Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations 1 . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties...
Saved in:
Published in | Nature (London) Vol. 568; no. 7751; pp. 207 - 211 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-019-1070-1 |
Cover
Abstract | Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations
1
. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose–Einstein condensates
2
–
5
, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge
6
. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble–Zurek mechanism (QKZM)
7
–
9
for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models
10
,
11
, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories
12
,
13
and applications to quantum optimization
14
,
15
.
A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble–Zurek mechanism through the growth of spatial correlations during quantum phase transitions. |
---|---|
AbstractList | Not provided. Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations 1 . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose–Einstein condensates 2 – 5 , understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge 6 . Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble–Zurek mechanism (QKZM) 7 – 9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models 10 , 11 , providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories 12 , 13 and applications to quantum optimization 14 , 15 . A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble–Zurek mechanism through the growth of spatial correlations during quantum phase transitions. Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15.Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15. Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations.sup.1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates.sup.2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge.sup.6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM).sup.7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models.sup.10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories.sup.12,13 and applications to quantum optimization.sup.14,15. A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble-Zurek mechanism through the growth of spatial correlations during quantum phase transitions. Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15. Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations.sup.1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates.sup.2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge.sup.6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM).sup.7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models.sup.10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories.sup.12,13 and applications to quantum optimization.sup.14,15. Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates , understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge . Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM) for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models , providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories and applications to quantum optimization . |
Audience | Academic |
Author | Keesling, Alexander Lukin, Mikhail D. Pichler, Hannes Schwartz, Sylvain Endres, Manuel Sachdev, Subir Vuletić, Vladan Choi, Soonwon Zoller, Peter Samajdar, Rhine Silvi, Pietro Omran, Ahmed Greiner, Markus Levine, Harry Bernien, Hannes |
Author_xml | – sequence: 1 givenname: Alexander surname: Keesling fullname: Keesling, Alexander organization: Department of Physics, Harvard University – sequence: 2 givenname: Ahmed surname: Omran fullname: Omran, Ahmed organization: Department of Physics, Harvard University – sequence: 3 givenname: Harry surname: Levine fullname: Levine, Harry organization: Department of Physics, Harvard University – sequence: 4 givenname: Hannes surname: Bernien fullname: Bernien, Hannes organization: Department of Physics, Harvard University – sequence: 5 givenname: Hannes surname: Pichler fullname: Pichler, Hannes organization: Department of Physics, Harvard University, ITAMP, Harvard-Smithsonian Center for Astrophysics – sequence: 6 givenname: Soonwon surname: Choi fullname: Choi, Soonwon organization: Department of Physics, Harvard University – sequence: 7 givenname: Rhine surname: Samajdar fullname: Samajdar, Rhine organization: Department of Physics, Harvard University – sequence: 8 givenname: Sylvain surname: Schwartz fullname: Schwartz, Sylvain organization: Laboratoire Kastler Brossel, ENS, CNRS, Sorbonne Université, Collège de France – sequence: 9 givenname: Pietro surname: Silvi fullname: Silvi, Pietro organization: Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Center for Quantum Physics, University of Innsbruck – sequence: 10 givenname: Subir surname: Sachdev fullname: Sachdev, Subir organization: Department of Physics, Harvard University – sequence: 11 givenname: Peter surname: Zoller fullname: Zoller, Peter organization: Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Center for Quantum Physics, University of Innsbruck – sequence: 12 givenname: Manuel surname: Endres fullname: Endres, Manuel organization: Division of Physics, Mathematics and Astronomy, California Institute of Technology – sequence: 13 givenname: Markus surname: Greiner fullname: Greiner, Markus organization: Department of Physics, Harvard University – sequence: 14 givenname: Vladan surname: Vuletić fullname: Vuletić, Vladan organization: Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology – sequence: 15 givenname: Mikhail D. surname: Lukin fullname: Lukin, Mikhail D. email: lukin@physics.harvard.edu organization: Department of Physics, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30936552$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1613070$$D View this record in Osti.gov |
BookMark | eNp90t1q1EAUB_AgFbutPoA3EuqNIqnzkcwkl8viR7Eo1orQm-FkchKnJpPtzATcO9_BN_RJnGVb6pat5CIQfv8_kznnINmzo8UkeUrJMSW8fO1zWpQiI7TKKJEkow-SGc2lyHJRyr1kRggrM1JysZ8ceH9JCCmozB8l-5xUXBQFmyUXnyewYRrSD6aue_zz6_fF5PBHOqD-Dtb4IQXbpNqZYDT0abOyMBjt09GmkC7d2DkYBojJ9GzV1Oi61Jth6iGM7nHysIXe45Pr92Hy9e2b88X77PTTu5PF_DTTMs9DVhMoG01lW2KByHOkumUgGdS8KnIuAVrCck2oLkoiWlazqhTYcKBlU7GG88PkaNM7-mCU1ybEs-vRWtRBUUF5vJqIXmxQPPPVhD6owXiNfQ8Wx8krxgijlWBiTZ_foZfj5Gz8hagorajgFbtVHfSojG3H4ECvS9W8KGMbyaWMKtuhOrTooI_DbE38vOWPdni9NFfqX3S8A8WnwTibna0vtwLRBPwZOpi8Vydfzrbtq_vt_Pzb4uO2fnZ9V1M9YKOWzgzgVupmwSKQG6Dd6L3DVsX5QDCx1YHpFSVqvcpqs8oqrrJar7KiMUnvJG_K_5dhm4yP1nbobkd3f-gvlW__0A |
