct current stimulation promotes BDNF-Dependent synaptic plasticity: potential implications for motor learning publication-title: Neuron – volume: 5 start-page: 436 year: 1962 end-page: 452 ident: bb0030 article-title: Influence of transcortical d-c currents on cortical neuronal activity publication-title: Exp. Neurol. – volume: 2 start-page: 201 year: 2009 end-page: 207 ident: bb0040 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul. – volume: 41 start-page: 1229 year: 2010 end-page: 1236 ident: bb0010 article-title: Using transcranial direct-current stimulation to treat stroke patients with aphasia publication-title: Stroke – start-page: 3 year: 1999 end-page: 6 ident: bb0110 article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology publication-title: Electroencephalogr. Clin. Neurophysiol. – start-page: 95 year: 2008 end-page: 110 ident: bb0085 article-title: Graph implementations for nonsmooth convex programs publication-title: Recent Advances in Learning and Control – volume: 5 start-page: 759 year: 2008 end-page: 768 ident: bb0160 article-title: Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery publication-title: Expert Rev. Med. Devices – volume: 97 start-page: 3109 year: 2007 end-page: 3117 ident: bb0140 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J. Neurophysiol. – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: bb0135 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J. Physiol. – volume: 117 start-page: 1623 year: 2006 end-page: 1629 ident: bb0120 article-title: Modeling the current distribution during transcranial direct current stimulation publication-title: Clin. Neurophysiol. – volume: 557 start-page: 175 year: 2004 end-page: 190 ident: bb0015 article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro publication-title: J. Physiol. – volume: 122 start-page: 803 year: 2011 end-page: 807 ident: bb0005 article-title: Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes publication-title: Clin. Neurophysiol. – reference: Richardson, J., Fridriksson, J., Datta, A., Dmochowski, J., Parra, L., 2013. High-definition transcranial direct current stimulation (hd-tdcs) to enhance computerized treatment outcomes in persons with aphasia: A feasibility study. Brain submitted for publication. – volume: 5 start-page: 708 year: 2006 end-page: 712 ident: bb0100 article-title: Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? publication-title: Lancet Neurol. – volume: 79 start-page: 451 year: 2008 end-page: 453 ident: bb0125 article-title: Improved naming after transcranial direct current stimulation in aphasia publication-title: J. Neurol. Neurosurg. Psychiatry – year: 2004 ident: bb0025 article-title: Convex Optimization – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bb0050 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – year: 2012 ident: bb0035 article-title: CVX: Matlab software for disciplined convex programming, version 2.0 beta – volume: 42 start-page: 819 year: 2011 end-page: 821 ident: bb0075 article-title: Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study publication-title: Stroke – volume: 120 start-page: 1161 year: 2009 end-page: 1167 ident: bb0115 article-title: Safety limits of cathodal transcranial direct current stimulation in rats publication-title: Clin. Neurophysiol. – year: 1999 ident: bb0090 article-title: Introduction to Electrodynamics – volume: 117 start-page: 1388 year: 2006 end-page: 1397 ident: bb0095 article-title: Predicted current densities in the brain during transcranial electrical stimulation publication-title: Clin. Neurophysiol. – volume: 172 start-page: 369 year: 1964 end-page: 382 ident: bb0020 article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects publication-title: J. Physiol. – volume: 128 start-page: 490 year: 2005 end-page: 499 ident: bb0105 article-title: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke publication-title: Brain – volume: 8 start-page: 046011 year: 2011 ident: bb0055 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J. Neural Eng. – volume: 219 start-page: 14 year: 2009 end-page: 19 ident: bb0145 article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review publication-title: Exp. Neurol. – volume: 65 start-page: 1571 year: 2008 end-page: 1576 ident: bb0165 article-title: Transcranial direct current stimulation in stroke recovery publication-title: Arch. Neurol. – volume: 57 start-page: 6459 year: 2012 end-page: 6477 ident: bb0060 article-title: The point spread function of the human head and its implications for transcranial current stimulation publication-title: Phys. Med. Biol. – volume: 583 start-page: 555 year: 2007 end-page: 565 ident: bb0045 article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields publication-title: J. Physiol. – volume: vol. 3 start-page: 1813 year: 1993 end-page: 1817 ident: bb0065 article-title: 3D statistical neuroanatomical models from 305 MRI volumes publication-title: Nuclear Science Symposium and Medical Imaging Conference, 1993 – volume: 27 start-page: 3030 year: 2007 end-page: 3036 ident: bb0150 article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects publication-title: J. Neurosci. – volume: 16 start-page: 1551 year: 2005 end-page: 1555 ident: bb0070 article-title: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients publication-title: Neuroreport – volume: 2 start-page: 201 year: 2009 ident: 10.1016/j.neuroimage.2013.02.049_bb0040 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul. doi: 10.1016/j.brs.2009.03.005 – volume: 57 start-page: 6459 year: 2012 ident: 10.1016/j.neuroimage.2013.02.049_bb0060 article-title: The point spread function of the human head and its implications for transcranial current stimulation publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/20/6459 – volume: 583 start-page: 555 year: 2007 ident: 10.1016/j.neuroimage.2013.02.049_bb0045 article-title: Sensitivity of coherent oscillations in rat hippocampus to AC electric fields publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.137711 – volume: 527 start-page: 633 issue: Pt 3 year: 2000 ident: 10.1016/j.neuroimage.2013.02.049_bb0135 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 128 start-page: 490 year: 2005 ident: 10.1016/j.neuroimage.2013.02.049_bb0105 article-title: Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke publication-title: Brain doi: 10.1093/brain/awh369 – ident: 10.1016/j.neuroimage.2013.02.049_bb0035 – volume: 27 start-page: 3030 year: 2007 ident: 10.1016/j.neuroimage.2013.02.049_bb0150 article-title: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0095-07.2007 – year: 1999 ident: 10.1016/j.neuroimage.2013.02.049_bb0090 – volume: 41 start-page: 1229 year: 2010 ident: 10.1016/j.neuroimage.2013.02.049_bb0010 article-title: Using transcranial direct-current stimulation to treat stroke patients with aphasia publication-title: Stroke doi: 10.1161/STROKEAHA.109.576785 – volume: 117 start-page: 1623 year: 2006 ident: 10.1016/j.neuroimage.2013.02.049_bb0120 article-title: Modeling the current distribution during transcranial direct current stimulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.04.009 – volume: 66 start-page: 198 year: 2010 ident: 10.1016/j.neuroimage.2013.02.049_bb0080 article-title: Direct current stimulation promotes BDNF-Dependent synaptic plasticity: potential implications for motor learning publication-title: Neuron doi: 10.1016/j.neuron.2010.03.035 – volume: 117 start-page: 1388 year: 2006 ident: 10.1016/j.neuroimage.2013.02.049_bb0095 article-title: Predicted current densities in the brain during transcranial electrical stimulation publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.02.020 – volume: 3 year: 2012 ident: 10.1016/j.neuroimage.2013.02.049_bb0130 article-title: Finite element model predicts current density distribution for clinical applications of tdcs and tacs publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2012.00083 – volume: 122 start-page: 803 year: 2011 ident: 10.1016/j.neuroimage.2013.02.049_bb0005 article-title: Comparing cutaneous perception induced by electrical stimulation using rectangular and round shaped electrodes publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.08.023 – volume: 5 start-page: 759 year: 2008 ident: 10.1016/j.neuroimage.2013.02.049_bb0160 article-title: Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.5.6.759 – start-page: 3 issue: Supplement 52 year: 1999 ident: 10.1016/j.neuroimage.2013.02.049_bb0110 article-title: The ten-twenty electrode system of the international federation. The international federation of clinical neurophysiology publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 97 start-page: 3109 year: 2007 ident: 10.1016/j.neuroimage.2013.02.049_bb0140 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.01312.2006 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.neuroimage.2013.02.049_bb0050 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 172 start-page: 369 year: 1964 ident: 10.1016/j.neuroimage.2013.02.049_bb0020 article-title: The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects publication-title: J. Physiol. doi: 10.1113/jphysiol.1964.sp007425 – volume: 557 start-page: 175 year: 2004 ident: 10.1016/j.neuroimage.2013.02.049_bb0015 article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.055772 – volume: vol. 3 start-page: 1813 year: 1993 ident: 10.1016/j.neuroimage.2013.02.049_bb0065 article-title: 3D statistical neuroanatomical models from 305 MRI volumes – year: 2004 ident: 10.1016/j.neuroimage.2013.02.049_bb0025 – volume: 8 start-page: 046011 year: 2011 ident: 10.1016/j.neuroimage.2013.02.049_bb0055 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/4/046011 – ident: 10.1016/j.neuroimage.2013.02.049_bb0155 – volume: 219 start-page: 14 year: 2009 ident: 10.1016/j.neuroimage.2013.02.049_bb0145 article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.03.038 – volume: 16 start-page: 1551 year: 2005 ident: 10.1016/j.neuroimage.2013.02.049_bb0070 article-title: Transcranial direct current stimulation of the unaffected hemisphere in stroke patients publication-title: Neuroreport doi: 10.1097/01.wnr.0000177010.44602.5e – volume: 79 start-page: 451 year: 2008 ident: 10.1016/j.neuroimage.2013.02.049_bb0125 article-title: Improved naming after transcranial direct current stimulation in aphasia publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2007.135277 – volume: 42 start-page: 819 year: 2011 ident: 10.1016/j.neuroimage.2013.02.049_bb0075 article-title: Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study publication-title: Stroke doi: 10.1161/STROKEAHA.110.600288 – start-page: 95 year: 2008 ident: 10.1016/j.neuroimage.2013.02.049_bb0085 article-title: Graph implementations for nonsmooth convex programs – volume: 5 start-page: 708 year: 2006 ident: 10.1016/j.neuroimage.2013.02.049_bb0100 article-title: Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(06)70525-7 – volume: 5 start-page: 436 year: 1962 ident: 10.1016/j.neuroimage.2013.02.049_bb0030 article-title: Influence of transcortical d-c currents on cortical neuronal activity publication-title: Exp. Neurol. doi: 10.1016/0014-4886(62)90056-0 – volume: 120 start-page: 1161 year: 2009 ident: 10.1016/j.neuroimage.2013.02.049_bb0115 article-title: Safety limits of cathodal transcranial direct current stimulation in rats publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.01.022 – volume: 65 start-page: 1571 year: 2008 ident: 10.1016/j.neuroimage.2013.02.049_bb0165 article-title: Transcranial direct current stimulation in stroke recovery publication-title: Arch. Neurol. doi: 10.1001/archneur.65.12.1571 – reference: 10990547 - J Physiol. 2000 Sep 15;527 Pt 3:633-9 – reference: 17599962 - J Physiol. 2007 Sep 1;583(Pt 2):555-65 – reference: 16148743 - Neuroreport. 2005 Sep 28;16(14):1551-5 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 13882165 - Exp Neurol. 1962 Jun;5:436-52 – reference: 15634731 - Brain. 2005 Mar;128(Pt 3):490-9 – reference: 16762592 - Clin Neurophysiol. 2006 Jul;117(7):1623-9 – reference: 14978199 - J Physiol. 2004 May 15;557(Pt 1):175-90 – reference: 20434997 - Neuron. 2010 Apr 29;66(2):198-204 – reference: 18096677 - J Neurol Neurosurg Psychiatry. 2008 Apr;79(4):451-3 – reference: 17360926 - J Neurosci. 2007 Mar 14;27(11):3030-6 – reference: 21659696 - J Neural Eng. 2011 Aug;8(4):046011 – reference: 16857577 - Lancet Neurol. 2006 Aug;5(8):708-12 – reference: 14199369 - J Physiol. 1964 Aug;172:369-82 – reference: 21233468 - Stroke. 2011 Mar;42(3):819-21 – reference: 19025351 - Expert Rev Med Devices. 2008 Nov;5(6):759-68 – reference: 23001485 - Phys Med Biol. 2012 Oct 21;57(20):6459-77 – reference: 17251360 - J Neurophysiol. 2007 Apr;97(4):3109-17 – reference: 25547776 - NeuroRehabilitation. 2015;36(1):115-26 – reference: 20395612 - Stroke. 2010 Jun;41(6):1229-36 – reference: 19403329 - Clin Neurophysiol. 2009 Jun;120(6):1161-7 – reference: 16644273 - Clin Neurophysiol. 2006 Jun;117(6):1388-97 – reference: 10590970 - Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6 – reference: 19064743 - Arch Neurol. 2008 Dec;65(12):1571-6 – reference: 20980196 - Clin Neurophysiol. 2011 Apr;122(4):803-7 – reference: 23015792 - Front Psychiatry. 2012 Sep 24;3:83 – reference: 19348793 - Exp Neurol. 2009 Sep;219(1):14-9 – reference: 20648973 - Brain Stimul. 2009 Oct;2(4):201-7, 207.e1 |
| SSID | ssj0009148 |
| Score | 2.4546816 |
| Snippet | Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The... Transcranial direct current stimulation (tDCS) is being investigated as an ad-junctive technique to behavioral rehabilitation treatment after stroke. The... |
| SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 12 |
| SubjectTerms | Algorithms Aphasia Biological and medical sciences Brain stimulation Cerebral Cortex - physiopathology Direct current Electric fields Electrical stimulation of the brain Electrodes ESB Functional magnetic resonance imaging Fundamental and applied biological sciences. Psychology Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical sciences Neural networks Neurology Neuromodulation NMR Nuclear magnetic resonance Optimization algorithms Optimization techniques Pilot Projects Position (location) Rehabilitation Stimulation Stroke Stroke - physiopathology Stroke Rehabilitation Strokes Transcranial direct current stimulation Transcranial Magnetic Stimulation - methods Vascular diseases and vascular malformations of the nervous system Vertebrates: nervous system and sense organs |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-Oe1BBxG-r5xHB19jsdxaf5PA4hBPBO7i3ZbO7wWovLb0W8cW_3ZlkkxosR8GXPHRnm2RmMjPJzv5-hLx1TlBd1DwXxvlcSCchDvqQlz7IkntNq_ZjzvlndXYpPl3JqwNy0u-FwbbKFPu7mN5G6_TLNGlzupzNpl-hMoB0A-8bHJnlOCJ-CqGRxeDd722bh6Gi2w4neY7SqZun6_FqMSNn1_DkYpMXb9E7EVVzd4q6v3Q3oLi6Y7zYVZL-21l5d9Ms3a-fbj7_K22dPiQPUr2Zfehu6RE5iM1jcuc8rag_IV8u2lbwGLI1Zi0PB_DIrNNK5jv0pgziwHXi-cqgys1WI3zvrCUaB6HV4kd8Si5PP16cnOWJZSH3Wop1Ln1hfKXgRcmw0gvtg1FC0Vj4sgw6hiLqWLNCK1nRGHRgzjhRC1aEwGmoHX9GDptFE1-QLHCpTBkQUy6IICooRYLzvopQRbBK6wnRvWKtT5eITBhz2_eafbdbk1g0iS2YBZNMCB1mLjsYjj3mmN52tt9mCoHRQq7YY-77Ye7IHfecfTxyleGSmWalMrSckKPed2yKGTeWIg00hXKU7hxmyMYDxQMFNb4ZhiEY4AqPa-JiA3_BFdIDaH2bjMTVV0hU5hYZhcBi2ME4Ic87j97eAxeIoqjAmCNfHwQQsHw80sy-tcDlguKnNjgvG56Kva358r8s8orcYy2Pic6pPCKH69UmvoZqcl0dt-HiD43NdxM priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbpBtpC6fuxbRpc6NXBelv0FEpDKCTsIQvpSciSTNNsvMvGS2l_fUfyIzVJF9OLL9L4MRrNjD3j70PoozEMy6ykKVPGpowbDn7QujS3jufUSlzEjzknp-J4zr6e8_Md1DHTDcr3sQ0rwjpeXMHmCn1YNAJsMnUP7QoOyfcE7c5PZ4ffYk2T0zTHkcoDZ4GBkMuud2fbqf4VkB6tzDWoqWz4Le5KQG_3UT7YVCvz66dZLP4KUkdP0Kz71afpTbk82NTFgf19G_lx7PM_RY_bhDU5bCzsGdrx1XN0_6Qtyb9As7PYS-5dUoewZ-EAJp00oTKxDfxTAo7kqiUKSyBNTtYDgPAkMpXDpPXy0r9E86MvZ5-P05amIbWSszrlNlO2EPCmpUhumbROCSawz2yeO-ld5qUvSSYFL7B30hGjDCsZyZyj2JWGvkKTaln5NyhxlAuVuwBK55hjBeQyzlhbeEhDSCHlFMlurbRtbzFQaSx016z2Q98oTAeF6YxoUNgU4V5y1eB4jJBRnTno7j9V8KwaFmmE7Kdets1lGsWPlN4fWF9_y0SSXCicT9FeZ466dTrXGgceaQz5LL5zmAQ6H8g-MKjxQz8M3iSUiEzllxs4BRWBX0DKbXN4KN9CpFNb5oiATBZaIKfodbNJbp6BsgDDKGAxB9unnxAQz4cj1cX3iHzOcPhWB9cl_UYbvZpv_0foHXpIIv-JTDHfQ5N6vfHvIQuti_3W8_wBQOqGKg priority: 102 providerName: Unpaywall |
| Title | Targeted transcranial direct current stimulation for rehabilitation after stroke |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913001833 https://dx.doi.org/10.1016/j.neuroimage.2013.02.049 https://www.ncbi.nlm.nih.gov/pubmed/23473936 https://www.proquest.com/docview/1547316231 https://www.proquest.com/docview/2051529917 https://www.proquest.com/docview/1367881777 https://www.proquest.com/docview/1500762199 https://www.proquest.com/docview/1671628554 https://pubmed.ncbi.nlm.nih.gov/PMC4120279 http://doi.org/10.1016/j.neuroimage.2013.02.049 |
| UnpaywallVersion | submittedVersion |
| Volume | 75 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VgIkhPgaFEYVJF4DsePYsRBCZdpUPhZV0yqVp8ixHTHo0tK1Qrzwt3OXr1JRVX1JHuxr07vL3dU-_36EvNKaUxnkoc-VNj6PdARx0Fg_NjaKQyNpVi7mnCdiOOafJtHkgCTNWRhsq2xiYhmo7czgGvkbiiS5FJI1fT__6SNrFO6uNhQauqZWsO9KiLFD0mWIjNUh3Q-nyehiDcNLeXU4Lgr9mFJV9_ZUHV8lguTVNbzH2PIVllieiLG5PWHdnesbUGNe8V9sK1D_77O8vSrm-vcvPZ3-k8TO7pN7dfXpDSp3eUAOXPGQ3Dqv99cfkdFl2RjurLfEHGbgAv7pVXnPMxWWkwdR4bpm_fKg5vUWG2jfXkk7DpMWsx_uMRmfnV6eDP2ac8E3MuJLPzKBMpmAv02KxYZLY5XggrrAxLGVzgZOupwFUkQZdVZappXmOWeBtSG1uQ6PSKeYFe4p8WwYCRVbRJiz3PIMChMLdsoc1BQsk7JHZKPY1NSPiLwY07TpPPuerk2SoknSgKVgkh6hreS8AuXYQ0Y1tkubQ6cQJlPIHHvIvm1l68KkUvye0v0NV2kfmUkWC0XjHjlufCetI8hNuvb3rcMMuXmglKCgxpftMIQG3O_RhZut4CNCgWQBUu6aE-FeLKQttWOOQJgx7GfskSeVR69_Q8gRU1GAMTd8vZ2A8OWbI8XVtxLGnFNceIPvZe1bsbc1n-1W2XNyh5W0JdIP1DHpLBcr9wKKx2XWJ4ev_1C4yonsk-7g5OLLCO8fPw-Tfh0t4D5ORoOvfwEJRnjt |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJrFJCHGnMEaQ4DEivsWx0IS4bOrYWk2ok_ZmHNsVG11aetG0P8dv4zhxUiqqqi976Yt90sTn-Jxj-_j7EHqrNcMi6dOYSW1ixjUHP2hsnBnLM2oEzsvNnE43bZ-xb-f8fAP9qe_C-LLK2ieWjtoOjd8jf489SS6GYI0_jn7HnjXKn67WFBo6UCvY_RJiLFzsOHY317CEm-wffQV9vyPk8KD3pR0HloHYCM6mMTeJNHkKCwVJMsOEsTJlKXaJyTIrnE2ccH0Cy32eY2eFJVpq1mcksZZi29cUnnsHbTHKJCz-tj4fdE-_z2F_Masu43EaZxjLUEtUVZiViJUXV-A3fIkZLbFDPabn8gB5b6QnoLZ-xbexLCH-v65ze1aM9M21Hgz-CZqHD9D9kO1GnyrzfIg2XPEI3e2E8_zH6LRXFqI7G019zDTwA_MhquJsZCrsqAi80FVgGYsgx47GC-jiUUlzDp3Gw1_uCTq7ldF_ijaLYeGeo8hSnsrMekQ7yyzLIRGyYBe5gxyG5EK0kKgHVpnwip6HY6DqSrdLNVeJ8ipRCVGgkhbCjeSoAgFZQ0bWulP1JVdwywoi1RqyHxrZkAhVA7-m9N6CqTSvTATJUomzFtqtbUcFjzVR8_m1tJl4LiBIXTAM45umGVyRP1_ShRvO4BE09eQEQqzqw_3ZL4RJuaJP6mHNfP1kCz2rLHr-DZR5DMcUlLlg600HD5e-2FJc_Cxh0xn2G33wv6SZFWtr88XqIXuNttu9zok6Oeoev0Q7pKRMETHmu2hzOp65V5C4TvO94B0i9OO2HdJfsImv0g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkQoSQrwJlLJIcFx1_VqvhRBClKiltOqhlXIzXtsrCukm5KGqf41fx8y-QkRU5dJLLvZsdj3jmbE9_j5C3lorqEoKHgttXSykleAHnY8z52XGnaJ5tZlzdJzun4mvAznYIH_auzBYVtn6xMpR-5HDPfJdiiS5FII13S2asoiTvf7H8e8YGaTwpLWl06hN5DBcXcLybfrhYA90_Y6x_pfTz_txwzAQOyXFLJYu0S5PYZGgWeaEcl6nIqUhcVnmVfBJUKFgsNSXOQ1eeWa1FYVgifec-sJyeO4tcltxrrGcUA3UAvCXivoanuRxRqluqojq2rIKq_L8AjwGFpfxCjUU0TxXh8Z7YzsFhRU108aqVPj_is4783Jsry7tcPhPuOw_IPebPDf6VBvmQ7IRykdk66g5yX9MTk6rEvTgoxlGSwc_MBOiOsJGrkaNisD_XDT8YhFk19FkCVc8qgjOodNk9Cs8IWc3MvZPyWY5KsNzEnkuU515xLLzwoscUiBvncsDZC8sV6pHVDuwxjWviAwcQ9PWuP00C5UYVIlJmAGV9AjtJMc1_McaMrrVnWmvt4JDNhCj1pB938k2KVA98GtK7yyZSvfKTLEs1TTrke3Wdkzjq6ZmMbNWNjNkAYKkhcIwvumawQnhyZItw2gOj-Ap0hIodV0fiae-ECD1NX1SBDTDyskeeVZb9OIbuED0xhSUuWTrXQcESl9uKc9_VIDpguIWH_wv62bF2tp8cf2QvSZb4IbMt4Pjw5fkLqu4UlRM5TbZnE3m4RVkrLN8p3INEfl-077oL_DjrWw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbpBtpC6fuxbRpc6NXBelv0FEpDKCTsIQvpSciSTNNsvMvGS2l_fUfyIzVJF9OLL9L4MRrNjD3j70PoozEMy6ykKVPGpowbDn7QujS3jufUSlzEjzknp-J4zr6e8_Md1DHTDcr3sQ0rwjpeXMHmCn1YNAJsMnUP7QoOyfcE7c5PZ4ffYk2T0zTHkcoDZ4GBkMuud2fbqf4VkB6tzDWoqWz4Le5KQG_3UT7YVCvz66dZLP4KUkdP0Kz71afpTbk82NTFgf19G_lx7PM_RY_bhDU5bCzsGdrx1XN0_6Qtyb9As7PYS-5dUoewZ-EAJp00oTKxDfxTAo7kqiUKSyBNTtYDgPAkMpXDpPXy0r9E86MvZ5-P05amIbWSszrlNlO2EPCmpUhumbROCSawz2yeO-ld5qUvSSYFL7B30hGjDCsZyZyj2JWGvkKTaln5NyhxlAuVuwBK55hjBeQyzlhbeEhDSCHlFMlurbRtbzFQaSx016z2Q98oTAeF6YxoUNgU4V5y1eB4jJBRnTno7j9V8KwaFmmE7Kdets1lGsWPlN4fWF9_y0SSXCicT9FeZ466dTrXGgceaQz5LL5zmAQ6H8g-MKjxQz8M3iSUiEzllxs4BRWBX0DKbXN4KN9CpFNb5oiATBZaIKfodbNJbp6BsgDDKGAxB9unnxAQz4cj1cX3iHzOcPhWB9cl_UYbvZpv_0foHXpIIv-JTDHfQ5N6vfHvIQuti_3W8_wBQOqGKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+transcranial+direct+current+stimulation+for+rehabilitation+after+stroke&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Dmochowski%2C+Jacek&rft.au=Datta%2C+Abhishek&rft.au=Huang%2C+Yu&rft.au=Richardson%2C+Jessica&rft.date=2013-07-15&rft.issn=1053-8119&rft.volume=75&rft.spage=12&rft.epage=19&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.02.049&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |