Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain

Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and v...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of aging Vol. 36; no. 7; pp. 2296 - 2303
Main Authors Lin, Ai-Ling, Zhang, Wei, Gao, Xiaoli, Watts, Lora
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2015
Subjects
Online AccessGet full text
ISSN0197-4580
1558-1497
1558-1497
DOI10.1016/j.neurobiolaging.2015.03.012

Cover

Abstract Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.
AbstractList Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.
Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.
Abstract Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.
Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging.
Author Gao, Xiaoli
Zhang, Wei
Lin, Ai-Ling
Watts, Lora
AuthorAffiliation e Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
c Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
b Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
d Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
a Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
f Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
AuthorAffiliation_xml – name: c Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
– name: f Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
– name: b Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
– name: a Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
– name: d Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
– name: e Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
Author_xml – sequence: 1
  givenname: Ai-Ling
  surname: Lin
  fullname: Lin, Ai-Ling
  email: ailing.lin@uky.edu
  organization: Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
– sequence: 3
  givenname: Xiaoli
  surname: Gao
  fullname: Gao, Xiaoli
  organization: Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
– sequence: 4
  givenname: Lora
  surname: Watts
  fullname: Watts, Lora
  organization: Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25896951$$D View this record in MEDLINE/PubMed
BookMark eNqVksFu1DAQhi1URLeFV0A5cOCSYDt27EiABAsFpEocgCuW40wWb7321k622rfHYUuhSEjtaWTN_N-M_5kTdOSDB4SeEVwRTJoX68rDFENng9Mr61cVxYRXuK4woQ_QgnAuS8JacYQWmLSiZFziY3SS0hpjLJhoHqFjymXbtJws0PeldiFaU0RIY46jDb6w3kTQCVJxAWPuXnSht_m1gVF3wdm0KbTvi23WQNzlROdC6IvBhausLX6NVXRRW_8YPRy0S_DkOp6ib2fvvy4_luefP3xavjkvTZ5oLKEWUpqOSl3X_dAANUxQRmhD-NAykKIbcN2LXgykpZzwpiPDIJtWQtt3jPP6FL06cCe_1fsr7ZzaRrvRca8IVrNvaq1u-6Zm3xSuVfYt618f9Nup20BvwI9R_2EEbdXtjLc_1CrsFGNccDEDnl8DYricspdqY5MB57SHMCVFGtkwWmNKcunTv3vdNPm9lFzw9lBgYkgpwqCMHfW8mdzaurv-6OU_kHsacnaQQ97azkJUyVjwBnobwYyqD_aezt6AjLPeGu0uYA9pHabo82UoohJVWH2Zb3Y-WcIxJpKKDHj3f8Dd5_gJuz4ITw
CitedBy_id crossref_primary_10_1038_s41598_020_61142_8
crossref_primary_10_1038_s41467_020_19360_1
crossref_primary_10_1038_s41593_022_01238_8
crossref_primary_10_1007_s12035_024_04340_z
crossref_primary_10_1038_s41598_020_65402_5
crossref_primary_10_3389_fnagi_2017_00298
crossref_primary_10_3390_cells11152416
crossref_primary_10_1016_j_jnutbio_2023_109371
crossref_primary_10_1016_j_bbadis_2023_166725
crossref_primary_10_1007_s13668_017_0187_9
crossref_primary_10_1016_j_arr_2016_09_012
crossref_primary_10_1371_journal_pone_0165980
crossref_primary_10_1073_pnas_2205755119
crossref_primary_10_3389_fnagi_2018_00225
crossref_primary_10_1038_s41598_018_25190_5
crossref_primary_10_1007_s12263_015_0508_9
crossref_primary_10_1016_j_neuint_2019_104614
crossref_primary_10_18632_aging_101094
crossref_primary_10_1007_s11427_018_9453_x
crossref_primary_10_1002_mrm_27129
crossref_primary_10_1038_s41467_020_18949_w
crossref_primary_10_1016_j_neurobiolaging_2019_09_015
crossref_primary_10_3389_fnut_2019_00090
crossref_primary_10_1016_j_pnpbp_2020_110206
crossref_primary_10_1016_j_cmet_2019_07_016
crossref_primary_10_3390_nu11081910
crossref_primary_10_3389_fneur_2019_00585
crossref_primary_10_3389_jpps_2024_13375
crossref_primary_10_1016_j_neuron_2024_12_014
crossref_primary_10_3389_fnmol_2023_1275924
crossref_primary_10_3390_cells12162019
crossref_primary_10_1002_mnfr_201901116
crossref_primary_10_3390_bioengineering11090943
crossref_primary_10_3389_fnagi_2015_00213
crossref_primary_10_4158_EP161274_OR
crossref_primary_10_1016_j_bbcan_2018_06_005
crossref_primary_10_1155_2017_9684061
crossref_primary_10_3389_fstro_2022_1026066
crossref_primary_10_1177_0271678X241261942
crossref_primary_10_3390_nu16162676
crossref_primary_10_1111_cns_70014
crossref_primary_10_1016_j_celrep_2019_07_043
crossref_primary_10_1111_acel_13057
crossref_primary_10_1038_s42003_020_1079_x
crossref_primary_10_1016_j_smaim_2022_09_003
crossref_primary_10_1177_0271678X15621575
crossref_primary_10_1080_1028415X_2018_1443995
crossref_primary_10_1016_j_xcrm_2024_101593
crossref_primary_10_1111_acel_14284
crossref_primary_10_3390_antiox12071471
crossref_primary_10_1016_j_trci_2017_11_002
crossref_primary_10_20517_and_2023_57
crossref_primary_10_3390_biology10030194
crossref_primary_10_12688_f1000research_11437_1
crossref_primary_10_1007_s00424_021_02529_y
crossref_primary_10_3389_fnmol_2022_869799
crossref_primary_10_1146_annurev_physiol_021119_034338
crossref_primary_10_1080_10715762_2019_1662899
crossref_primary_10_1093_gerona_glaa203
crossref_primary_10_1073_pnas_1820282116
crossref_primary_10_1007_s12031_025_02328_5
Cites_doi 10.1097/00004647-200105000-00013
10.2217/fnl.14.13
10.1016/S1043-2760(00)00370-2
10.1155/2012/907409
10.1016/j.neuroscience.2006.11.065
10.1016/j.neuint.2013.08.006
10.1111/j.1471-4159.2012.07670.x
10.1073/pnas.0808587106
10.1056/NEJM200008173430701
10.1038/jcbfm.2013.82
10.1016/j.plefa.2003.09.007
10.1073/pnas.061509598
10.1126/science.1173635
10.1016/j.neulet.2009.08.038
10.1111/j.1749-6632.1991.tb00190.x
10.1016/j.nut.2010.07.021
10.1016/S0197-4580(01)00249-4
10.1093/gerona/glq165
10.1016/S0022-510X(00)00396-8
10.1073/pnas.83.4.1140
10.1038/jcbfm.2014.77
10.1038/nature13264
10.1073/pnas.91.22.10625
10.1002/hipo.20577
10.1089/jmf.2012.2592
10.1073/pnas.0909711107
10.1523/JNEUROSCI.0671-06.2006
10.1016/j.bbrc.2011.05.008
10.1046/j.1471-4159.1999.731674.x
10.1093/gerona/glp060
10.1016/j.cmet.2012.11.003
10.1016/j.brainresrev.2008.09.002
10.1016/j.cell.2011.02.018
10.3233/JAD-2011-110899
10.1098/rstb.2005.1763
10.1007/s12035-008-8040-1
10.1111/j.1474-9726.2009.00533.x
10.1038/jcbfm.2013.87
10.1111/j.1749-6632.1997.tb48479.x
10.1371/journal.pone.0028427
10.1073/pnas.0510452103
10.1093/gerona/glq113
10.1016/j.neuint.2003.11.005
10.1038/nature09584
10.1126/science.3260686
10.1111/j.1528-1157.1992.tb01770.x
10.1111/j.1474-9726.2011.00702.x
10.1038/sj.jcbfm.9600177
10.1111/nyas.12222
10.1016/j.neurobiolaging.2012.11.023
10.1194/jlr.R046706
10.1002/ana.20062
10.1002/mrm.22667
10.1146/annurev.genet.39.110304.095751
10.1016/S0197-4580(99)00032-9
10.1093/gerona/54.11.B492
10.18632/aging.100569
10.1038/jcbfm.2014.114
10.1371/journal.pone.0046585
10.1073/pnas.1002220107
ContentType Journal Article
Copyright 2015 The Authors
The Authors
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2015 The Authors. Published by Elsevier Inc. 2015
Copyright_xml – notice: 2015 The Authors
– notice: The Authors
– notice: Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2015 The Authors. Published by Elsevier Inc. 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.neurobiolaging.2015.03.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1558-1497
EndPage 2303
ExternalDocumentID 10.1016/j.neurobiolaging.2015.03.012
PMC4457572
25896951
10_1016_j_neurobiolaging_2015_03_012
S0197458015001827
1_s2_0_S0197458015001827
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001120
– fundername: NIA NIH HHS
  grantid: K01AG040164
– fundername: NIA NIH HHS
  grantid: K01 AG040164
– fundername: NCATS NIH HHS
  grantid: KL2 TR001118
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABGSF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABOYX
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LX8
M29
M2V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OD~
OKEIE
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNS
SPCBC
SSB
SSH
SSN
SSU
SSY
SSZ
T5K
WUQ
Z5R
ZGI
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
6I.
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFYLN
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c747t-e3788cb28a33df6e2c472412615f94e87bf03d7d7f1925156b1ff8698e9db4553
IEDL.DBID .~1
ISSN 0197-4580
1558-1497
IngestDate Wed Aug 20 00:08:12 EDT 2025
Tue Sep 30 15:42:04 EDT 2025
Sun Sep 28 07:02:18 EDT 2025
Wed Feb 19 01:58:44 EST 2025
Wed Oct 01 02:15:15 EDT 2025
Thu Apr 24 23:10:54 EDT 2025
Fri Feb 23 02:19:55 EST 2024
Sun Feb 23 10:19:36 EST 2025
Tue Aug 26 19:57:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Neuroimaging
Brain metabolism
Cerebral blood flow
Mammalian target of rapamycin
Aging
Ketone bodies
α-ketoglutarate
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c747t-e3788cb28a33df6e2c472412615f94e87bf03d7d7f1925156b1ff8698e9db4553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0197458015001827
PMID 25896951
PQID 1686423021
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_neurobiolaging_2015_03_012
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4457572
proquest_miscellaneous_1686423021
pubmed_primary_25896951
crossref_citationtrail_10_1016_j_neurobiolaging_2015_03_012
crossref_primary_10_1016_j_neurobiolaging_2015_03_012
elsevier_sciencedirect_doi_10_1016_j_neurobiolaging_2015_03_012
elsevier_clinicalkeyesjournals_1_s2_0_S0197458015001827
elsevier_clinicalkey_doi_10_1016_j_neurobiolaging_2015_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of aging
PublicationTitleAlternate Neurobiol Aging
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Veech (bib58) 2004; 70
Colman, Anderson, Johnson, Kastman, Kosmatka, Beasley, Allison, Cruzen, Simmons, Kemnitz, Weindruch (bib11) 2009; 325
Reiman, Caselli, Chen, Alexander, Bandy, Frost (bib46) 2001; 98
Kida, Hyder, Behar (bib22) 2001; 21
Uh, Lin, Lee, Liu, Fox, Lu (bib64) 2011; 65
Nagata, Buchan, Yokoyama, Kondoh, Sato, Terashi, Satoh, Watahiki, Senova, Hirata, Hatazawa (bib41) 1997; 826
Lin, Fox, Hardies, Duong, Gao (bib28) 2010; 107
Stranahan, Lee, Martin, Maudsley, Golden, Cutler, Mattson (bib51) 2009; 19
Kashiwaya, Bergman, Lee, Wan, King, Mughal, Okun, Clarke, Mattson, Veech (bib21) 2013; 34
Burdakov, Luckman, Verkhratsky (bib6) 2005; 360
Lin, Coman, Jiang, Rothman, Hyder (bib27) 2014; 34
Lynch, Cooney, Bennett, Thornton, Khan, Ingram, Sonntag (bib34) 1999; 20
Lin, Zheng, Halloran, Burbank, Hussong, Hart, Javors, Shih, Muir, Solano Fonseca, Strong, Richardson, Lechleiter, Fox, Galvan (bib31) 2013; 33
Hertz (bib19) 2013; 4
Blazquez, Woods, de Ceballos, Carling, Guzman (bib3) 1999; 73
Cunnane, Nugent, Roy, Courchesne-Loyer, Croteau, Tremblay, Castellano, Pifferi, Bocti, Paquet, Begdouri, Bentourkia, Turcotte, Allard, Barberger-Gateau, Fulop, Rapoport (bib12) 2011; 27
Fox, Raichle, Mintun, Dence (bib16) 1988; 241
Lanza, Zabielski, Klaus, Morse, Heppelmann, Bergen, Dasari, Walrand, Short, Johnson, Robinson, Schimke, Jakaitis, Asmann, Sun, Nair (bib24) 2012; 16
Maalouf, Sullivan, Davis, Kim, Rho (bib36) 2007; 145
Bookheimer, Strojwas, Cohen, Saunders, Pericak-Vance, Mazziotta, Small (bib4) 2000; 343
Witte, Fobker, Gellner, Knecht, Floel (bib61) 2009; 106
McNally, Hartman (bib39) 2012; 121
Sengupta, Peterson, Laplante, Oh, Sabatini (bib49) 2010; 468
Mouton, Chachich, Quigley, Spangler, Ingram (bib40) 2009; 464
Akram (bib1) 2013; 16
Roy, Hennebelle, St-Pierre, Courchesne-Loyer, Fortier, Bouzier-Sore, Gallis, Beauvieux, Cunnane (bib48) 2013; 63
Markowska, Savonenko (bib37) 2002; 23
Maalouf, Rho, Mattson (bib35) 2009; 59
Fox, Raichle (bib15) 1986; 83
Lin, Poteet, Du, Gourav, Liu, Wen, Bresnen, Huang, Fox, Yang, Duong (bib29) 2012; 7
Lin, A.L., Laird, A.R., Fox, P.T., Gao, J.H., 2012a. Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer's disease, Neurol. Res. Int. 2012, 907409.
Rahat, Maoz, Cohen (bib45) 2011; 66
Brown, Baltan Tekkok, Ransom (bib5) 2004; 45
Chowdhury, Jiang, Rothman, Behar (bib10) 2014; 34
Lin, Rothman (bib30) 2014; 9
Veech (bib59) 2013; 1302
Richardson, Galvan, Lin, Oddo (bib47) 2014
Valdez, Tapia, Kang, Clemenson, Gage, Lichtman, Sanes (bib57) 2010; 107
Chin, Fu, Pai, Vergnes, Hwang, Deng, Diep, Lomenick, Meli, Monsalve, Hu, Whelan, Wang, Jung, Solis, Fazlollahi, Kaweeteerawat, Quach, Nili, Krall, Godwin, Chang, Faull, Guo, Jiang, Trauger, Saghatelian, Braas, Christofk, Clarke, Teitell, Petrascheck, Reue, Jung, Frand, Huang (bib8) 2014; 510
Kinsman, Vining, Quaskey, Mellits, Freeman (bib23) 1992; 33
Mattson (bib38) 2010; 2
Hasselbalch, Madsen, Hageman, Olsen, Justesen, Holm, Paulson (bib18) 1996; 270
Pellerin, Magistretti (bib43) 1994; 91
Suzuki, Stern, Bozdagi, Huntley, Walker, Magistretti, Alberini (bib54) 2011; 144
Wallace (bib60) 2005; 39
Zhang, Kuang, Xu, Harris, Lee, LaManna, Puchowicz (bib62) 2013; 33
Carter, Leeuwenburgh, Daniels, Foster (bib7) 2009; 64
Stranahan, Mattson (bib52) 2012; 30
Newman, Korol, Gold (bib42) 2011; 6
Fontan-Lozano, Lopez-Lluch, Delgado-Garcia, Navas, Carrion (bib14) 2008; 38
Lopez-Lluch, Hunt, Jones, Zhu, Jamieson, Hilmer, Cascajo, Allard, Ingram, Navas, de Cabo (bib33) 2006; 103
Sullivan, Rippy, Dorenbos, Concepcion, Agarwal, Rho (bib53) 2004; 55
Dash, Orsi, Moore (bib13) 2006; 26
Linde, Hasselbalch, Topp, Paulson, Madsen (bib32) 2006; 26
Shafique, Choy, Liu, Feng, Cordeiro, Lyra, Arafah, Yassin-Kassab, Zanetti, Clements, Bianchi, Benjamin, Sellke, Abid (bib50) 2013; 5
Turturro, Witt, Lewis, Hass, Lipman, Hart (bib55) 1999; 54
Guzman, Blazquez (bib17) 2001; 12
Liao, Rikke, Johnson, Diaz, Nelson (bib25) 2010; 9
Prins, Matsumoto (bib44) 2014; 55
Ungvari, Kaley, de Cabo, Sonntag, Csiszar (bib56) 2010; 65
Choi, Choi, Lee (bib9) 2011; 409
Bentourkia, Bol, Ivanoiu, Labar, Sibomana, Coppens, Michel, Cosnard, De Volder (bib2) 2000; 181
Hoyer (bib20) 1991; 640
Liao, Rikke, Johnson, Gelfond, Diaz, Nelson (bib26) 2011; 10
Mattson (10.1016/j.neurobiolaging.2015.03.012_bib38) 2010; 2
Lanza (10.1016/j.neurobiolaging.2015.03.012_bib24) 2012; 16
Veech (10.1016/j.neurobiolaging.2015.03.012_bib59) 2013; 1302
Fontan-Lozano (10.1016/j.neurobiolaging.2015.03.012_bib14) 2008; 38
Witte (10.1016/j.neurobiolaging.2015.03.012_bib61) 2009; 106
Sullivan (10.1016/j.neurobiolaging.2015.03.012_bib53) 2004; 55
Bentourkia (10.1016/j.neurobiolaging.2015.03.012_bib2) 2000; 181
Chin (10.1016/j.neurobiolaging.2015.03.012_bib8) 2014; 510
Lynch (10.1016/j.neurobiolaging.2015.03.012_bib34) 1999; 20
Lin (10.1016/j.neurobiolaging.2015.03.012_bib30) 2014; 9
Stranahan (10.1016/j.neurobiolaging.2015.03.012_bib52) 2012; 30
Fox (10.1016/j.neurobiolaging.2015.03.012_bib16) 1988; 241
10.1016/j.neurobiolaging.2015.03.012_bib63
Lopez-Lluch (10.1016/j.neurobiolaging.2015.03.012_bib33) 2006; 103
Stranahan (10.1016/j.neurobiolaging.2015.03.012_bib51) 2009; 19
Choi (10.1016/j.neurobiolaging.2015.03.012_bib9) 2011; 409
Roy (10.1016/j.neurobiolaging.2015.03.012_bib48) 2013; 63
Sengupta (10.1016/j.neurobiolaging.2015.03.012_bib49) 2010; 468
Nagata (10.1016/j.neurobiolaging.2015.03.012_bib41) 1997; 826
Hoyer (10.1016/j.neurobiolaging.2015.03.012_bib20) 1991; 640
Turturro (10.1016/j.neurobiolaging.2015.03.012_bib55) 1999; 54
Maalouf (10.1016/j.neurobiolaging.2015.03.012_bib35) 2009; 59
Carter (10.1016/j.neurobiolaging.2015.03.012_bib7) 2009; 64
McNally (10.1016/j.neurobiolaging.2015.03.012_bib39) 2012; 121
Wallace (10.1016/j.neurobiolaging.2015.03.012_bib60) 2005; 39
Valdez (10.1016/j.neurobiolaging.2015.03.012_bib57) 2010; 107
Cunnane (10.1016/j.neurobiolaging.2015.03.012_bib12) 2011; 27
Kashiwaya (10.1016/j.neurobiolaging.2015.03.012_bib21) 2013; 34
Linde (10.1016/j.neurobiolaging.2015.03.012_bib32) 2006; 26
Bookheimer (10.1016/j.neurobiolaging.2015.03.012_bib4) 2000; 343
Hertz (10.1016/j.neurobiolaging.2015.03.012_bib19) 2013; 4
Lin (10.1016/j.neurobiolaging.2015.03.012_bib28) 2010; 107
Pellerin (10.1016/j.neurobiolaging.2015.03.012_bib43) 1994; 91
Kinsman (10.1016/j.neurobiolaging.2015.03.012_bib23) 1992; 33
Zhang (10.1016/j.neurobiolaging.2015.03.012_bib62) 2013; 33
Ungvari (10.1016/j.neurobiolaging.2015.03.012_bib56) 2010; 65
Liao (10.1016/j.neurobiolaging.2015.03.012_bib26) 2011; 10
Maalouf (10.1016/j.neurobiolaging.2015.03.012_bib36) 2007; 145
Akram (10.1016/j.neurobiolaging.2015.03.012_bib1) 2013; 16
Lin (10.1016/j.neurobiolaging.2015.03.012_bib29) 2012; 7
Dash (10.1016/j.neurobiolaging.2015.03.012_bib13) 2006; 26
Kida (10.1016/j.neurobiolaging.2015.03.012_bib22) 2001; 21
Reiman (10.1016/j.neurobiolaging.2015.03.012_bib46) 2001; 98
Burdakov (10.1016/j.neurobiolaging.2015.03.012_bib6) 2005; 360
Rahat (10.1016/j.neurobiolaging.2015.03.012_bib45) 2011; 66
Lin (10.1016/j.neurobiolaging.2015.03.012_bib27) 2014; 34
Shafique (10.1016/j.neurobiolaging.2015.03.012_bib50) 2013; 5
Blazquez (10.1016/j.neurobiolaging.2015.03.012_bib3) 1999; 73
Guzman (10.1016/j.neurobiolaging.2015.03.012_bib17) 2001; 12
Veech (10.1016/j.neurobiolaging.2015.03.012_bib58) 2004; 70
Colman (10.1016/j.neurobiolaging.2015.03.012_bib11) 2009; 325
Richardson (10.1016/j.neurobiolaging.2015.03.012_bib47) 2014
Uh (10.1016/j.neurobiolaging.2015.03.012_bib64) 2011; 65
Suzuki (10.1016/j.neurobiolaging.2015.03.012_bib54) 2011; 144
Newman (10.1016/j.neurobiolaging.2015.03.012_bib42) 2011; 6
Fox (10.1016/j.neurobiolaging.2015.03.012_bib15) 1986; 83
Brown (10.1016/j.neurobiolaging.2015.03.012_bib5) 2004; 45
Markowska (10.1016/j.neurobiolaging.2015.03.012_bib37) 2002; 23
Liao (10.1016/j.neurobiolaging.2015.03.012_bib25) 2010; 9
Mouton (10.1016/j.neurobiolaging.2015.03.012_bib40) 2009; 464
Prins (10.1016/j.neurobiolaging.2015.03.012_bib44) 2014; 55
Chowdhury (10.1016/j.neurobiolaging.2015.03.012_bib10) 2014; 34
Lin (10.1016/j.neurobiolaging.2015.03.012_bib31) 2013; 33
Hasselbalch (10.1016/j.neurobiolaging.2015.03.012_bib18) 1996; 270
16001018 - J Cereb Blood Flow Metab. 2006 Feb;26(2):170-80
11755022 - Neurobiol Aging. 2002 Jan-Feb;23(1):75-86
3260686 - Science. 1988 Jul 22;241(4864):462-4
24018842 - Aging (Albany NY). 2013 Jul;5(7):515-30
23217257 - Cell Metab. 2012 Dec 5;16(6):777-88
21337407 - Magn Reson Med. 2011 Mar;65(3):744-9
20679195 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14863-8
23736643 - J Cereb Blood Flow Metab. 2013 Aug;33(8):1307-11
24828042 - Nature. 2014 Jun 19;510(7505):397-401
22045480 - J Alzheimers Dis. 2012;30 Suppl 2:S5-13
25481271 - Exp Gerontol. 2015 Aug;68:51-8
11333369 - J Cereb Blood Flow Metab. 2001 May;21(5):585-91
21179166 - Nature. 2010 Dec 23;468(7327):1100-4
18759009 - Mol Neurobiol. 2008 Oct;38(2):167-77
21575595 - Biochem Biophys Res Commun. 2011 Jun 3;409(2):308-14
10619312 - J Gerontol A Biol Sci Med Sci. 1999 Nov;54(11):B492-501
23909803 - Ann N Y Acad Sci. 2013 Oct;1302:42-8
10501215 - J Neurochem. 1999 Oct;73(4):1674-82
15186919 - Neurochem Int. 2004 Sep;45(4):529-36
16885218 - J Neurosci. 2006 Aug 2;26(31):8048-56
22268909 - J Neurochem. 2012 Apr;121(1):28-35
24721741 - J Lipid Res. 2014 Dec;55(12):2450-7
20552045 - Front Aging Neurosci. 2010 Mar 08;2:5
19280661 - Hippocampus. 2009 Oct;19(10):951-61
21949904 - Neurol Res Int. 2012;2012:907409
16446459 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1768-73
19878144 - Aging Cell. 2010 Feb;9(1):92-5
24138078 - J Med Food. 2013 Nov;16(11):965-7
10537028 - Neurobiol Aging. 1999 Mar-Apr;20(2):191-200
23801246 - J Cereb Blood Flow Metab. 2013 Sep;33(9):1412-21
17240074 - Neuroscience. 2007 Mar 2;145(1):256-64
10944562 - N Engl J Med. 2000 Aug 17;343(7):450-6
21388497 - Aging Cell. 2011 Aug;10(4):629-39
11099707 - J Neurol Sci. 2000 Dec 1;181(1-2):19-28
1776759 - Ann N Y Acad Sci. 1991;640:53-8
19699265 - Neurosci Lett. 2009 Oct 30;464(3):184-7
24780902 - J Cereb Blood Flow Metab. 2014 Jul;34(7):1233-42
25214817 - Future Neurol. 2014 May 1;9(3):341-354
24984898 - J Cereb Blood Flow Metab. 2014 Sep;34(9):1440-3
11295573 - Trends Endocrinol Metab. 2001 May-Jun;12(4):169-73
9329699 - Ann N Y Acad Sci. 1997 Sep 26;826:272-81
21376239 - Cell. 2011 Mar 4;144(5):810-23
14769489 - Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):309-19
23750153 - Front Endocrinol (Lausanne). 2013 May 27;4:59
1464275 - Epilepsia. 1992 Nov-Dec;33(6):1132-6
16285865 - Annu Rev Genet. 2005;39:359-407
11248079 - Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3334-9
19420296 - J Gerontol A Biol Sci Med Sci. 2009 Aug;64(8):850-9
19590001 - Science. 2009 Jul 10;325(5937):201-4
21035308 - Nutrition. 2011 Jan;27(1):3-20
7938003 - Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9
22180782 - PLoS One. 2011;6(12):e28427
15048898 - Ann Neurol. 2004 Apr;55(4):576-80
20576649 - J Gerontol A Biol Sci Med Sci. 2010 Oct;65(10):1028-41
23276384 - Neurobiol Aging. 2013 Jun;34(6):1530-9
19171901 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1255-60
21081478 - J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):163-9
20404151 - Proc Natl Acad Sci U S A. 2010 May 4;107(18):8446-51
16321792 - Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2227-35
23974047 - Neurochem Int. 2013 Nov;63(5):450-7
8967461 - Am J Physiol. 1996 May;270(5 Pt 1):E746-51
18845187 - Brain Res Rev. 2009 Mar;59(2):293-315
23056355 - PLoS One. 2012;7(10):e46585
3485282 - Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140-4
References_xml – volume: 98
  start-page: 3334
  year: 2001
  end-page: 3339
  ident: bib46
  article-title: Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 409
  start-page: 308
  year: 2011
  end-page: 314
  ident: bib9
  article-title: Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 464
  start-page: 184
  year: 2009
  end-page: 187
  ident: bib40
  article-title: Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice
  publication-title: Neurosci. Lett.
– volume: 20
  start-page: 191
  year: 1999
  end-page: 200
  ident: bib34
  article-title: Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats
  publication-title: Neurobiol. Aging
– volume: 26
  start-page: 170
  year: 2006
  end-page: 180
  ident: bib32
  article-title: Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 468
  start-page: 1100
  year: 2010
  end-page: 1104
  ident: bib49
  article-title: mTORC1 controls fasting-induced ketogenesis and its modulation by ageing
  publication-title: Nature
– volume: 12
  start-page: 169
  year: 2001
  end-page: 173
  ident: bib17
  article-title: Is there an astrocyte-neuron ketone body shuttle?
  publication-title: Trends Endocrinol. Metab.
– volume: 33
  start-page: 1132
  year: 1992
  end-page: 1136
  ident: bib23
  article-title: Efficacy of the ketogenic diet for intractable seizure disorders: review of 58 cases
  publication-title: Epilepsia
– volume: 19
  start-page: 951
  year: 2009
  end-page: 961
  ident: bib51
  article-title: Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice
  publication-title: Hippocampus
– volume: 65
  start-page: 744
  year: 2011
  end-page: 749
  ident: bib64
  article-title: Validation of VASO cerebral blood volume measurement with positron emission tomography
  publication-title: Magn. Reson. Med.
– volume: 107
  start-page: 14863
  year: 2010
  end-page: 14868
  ident: bib57
  article-title: Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 91
  start-page: 10625
  year: 1994
  end-page: 10629
  ident: bib43
  article-title: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 1412
  year: 2013
  end-page: 1421
  ident: bib31
  article-title: Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 241
  start-page: 462
  year: 1988
  end-page: 464
  ident: bib16
  article-title: Nonoxidative glucose consumption during focal physiologic neural activity
  publication-title: Science
– volume: 325
  start-page: 201
  year: 2009
  end-page: 204
  ident: bib11
  article-title: Caloric restriction delays disease onset and mortality in rhesus monkeys
  publication-title: Science
– volume: 1302
  start-page: 42
  year: 2013
  end-page: 48
  ident: bib59
  article-title: Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 45
  start-page: 529
  year: 2004
  end-page: 536
  ident: bib5
  article-title: Energy transfer from astrocytes to axons: the role of CNS glycogen
  publication-title: Neurochem. Int.
– volume: 121
  start-page: 28
  year: 2012
  end-page: 35
  ident: bib39
  article-title: Ketone bodies in epilepsy
  publication-title: J. Neurochem.
– volume: 510
  start-page: 397
  year: 2014
  end-page: 401
  ident: bib8
  article-title: The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR
  publication-title: Nature
– volume: 70
  start-page: 309
  year: 2004
  end-page: 319
  ident: bib58
  article-title: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
– volume: 73
  start-page: 1674
  year: 1999
  end-page: 1682
  ident: bib3
  article-title: The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes
  publication-title: J. Neurochem.
– volume: 343
  start-page: 450
  year: 2000
  end-page: 456
  ident: bib4
  article-title: Patterns of brain activation in people at risk for Alzheimer's disease
  publication-title: N. Engl. J. Med.
– volume: 640
  start-page: 53
  year: 1991
  end-page: 58
  ident: bib20
  article-title: Abnormalities of glucose metabolism in Alzheimer's disease
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 55
  start-page: 2450
  year: 2014
  end-page: 2457
  ident: bib44
  article-title: The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury
  publication-title: J. Lipid Res.
– volume: 66
  start-page: 163
  year: 2011
  end-page: 169
  ident: bib45
  article-title: Multiple pathways regulating the calorie restriction response in yeast
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 34
  start-page: 1233
  year: 2014
  end-page: 1242
  ident: bib10
  article-title: The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 9
  start-page: 341
  year: 2014
  end-page: 354
  ident: bib30
  article-title: What have novel imaging techniques revealed about metabolism in the aging brain?
  publication-title: Future Neurol.
– volume: 144
  start-page: 810
  year: 2011
  end-page: 823
  ident: bib54
  article-title: Astrocyte-neuron lactate transport is required for long-term memory formation
  publication-title: Cell
– volume: 360
  start-page: 2227
  year: 2005
  end-page: 2235
  ident: bib6
  article-title: Glucose-sensing neurons of the hypothalamus
  publication-title: Philosophical Trans. R. Soc. Lond. B Biol. Sci.
– volume: 2
  start-page: 5
  year: 2010
  ident: bib38
  article-title: The impact of dietary energy intake on cognitive aging
  publication-title: Front. Aging Neurosci.
– volume: 65
  start-page: 1028
  year: 2010
  end-page: 1041
  ident: bib56
  article-title: Mechanisms of vascular aging: new perspectives
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 181
  start-page: 19
  year: 2000
  end-page: 28
  ident: bib2
  article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging
  publication-title: J. Neurol. Sci.
– volume: 107
  start-page: 8446
  year: 2010
  end-page: 8451
  ident: bib28
  article-title: Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 145
  start-page: 256
  year: 2007
  end-page: 264
  ident: bib36
  article-title: Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation
  publication-title: Neuroscience
– volume: 55
  start-page: 576
  year: 2004
  end-page: 580
  ident: bib53
  article-title: The ketogenic diet increases mitochondrial uncoupling protein levels and activity
  publication-title: Ann. Neurol.
– year: 2014
  ident: bib47
  article-title: How longevity research can lead to therapies for Alzheimer's disease: the rapamycin story
  publication-title: Exp. Gerontol.
– volume: 83
  start-page: 1140
  year: 1986
  end-page: 1144
  ident: bib15
  article-title: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 63
  start-page: 450
  year: 2013
  end-page: 457
  ident: bib48
  article-title: Long-term calorie restriction has minimal impact on brain metabolite and fatty acid profiles in aged rats on a Western-style diet
  publication-title: Neurochem. Int.
– volume: 10
  start-page: 629
  year: 2011
  end-page: 639
  ident: bib26
  article-title: Fat maintenance is a predictor of the murine lifespan response to dietary restriction
  publication-title: Aging Cell
– volume: 4
  start-page: 59
  year: 2013
  ident: bib19
  article-title: The glutamate-glutamine (GABA) Cycle: Importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation
  publication-title: Front. Endocrinol.
– volume: 7
  start-page: e46585
  year: 2012
  ident: bib29
  article-title: Methylene blue as a cerebral metabolic and hemodynamic enhancer
  publication-title: PLoS One
– volume: 26
  start-page: 8048
  year: 2006
  end-page: 8056
  ident: bib13
  article-title: Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway
  publication-title: J. Neurosci.
– volume: 826
  start-page: 272
  year: 1997
  end-page: 281
  ident: bib41
  article-title: Misery perfusion with preserved vascular reactivity in Alzheimer's disease
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 33
  start-page: 1307
  year: 2013
  end-page: 1311
  ident: bib62
  article-title: Ketosis proportionately spares glucose utilization in brain
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 9
  start-page: 92
  year: 2010
  end-page: 95
  ident: bib25
  article-title: Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening
  publication-title: Aging Cell
– volume: 54
  start-page: B492
  year: 1999
  end-page: B501
  ident: bib55
  article-title: Growth curves and survival characteristics of the animals used in the biomarkers of aging Program
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 16
  start-page: 777
  year: 2012
  end-page: 788
  ident: bib24
  article-title: Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis
  publication-title: Cell Metab.
– volume: 106
  start-page: 1255
  year: 2009
  end-page: 1260
  ident: bib61
  article-title: Caloric restriction improves memory in elderly humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 39
  start-page: 359
  year: 2005
  end-page: 407
  ident: bib60
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu. Rev. Genet.
– volume: 59
  start-page: 293
  year: 2009
  end-page: 315
  ident: bib35
  article-title: The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies
  publication-title: Brain Res. Rev.
– volume: 27
  start-page: 3
  year: 2011
  end-page: 20
  ident: bib12
  article-title: Brain fuel metabolism, aging, and Alzheimer's disease
  publication-title: Nutrition
– volume: 16
  start-page: 965
  year: 2013
  end-page: 967
  ident: bib1
  article-title: A focused review of the role of ketone bodies in health and disease
  publication-title: J. Med. Food
– volume: 34
  start-page: 1440
  year: 2014
  end-page: 1443
  ident: bib27
  article-title: Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 34
  start-page: 1530
  year: 2013
  end-page: 1539
  ident: bib21
  article-title: A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer's disease
  publication-title: Neurobiol. Aging
– reference: Lin, A.L., Laird, A.R., Fox, P.T., Gao, J.H., 2012a. Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer's disease, Neurol. Res. Int. 2012, 907409.
– volume: 103
  start-page: 1768
  year: 2006
  end-page: 1773
  ident: bib33
  article-title: Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 30
  start-page: S5
  year: 2012
  end-page: S13
  ident: bib52
  article-title: Metabolic reserve as a determinant of cognitive aging
  publication-title: J. Alzheimers Dis.
– volume: 6
  start-page: e28427
  year: 2011
  ident: bib42
  article-title: Lactate produced by glycogenolysis in astrocytes regulates memory processing
  publication-title: PLoS One
– volume: 64
  start-page: 850
  year: 2009
  end-page: 859
  ident: bib7
  article-title: Influence of calorie restriction on measures of age-related cognitive decline: role of increased physical activity
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 5
  start-page: 515
  year: 2013
  end-page: 530
  ident: bib50
  article-title: Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK
  publication-title: Aging
– volume: 270
  start-page: E746
  year: 1996
  end-page: E751
  ident: bib18
  article-title: Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia
  publication-title: Am. J. Physiol.
– volume: 38
  start-page: 167
  year: 2008
  end-page: 177
  ident: bib14
  article-title: Molecular bases of caloric restriction regulation of neuronal synaptic plasticity
  publication-title: Mol. Neurobiol.
– volume: 21
  start-page: 585
  year: 2001
  end-page: 591
  ident: bib22
  article-title: Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 23
  start-page: 75
  year: 2002
  end-page: 86
  ident: bib37
  article-title: Retardation of cognitive aging by life-long diet restriction: implications for genetic variance
  publication-title: Neurobiol. Aging
– volume: 21
  start-page: 585
  year: 2001
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib22
  article-title: Inhibition of voltage-dependent sodium channels suppresses the functional magnetic resonance imaging response to forepaw somatosensory activation in the rodent
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200105000-00013
– volume: 9
  start-page: 341
  year: 2014
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib30
  article-title: What have novel imaging techniques revealed about metabolism in the aging brain?
  publication-title: Future Neurol.
  doi: 10.2217/fnl.14.13
– volume: 12
  start-page: 169
  year: 2001
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib17
  article-title: Is there an astrocyte-neuron ketone body shuttle?
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/S1043-2760(00)00370-2
– ident: 10.1016/j.neurobiolaging.2015.03.012_bib63
  doi: 10.1155/2012/907409
– volume: 145
  start-page: 256
  year: 2007
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib36
  article-title: Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2006.11.065
– volume: 63
  start-page: 450
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib48
  article-title: Long-term calorie restriction has minimal impact on brain metabolite and fatty acid profiles in aged rats on a Western-style diet
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2013.08.006
– volume: 121
  start-page: 28
  year: 2012
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib39
  article-title: Ketone bodies in epilepsy
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2012.07670.x
– volume: 106
  start-page: 1255
  year: 2009
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib61
  article-title: Caloric restriction improves memory in elderly humans
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0808587106
– volume: 343
  start-page: 450
  year: 2000
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib4
  article-title: Patterns of brain activation in people at risk for Alzheimer's disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200008173430701
– volume: 33
  start-page: 1412
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib31
  article-title: Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2013.82
– volume: 70
  start-page: 309
  year: 2004
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib58
  article-title: The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
  doi: 10.1016/j.plefa.2003.09.007
– volume: 98
  start-page: 3334
  year: 2001
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib46
  article-title: Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.061509598
– volume: 325
  start-page: 201
  year: 2009
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib11
  article-title: Caloric restriction delays disease onset and mortality in rhesus monkeys
  publication-title: Science
  doi: 10.1126/science.1173635
– volume: 464
  start-page: 184
  year: 2009
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib40
  article-title: Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.08.038
– volume: 270
  start-page: E746
  year: 1996
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib18
  article-title: Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia
  publication-title: Am. J. Physiol.
– volume: 640
  start-page: 53
  year: 1991
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib20
  article-title: Abnormalities of glucose metabolism in Alzheimer's disease
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1991.tb00190.x
– year: 2014
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib47
  article-title: How longevity research can lead to therapies for Alzheimer's disease: the rapamycin story
  publication-title: Exp. Gerontol.
– volume: 27
  start-page: 3
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib12
  article-title: Brain fuel metabolism, aging, and Alzheimer's disease
  publication-title: Nutrition
  doi: 10.1016/j.nut.2010.07.021
– volume: 23
  start-page: 75
  year: 2002
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib37
  article-title: Retardation of cognitive aging by life-long diet restriction: implications for genetic variance
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(01)00249-4
– volume: 66
  start-page: 163
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib45
  article-title: Multiple pathways regulating the calorie restriction response in yeast
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glq165
– volume: 181
  start-page: 19
  year: 2000
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib2
  article-title: Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging
  publication-title: J. Neurol. Sci.
  doi: 10.1016/S0022-510X(00)00396-8
– volume: 83
  start-page: 1140
  year: 1986
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib15
  article-title: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.83.4.1140
– volume: 34
  start-page: 1233
  year: 2014
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib10
  article-title: The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.77
– volume: 510
  start-page: 397
  year: 2014
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib8
  article-title: The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR
  publication-title: Nature
  doi: 10.1038/nature13264
– volume: 91
  start-page: 10625
  year: 1994
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib43
  article-title: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.91.22.10625
– volume: 19
  start-page: 951
  year: 2009
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib51
  article-title: Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice
  publication-title: Hippocampus
  doi: 10.1002/hipo.20577
– volume: 16
  start-page: 965
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib1
  article-title: A focused review of the role of ketone bodies in health and disease
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2012.2592
– volume: 107
  start-page: 8446
  year: 2010
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib28
  article-title: Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0909711107
– volume: 26
  start-page: 8048
  year: 2006
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib13
  article-title: Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-Mammalian target of rapamycin pathway
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0671-06.2006
– volume: 409
  start-page: 308
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib9
  article-title: Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.05.008
– volume: 73
  start-page: 1674
  year: 1999
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib3
  article-title: The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.1999.731674.x
– volume: 64
  start-page: 850
  year: 2009
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib7
  article-title: Influence of calorie restriction on measures of age-related cognitive decline: role of increased physical activity
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glp060
– volume: 16
  start-page: 777
  year: 2012
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib24
  article-title: Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.11.003
– volume: 59
  start-page: 293
  year: 2009
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib35
  article-title: The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2008.09.002
– volume: 144
  start-page: 810
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib54
  article-title: Astrocyte-neuron lactate transport is required for long-term memory formation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.018
– volume: 30
  start-page: S5
  issue: Suppl 2
  year: 2012
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib52
  article-title: Metabolic reserve as a determinant of cognitive aging
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-110899
– volume: 360
  start-page: 2227
  year: 2005
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib6
  article-title: Glucose-sensing neurons of the hypothalamus
  publication-title: Philosophical Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2005.1763
– volume: 38
  start-page: 167
  year: 2008
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib14
  article-title: Molecular bases of caloric restriction regulation of neuronal synaptic plasticity
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-008-8040-1
– volume: 9
  start-page: 92
  year: 2010
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib25
  article-title: Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00533.x
– volume: 33
  start-page: 1307
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib62
  article-title: Ketosis proportionately spares glucose utilization in brain
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2013.87
– volume: 826
  start-page: 272
  year: 1997
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib41
  article-title: Misery perfusion with preserved vascular reactivity in Alzheimer's disease
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1997.tb48479.x
– volume: 6
  start-page: e28427
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib42
  article-title: Lactate produced by glycogenolysis in astrocytes regulates memory processing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028427
– volume: 103
  start-page: 1768
  year: 2006
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib33
  article-title: Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0510452103
– volume: 4
  start-page: 59
  issue: 5 Pt 1
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib19
  article-title: The glutamate-glutamine (GABA) Cycle: Importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation
  publication-title: Front. Endocrinol.
– volume: 65
  start-page: 1028
  year: 2010
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib56
  article-title: Mechanisms of vascular aging: new perspectives
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glq113
– volume: 45
  start-page: 529
  year: 2004
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib5
  article-title: Energy transfer from astrocytes to axons: the role of CNS glycogen
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2003.11.005
– volume: 468
  start-page: 1100
  year: 2010
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib49
  article-title: mTORC1 controls fasting-induced ketogenesis and its modulation by ageing
  publication-title: Nature
  doi: 10.1038/nature09584
– volume: 241
  start-page: 462
  year: 1988
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib16
  article-title: Nonoxidative glucose consumption during focal physiologic neural activity
  publication-title: Science
  doi: 10.1126/science.3260686
– volume: 33
  start-page: 1132
  year: 1992
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib23
  article-title: Efficacy of the ketogenic diet for intractable seizure disorders: review of 58 cases
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1992.tb01770.x
– volume: 10
  start-page: 629
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib26
  article-title: Fat maintenance is a predictor of the murine lifespan response to dietary restriction
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2011.00702.x
– volume: 26
  start-page: 170
  year: 2006
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib32
  article-title: Global cerebral blood flow and metabolism during acute hyperketonemia in the awake and anesthetized rat
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600177
– volume: 1302
  start-page: 42
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib59
  article-title: Ketone esters increase brown fat in mice and overcome insulin resistance in other tissues in the rat
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12222
– volume: 34
  start-page: 1530
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib21
  article-title: A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.11.023
– volume: 55
  start-page: 2450
  year: 2014
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib44
  article-title: The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R046706
– volume: 2
  start-page: 5
  year: 2010
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib38
  article-title: The impact of dietary energy intake on cognitive aging
  publication-title: Front. Aging Neurosci.
– volume: 55
  start-page: 576
  year: 2004
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib53
  article-title: The ketogenic diet increases mitochondrial uncoupling protein levels and activity
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.20062
– volume: 65
  start-page: 744
  year: 2011
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib64
  article-title: Validation of VASO cerebral blood volume measurement with positron emission tomography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22667
– volume: 39
  start-page: 359
  year: 2005
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib60
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.39.110304.095751
– volume: 20
  start-page: 191
  year: 1999
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib34
  article-title: Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(99)00032-9
– volume: 54
  start-page: B492
  year: 1999
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib55
  article-title: Growth curves and survival characteristics of the animals used in the biomarkers of aging Program
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/54.11.B492
– volume: 5
  start-page: 515
  year: 2013
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib50
  article-title: Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK
  publication-title: Aging
  doi: 10.18632/aging.100569
– volume: 34
  start-page: 1440
  year: 2014
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib27
  article-title: Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2014.114
– volume: 7
  start-page: e46585
  year: 2012
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib29
  article-title: Methylene blue as a cerebral metabolic and hemodynamic enhancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046585
– volume: 107
  start-page: 14863
  year: 2010
  ident: 10.1016/j.neurobiolaging.2015.03.012_bib57
  article-title: Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1002220107
– reference: 20576649 - J Gerontol A Biol Sci Med Sci. 2010 Oct;65(10):1028-41
– reference: 20679195 - Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14863-8
– reference: 21179166 - Nature. 2010 Dec 23;468(7327):1100-4
– reference: 10537028 - Neurobiol Aging. 1999 Mar-Apr;20(2):191-200
– reference: 21035308 - Nutrition. 2011 Jan;27(1):3-20
– reference: 10501215 - J Neurochem. 1999 Oct;73(4):1674-82
– reference: 23276384 - Neurobiol Aging. 2013 Jun;34(6):1530-9
– reference: 18845187 - Brain Res Rev. 2009 Mar;59(2):293-315
– reference: 14769489 - Prostaglandins Leukot Essent Fatty Acids. 2004 Mar;70(3):309-19
– reference: 23750153 - Front Endocrinol (Lausanne). 2013 May 27;4:59
– reference: 17240074 - Neuroscience. 2007 Mar 2;145(1):256-64
– reference: 24780902 - J Cereb Blood Flow Metab. 2014 Jul;34(7):1233-42
– reference: 11295573 - Trends Endocrinol Metab. 2001 May-Jun;12(4):169-73
– reference: 10619312 - J Gerontol A Biol Sci Med Sci. 1999 Nov;54(11):B492-501
– reference: 24138078 - J Med Food. 2013 Nov;16(11):965-7
– reference: 24018842 - Aging (Albany NY). 2013 Jul;5(7):515-30
– reference: 11099707 - J Neurol Sci. 2000 Dec 1;181(1-2):19-28
– reference: 22180782 - PLoS One. 2011;6(12):e28427
– reference: 19699265 - Neurosci Lett. 2009 Oct 30;464(3):184-7
– reference: 21575595 - Biochem Biophys Res Commun. 2011 Jun 3;409(2):308-14
– reference: 16446459 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1768-73
– reference: 18759009 - Mol Neurobiol. 2008 Oct;38(2):167-77
– reference: 23974047 - Neurochem Int. 2013 Nov;63(5):450-7
– reference: 1464275 - Epilepsia. 1992 Nov-Dec;33(6):1132-6
– reference: 23736643 - J Cereb Blood Flow Metab. 2013 Aug;33(8):1307-11
– reference: 21337407 - Magn Reson Med. 2011 Mar;65(3):744-9
– reference: 23056355 - PLoS One. 2012;7(10):e46585
– reference: 20552045 - Front Aging Neurosci. 2010 Mar 08;2:5
– reference: 19420296 - J Gerontol A Biol Sci Med Sci. 2009 Aug;64(8):850-9
– reference: 22268909 - J Neurochem. 2012 Apr;121(1):28-35
– reference: 11333369 - J Cereb Blood Flow Metab. 2001 May;21(5):585-91
– reference: 21949904 - Neurol Res Int. 2012;2012:907409
– reference: 24984898 - J Cereb Blood Flow Metab. 2014 Sep;34(9):1440-3
– reference: 23909803 - Ann N Y Acad Sci. 2013 Oct;1302:42-8
– reference: 25481271 - Exp Gerontol. 2015 Aug;68:51-8
– reference: 16001018 - J Cereb Blood Flow Metab. 2006 Feb;26(2):170-80
– reference: 19878144 - Aging Cell. 2010 Feb;9(1):92-5
– reference: 15186919 - Neurochem Int. 2004 Sep;45(4):529-36
– reference: 9329699 - Ann N Y Acad Sci. 1997 Sep 26;826:272-81
– reference: 10944562 - N Engl J Med. 2000 Aug 17;343(7):450-6
– reference: 11248079 - Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3334-9
– reference: 19590001 - Science. 2009 Jul 10;325(5937):201-4
– reference: 19280661 - Hippocampus. 2009 Oct;19(10):951-61
– reference: 21081478 - J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):163-9
– reference: 21388497 - Aging Cell. 2011 Aug;10(4):629-39
– reference: 1776759 - Ann N Y Acad Sci. 1991;640:53-8
– reference: 24721741 - J Lipid Res. 2014 Dec;55(12):2450-7
– reference: 24828042 - Nature. 2014 Jun 19;510(7505):397-401
– reference: 8967461 - Am J Physiol. 1996 May;270(5 Pt 1):E746-51
– reference: 16321792 - Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2227-35
– reference: 22045480 - J Alzheimers Dis. 2012;30 Suppl 2:S5-13
– reference: 25214817 - Future Neurol. 2014 May 1;9(3):341-354
– reference: 19171901 - Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1255-60
– reference: 3485282 - Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140-4
– reference: 20404151 - Proc Natl Acad Sci U S A. 2010 May 4;107(18):8446-51
– reference: 16885218 - J Neurosci. 2006 Aug 2;26(31):8048-56
– reference: 3260686 - Science. 1988 Jul 22;241(4864):462-4
– reference: 15048898 - Ann Neurol. 2004 Apr;55(4):576-80
– reference: 16285865 - Annu Rev Genet. 2005;39:359-407
– reference: 11755022 - Neurobiol Aging. 2002 Jan-Feb;23(1):75-86
– reference: 23801246 - J Cereb Blood Flow Metab. 2013 Sep;33(9):1412-21
– reference: 21376239 - Cell. 2011 Mar 4;144(5):810-23
– reference: 7938003 - Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10625-9
– reference: 23217257 - Cell Metab. 2012 Dec 5;16(6):777-88
SSID ssj0007476
Score 2.4094532
Snippet Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions...
Abstract Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain...
Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2296
SubjectTerms Aging
Aging - physiology
Animals
Brain - blood supply
Brain - metabolism
Caloric Restriction
Cerebral blood flow
Cerebrovascular Circulation
Internal Medicine
Ketone bodies
Ketone Bodies - metabolism
Male
Mammalian target of rapamycin
Neuroimaging
Neurology
Rats, Inbred F344
α-ketoglutarate
Title Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0197458015001827
https://www.clinicalkey.es/playcontent/1-s2.0-S0197458015001827
https://dx.doi.org/10.1016/j.neurobiolaging.2015.03.012
https://www.ncbi.nlm.nih.gov/pubmed/25896951
https://www.proquest.com/docview/1686423021
https://pubmed.ncbi.nlm.nih.gov/PMC4457572
https://doi.org/10.1016/j.neurobiolaging.2015.03.012
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1558-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007476
  issn: 0197-4580
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1558-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007476
  issn: 0197-4580
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1558-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007476
  issn: 0197-4580
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1558-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007476
  issn: 0197-4580
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1558-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007476
  issn: 0197-4580
  databaseCode: AKRWK
  dateStart: 19800601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIQEviDE-urHJSBNvoWnij1gIoapiKiD2ApP2hGUnjhZI02ppNe1lf_vunI9RFaRNPKbpyfHdxfdz-7ufCTniXGZRmMogymIXQMXPAmNyGQhnmDIukoJh7_C3EzE9ZV_O-NkWmXS9MEirbNf-Zk33q3X7ybD15nBRFMPvAE4k4wlu2UNAydhRjupfkNPvrm9pHgCXRdMyjfreSfiQHN1yvLxmJKod-ROBkOjFveTpKPpXmdqEoZtsykeramGuLk1Z_lGqjp-SJy3GpONmGjtky1XPyO64gv317Iq-pZ716X9O3yU_JwY5eCnFMzouCt_lQIsKsWTtavrboVg3tXMkG9KZW0LOlEU9o6bKKHJokTBZU09_p3k5vwRb6qdJLR4-8ZycHn_6MZkG7ZkLQQqeWgYO9eVTGyUmjrNcuChlEoo87LN4rphLpM3DOJOZzAEaAhYSdpTniVCJU5llnMcvyHYFD_aK0ERlgK4SIXNhWapSa5VysQ2FgpIIgRmQ952LddoKkuO5GKXumGe_9HqANAZIh7GGAA0I760XjTDHHe0-dNHUXfMpLJcaKsgd7eXf7F3dvvu1Huk60qHeyM8B-dhbrqX4PcZ-06WfhlUA_9oxlZuvYEzwMwBjAGwD8rJJx94rEU-UACANT76WqP0XUGF8_U5VnHulccYAzUsYV_QpfS9n7_33lPfJY7xqCNKvyfbyYuUOAAYu7aF_zw_Jg_Hnr9OTG8ZrYro
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5SB5peStv04T63EHoTlqV9aCmlGNPgNIkvTSCnLrvSiqi1ZRPZhPz7zq4erXELCb1KGlY7M5r51v5mBuCAMZFFYSqCKIttgBk_C7TORcCtplLbSHDqaodPp3xyTr9esIsdGLe1MI5W2cT-Oqb7aN1cGTTaHCyLYvANwYmgLHFH9hBRsrgHu5RhTO7B7ujoeDLtAjIiZl5XTbsW30l4Hw5-07x820jX8MgPBXJcL-a7ng6jf2WqbSS6TajcW5dLfXOtZ7M_stXhI3jYwEwyqnfyGHZs-QT2RyUesec35APxxE__i_o-fB9rR8NLiRvTcVX4QgdSlA5OVrYiP63r103MwvENydyu0G1mRTUnusyIo9E6zmRFPAOe5LPFNcoSv01i3PyJp3B--OVsPAmasQtBippaBda1mE9NlOg4znJuo5QKzPN41GK5pDYRJg_jTGQiR3SIcIibYZ4nXCZWZoYyFj-DXokv9gJIIjMEWAkXOTc0lakxUtrYhFxiVkTD9OFjq2KVNj3J3WiMmWrJZz_UpoGUM5AKY4UG6gPrpJd1b45byn1qrana-lOMmAqTyC3lxd_kbdV8_pUaqipSodpy0T587iQ3vPwOa79v3U9hIHD_7ujSLta4JuoZsTFitj48r92x00rEEskRS-Obbzhq94BrMr55pywufbNxShHQC1yXdy59J2W__O8tv4O9ydnpiTo5mh6_ggfuTs2Xfg291dXavkFUuDJvm6_-F5U3ZWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caloric+restriction+increases+ketone+bodies+metabolism+and+preserves+blood+flow+in+aging+brain&rft.jtitle=Neurobiology+of+aging&rft.au=Lin%2C+Ai-Ling&rft.au=Zhang%2C+Wei&rft.au=Gao%2C+Xiaoli&rft.au=Watts%2C+Lora&rft.date=2015-07-01&rft.issn=0197-4580&rft.eissn=1558-1497&rft.volume=36&rft.issue=7&rft.spage=2296&rft.epage=2303&rft_id=info:doi/10.1016%2Fj.neurobiolaging.2015.03.012&rft_id=info%3Apmid%2F25896951&rft.externalDocID=PMC4457572
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01974580%2FS0197458014X00199%2Fcov150h.gif