CitedBy_id | crossref_primary_10_1103_PhysRevB_101_144429 crossref_primary_10_1103_PhysRevLett_130_060402 crossref_primary_10_1088_1751_8121_ab6a6c crossref_primary_10_1103_PhysRevA_104_043307 crossref_primary_10_1002_qute_202300356 crossref_primary_10_1103_PhysRevLett_124_010401 crossref_primary_10_1103_PRXQuantum_4_010302 crossref_primary_10_1126_sciadv_aba7292 crossref_primary_10_1088_1361_6455_ab52ef crossref_primary_10_1103_PhysRevResearch_4_013193 crossref_primary_10_1038_s41586_024_08460_3 crossref_primary_10_1103_PhysRevA_107_063314 crossref_primary_10_1103_PhysRevX_10_021067 crossref_primary_10_3389_fphy_2022_915863 crossref_primary_10_1103_PhysRevB_110_155103 crossref_primary_10_1007_s11467_022_1249_z crossref_primary_10_1038_s41567_022_01741_6 crossref_primary_10_1103_PhysRevB_107_205112 crossref_primary_10_1103_PhysRevResearch_2_033474 crossref_primary_10_1103_PhysRevLett_129_260407 crossref_primary_10_1103_PhysRevA_102_042209 crossref_primary_10_1116_5_0036562 crossref_primary_10_1038_s42254_024_00749_6 crossref_primary_10_1007_s11128_023_03826_4 crossref_primary_10_1103_PhysRevB_110_054410 crossref_primary_10_1103_PhysRevX_10_021054 crossref_primary_10_1038_s42005_022_00952_w crossref_primary_10_1103_PhysRevB_106_134210 crossref_primary_10_1103_PhysRevB_110_064317 crossref_primary_10_1103_PhysRevB_104_115159 crossref_primary_10_1103_PhysRevB_110_155114 crossref_primary_10_1103_RevModPhys_93_035003 crossref_primary_10_1103_PRXQuantum_3_030305 crossref_primary_10_1103_RevModPhys_95_035002 crossref_primary_10_1103_PhysRevB_105_174417 crossref_primary_10_1088_0256_307X_42_3_030203 crossref_primary_10_1103_PhysRevLett_128_040603 crossref_primary_10_1103_PhysRevApplied_14_054058 crossref_primary_10_1103_PhysRevX_10_011020 crossref_primary_10_1038_s41598_023_30840_4 crossref_primary_10_21468_SciPostPhys_17_5_144 crossref_primary_10_1103_PhysRevLett_128_017601 crossref_primary_10_1038_s41586_021_03585_1 crossref_primary_10_1016_j_physleta_2024_129698 crossref_primary_10_1038_s41467_021_20901_5 crossref_primary_10_1038_s42005_023_01470_z crossref_primary_10_1103_PhysRevX_10_021057 crossref_primary_10_1038_s41467_024_54701_4 crossref_primary_10_1103_PhysRevB_110_045140 crossref_primary_10_1103_PhysRevB_110_L220303 crossref_primary_10_1103_PhysRevA_110_063316 crossref_primary_10_1103_PhysRevB_107_125127 crossref_primary_10_1007_JHEP06_2021_061 crossref_primary_10_1103_PhysRevB_105_144306 crossref_primary_10_3390_e24050666 crossref_primary_10_1007_s11467_022_1226_6 crossref_primary_10_1098_rsta_2021_0417 crossref_primary_10_1103_PhysRevA_101_022304 crossref_primary_10_1103_PhysRevB_107_094302 crossref_primary_10_1103_PhysRevLett_133_113401 crossref_primary_10_1088_0256_307X_38_2_026401 crossref_primary_10_1103_PhysRevB_108_014110 crossref_primary_10_1126_sciadv_aba9255 crossref_primary_10_1103_PhysRevB_108_075146 crossref_primary_10_1103_PhysRevX_13_031006 crossref_primary_10_1103_PhysRevB_107_L081106 crossref_primary_10_22331_q_2023_11_03_1160 crossref_primary_10_1103_PhysRevB_110_165130 crossref_primary_10_1038_s41598_023_37984_3 crossref_primary_10_1103_PhysRevB_102_214203 crossref_primary_10_1088_1674_1056_abd76f crossref_primary_10_1103_PhysRevX_12_021049 crossref_primary_10_1016_j_future_2024_04_030 crossref_primary_10_1103_PhysRevA_110_022212 crossref_primary_10_1103_PhysRevResearch_7_013123 crossref_primary_10_1038_s42254_022_00440_8 crossref_primary_10_1103_PhysRevResearch_7_L012052 crossref_primary_10_21468_SciPostPhys_9_4_055 crossref_primary_10_1103_PhysRevA_106_L061301 crossref_primary_10_1103_PhysRevLett_133_223401 crossref_primary_10_1103_PhysRevB_104_075130 crossref_primary_10_1088_2058_9565_acbc45 crossref_primary_10_1103_PhysRevResearch_4_L032037 crossref_primary_10_1126_science_ado6285 crossref_primary_10_1103_PhysRevResearch_3_023049 crossref_primary_10_1088_2058_9565_ac18b8 crossref_primary_10_1103_PhysRevLett_125_207201 crossref_primary_10_1038_s42005_024_01680_z crossref_primary_10_1103_PhysRevResearch_3_013133 crossref_primary_10_1103_PhysRevB_104_115133 crossref_primary_10_1103_PhysRevE_106_034121 crossref_primary_10_1103_PRXQuantum_5_040320 crossref_primary_10_1103_PhysRevB_103_L201113 crossref_primary_10_1103_PhysRevB_107_064105 crossref_primary_10_1039_D2NR04964C crossref_primary_10_1103_PhysRevB_106_014309 crossref_primary_10_1073_pnas_2015785118 crossref_primary_10_1103_PhysRevA_100_022125 crossref_primary_10_1103_PhysRevB_110_054204 crossref_primary_10_1103_PhysRevB_102_220302 crossref_primary_10_1103_PhysRevB_109_134309 crossref_primary_10_1103_PhysRevResearch_4_043002 crossref_primary_10_1103_PhysRevA_101_023610 crossref_primary_10_1103_PhysRevResearch_2_013150 crossref_primary_10_1103_PhysRevResearch_6_023231 crossref_primary_10_1103_PhysRevA_101_013804 crossref_primary_10_1103_PhysRevA_102_052220 crossref_primary_10_1103_PhysRevB_104_214309 crossref_primary_10_1007_s11433_023_2119_8 crossref_primary_10_1103_PhysRevA_102_063107 crossref_primary_10_1103_PhysRevB_107_L121113 crossref_primary_10_1103_PhysRevLett_132_230401 crossref_primary_10_1103_PhysRevE_104_034132 crossref_primary_10_22331_q_2021_06_02_465 crossref_primary_10_1007_JHEP09_2023_087 crossref_primary_10_1103_PhysRevB_107_144510 crossref_primary_10_1103_PRXQuantum_3_020303 crossref_primary_10_1103_PhysRevApplied_20_034019 crossref_primary_10_1103_PhysRevB_107_094432 crossref_primary_10_1103_PhysRevLett_132_223201 crossref_primary_10_1103_PhysRevA_100_053813 crossref_primary_10_1103_PRXQuantum_2_040201 crossref_primary_10_1103_PhysRevB_111_054311 crossref_primary_10_1103_PhysRevB_106_174433 crossref_primary_10_1088_1742_5468_ad401e crossref_primary_10_1103_PhysRevLett_125_240601 crossref_primary_10_1103_PhysRevLett_131_093002 crossref_primary_10_1103_PhysRevResearch_6_L042054 crossref_primary_10_1103_PhysRevA_101_032321 crossref_primary_10_1016_j_pquantelec_2023_100470 crossref_primary_10_1103_PhysRevA_103_012608 crossref_primary_10_1103_PhysRevA_106_052610 crossref_primary_10_1103_PhysRevB_108_054302 crossref_primary_10_1103_PhysRevLett_125_240605 crossref_primary_10_1103_PhysRevB_107_184401 crossref_primary_10_1103_PhysRevLett_125_216601 crossref_primary_10_1103_PhysRevA_103_062426 crossref_primary_10_1103_PhysRevApplied_18_064056 crossref_primary_10_1103_PhysRevLett_132_076505 crossref_primary_10_1103_PhysRevA_101_023617 crossref_primary_10_1103_PhysRevLett_128_013603 crossref_primary_10_1016_j_physleta_2023_128737 crossref_primary_10_1103_PhysRevLett_134_010409 crossref_primary_10_1103_PhysRevB_106_L041109 crossref_primary_10_1103_PhysRevResearch_4_013093 crossref_primary_10_1103_PhysRevB_108_L140301 crossref_primary_10_1103_PhysRevX_11_031005 crossref_primary_10_1103_PhysRevResearch_2_023175 crossref_primary_10_1103_PhysRevLett_130_043601 crossref_primary_10_1103_PhysRevResearch_5_L042026 crossref_primary_10_1073_pnas_2304294120 crossref_primary_10_1103_PhysRevLett_129_227001 crossref_primary_10_2184_lsj_48_9_492 crossref_primary_10_1364_OE_537543 crossref_primary_10_1103_PhysRevLett_128_083202 crossref_primary_10_1038_s41567_021_01403_z crossref_primary_10_1103_PhysRevA_100_032115 crossref_primary_10_1103_PhysRevB_100_195125 crossref_primary_10_1103_PhysRevD_110_034513 crossref_primary_10_1103_PRXQuantum_3_020327 crossref_primary_10_1103_PhysRevB_107_235108 crossref_primary_10_1103_PhysRevLett_124_230602 crossref_primary_10_1103_PRXQuantum_4_040339 crossref_primary_10_1002_qute_202300176 crossref_primary_10_1103_PhysRevB_110_125113 crossref_primary_10_1038_s41467_024_48537_1 crossref_primary_10_1103_PhysRevA_110_023108 crossref_primary_10_1038_s41598_022_06891_4 crossref_primary_10_1103_PhysRevA_107_063106 crossref_primary_10_1103_PhysRevB_109_064501 crossref_primary_10_1103_PhysRevLett_130_206501 crossref_primary_10_1038_s41597_024_02926_9 crossref_primary_10_1103_PhysRevResearch_3_023008 crossref_primary_10_1038_s41467_024_53712_5 crossref_primary_10_1103_PhysRevA_100_032123 crossref_primary_10_1103_PhysRevLett_124_103601 crossref_primary_10_1126_sciadv_adl5893 crossref_primary_10_1103_PhysRevE_105_045303 crossref_primary_10_1103_PhysRevB_110_144401 crossref_primary_10_1103_PRXQuantum_4_040345 crossref_primary_10_1016_j_aop_2024_169667 crossref_primary_10_1088_1402_4896_acdcc0 crossref_primary_10_1038_s41586_024_08353_5 crossref_primary_10_1103_PhysRevResearch_5_013136 crossref_primary_10_1103_PhysRevA_107_L031302 crossref_primary_10_1103_PhysRevLett_126_103401 crossref_primary_10_1103_PhysRevE_102_012143 crossref_primary_10_1103_PhysRevA_103_063711 crossref_primary_10_1103_PhysRevB_104_075448 crossref_primary_10_1103_PhysRevB_107_035153 crossref_primary_10_1103_PhysRevX_15_011025 crossref_primary_10_1088_1361_6455_abc499 crossref_primary_10_1088_1361_648X_ad64a0 crossref_primary_10_1103_PRXQuantum_4_030317 crossref_primary_10_1103_PhysRevB_104_064313 crossref_primary_10_1364_OL_434496 crossref_primary_10_1103_PhysRevA_108_023301 crossref_primary_10_1103_PhysRevLett_132_073202 crossref_primary_10_1103_PhysRevB_111_104310 crossref_primary_10_1088_1674_1056_ac4a73 crossref_primary_10_1088_1751_8121_ad5ee0 crossref_primary_10_1088_2058_9565_ac70f4 crossref_primary_10_1063_5_0006026 crossref_primary_10_1038_s41567_022_01772_z crossref_primary_10_1103_PhysRevB_105_155159 crossref_primary_10_1038_s41567_020_0812_1 crossref_primary_10_1103_PhysRevA_108_062215 crossref_primary_10_1103_PhysRevA_106_063302 crossref_primary_10_1103_PhysRevResearch_5_043175 crossref_primary_10_1103_PhysRevB_111_L100406 crossref_primary_10_1103_PhysRevResearch_7_L012006 crossref_primary_10_1103_PhysRevLett_127_156801 crossref_primary_10_1103_PhysRevLett_128_020601 crossref_primary_10_1103_PhysRevB_108_174518 crossref_primary_10_1103_PhysRevB_102_104306 crossref_primary_10_1103_PhysRevLett_125_103602 crossref_primary_10_1088_1361_6455_ab8b46 crossref_primary_10_1088_1361_6455_ab81e9 crossref_primary_10_1103_PhysRevResearch_5_033221 crossref_primary_10_1103_PhysRevB_106_165124 crossref_primary_10_1016_j_scib_2022_12_005 crossref_primary_10_1063_5_0211071 crossref_primary_10_1088_0256_307X_39_12_120501 crossref_primary_10_1364_OL_450855 crossref_primary_10_1002_adma_202107534 crossref_primary_10_1103_PhysRevE_100_020105 crossref_primary_10_1140_epjb_s10051_024_00749_6 crossref_primary_10_1016_j_physrep_2024_04_005 crossref_primary_10_1103_PhysRevResearch_4_043102 crossref_primary_10_1038_s41467_020_20641_y crossref_primary_10_1038_s41467_025_56712_1 crossref_primary_10_1103_PhysRevB_106_184301 crossref_primary_10_1103_PhysRevB_108_L121105 crossref_primary_10_1016_j_nuclphysb_2021_115365 crossref_primary_10_1103_PhysRevB_107_L100302 crossref_primary_10_1103_PhysRevResearch_4_043225 crossref_primary_10_1103_PhysRevA_104_012618 crossref_primary_10_1103_PhysRevB_104_235109 crossref_primary_10_1140_epje_s10189_022_00221_2 crossref_primary_10_1088_1361_648X_ac0ea8 crossref_primary_10_7498_aps_69_20200649 crossref_primary_10_1103_PhysRevLett_125_173601 crossref_primary_10_1103_PhysRevA_106_022432 crossref_primary_10_1103_PhysRevB_100_024311 crossref_primary_10_1103_PhysRevB_108_024310 crossref_primary_10_1103_PhysRevLett_132_241601 crossref_primary_10_1103_PhysRevResearch_5_043191 crossref_primary_10_21468_SciPostPhys_10_3_052 crossref_primary_10_21468_SciPostPhys_11_4_076 crossref_primary_10_1103_PRXQuantum_1_020323 crossref_primary_10_3389_frqst_2022_1026025 crossref_primary_10_1103_PhysRevA_110_043312 crossref_primary_10_1103_PhysRevLett_127_200601 crossref_primary_10_1103_PhysRevResearch_6_023146 crossref_primary_10_1103_PhysRevB_108_205145 crossref_primary_10_1103_PhysRevA_111_012215 crossref_primary_10_1103_PhysRevB_108_224203 crossref_primary_10_1103_PhysRevResearch_2_033183 crossref_primary_10_1103_PhysRevB_104_035423 crossref_primary_10_1103_PhysRevLett_126_172001 crossref_primary_10_1103_PhysRevResearch_3_013099 crossref_primary_10_21468_SciPostPhys_11_4_084 crossref_primary_10_1038_s41467_023_41166_0 crossref_primary_10_1103_PhysRevB_106_064204 crossref_primary_10_1103_PhysRevResearch_3_013097 crossref_primary_10_1103_PhysRevA_107_062609 crossref_primary_10_1103_PhysRevApplied_16_064031 crossref_primary_10_1007_s10946_019_09794_4 crossref_primary_10_1088_2058_9565_ad9177 crossref_primary_10_1103_PhysRevLett_123_030601 crossref_primary_10_1103_RevModPhys_94_025005 crossref_primary_10_1103_PhysRevLett_125_143401 crossref_primary_10_1007_s40042_023_00774_1 crossref_primary_10_1103_PhysRevB_103_104104 crossref_primary_10_22331_q_2023_04_06_970 crossref_primary_10_1103_PhysRevB_107_L201105 crossref_primary_10_1103_PRXQuantum_3_040317 crossref_primary_10_21468_SciPostPhysLectNotes_82 crossref_primary_10_1103_PhysRevB_110_134441 crossref_primary_10_1103_PhysRevLett_131_083601 crossref_primary_10_1103_PhysRevLett_127_050501 crossref_primary_10_1103_PhysRevLett_131_230401 crossref_primary_10_1103_PhysRevLett_133_243601 crossref_primary_10_1103_PhysRevB_108_214307 crossref_primary_10_1103_PRXQuantum_3_010342 crossref_primary_10_1364_OE_415805 crossref_primary_10_1103_PhysRevA_108_053314 crossref_primary_10_1103_PhysRevA_99_052323 crossref_primary_10_1103_PhysRevX_9_021061 crossref_primary_10_22331_q_2025_01_23_1607 crossref_primary_10_1088_1402_4896_ad8e0d crossref_primary_10_1103_PhysRevA_109_032619 crossref_primary_10_1103_PhysRevB_101_220304 crossref_primary_10_1103_PhysRevB_102_134309 crossref_primary_10_1103_PhysRevB_102_134302 crossref_primary_10_1088_1674_1056_abd762 crossref_primary_10_1038_s42005_023_01237_6 crossref_primary_10_1103_PhysRevLett_125_260603 crossref_primary_10_1088_1742_5468_ab609a crossref_primary_10_1103_PhysRevB_103_L220302 crossref_primary_10_1038_s41567_024_02738_z crossref_primary_10_1038_s41467_022_29977_z crossref_primary_10_1103_PhysRevA_105_052225 crossref_primary_10_1103_PhysRevLett_126_045301 crossref_primary_10_1103_PhysRevLett_134_050801 crossref_primary_10_7566_JPSJ_90_073001 crossref_primary_10_1103_PhysRevB_105_235124 crossref_primary_10_1103_PhysRevX_11_031062 crossref_primary_10_1038_s41567_019_0733_z crossref_primary_10_1103_PRXQuantum_3_010354 crossref_primary_10_1038_s41567_022_01777_8 crossref_primary_10_1103_PhysRevA_109_013308 crossref_primary_10_1126_sciadv_adr9527 crossref_primary_10_1103_PhysRevB_99_184104 crossref_primary_10_1103_PhysRevLett_124_110503 crossref_primary_10_1140_epjqt_s40507_023_00190_1 crossref_primary_10_1126_sciadv_abl6850 crossref_primary_10_1103_PhysRevLett_123_130603 crossref_primary_10_1126_science_abq6753 crossref_primary_10_1088_1361_648X_ac0f9d crossref_primary_10_1088_2058_9565_ad985f crossref_primary_10_1103_PhysRevD_109_054514 crossref_primary_10_1103_PhysRevD_109_054513 crossref_primary_10_1103_PhysRevResearch_6_033322 crossref_primary_10_1103_PhysRevA_101_030301 crossref_primary_10_1103_PhysRevB_107_115175 crossref_primary_10_21468_SciPostPhys_14_1_004 crossref_primary_10_1103_PhysRevB_103_104202 crossref_primary_10_1103_PhysRevB_108_184425 crossref_primary_10_1103_PhysRevResearch_6_013015 crossref_primary_10_1016_j_physrep_2021_08_003 crossref_primary_10_1103_PhysRevA_110_022442 crossref_primary_10_1103_PhysRevB_107_014303 crossref_primary_10_1103_PhysRevB_110_014303 crossref_primary_10_1103_PhysRevB_104_014406 crossref_primary_10_1103_PRXQuantum_3_040309 crossref_primary_10_1103_PhysRevResearch_2_023211 crossref_primary_10_1103_PhysRevD_104_094513 crossref_primary_10_1103_PhysRevB_108_155420 crossref_primary_10_1103_PhysRevA_111_032408 crossref_primary_10_1088_1674_1056_abd744 crossref_primary_10_1103_PhysRevResearch_4_L032001 crossref_primary_10_21468_SciPostPhys_11_1_013 crossref_primary_10_1103_PhysRevResearch_2_033251 crossref_primary_10_1103_PhysRevD_104_054505 crossref_primary_10_1038_s41467_020_14489_5 crossref_primary_10_1016_j_physrep_2022_12_002 crossref_primary_10_1088_2399_6528_acd51d crossref_primary_10_1038_s41467_025_55947_2 crossref_primary_10_1103_PhysRevLett_125_076402 crossref_primary_10_1364_OE_411130 crossref_primary_10_1103_PhysRevResearch_3_013060 crossref_primary_10_1103_PhysRevLett_123_153603 crossref_primary_10_1088_1572_9494_ad3227 crossref_primary_10_1038_s41567_021_01357_2 crossref_primary_10_1103_PhysRevB_110_045119 crossref_primary_10_1103_PhysRevB_111_045418 crossref_primary_10_1103_PhysRevE_107_014113 crossref_primary_10_1103_PhysRevB_110_064302 crossref_primary_10_1038_s41586_021_03582_4 crossref_primary_10_1103_PhysRevLett_126_070602 crossref_primary_10_1103_PhysRevB_109_054424 crossref_primary_10_1103_PhysRevResearch_7_013215 crossref_primary_10_1103_PRXQuantum_2_020313 crossref_primary_10_1103_PhysRevB_109_075109 crossref_primary_10_1088_1367_2630_abe812 crossref_primary_10_1103_PhysRevB_107_L241402 crossref_primary_10_1103_PhysRevA_105_023717 crossref_primary_10_1103_PhysRevB_104_014307 crossref_primary_10_1103_PhysRevLett_123_126801 |
Cites_doi | 10.1103/PhysRevB.69.075106 10.1103/PhysRevLett.49.793 10.1103/PhysRevB.24.398 10.1103/PhysRevLett.39.903 10.1103/PhysRevLett.116.155301 10.1103/PhysRevA.73.043614 10.1038/nature11255 10.1103/RevModPhys.77.259 10.1103/PhysRevLett.106.235304 10.1126/science.aah3752 10.1103/PhysRevB.16.1217 10.1088/1367-2630/12/2/025012 10.1103/PhysRevLett.121.123603 10.1103/PhysRevB.48.10345 10.1103/PhysRevB.72.161201 10.1073/pnas.1408861112 10.1142/S0217751X1430018X 10.1103/PhysRevLett.109.015701 10.1126/science.1258676 10.1088/1367-2630/aa65bc 10.1126/science.aaf9657 10.1038/s41586-018-0450-2 10.1209/epl/i1998-00381-x 10.1038/317505a0 10.1016/0378-4371(83)90001-8 10.1103/PhysRevLett.95.105701 10.1103/PhysRevB.98.205118 10.1007/BFb0106062 10.1038/s41586-018-0458-7 10.1038/ncomms3615 10.1088/0305-4470/9/8/029 10.1103/PhysRevB.66.075128 10.1098/rsta.2010.0382 10.1103/RevModPhys.83.863 10.1103/PhysRevB.100.024311 10.1103/PhysRevLett.75.3537 10.1016/S0378-4363(84)80029-7 10.1103/PhysRevB.55.2164 10.1103/PhysRevB.28.2743 10.1103/PhysRevB.92.035154 10.1038/s41598-018-22763-2 10.1088/0305-4470/13/3/007 10.1103/PhysRevLett.122.017205 10.1103/PhysRevLett.95.245701 10.1088/1742-5468/2012/11/P11020 10.1017/CBO9781107706057 10.1103/PhysRevB.65.024504 10.1038/nphys1614 10.1103/PhysRevA.98.023614 10.1103/PhysRevLett.69.2863 10.1016/0375-9601(75)90766-5 10.1103/RevModPhys.54.235 10.1038/nature24622 10.1103/PhysRevB.24.5180 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group Apr 11, 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 11, 2019 |
CorporateAuthor | Harvard Univ., Cambridge, MA (United States) |
CorporateAuthor_xml | – name: Harvard Univ., Cambridge, MA (United States) |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 OTOTI |
DOI | 10.1038/s41586-019-1070-1 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest MSED ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database ProQuest Research Library Science Database (ProQuest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 211 |
ExternalDocumentID | 1613070 A582020477 30936552 10_1038_s41586_019_1070_1 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EJD EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADXHL AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AGSTI PUEGO TUS 69O 6XO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGFU ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADFPY ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV AMRJV B-7 EMB F20 I-U N95 OTOTI P-O U1R XFK ZA5 |
ID | FETCH-LOGICAL-c744t-b0a8dc17f8e5ee34e1cf2a72ab395437aaf024c01c5806f2b2986ed3a18d92d33 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri May 19 01:08:57 EDT 2023 Thu Sep 04 18:49:38 EDT 2025 Fri Jul 25 08:54:14 EDT 2025 Tue Jun 17 21:00:40 EDT 2025 Thu Jun 12 23:41:27 EDT 2025 Tue Jun 10 15:32:50 EDT 2025 Tue Jun 10 20:38:04 EDT 2025 Fri Jun 27 04:22:51 EDT 2025 Fri Jun 27 04:16:39 EDT 2025 Wed Feb 19 02:35:38 EST 2025 Tue Jul 01 01:21:02 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Fri Feb 21 02:38:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7751 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c744t-b0a8dc17f8e5ee34e1cf2a72ab395437aaf024c01c5806f2b2986ed3a18d92d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC) SC0019030 |
OpenAccessLink | http://nrs.harvard.edu/urn-3:HUL.InstRepos:41057821 |
PMID | 30936552 |
PQID | 2211916392 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1613070 proquest_miscellaneous_2202196260 proquest_journals_2211916392 gale_infotracmisc_A582020477 gale_infotracgeneralonefile_A582020477 gale_infotraccpiq_582020477 gale_infotracacademiconefile_A582020477 gale_incontextgauss_ISR_A582020477 gale_incontextgauss_ATWCN_A582020477 pubmed_primary_30936552 crossref_citationtrail_10_1038_s41586_019_1070_1 crossref_primary_10_1038_s41586_019_1070_1 springer_journals_10_1038_s41586_019_1070_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Apr-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-Apr-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KadanoffLPConnections between the critical behavior of the planar model and that of the eight-vertex modelPhys. Rev. Lett.1977399039051977PhRvL..39..903K44626910.1103/PhysRevLett.39.903 Farhi, E., Goldstone, J., Gutmann, S. & Spiser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000). HuseDASzpilkaAMFisherMEMelting and wetting transitions in the three-state chiral clock modelPhysica A19831213633981983PhyA..121..363H10.1016/0378-4371(83)90001-8 EndresMAtom-by-atom assembly of defect-free one-dimensional cold atom arraysScience2016354102410272016Sci...354.1024E1:CAS:528:DC%2BC28XhvV2gsLjO10.1126/science.aah3752 LevineHHigh-fidelity control and entanglement of Rydberg-atom qubitsPhys. Rev. Lett.20181211236032018PhRvL.121l3603L1:CAS:528:DC%2BC1MXltVyltL0%3D10.1103/PhysRevLett.121.123603 SchollwöckUThe density-matrix renormalization group: a short introductionPhil. Trans. R. Soc. A2011369264326612011RSPTA.369.2643S281181910.1098/rsta.2010.0382 SamajdarRChoiSPichlerHLukinMDSachdevSNumerical study of the chiral ′3 quantum phase transition in one spatial dimensionPhys. Rev. A2018980236142018PhRvA..98b3614S1:CAS:528:DC%2BC1MXlsV2ms7Y%3D10.1103/PhysRevA.98.023614 ZurekWHDornerUZollerPDynamics of a quantum phase transitionPhys. Rev. Lett.2005951057012005PhRvL..95j5701Z10.1103/PhysRevLett.95.105701 ChenDWhiteMBorriesCdeMarcoBQuantum quench of an atomic Mott insulatorPhys. Rev. Lett.20111062353042011PhRvL.106w5304C10.1103/PhysRevLett.106.235304 CherngRWLevitovLSEntropy and correlation functions of a driven quantum spin chainPhys. Rev. A2006730436142006PhRvA..73d3614C10.1103/PhysRevA.73.043614 ÖstlundSRommerSThermodynamic limit of density matrix renormalizationPhys. Rev. Lett.199575353735401995PhRvL..75.3537O10.1103/PhysRevLett.75.3537 ZhuangYChanglaniHJTubmanNMHughesTLPhase diagram of the ′3 parafermionic chain with chiral interactionsPhys. Rev. B2015920351542015PhRvB..92c5154Z10.1103/PhysRevB.92.035154 Gerster, M., Haggenmiller, B., Tschirsich, F., Silvi, P. & Montangero, S. Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble–Zurek mechanism. Preprint at https://arxiv.org/abs/1807.10611 (2018). HaldaneFDMBakPBohrTPhase diagrams of surface structures from Bethe-ansatz solutions of the quantum sine-Gordon modelPhys. Rev. B19832827431983PhRvB..28.2743H10.1103/PhysRevB.28.2743 GardasBDziarmagaJZurekWHZwolakMDefects in quantum computersSci. Rep.201882018NatSR...8.4539G10.1038/s41598-018-22763-25852091 FendleyPParafermionic edge zero modes in ′n-invariant spin chainsJ. Stat. Mech.20122012P11020302366910.1088/1742-5468/2012/11/P11020 WhitsittSSamajdarRSachdevSQuantum field theory for the chiral clock transition in one spatial dimensionPhys. Rev. B2018982051182018PhRvB..98t5118W1:CAS:528:DC%2BC1MXltVOmtrY%3D10.1103/PhysRevB.98.205118 AlexanderSLattice gas transition of He on Grafoil. A continous transition with cubic termsPhys. Lett. A1975543533541975PhLA...54..353A10.1016/0375-9601(75)90766-5 YeomansJANNNI and clock modelsPhysica B+C19841271871921984PhyBC.127..187Y7626151:CAS:528:DyaL2MXosVGgsA%3D%3D10.1016/S0378-4363(84)80029-7 Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum optimization for maximum independent set using Rydberg atom arrays. Preprint at https://arxiv.org/abs/1808.10816 (2018). del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X AnquezMQuantum Kibble–Zurek mechanism in a spin-1 Bose–Einstein condensatePhys. Rev. Lett.20161161553012016PhRvL.116o5301A1:STN:280:DC%2BC28bkvV2qsg%3D%3D10.1103/PhysRevLett.116.155301 BarredoDLienhardVde LéséleucSLahayeTBrowaeysASynthetic three-dimensional atomic structures assembled atom by atomNature201856179822018Natur.561...79B1:CAS:528:DC%2BC1cXhs1OmsrjL10.1038/s41586-018-0450-2 WhiteSRDensity matrix formulation for quantum renormalization groupsPhys. Rev. Lett.199269286328661992PhRvL..69.2863W1:STN:280:DC%2BC2sfptF2isg%3D%3D10.1103/PhysRevLett.69.2863 Peschel, I., Wang, X., Kaulke, M. & Hallberg, K. (eds) Density-Matrix Renormalization (Springer, Berlin, 1999). HuseDAFisherMEDomain walls and the melting of commensurate surface phasesPhys. Rev. Lett.1982497937961982PhRvL..49..793H1:CAS:528:DyaL38XlsFWhsbc%3D10.1103/PhysRevLett.49.793 PirvuBMurgVCiracJIVerstraeteFMatrix product operator representationsNew J. Phys.2010120250122010NJPh...12b5012P260248110.1088/1367-2630/12/2/025012 KibbleTWBTopology of cosmic domains and stringsJ. Phys. Math. Gen.19769138713981976JPhA....9.1387K10.1088/0305-4470/9/8/029 DziarmagaJDynamics of a quantum phase transition: exact solution of the quantum ising modelPhys. Rev. Lett.2005952457012005PhRvL..95x5701D10.1103/PhysRevLett.95.245701 EndresMThe ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transitionNature20124874544582012Natur.487..454E1:CAS:528:DC%2BC38XhtFWjtLnE10.1038/nature11255 OstlundSIncommensurate and commensurate phases in asymmetric clock modelsPhys. Rev. B1981243984051981PhRvB..24..398O5971161:CAS:528:DyaL3MXltVelt7Y%3D10.1103/PhysRevB.24.398 PolkovnikovASenguptaKSilvaAVengalattoreMNonequilibrium dynamics of closed interacting quantum systemsRev. Mod. Phys.2011838638832011RvMP...83..863P10.1103/RevModPhys.83.863 ClarkLWFengLChinCUniversal space–time scaling symmetry in the dynamics of bosons across a quantum phase transitionScience20163546066102016Sci...354..606C35610861:CAS:528:DC%2BC28XhslKgt7vP10.1126/science.aaf9657 McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at https://arxiv.org/abs/0804.2509 (2008). PolkovnikovAUniversal adiabatic dynamics in the vicinity of a quantum critical pointPhys. Rev. B2005721612012005PhRvB..72p1201P10.1103/PhysRevB.72.161201 WhiteSRDensity-matrix algorithms for quantum renormalization groupsPhys. Rev. B19934810345103561993PhRvB..4810345W1:CAS:528:DyaK2cXhsFWquw%3D%3D10.1103/PhysRevB.48.10345 WeimerHMüllerMLesanovskyIZollerPBüchlerHPA Rydberg quantum simulatorNat. Phys.201063823881:CAS:528:DC%2BC3cXlsFOnt78%3D10.1038/nphys1614 DukelskyJMartin-DelgadoMANishinoTSierraGEquivalence of the variational matrix product method and the density matrix renormalization group applied to spin chainsEurophys. Lett.1998434574621998EL.....43..457D1:CAS:528:DyaK1cXlsFagu7s%3D10.1209/epl/i1998-00381-x DuttaAQuantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information2015CambridgeCambridge Univ. Press10.1017/CBO9781107706057 TagliacozzoLCeliAOrlandPMitchelMWLewensteinMSimulation of non-Abelian gauge theories with optical latticesNat. Commun.201342013NatCo...4E2615T1:STN:280:DC%2BC2c7gt1Siuw%3D%3D10.1038/ncomms3615 ZurekWHCosmological experiments in superfluid helium?Nature19853175055081985Natur.317..505Z1:CAS:528:DyaL2MXmtVWjtrw%3D10.1038/317505a0 JoséJVKadanoffLPKirkpatrickSNelsonDRRenormalization vortices, and symmetry-breaking perturbations in the two-dimensional planar modelPhys. Rev. B197716121712411977PhRvB..16.1217J10.1103/PhysRevB.16.1217erratum 17, 1477 (1978) SchollwöckUThe density-matrix renormalization groupRev. Mod. Phys.2005772593152005RvMP...77..259S215050610.1103/RevModPhys.77.259 SachdevSQuantum Phase Transitions20092nd ednCambridgeCambridge Univ. Press1233.82003 BernienHProbing many-body dynamics on a 51-atom quantum simulatorNature20175515795842017Natur.551..579B1:CAS:528:DC%2BC2sXhvFWht7fL10.1038/nature24622 KumarAWuT-YGiraldo MejiaFWeissDSSorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demonNature201856183872018Natur.561...83K1:CAS:528:DC%2BC1cXhs1OmsrvI10.1038/s41586-018-0458-7 NavonNGauntALSmithRPHadzibabicZCritical dynamics of spontaneous symmetry breaking in a homogenous Bose gasScience20153471671702015Sci...347..167N1:CAS:528:DC%2BC2MXitFemtA%3D%3D10.1126/science.1258676 MoessnerRSondhiSLFradkinEShort-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theoriesPhys. Rev. B2001650245042002PhRvB..65b4504M10.1103/PhysRevB.65.024504 BraunSEmergence of coherence and the dynamics of quantum phase transitionsProc. Natl Acad. Sci.2015112364136462015PNAS..112.3641B1:CAS:528:DC%2BC2MXktVCgtrg%3D SachdevSSenguptaKGirvinSMMott insulators in strong electric fieldsPhys. Rev. B2002660751282002PhRvB..66g5128S10.1103/PhysRevB.66.075128 KolodrubetzMClarkBKHuseDANonequilibrium dynamical critical scaling of the quantum Ising chainPhys. Rev. Lett.20121090157012012PhRvL.109a5701K10.1103/PhysRevLett.109.015701 FendleyPSenguptaKSachdevSCompeting density-wave orders in a one-dimensional hard-boson modelPhys. Rev. B2004690751062004PhRvB..69g5106F10.1103/PhysRevB.69.075106 WuF-YThe Potts modelRev. Mod. Phys1982542352681982RvMP...54..235W64137010.1103/RevModPhys.54.235 BaxterRJHard hexagons: exact solutionJ. Phys. Math. Gen.19801361701980JPhA...13L..61B56053310.1088/0305-4470/13/3/007 RommerSÖstlundSClass of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization groupPhys. Rev. B199755216421811997PhRvB..55.2164R10.1103/PhysRevB.55.2164 HuseDASimple three-state model with infinitely many phasesPhys. Rev. B198124518051941981PhRvB..24.5180H59711210.1103/PhysRevB.24.5180 ChepigaNMilaFFloating phase versus chiral transition in a 1D hard-boson modelPhys. Rev. Lett.20191220172052019PhRvL.122a7205C10.1103/PhysRevLett.122.017205 JaschkeDMaedaKWhalenJDWallMLCarrLDCritical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chainNew J. Phys.2017190330322017NJPh...19c3032J10.1088/1367-2630/aa65bc A Dutta (1070_CR29) 2015 M Kolodrubetz (1070_CR22) 2012; 109 B Gardas (1070_CR15) 2018; 8 Y Zhuang (1070_CR49) 2015; 92 P Fendley (1070_CR51) 2012; 2012 J Dziarmaga (1070_CR9) 2005; 95 DA Huse (1070_CR10) 1982; 49 S Sachdev (1070_CR52) 2002; 66 F-Y Wu (1070_CR53) 1982; 54 A Kumar (1070_CR32) 2018; 561 A Polkovnikov (1070_CR7) 2005; 72 TWB Kibble (1070_CR2) 1976; 9 H Levine (1070_CR35) 2018; 121 DA Huse (1070_CR50) 1983; 121 S Whitsitt (1070_CR26) 2018; 98 S Östlund (1070_CR38) 1995; 75 RW Cherng (1070_CR23) 2006; 73 A Polkovnikov (1070_CR6) 2011; 83 U Schollwöck (1070_CR44) 2005; 77 D Chen (1070_CR19) 2011; 106 S Braun (1070_CR20) 2015; 112 N Chepiga (1070_CR27) 2019; 122 1070_CR33 H Bernien (1070_CR21) 2017; 551 B Pirvu (1070_CR43) 2010; 12 JV José (1070_CR56) 1977; 16 N Navon (1070_CR5) 2015; 347 WH Zurek (1070_CR3) 1985; 317 M Endres (1070_CR34) 2016; 354 U Schollwöck (1070_CR45) 2011; 369 LP Kadanoff (1070_CR57) 1977; 39 S Alexander (1070_CR54) 1975; 54 J Dukelsky (1070_CR40) 1998; 43 1070_CR46 L Tagliacozzo (1070_CR12) 2013; 4 1070_CR41 M Anquez (1070_CR16) 2016; 116 P Fendley (1070_CR24) 2004; 69 R Samajdar (1070_CR25) 2018; 98 1070_CR42 RJ Baxter (1070_CR55) 1980; 13 S Rommer (1070_CR39) 1997; 55 DA Huse (1070_CR48) 1981; 24 J Yeomans (1070_CR58) 1984; 127 SR White (1070_CR36) 1992; 69 A Campo del (1070_CR4) 2014; 29 SR White (1070_CR37) 1993; 48 FDM Haldane (1070_CR28) 1983; 28 S Ostlund (1070_CR11) 1981; 24 1070_CR14 WH Zurek (1070_CR8) 2005; 95 LW Clark (1070_CR17) 2016; 354 D Jaschke (1070_CR47) 2017; 19 S Sachdev (1070_CR1) 2009 H Weimer (1070_CR13) 2010; 6 M Endres (1070_CR18) 2012; 487 R Moessner (1070_CR30) 2001; 65 D Barredo (1070_CR31) 2018; 561 |
References_xml | – reference: TagliacozzoLCeliAOrlandPMitchelMWLewensteinMSimulation of non-Abelian gauge theories with optical latticesNat. Commun.201342013NatCo...4E2615T1:STN:280:DC%2BC2c7gt1Siuw%3D%3D10.1038/ncomms3615 – reference: HuseDASzpilkaAMFisherMEMelting and wetting transitions in the three-state chiral clock modelPhysica A19831213633981983PhyA..121..363H10.1016/0378-4371(83)90001-8 – reference: WuF-YThe Potts modelRev. Mod. Phys1982542352681982RvMP...54..235W64137010.1103/RevModPhys.54.235 – reference: KibbleTWBTopology of cosmic domains and stringsJ. Phys. Math. Gen.19769138713981976JPhA....9.1387K10.1088/0305-4470/9/8/029 – reference: KumarAWuT-YGiraldo MejiaFWeissDSSorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demonNature201856183872018Natur.561...83K1:CAS:528:DC%2BC1cXhs1OmsrvI10.1038/s41586-018-0458-7 – reference: WhiteSRDensity matrix formulation for quantum renormalization groupsPhys. Rev. Lett.199269286328661992PhRvL..69.2863W1:STN:280:DC%2BC2sfptF2isg%3D%3D10.1103/PhysRevLett.69.2863 – reference: ChepigaNMilaFFloating phase versus chiral transition in a 1D hard-boson modelPhys. Rev. Lett.20191220172052019PhRvL.122a7205C10.1103/PhysRevLett.122.017205 – reference: AlexanderSLattice gas transition of He on Grafoil. A continous transition with cubic termsPhys. Lett. A1975543533541975PhLA...54..353A10.1016/0375-9601(75)90766-5 – reference: FendleyPSenguptaKSachdevSCompeting density-wave orders in a one-dimensional hard-boson modelPhys. Rev. B2004690751062004PhRvB..69g5106F10.1103/PhysRevB.69.075106 – reference: PirvuBMurgVCiracJIVerstraeteFMatrix product operator representationsNew J. Phys.2010120250122010NJPh...12b5012P260248110.1088/1367-2630/12/2/025012 – reference: Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum optimization for maximum independent set using Rydberg atom arrays. Preprint at https://arxiv.org/abs/1808.10816 (2018). – reference: BraunSEmergence of coherence and the dynamics of quantum phase transitionsProc. Natl Acad. Sci.2015112364136462015PNAS..112.3641B1:CAS:528:DC%2BC2MXktVCgtrg%3D – reference: ZurekWHDornerUZollerPDynamics of a quantum phase transitionPhys. Rev. Lett.2005951057012005PhRvL..95j5701Z10.1103/PhysRevLett.95.105701 – reference: ZhuangYChanglaniHJTubmanNMHughesTLPhase diagram of the ′3 parafermionic chain with chiral interactionsPhys. Rev. B2015920351542015PhRvB..92c5154Z10.1103/PhysRevB.92.035154 – reference: KolodrubetzMClarkBKHuseDANonequilibrium dynamical critical scaling of the quantum Ising chainPhys. Rev. Lett.20121090157012012PhRvL.109a5701K10.1103/PhysRevLett.109.015701 – reference: RommerSÖstlundSClass of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization groupPhys. Rev. B199755216421811997PhRvB..55.2164R10.1103/PhysRevB.55.2164 – reference: SchollwöckUThe density-matrix renormalization groupRev. Mod. Phys.2005772593152005RvMP...77..259S215050610.1103/RevModPhys.77.259 – reference: PolkovnikovAUniversal adiabatic dynamics in the vicinity of a quantum critical pointPhys. Rev. B2005721612012005PhRvB..72p1201P10.1103/PhysRevB.72.161201 – reference: OstlundSIncommensurate and commensurate phases in asymmetric clock modelsPhys. Rev. B1981243984051981PhRvB..24..398O5971161:CAS:528:DyaL3MXltVelt7Y%3D10.1103/PhysRevB.24.398 – reference: SamajdarRChoiSPichlerHLukinMDSachdevSNumerical study of the chiral ′3 quantum phase transition in one spatial dimensionPhys. Rev. A2018980236142018PhRvA..98b3614S1:CAS:528:DC%2BC1MXlsV2ms7Y%3D10.1103/PhysRevA.98.023614 – reference: Peschel, I., Wang, X., Kaulke, M. & Hallberg, K. (eds) Density-Matrix Renormalization (Springer, Berlin, 1999). – reference: del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X – reference: SachdevSSenguptaKGirvinSMMott insulators in strong electric fieldsPhys. Rev. B2002660751282002PhRvB..66g5128S10.1103/PhysRevB.66.075128 – reference: WhiteSRDensity-matrix algorithms for quantum renormalization groupsPhys. Rev. B19934810345103561993PhRvB..4810345W1:CAS:528:DyaK2cXhsFWquw%3D%3D10.1103/PhysRevB.48.10345 – reference: McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at https://arxiv.org/abs/0804.2509 (2008). – reference: WhitsittSSamajdarRSachdevSQuantum field theory for the chiral clock transition in one spatial dimensionPhys. Rev. B2018982051182018PhRvB..98t5118W1:CAS:528:DC%2BC1MXltVOmtrY%3D10.1103/PhysRevB.98.205118 – reference: Farhi, E., Goldstone, J., Gutmann, S. & Spiser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000). – reference: HaldaneFDMBakPBohrTPhase diagrams of surface structures from Bethe-ansatz solutions of the quantum sine-Gordon modelPhys. Rev. B19832827431983PhRvB..28.2743H10.1103/PhysRevB.28.2743 – reference: SachdevSQuantum Phase Transitions20092nd ednCambridgeCambridge Univ. Press1233.82003 – reference: SchollwöckUThe density-matrix renormalization group: a short introductionPhil. Trans. R. Soc. A2011369264326612011RSPTA.369.2643S281181910.1098/rsta.2010.0382 – reference: DuttaAQuantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information2015CambridgeCambridge Univ. Press10.1017/CBO9781107706057 – reference: PolkovnikovASenguptaKSilvaAVengalattoreMNonequilibrium dynamics of closed interacting quantum systemsRev. Mod. Phys.2011838638832011RvMP...83..863P10.1103/RevModPhys.83.863 – reference: MoessnerRSondhiSLFradkinEShort-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theoriesPhys. Rev. B2001650245042002PhRvB..65b4504M10.1103/PhysRevB.65.024504 – reference: EndresMThe ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transitionNature20124874544582012Natur.487..454E1:CAS:528:DC%2BC38XhtFWjtLnE10.1038/nature11255 – reference: HuseDASimple three-state model with infinitely many phasesPhys. Rev. B198124518051941981PhRvB..24.5180H59711210.1103/PhysRevB.24.5180 – reference: ClarkLWFengLChinCUniversal space–time scaling symmetry in the dynamics of bosons across a quantum phase transitionScience20163546066102016Sci...354..606C35610861:CAS:528:DC%2BC28XhslKgt7vP10.1126/science.aaf9657 – reference: ZurekWHCosmological experiments in superfluid helium?Nature19853175055081985Natur.317..505Z1:CAS:528:DyaL2MXmtVWjtrw%3D10.1038/317505a0 – reference: WeimerHMüllerMLesanovskyIZollerPBüchlerHPA Rydberg quantum simulatorNat. Phys.201063823881:CAS:528:DC%2BC3cXlsFOnt78%3D10.1038/nphys1614 – reference: EndresMAtom-by-atom assembly of defect-free one-dimensional cold atom arraysScience2016354102410272016Sci...354.1024E1:CAS:528:DC%2BC28XhvV2gsLjO10.1126/science.aah3752 – reference: YeomansJANNNI and clock modelsPhysica B+C19841271871921984PhyBC.127..187Y7626151:CAS:528:DyaL2MXosVGgsA%3D%3D10.1016/S0378-4363(84)80029-7 – reference: AnquezMQuantum Kibble–Zurek mechanism in a spin-1 Bose–Einstein condensatePhys. Rev. Lett.20161161553012016PhRvL.116o5301A1:STN:280:DC%2BC28bkvV2qsg%3D%3D10.1103/PhysRevLett.116.155301 – reference: CherngRWLevitovLSEntropy and correlation functions of a driven quantum spin chainPhys. Rev. A2006730436142006PhRvA..73d3614C10.1103/PhysRevA.73.043614 – reference: JaschkeDMaedaKWhalenJDWallMLCarrLDCritical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chainNew J. Phys.2017190330322017NJPh...19c3032J10.1088/1367-2630/aa65bc – reference: ChenDWhiteMBorriesCdeMarcoBQuantum quench of an atomic Mott insulatorPhys. Rev. Lett.20111062353042011PhRvL.106w5304C10.1103/PhysRevLett.106.235304 – reference: FendleyPParafermionic edge zero modes in ′n-invariant spin chainsJ. Stat. Mech.20122012P11020302366910.1088/1742-5468/2012/11/P11020 – reference: HuseDAFisherMEDomain walls and the melting of commensurate surface phasesPhys. Rev. Lett.1982497937961982PhRvL..49..793H1:CAS:528:DyaL38XlsFWhsbc%3D10.1103/PhysRevLett.49.793 – reference: ÖstlundSRommerSThermodynamic limit of density matrix renormalizationPhys. Rev. Lett.199575353735401995PhRvL..75.3537O10.1103/PhysRevLett.75.3537 – reference: NavonNGauntALSmithRPHadzibabicZCritical dynamics of spontaneous symmetry breaking in a homogenous Bose gasScience20153471671702015Sci...347..167N1:CAS:528:DC%2BC2MXitFemtA%3D%3D10.1126/science.1258676 – reference: DukelskyJMartin-DelgadoMANishinoTSierraGEquivalence of the variational matrix product method and the density matrix renormalization group applied to spin chainsEurophys. Lett.1998434574621998EL.....43..457D1:CAS:528:DyaK1cXlsFagu7s%3D10.1209/epl/i1998-00381-x – reference: BaxterRJHard hexagons: exact solutionJ. Phys. Math. Gen.19801361701980JPhA...13L..61B56053310.1088/0305-4470/13/3/007 – reference: KadanoffLPConnections between the critical behavior of the planar model and that of the eight-vertex modelPhys. Rev. Lett.1977399039051977PhRvL..39..903K44626910.1103/PhysRevLett.39.903 – reference: Gerster, M., Haggenmiller, B., Tschirsich, F., Silvi, P. & Montangero, S. Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble–Zurek mechanism. Preprint at https://arxiv.org/abs/1807.10611 (2018). – reference: BernienHProbing many-body dynamics on a 51-atom quantum simulatorNature20175515795842017Natur.551..579B1:CAS:528:DC%2BC2sXhvFWht7fL10.1038/nature24622 – reference: JoséJVKadanoffLPKirkpatrickSNelsonDRRenormalization vortices, and symmetry-breaking perturbations in the two-dimensional planar modelPhys. Rev. B197716121712411977PhRvB..16.1217J10.1103/PhysRevB.16.1217erratum 17, 1477 (1978) – reference: LevineHHigh-fidelity control and entanglement of Rydberg-atom qubitsPhys. Rev. Lett.20181211236032018PhRvL.121l3603L1:CAS:528:DC%2BC1MXltVyltL0%3D10.1103/PhysRevLett.121.123603 – reference: DziarmagaJDynamics of a quantum phase transition: exact solution of the quantum ising modelPhys. Rev. Lett.2005952457012005PhRvL..95x5701D10.1103/PhysRevLett.95.245701 – reference: GardasBDziarmagaJZurekWHZwolakMDefects in quantum computersSci. Rep.201882018NatSR...8.4539G10.1038/s41598-018-22763-25852091 – reference: BarredoDLienhardVde LéséleucSLahayeTBrowaeysASynthetic three-dimensional atomic structures assembled atom by atomNature201856179822018Natur.561...79B1:CAS:528:DC%2BC1cXhs1OmsrjL10.1038/s41586-018-0450-2 – volume: 69 start-page: 075106 year: 2004 ident: 1070_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.075106 – volume: 49 start-page: 793 year: 1982 ident: 1070_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.793 – volume: 24 start-page: 398 year: 1981 ident: 1070_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.398 – volume: 39 start-page: 903 year: 1977 ident: 1070_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.39.903 – volume: 116 start-page: 155301 year: 2016 ident: 1070_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.155301 – volume: 73 start-page: 043614 year: 2006 ident: 1070_CR23 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.73.043614 – ident: 1070_CR42 – volume: 487 start-page: 454 year: 2012 ident: 1070_CR18 publication-title: Nature doi: 10.1038/nature11255 – volume: 77 start-page: 259 year: 2005 ident: 1070_CR44 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.259 – volume: 106 start-page: 235304 year: 2011 ident: 1070_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.235304 – volume: 354 start-page: 1024 year: 2016 ident: 1070_CR34 publication-title: Science doi: 10.1126/science.aah3752 – volume: 16 start-page: 1217 year: 1977 ident: 1070_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.1217 – volume: 12 start-page: 025012 year: 2010 ident: 1070_CR43 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/2/025012 – volume: 121 start-page: 123603 year: 2018 ident: 1070_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.123603 – volume: 48 start-page: 10345 year: 1993 ident: 1070_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.10345 – volume: 72 start-page: 161201 year: 2005 ident: 1070_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.161201 – volume: 112 start-page: 3641 year: 2015 ident: 1070_CR20 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1408861112 – volume: 29 start-page: 1430018 year: 2014 ident: 1070_CR4 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X1430018X – volume: 109 start-page: 015701 year: 2012 ident: 1070_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.015701 – volume: 347 start-page: 167 year: 2015 ident: 1070_CR5 publication-title: Science doi: 10.1126/science.1258676 – volume: 19 start-page: 033032 year: 2017 ident: 1070_CR47 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa65bc – volume: 354 start-page: 606 year: 2016 ident: 1070_CR17 publication-title: Science doi: 10.1126/science.aaf9657 – volume: 561 start-page: 79 year: 2018 ident: 1070_CR31 publication-title: Nature doi: 10.1038/s41586-018-0450-2 – volume: 43 start-page: 457 year: 1998 ident: 1070_CR40 publication-title: Europhys. Lett. doi: 10.1209/epl/i1998-00381-x – volume: 317 start-page: 505 year: 1985 ident: 1070_CR3 publication-title: Nature doi: 10.1038/317505a0 – volume: 121 start-page: 363 year: 1983 ident: 1070_CR50 publication-title: Physica A doi: 10.1016/0378-4371(83)90001-8 – volume: 95 start-page: 105701 year: 2005 ident: 1070_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.105701 – volume-title: Quantum Phase Transitions year: 2009 ident: 1070_CR1 – volume: 98 start-page: 205118 year: 2018 ident: 1070_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.205118 – ident: 1070_CR41 doi: 10.1007/BFb0106062 – volume: 561 start-page: 83 year: 2018 ident: 1070_CR32 publication-title: Nature doi: 10.1038/s41586-018-0458-7 – volume: 4 year: 2013 ident: 1070_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms3615 – volume: 9 start-page: 1387 year: 1976 ident: 1070_CR2 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/9/8/029 – ident: 1070_CR14 – volume: 66 start-page: 075128 year: 2002 ident: 1070_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.66.075128 – volume: 369 start-page: 2643 year: 2011 ident: 1070_CR45 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2010.0382 – ident: 1070_CR33 – volume: 83 start-page: 863 year: 2011 ident: 1070_CR6 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.863 – ident: 1070_CR46 doi: 10.1103/PhysRevB.100.024311 – volume: 75 start-page: 3537 year: 1995 ident: 1070_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.3537 – volume: 127 start-page: 187 year: 1984 ident: 1070_CR58 publication-title: Physica B+C doi: 10.1016/S0378-4363(84)80029-7 – volume: 55 start-page: 2164 year: 1997 ident: 1070_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.2164 – volume: 28 start-page: 2743 year: 1983 ident: 1070_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.2743 – volume: 92 start-page: 035154 year: 2015 ident: 1070_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.035154 – volume: 8 year: 2018 ident: 1070_CR15 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22763-2 – volume: 13 start-page: 61 year: 1980 ident: 1070_CR55 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/13/3/007 – volume: 122 start-page: 017205 year: 2019 ident: 1070_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.017205 – volume: 95 start-page: 245701 year: 2005 ident: 1070_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.245701 – volume: 2012 start-page: P11020 year: 2012 ident: 1070_CR51 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2012/11/P11020 – volume-title: Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information year: 2015 ident: 1070_CR29 doi: 10.1017/CBO9781107706057 – volume: 65 start-page: 024504 year: 2001 ident: 1070_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.024504 – volume: 6 start-page: 382 year: 2010 ident: 1070_CR13 publication-title: Nat. Phys. doi: 10.1038/nphys1614 – volume: 98 start-page: 023614 year: 2018 ident: 1070_CR25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.023614 – volume: 69 start-page: 2863 year: 1992 ident: 1070_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2863 – volume: 54 start-page: 353 year: 1975 ident: 1070_CR54 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(75)90766-5 – volume: 54 start-page: 235 year: 1982 ident: 1070_CR53 publication-title: Rev. Mod. Phys doi: 10.1103/RevModPhys.54.235 – volume: 551 start-page: 579 year: 2017 ident: 1070_CR21 publication-title: Nature doi: 10.1038/nature24622 – volume: 24 start-page: 5180 year: 1981 ident: 1070_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.24.5180 |
SSID | ssj0005174 |
Score | 2.7103958 |
Snippet | Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations
1
. These fluctuations play... Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations . These fluctuations play a... Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations.sup.1. These fluctuations... Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a... Not provided. |
SourceID | osti proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 207 |
SubjectTerms | 639/766/119/2795 639/766/483/3926 Computer simulation Critical phenomena Dynamics Excited state chemistry Humanities and Social Sciences Ising model Letter multidisciplinary Phase transitions Phase transitions (Physics) Physics research Quantum mechanics Quantum phenomena Scaling Science Science & Technology - Other Topics Science (multidisciplinary) Symmetry Time dependence Transition points Universe |
Title | Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator |
URI | https://link.springer.com/article/10.1038/s41586-019-1070-1 https://www.ncbi.nlm.nih.gov/pubmed/30936552 https://www.proquest.com/docview/2211916392 https://www.proquest.com/docview/2202196260 https://www.osti.gov/biblio/1613070 |
Volume | 568 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtNAcNUmQuKCaHmFlmhBFU9Z9dvrA0JJ1FBARFBaEfWy2l2vq4jGTuPkwI1_4A_5EmbsdYIh9OLLzmycned6XoQcMOAbHQep5QgmLbDQ2mK-TC2pAy1TW7thhLXDH0fh8Zn_fhyMt8ioroXBtMpaJ5aKOskVfiM_dMtWZGBP3TezKwunRmF0tR6hIcxoheR12WJsm7RBJQd2i7T7R6NPJ-ukj7_6MtdxTo8dFmDKGN6uY1BNkW05DUtl9HUrB8Hb5Iz-E0gt7dPwNrllHEvaqzhhh2zpbJfcKBM8VbFLdowQF_S56TT94g45_7yEg11O6YeJlJf614-f58u5_kanGuuBJ8WUiiyhykxDoEk1vb6geUYFNZldU6y9oiffE0wUo8VkivPA8vldcjY8Oh0cW2bYgqUi319Y0hYsUU6UMqCS9nztqNQVkSukFwe-FwmRgjlXtqMCZoepK92YhTrxhMOS2E087x5pZXmmHxCKmF4oA1spwPBBaWifuZ4MvFAzKdIOseuD5cp0IseBGJe8jIh7jFe04EALjrTgToe8XKHMqjYc1wEfILU4trfIMH_mQiyLgvdOvw5GvBeAz-PafhR1yJNNYO--nDSAnhmgNId3VMJULcA_xcZZDci9BqSaTa74H6tPG6sXFak3bbPfAARpV81fQRbk4B9hk1-F2VBqwR28BkY2INecyY0uKvhacjrk8WoZ98X8ukznS4QBXy_Gy22H3K84enXOGCsPgwCwX9Usvt78v0R4eP2r7JGbLopamQO1T1qL-VI_AvduIbtkOxpH8GQDB5_Dt13S7g37_VHXSPNvWQtL4w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1KqKEFwQLVtoAYPKrlFnPJtzQCgqVAlpI1FSEfVibI-nimhm0kwilBv_wH_wUXwJ782SMBB669nvOY7f6nkbITsc-MY0_dhyJFcWWGhjcU_FljK-UbFtWBBi7fBhL2gfex8G_mCN_KxqYTCtstKJuaKOUo3fyHdZ3ooM7Cl7Oz63cGoURlerERoFW3TN_Bs82bI3nXdA36eM7b_v77WtcqqApUPPm1rKljzSThhzOI5xPePomMmQSeU2fc8NpYzBbmnb0T63g5gp1uSBiVzp8KjJIvwACir_iochRpCfcBAuU0r-6vpcRVFdvpuBoeT4dm-C4gtty6nZwdIarKcg1qtc3X_CtLn1279JbpRuK20VfLZB1kyySa7m6aM62yQbpYrI6Iuyj_XLW-Tk4wzINhvR7lCpM_Pr-4-T2cR8pSOD1cbDbERlElFdzlqg0TyRI9iNpgmVtMwbG2FlFz2aR5iGRrPhCKeNpZPb5PhSLv0OWU_SxNwjFDHdQPm21oDhgUoyHmeu8t3AcCXjBrGrixW67HOO4zbORB5vd7koaCGAFgJpIZwGebVAGRdNPi4C3kFqCWyekWB2zqmcZZlo9T_v9UTLB4-K2V4YNsiTVWCdT0c1oOclUJzCGbUsayLgn2JbrhrkVg1Sj4fn4o_VZ7XV04LUq7bZrgGCLtH1X0EWFOB9YQthjblWeiocfGSGNiBXnClKTZeJpVw2yOPFMu6L2XuJSWcIA55kE5_ODXK34OjFPWMkPvB9wH5dsfhy8_8S4f7FR3lErrX7hwfioNPrbpHrDMUuz7baJuvTycw8AEdyqh7m0kvJl8tWF78BbWp-jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0KpagbggWl6hBQwqb6266305hwqFtlFLICppK6pejO31VhHNbttNhHLjH_grPoMvYWbjbVgIvfXsGcfxjOex8yJklQPfmGaYOp7kygENbRweqNRRJjQqdQ2LYqwd_tiNtg-C94fh4Rz5WdXCYFplJRNLQZ3kGr-Rr7GyFRnoU7aW2rSI3c3229MzBydIYaS1Gqch7ZiFZL1sN2aLPDpm_A3cuWJ9ZxNo_4yx9tb-xrZjJw44Og6CoaNcyRPtxSmHoxo_MJ5OmYyZVH4zDPxYyhR0mnY9HXI3SpliTR6ZxJceT5oswY-joA4WYtD64AguvNvq7vamCSd_9YSuYqw-XytAjXL07JsgFmPX8Wpa0uqK-Rwe_SxD-J8gbqkb27fITWvU0taECxfJnMmWyLUyuVQXS2TRCpCCvrRdrl_dJkefRkDU0YB2-kqdmF_ffxyNzs1XOjBYi9wvBlRmCdV2EgNNxpkcwG40z6ikNqtsgHVftDdOMEmNFv0BziLLz--Qgyu59rtkPsszc59QxPQjFbpaA0YAAssEnPkq9CPDlUwbxK0uVmjbBR2HcZyIMhrvczGhhQBaCKSF8Brk9QXK6aQFyGXAq0gtga01MmTSYzkqCtHa_7zRFa0Q7C3mBnHcIE9nge3s9WpALyxQmsMZtbQVE_BPsWlXDXK5BqlP-2fij9XntdXjCalnbbNSAwRJo-u_giwowDbDBsMaM7H0UHjogsYuIFecKawcLMT01TbIk4tl3Bdz-zKTjxAG7MwmOtYNcm_C0Rf3jHH6KAwB-03F4tPN_0uEB5cf5TG5DqJDfNjpdpbJDYavrkzFWiHzw_OReQhW5lA9ss-Xki9XLTF-A1ZUiWo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Kibble%E2%80%93Zurek+mechanism+and+critical+dynamics+on+a+programmable+Rydberg+simulator&rft.jtitle=Nature+%28London%29&rft.au=Keesling%2C+Alexander&rft.au=Omran%2C+Ahmed&rft.au=Levine%2C+Harry&rft.au=Bernien%2C+Hannes&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=568&rft.issue=7751&rft.spage=207&rft.epage=211&rft_id=info:doi/10.1038%2Fs41586-019-1070-1&rft.externalDocID=10_1038_s41586_019_1070_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |