Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator

Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations 1 . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 568; no. 7751; pp. 207 - 211
Main Authors Keesling, Alexander, Omran, Ahmed, Levine, Harry, Bernien, Hannes, Pichler, Hannes, Choi, Soonwon, Samajdar, Rhine, Schwartz, Sylvain, Silvi, Pietro, Sachdev, Subir, Zoller, Peter, Endres, Manuel, Greiner, Markus, Vuletić, Vladan, Lukin, Mikhail D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-019-1070-1

Cover

Abstract Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations 1 . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose–Einstein condensates 2 – 5 , understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge 6 . Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble–Zurek mechanism (QKZM) 7 – 9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models 10 , 11 , providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories 12 , 13 and applications to quantum optimization 14 , 15 . A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble–Zurek mechanism through the growth of spatial correlations during quantum phase transitions.
AbstractList Not provided.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations 1 . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose–Einstein condensates 2 – 5 , understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge 6 . Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble–Zurek mechanism (QKZM) 7 – 9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models 10 , 11 , providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories 12 , 13 and applications to quantum optimization 14 , 15 . A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble–Zurek mechanism through the growth of spatial correlations during quantum phase transitions.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15.Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations.sup.1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates.sup.2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge.sup.6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM).sup.7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models.sup.10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories.sup.12,13 and applications to quantum optimization.sup.14,15. A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble-Zurek mechanism through the growth of spatial correlations during quantum phase transitions.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM)7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations.sup.1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates.sup.2-5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge.sup.6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM).sup.7-9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models.sup.10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories.sup.12,13 and applications to quantum optimization.sup.14,15.
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations . These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose-Einstein condensates , understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge . Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble-Zurek mechanism (QKZM) for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models , providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories and applications to quantum optimization .
Audience Academic
Author Keesling, Alexander
Lukin, Mikhail D.
Pichler, Hannes
Schwartz, Sylvain
Endres, Manuel
Sachdev, Subir
Vuletić, Vladan
Choi, Soonwon
Zoller, Peter
Samajdar, Rhine
Silvi, Pietro
Omran, Ahmed
Greiner, Markus
Levine, Harry
Bernien, Hannes
Author_xml – sequence: 1
  givenname: Alexander
  surname: Keesling
  fullname: Keesling, Alexander
  organization: Department of Physics, Harvard University
– sequence: 2
  givenname: Ahmed
  surname: Omran
  fullname: Omran, Ahmed
  organization: Department of Physics, Harvard University
– sequence: 3
  givenname: Harry
  surname: Levine
  fullname: Levine, Harry
  organization: Department of Physics, Harvard University
– sequence: 4
  givenname: Hannes
  surname: Bernien
  fullname: Bernien, Hannes
  organization: Department of Physics, Harvard University
– sequence: 5
  givenname: Hannes
  surname: Pichler
  fullname: Pichler, Hannes
  organization: Department of Physics, Harvard University, ITAMP, Harvard-Smithsonian Center for Astrophysics
– sequence: 6
  givenname: Soonwon
  surname: Choi
  fullname: Choi, Soonwon
  organization: Department of Physics, Harvard University
– sequence: 7
  givenname: Rhine
  surname: Samajdar
  fullname: Samajdar, Rhine
  organization: Department of Physics, Harvard University
– sequence: 8
  givenname: Sylvain
  surname: Schwartz
  fullname: Schwartz, Sylvain
  organization: Laboratoire Kastler Brossel, ENS, CNRS, Sorbonne Université, Collège de France
– sequence: 9
  givenname: Pietro
  surname: Silvi
  fullname: Silvi, Pietro
  organization: Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Center for Quantum Physics, University of Innsbruck
– sequence: 10
  givenname: Subir
  surname: Sachdev
  fullname: Sachdev, Subir
  organization: Department of Physics, Harvard University
– sequence: 11
  givenname: Peter
  surname: Zoller
  fullname: Zoller, Peter
  organization: Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Center for Quantum Physics, University of Innsbruck
– sequence: 12
  givenname: Manuel
  surname: Endres
  fullname: Endres, Manuel
  organization: Division of Physics, Mathematics and Astronomy, California Institute of Technology
– sequence: 13
  givenname: Markus
  surname: Greiner
  fullname: Greiner, Markus
  organization: Department of Physics, Harvard University
– sequence: 14
  givenname: Vladan
  surname: Vuletić
  fullname: Vuletić, Vladan
  organization: Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology
– sequence: 15
  givenname: Mikhail D.
  surname: Lukin
  fullname: Lukin, Mikhail D.
  email: lukin@physics.harvard.edu
  organization: Department of Physics, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30936552$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1613070$$D View this record in Osti.gov
BookMark eNp90t1q1EAUB_AgFbutPoA3EuqNIqnzkcwkl8viR7Eo1orQm-FkchKnJpPtzATcO9_BN_RJnGVb6pat5CIQfv8_kznnINmzo8UkeUrJMSW8fO1zWpQiI7TKKJEkow-SGc2lyHJRyr1kRggrM1JysZ8ceH9JCCmozB8l-5xUXBQFmyUXnyewYRrSD6aue_zz6_fF5PBHOqD-Dtb4IQXbpNqZYDT0abOyMBjt09GmkC7d2DkYBojJ9GzV1Oi61Jth6iGM7nHysIXe45Pr92Hy9e2b88X77PTTu5PF_DTTMs9DVhMoG01lW2KByHOkumUgGdS8KnIuAVrCck2oLkoiWlazqhTYcKBlU7GG88PkaNM7-mCU1ybEs-vRWtRBUUF5vJqIXmxQPPPVhD6owXiNfQ8Wx8krxgijlWBiTZ_foZfj5Gz8hagorajgFbtVHfSojG3H4ECvS9W8KGMbyaWMKtuhOrTooI_DbE38vOWPdni9NFfqX3S8A8WnwTibna0vtwLRBPwZOpi8Vydfzrbtq_vt_Pzb4uO2fnZ9V1M9YKOWzgzgVupmwSKQG6Dd6L3DVsX5QDCx1YHpFSVqvcpqs8oqrrJar7KiMUnvJG_K_5dhm4yP1nbobkd3f-gvlW__0A
CitedBy_id crossref_primary_10_1103_PhysRevB_101_144429
crossref_primary_10_1103_PhysRevLett_130_060402
crossref_primary_10_1088_1751_8121_ab6a6c
crossref_primary_10_1103_PhysRevA_104_043307
crossref_primary_10_1002_qute_202300356
crossref_primary_10_1103_PhysRevLett_124_010401
crossref_primary_10_1103_PRXQuantum_4_010302
crossref_primary_10_1126_sciadv_aba7292
crossref_primary_10_1088_1361_6455_ab52ef
crossref_primary_10_1103_PhysRevResearch_4_013193
crossref_primary_10_1038_s41586_024_08460_3
crossref_primary_10_1103_PhysRevA_107_063314
crossref_primary_10_1103_PhysRevX_10_021067
crossref_primary_10_3389_fphy_2022_915863
crossref_primary_10_1103_PhysRevB_110_155103
crossref_primary_10_1007_s11467_022_1249_z
crossref_primary_10_1038_s41567_022_01741_6
crossref_primary_10_1103_PhysRevB_107_205112
crossref_primary_10_1103_PhysRevResearch_2_033474
crossref_primary_10_1103_PhysRevLett_129_260407
crossref_primary_10_1103_PhysRevA_102_042209
crossref_primary_10_1116_5_0036562
crossref_primary_10_1038_s42254_024_00749_6
crossref_primary_10_1007_s11128_023_03826_4
crossref_primary_10_1103_PhysRevB_110_054410
crossref_primary_10_1103_PhysRevX_10_021054
crossref_primary_10_1038_s42005_022_00952_w
crossref_primary_10_1103_PhysRevB_106_134210
crossref_primary_10_1103_PhysRevB_110_064317
crossref_primary_10_1103_PhysRevB_104_115159
crossref_primary_10_1103_PhysRevB_110_155114
crossref_primary_10_1103_RevModPhys_93_035003
crossref_primary_10_1103_PRXQuantum_3_030305
crossref_primary_10_1103_RevModPhys_95_035002
crossref_primary_10_1103_PhysRevB_105_174417
crossref_primary_10_1088_0256_307X_42_3_030203
crossref_primary_10_1103_PhysRevLett_128_040603
crossref_primary_10_1103_PhysRevApplied_14_054058
crossref_primary_10_1103_PhysRevX_10_011020
crossref_primary_10_1038_s41598_023_30840_4
crossref_primary_10_21468_SciPostPhys_17_5_144
crossref_primary_10_1103_PhysRevLett_128_017601
crossref_primary_10_1038_s41586_021_03585_1
crossref_primary_10_1016_j_physleta_2024_129698
crossref_primary_10_1038_s41467_021_20901_5
crossref_primary_10_1038_s42005_023_01470_z
crossref_primary_10_1103_PhysRevX_10_021057
crossref_primary_10_1038_s41467_024_54701_4
crossref_primary_10_1103_PhysRevB_110_045140
crossref_primary_10_1103_PhysRevB_110_L220303
crossref_primary_10_1103_PhysRevA_110_063316
crossref_primary_10_1103_PhysRevB_107_125127
crossref_primary_10_1007_JHEP06_2021_061
crossref_primary_10_1103_PhysRevB_105_144306
crossref_primary_10_3390_e24050666
crossref_primary_10_1007_s11467_022_1226_6
crossref_primary_10_1098_rsta_2021_0417
crossref_primary_10_1103_PhysRevA_101_022304
crossref_primary_10_1103_PhysRevB_107_094302
crossref_primary_10_1103_PhysRevLett_133_113401
crossref_primary_10_1088_0256_307X_38_2_026401
crossref_primary_10_1103_PhysRevB_108_014110
crossref_primary_10_1126_sciadv_aba9255
crossref_primary_10_1103_PhysRevB_108_075146
crossref_primary_10_1103_PhysRevX_13_031006
crossref_primary_10_1103_PhysRevB_107_L081106
crossref_primary_10_22331_q_2023_11_03_1160
crossref_primary_10_1103_PhysRevB_110_165130
crossref_primary_10_1038_s41598_023_37984_3
crossref_primary_10_1103_PhysRevB_102_214203
crossref_primary_10_1088_1674_1056_abd76f
crossref_primary_10_1103_PhysRevX_12_021049
crossref_primary_10_1016_j_future_2024_04_030
crossref_primary_10_1103_PhysRevA_110_022212
crossref_primary_10_1103_PhysRevResearch_7_013123
crossref_primary_10_1038_s42254_022_00440_8
crossref_primary_10_1103_PhysRevResearch_7_L012052
crossref_primary_10_21468_SciPostPhys_9_4_055
crossref_primary_10_1103_PhysRevA_106_L061301
crossref_primary_10_1103_PhysRevLett_133_223401
crossref_primary_10_1103_PhysRevB_104_075130
crossref_primary_10_1088_2058_9565_acbc45
crossref_primary_10_1103_PhysRevResearch_4_L032037
crossref_primary_10_1126_science_ado6285
crossref_primary_10_1103_PhysRevResearch_3_023049
crossref_primary_10_1088_2058_9565_ac18b8
crossref_primary_10_1103_PhysRevLett_125_207201
crossref_primary_10_1038_s42005_024_01680_z
crossref_primary_10_1103_PhysRevResearch_3_013133
crossref_primary_10_1103_PhysRevB_104_115133
crossref_primary_10_1103_PhysRevE_106_034121
crossref_primary_10_1103_PRXQuantum_5_040320
crossref_primary_10_1103_PhysRevB_103_L201113
crossref_primary_10_1103_PhysRevB_107_064105
crossref_primary_10_1039_D2NR04964C
crossref_primary_10_1103_PhysRevB_106_014309
crossref_primary_10_1073_pnas_2015785118
crossref_primary_10_1103_PhysRevA_100_022125
crossref_primary_10_1103_PhysRevB_110_054204
crossref_primary_10_1103_PhysRevB_102_220302
crossref_primary_10_1103_PhysRevB_109_134309
crossref_primary_10_1103_PhysRevResearch_4_043002
crossref_primary_10_1103_PhysRevA_101_023610
crossref_primary_10_1103_PhysRevResearch_2_013150
crossref_primary_10_1103_PhysRevResearch_6_023231
crossref_primary_10_1103_PhysRevA_101_013804
crossref_primary_10_1103_PhysRevA_102_052220
crossref_primary_10_1103_PhysRevB_104_214309
crossref_primary_10_1007_s11433_023_2119_8
crossref_primary_10_1103_PhysRevA_102_063107
crossref_primary_10_1103_PhysRevB_107_L121113
crossref_primary_10_1103_PhysRevLett_132_230401
crossref_primary_10_1103_PhysRevE_104_034132
crossref_primary_10_22331_q_2021_06_02_465
crossref_primary_10_1007_JHEP09_2023_087
crossref_primary_10_1103_PhysRevB_107_144510
crossref_primary_10_1103_PRXQuantum_3_020303
crossref_primary_10_1103_PhysRevApplied_20_034019
crossref_primary_10_1103_PhysRevB_107_094432
crossref_primary_10_1103_PhysRevLett_132_223201
crossref_primary_10_1103_PhysRevA_100_053813
crossref_primary_10_1103_PRXQuantum_2_040201
crossref_primary_10_1103_PhysRevB_111_054311
crossref_primary_10_1103_PhysRevB_106_174433
crossref_primary_10_1088_1742_5468_ad401e
crossref_primary_10_1103_PhysRevLett_125_240601
crossref_primary_10_1103_PhysRevLett_131_093002
crossref_primary_10_1103_PhysRevResearch_6_L042054
crossref_primary_10_1103_PhysRevA_101_032321
crossref_primary_10_1016_j_pquantelec_2023_100470
crossref_primary_10_1103_PhysRevA_103_012608
crossref_primary_10_1103_PhysRevA_106_052610
crossref_primary_10_1103_PhysRevB_108_054302
crossref_primary_10_1103_PhysRevLett_125_240605
crossref_primary_10_1103_PhysRevB_107_184401
crossref_primary_10_1103_PhysRevLett_125_216601
crossref_primary_10_1103_PhysRevA_103_062426
crossref_primary_10_1103_PhysRevApplied_18_064056
crossref_primary_10_1103_PhysRevLett_132_076505
crossref_primary_10_1103_PhysRevA_101_023617
crossref_primary_10_1103_PhysRevLett_128_013603
crossref_primary_10_1016_j_physleta_2023_128737
crossref_primary_10_1103_PhysRevLett_134_010409
crossref_primary_10_1103_PhysRevB_106_L041109
crossref_primary_10_1103_PhysRevResearch_4_013093
crossref_primary_10_1103_PhysRevB_108_L140301
crossref_primary_10_1103_PhysRevX_11_031005
crossref_primary_10_1103_PhysRevResearch_2_023175
crossref_primary_10_1103_PhysRevLett_130_043601
crossref_primary_10_1103_PhysRevResearch_5_L042026
crossref_primary_10_1073_pnas_2304294120
crossref_primary_10_1103_PhysRevLett_129_227001
crossref_primary_10_2184_lsj_48_9_492
crossref_primary_10_1364_OE_537543
crossref_primary_10_1103_PhysRevLett_128_083202
crossref_primary_10_1038_s41567_021_01403_z
crossref_primary_10_1103_PhysRevA_100_032115
crossref_primary_10_1103_PhysRevB_100_195125
crossref_primary_10_1103_PhysRevD_110_034513
crossref_primary_10_1103_PRXQuantum_3_020327
crossref_primary_10_1103_PhysRevB_107_235108
crossref_primary_10_1103_PhysRevLett_124_230602
crossref_primary_10_1103_PRXQuantum_4_040339
crossref_primary_10_1002_qute_202300176
crossref_primary_10_1103_PhysRevB_110_125113
crossref_primary_10_1038_s41467_024_48537_1
crossref_primary_10_1103_PhysRevA_110_023108
crossref_primary_10_1038_s41598_022_06891_4
crossref_primary_10_1103_PhysRevA_107_063106
crossref_primary_10_1103_PhysRevB_109_064501
crossref_primary_10_1103_PhysRevLett_130_206501
crossref_primary_10_1038_s41597_024_02926_9
crossref_primary_10_1103_PhysRevResearch_3_023008
crossref_primary_10_1038_s41467_024_53712_5
crossref_primary_10_1103_PhysRevA_100_032123
crossref_primary_10_1103_PhysRevLett_124_103601
crossref_primary_10_1126_sciadv_adl5893
crossref_primary_10_1103_PhysRevE_105_045303
crossref_primary_10_1103_PhysRevB_110_144401
crossref_primary_10_1103_PRXQuantum_4_040345
crossref_primary_10_1016_j_aop_2024_169667
crossref_primary_10_1088_1402_4896_acdcc0
crossref_primary_10_1038_s41586_024_08353_5
crossref_primary_10_1103_PhysRevResearch_5_013136
crossref_primary_10_1103_PhysRevA_107_L031302
crossref_primary_10_1103_PhysRevLett_126_103401
crossref_primary_10_1103_PhysRevE_102_012143
crossref_primary_10_1103_PhysRevA_103_063711
crossref_primary_10_1103_PhysRevB_104_075448
crossref_primary_10_1103_PhysRevB_107_035153
crossref_primary_10_1103_PhysRevX_15_011025
crossref_primary_10_1088_1361_6455_abc499
crossref_primary_10_1088_1361_648X_ad64a0
crossref_primary_10_1103_PRXQuantum_4_030317
crossref_primary_10_1103_PhysRevB_104_064313
crossref_primary_10_1364_OL_434496
crossref_primary_10_1103_PhysRevA_108_023301
crossref_primary_10_1103_PhysRevLett_132_073202
crossref_primary_10_1103_PhysRevB_111_104310
crossref_primary_10_1088_1674_1056_ac4a73
crossref_primary_10_1088_1751_8121_ad5ee0
crossref_primary_10_1088_2058_9565_ac70f4
crossref_primary_10_1063_5_0006026
crossref_primary_10_1038_s41567_022_01772_z
crossref_primary_10_1103_PhysRevB_105_155159
crossref_primary_10_1038_s41567_020_0812_1
crossref_primary_10_1103_PhysRevA_108_062215
crossref_primary_10_1103_PhysRevA_106_063302
crossref_primary_10_1103_PhysRevResearch_5_043175
crossref_primary_10_1103_PhysRevB_111_L100406
crossref_primary_10_1103_PhysRevResearch_7_L012006
crossref_primary_10_1103_PhysRevLett_127_156801
crossref_primary_10_1103_PhysRevLett_128_020601
crossref_primary_10_1103_PhysRevB_108_174518
crossref_primary_10_1103_PhysRevB_102_104306
crossref_primary_10_1103_PhysRevLett_125_103602
crossref_primary_10_1088_1361_6455_ab8b46
crossref_primary_10_1088_1361_6455_ab81e9
crossref_primary_10_1103_PhysRevResearch_5_033221
crossref_primary_10_1103_PhysRevB_106_165124
crossref_primary_10_1016_j_scib_2022_12_005
crossref_primary_10_1063_5_0211071
crossref_primary_10_1088_0256_307X_39_12_120501
crossref_primary_10_1364_OL_450855
crossref_primary_10_1002_adma_202107534
crossref_primary_10_1103_PhysRevE_100_020105
crossref_primary_10_1140_epjb_s10051_024_00749_6
crossref_primary_10_1016_j_physrep_2024_04_005
crossref_primary_10_1103_PhysRevResearch_4_043102
crossref_primary_10_1038_s41467_020_20641_y
crossref_primary_10_1038_s41467_025_56712_1
crossref_primary_10_1103_PhysRevB_106_184301
crossref_primary_10_1103_PhysRevB_108_L121105
crossref_primary_10_1016_j_nuclphysb_2021_115365
crossref_primary_10_1103_PhysRevB_107_L100302
crossref_primary_10_1103_PhysRevResearch_4_043225
crossref_primary_10_1103_PhysRevA_104_012618
crossref_primary_10_1103_PhysRevB_104_235109
crossref_primary_10_1140_epje_s10189_022_00221_2
crossref_primary_10_1088_1361_648X_ac0ea8
crossref_primary_10_7498_aps_69_20200649
crossref_primary_10_1103_PhysRevLett_125_173601
crossref_primary_10_1103_PhysRevA_106_022432
crossref_primary_10_1103_PhysRevB_100_024311
crossref_primary_10_1103_PhysRevB_108_024310
crossref_primary_10_1103_PhysRevLett_132_241601
crossref_primary_10_1103_PhysRevResearch_5_043191
crossref_primary_10_21468_SciPostPhys_10_3_052
crossref_primary_10_21468_SciPostPhys_11_4_076
crossref_primary_10_1103_PRXQuantum_1_020323
crossref_primary_10_3389_frqst_2022_1026025
crossref_primary_10_1103_PhysRevA_110_043312
crossref_primary_10_1103_PhysRevLett_127_200601
crossref_primary_10_1103_PhysRevResearch_6_023146
crossref_primary_10_1103_PhysRevB_108_205145
crossref_primary_10_1103_PhysRevA_111_012215
crossref_primary_10_1103_PhysRevB_108_224203
crossref_primary_10_1103_PhysRevResearch_2_033183
crossref_primary_10_1103_PhysRevB_104_035423
crossref_primary_10_1103_PhysRevLett_126_172001
crossref_primary_10_1103_PhysRevResearch_3_013099
crossref_primary_10_21468_SciPostPhys_11_4_084
crossref_primary_10_1038_s41467_023_41166_0
crossref_primary_10_1103_PhysRevB_106_064204
crossref_primary_10_1103_PhysRevResearch_3_013097
crossref_primary_10_1103_PhysRevA_107_062609
crossref_primary_10_1103_PhysRevApplied_16_064031
crossref_primary_10_1007_s10946_019_09794_4
crossref_primary_10_1088_2058_9565_ad9177
crossref_primary_10_1103_PhysRevLett_123_030601
crossref_primary_10_1103_RevModPhys_94_025005
crossref_primary_10_1103_PhysRevLett_125_143401
crossref_primary_10_1007_s40042_023_00774_1
crossref_primary_10_1103_PhysRevB_103_104104
crossref_primary_10_22331_q_2023_04_06_970
crossref_primary_10_1103_PhysRevB_107_L201105
crossref_primary_10_1103_PRXQuantum_3_040317
crossref_primary_10_21468_SciPostPhysLectNotes_82
crossref_primary_10_1103_PhysRevB_110_134441
crossref_primary_10_1103_PhysRevLett_131_083601
crossref_primary_10_1103_PhysRevLett_127_050501
crossref_primary_10_1103_PhysRevLett_131_230401
crossref_primary_10_1103_PhysRevLett_133_243601
crossref_primary_10_1103_PhysRevB_108_214307
crossref_primary_10_1103_PRXQuantum_3_010342
crossref_primary_10_1364_OE_415805
crossref_primary_10_1103_PhysRevA_108_053314
crossref_primary_10_1103_PhysRevA_99_052323
crossref_primary_10_1103_PhysRevX_9_021061
crossref_primary_10_22331_q_2025_01_23_1607
crossref_primary_10_1088_1402_4896_ad8e0d
crossref_primary_10_1103_PhysRevA_109_032619
crossref_primary_10_1103_PhysRevB_101_220304
crossref_primary_10_1103_PhysRevB_102_134309
crossref_primary_10_1103_PhysRevB_102_134302
crossref_primary_10_1088_1674_1056_abd762
crossref_primary_10_1038_s42005_023_01237_6
crossref_primary_10_1103_PhysRevLett_125_260603
crossref_primary_10_1088_1742_5468_ab609a
crossref_primary_10_1103_PhysRevB_103_L220302
crossref_primary_10_1038_s41567_024_02738_z
crossref_primary_10_1038_s41467_022_29977_z
crossref_primary_10_1103_PhysRevA_105_052225
crossref_primary_10_1103_PhysRevLett_126_045301
crossref_primary_10_1103_PhysRevLett_134_050801
crossref_primary_10_7566_JPSJ_90_073001
crossref_primary_10_1103_PhysRevB_105_235124
crossref_primary_10_1103_PhysRevX_11_031062
crossref_primary_10_1038_s41567_019_0733_z
crossref_primary_10_1103_PRXQuantum_3_010354
crossref_primary_10_1038_s41567_022_01777_8
crossref_primary_10_1103_PhysRevA_109_013308
crossref_primary_10_1126_sciadv_adr9527
crossref_primary_10_1103_PhysRevB_99_184104
crossref_primary_10_1103_PhysRevLett_124_110503
crossref_primary_10_1140_epjqt_s40507_023_00190_1
crossref_primary_10_1126_sciadv_abl6850
crossref_primary_10_1103_PhysRevLett_123_130603
crossref_primary_10_1126_science_abq6753
crossref_primary_10_1088_1361_648X_ac0f9d
crossref_primary_10_1088_2058_9565_ad985f
crossref_primary_10_1103_PhysRevD_109_054514
crossref_primary_10_1103_PhysRevD_109_054513
crossref_primary_10_1103_PhysRevResearch_6_033322
crossref_primary_10_1103_PhysRevA_101_030301
crossref_primary_10_1103_PhysRevB_107_115175
crossref_primary_10_21468_SciPostPhys_14_1_004
crossref_primary_10_1103_PhysRevB_103_104202
crossref_primary_10_1103_PhysRevB_108_184425
crossref_primary_10_1103_PhysRevResearch_6_013015
crossref_primary_10_1016_j_physrep_2021_08_003
crossref_primary_10_1103_PhysRevA_110_022442
crossref_primary_10_1103_PhysRevB_107_014303
crossref_primary_10_1103_PhysRevB_110_014303
crossref_primary_10_1103_PhysRevB_104_014406
crossref_primary_10_1103_PRXQuantum_3_040309
crossref_primary_10_1103_PhysRevResearch_2_023211
crossref_primary_10_1103_PhysRevD_104_094513
crossref_primary_10_1103_PhysRevB_108_155420
crossref_primary_10_1103_PhysRevA_111_032408
crossref_primary_10_1088_1674_1056_abd744
crossref_primary_10_1103_PhysRevResearch_4_L032001
crossref_primary_10_21468_SciPostPhys_11_1_013
crossref_primary_10_1103_PhysRevResearch_2_033251
crossref_primary_10_1103_PhysRevD_104_054505
crossref_primary_10_1038_s41467_020_14489_5
crossref_primary_10_1016_j_physrep_2022_12_002
crossref_primary_10_1088_2399_6528_acd51d
crossref_primary_10_1038_s41467_025_55947_2
crossref_primary_10_1103_PhysRevLett_125_076402
crossref_primary_10_1364_OE_411130
crossref_primary_10_1103_PhysRevResearch_3_013060
crossref_primary_10_1103_PhysRevLett_123_153603
crossref_primary_10_1088_1572_9494_ad3227
crossref_primary_10_1038_s41567_021_01357_2
crossref_primary_10_1103_PhysRevB_110_045119
crossref_primary_10_1103_PhysRevB_111_045418
crossref_primary_10_1103_PhysRevE_107_014113
crossref_primary_10_1103_PhysRevB_110_064302
crossref_primary_10_1038_s41586_021_03582_4
crossref_primary_10_1103_PhysRevLett_126_070602
crossref_primary_10_1103_PhysRevB_109_054424
crossref_primary_10_1103_PhysRevResearch_7_013215
crossref_primary_10_1103_PRXQuantum_2_020313
crossref_primary_10_1103_PhysRevB_109_075109
crossref_primary_10_1088_1367_2630_abe812
crossref_primary_10_1103_PhysRevB_107_L241402
crossref_primary_10_1103_PhysRevA_105_023717
crossref_primary_10_1103_PhysRevB_104_014307
crossref_primary_10_1103_PhysRevLett_123_126801
Cites_doi 10.1103/PhysRevB.69.075106
10.1103/PhysRevLett.49.793
10.1103/PhysRevB.24.398
10.1103/PhysRevLett.39.903
10.1103/PhysRevLett.116.155301
10.1103/PhysRevA.73.043614
10.1038/nature11255
10.1103/RevModPhys.77.259
10.1103/PhysRevLett.106.235304
10.1126/science.aah3752
10.1103/PhysRevB.16.1217
10.1088/1367-2630/12/2/025012
10.1103/PhysRevLett.121.123603
10.1103/PhysRevB.48.10345
10.1103/PhysRevB.72.161201
10.1073/pnas.1408861112
10.1142/S0217751X1430018X
10.1103/PhysRevLett.109.015701
10.1126/science.1258676
10.1088/1367-2630/aa65bc
10.1126/science.aaf9657
10.1038/s41586-018-0450-2
10.1209/epl/i1998-00381-x
10.1038/317505a0
10.1016/0378-4371(83)90001-8
10.1103/PhysRevLett.95.105701
10.1103/PhysRevB.98.205118
10.1007/BFb0106062
10.1038/s41586-018-0458-7
10.1038/ncomms3615
10.1088/0305-4470/9/8/029
10.1103/PhysRevB.66.075128
10.1098/rsta.2010.0382
10.1103/RevModPhys.83.863
10.1103/PhysRevB.100.024311
10.1103/PhysRevLett.75.3537
10.1016/S0378-4363(84)80029-7
10.1103/PhysRevB.55.2164
10.1103/PhysRevB.28.2743
10.1103/PhysRevB.92.035154
10.1038/s41598-018-22763-2
10.1088/0305-4470/13/3/007
10.1103/PhysRevLett.122.017205
10.1103/PhysRevLett.95.245701
10.1088/1742-5468/2012/11/P11020
10.1017/CBO9781107706057
10.1103/PhysRevB.65.024504
10.1038/nphys1614
10.1103/PhysRevA.98.023614
10.1103/PhysRevLett.69.2863
10.1016/0375-9601(75)90766-5
10.1103/RevModPhys.54.235
10.1038/nature24622
10.1103/PhysRevB.24.5180
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group Apr 11, 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 11, 2019
CorporateAuthor Harvard Univ., Cambridge, MA (United States)
CorporateAuthor_xml – name: Harvard Univ., Cambridge, MA (United States)
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
OTOTI
DOI 10.1038/s41586-019-1070-1
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest MSED
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
ProQuest Research Library
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Agricultural Science Database

PubMed




Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 211
ExternalDocumentID 1613070
A582020477
30936552
10_1038_s41586_019_1070_1
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EJD
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADXHL
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AGSTI
PUEGO
TUS
69O
6XO
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGFU
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADFPY
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
AMRJV
B-7
EMB
F20
I-U
N95
OTOTI
P-O
U1R
XFK
ZA5
ID FETCH-LOGICAL-c744t-b0a8dc17f8e5ee34e1cf2a72ab395437aaf024c01c5806f2b2986ed3a18d92d33
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Fri May 19 01:08:57 EDT 2023
Thu Sep 04 18:49:38 EDT 2025
Fri Jul 25 08:54:14 EDT 2025
Tue Jun 17 21:00:40 EDT 2025
Thu Jun 12 23:41:27 EDT 2025
Tue Jun 10 15:32:50 EDT 2025
Tue Jun 10 20:38:04 EDT 2025
Fri Jun 27 04:22:51 EDT 2025
Fri Jun 27 04:16:39 EDT 2025
Wed Feb 19 02:35:38 EST 2025
Tue Jul 01 01:21:02 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Fri Feb 21 02:38:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7751
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c744t-b0a8dc17f8e5ee34e1cf2a72ab395437aaf024c01c5806f2b2986ed3a18d92d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC)
SC0019030
OpenAccessLink http://nrs.harvard.edu/urn-3:HUL.InstRepos:41057821
PMID 30936552
PQID 2211916392
PQPubID 40569
PageCount 5
ParticipantIDs osti_scitechconnect_1613070
proquest_miscellaneous_2202196260
proquest_journals_2211916392
gale_infotracmisc_A582020477
gale_infotracgeneralonefile_A582020477
gale_infotraccpiq_582020477
gale_infotracacademiconefile_A582020477
gale_incontextgauss_ISR_A582020477
gale_incontextgauss_ATWCN_A582020477
pubmed_primary_30936552
crossref_citationtrail_10_1038_s41586_019_1070_1
crossref_primary_10_1038_s41586_019_1070_1
springer_journals_10_1038_s41586_019_1070_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Apr-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-Apr-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KadanoffLPConnections between the critical behavior of the planar model and that of the eight-vertex modelPhys. Rev. Lett.1977399039051977PhRvL..39..903K44626910.1103/PhysRevLett.39.903
Farhi, E., Goldstone, J., Gutmann, S. & Spiser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).
HuseDASzpilkaAMFisherMEMelting and wetting transitions in the three-state chiral clock modelPhysica A19831213633981983PhyA..121..363H10.1016/0378-4371(83)90001-8
EndresMAtom-by-atom assembly of defect-free one-dimensional cold atom arraysScience2016354102410272016Sci...354.1024E1:CAS:528:DC%2BC28XhvV2gsLjO10.1126/science.aah3752
LevineHHigh-fidelity control and entanglement of Rydberg-atom qubitsPhys. Rev. Lett.20181211236032018PhRvL.121l3603L1:CAS:528:DC%2BC1MXltVyltL0%3D10.1103/PhysRevLett.121.123603
SchollwöckUThe density-matrix renormalization group: a short introductionPhil. Trans. R. Soc. A2011369264326612011RSPTA.369.2643S281181910.1098/rsta.2010.0382
SamajdarRChoiSPichlerHLukinMDSachdevSNumerical study of the chiral ′3 quantum phase transition in one spatial dimensionPhys. Rev. A2018980236142018PhRvA..98b3614S1:CAS:528:DC%2BC1MXlsV2ms7Y%3D10.1103/PhysRevA.98.023614
ZurekWHDornerUZollerPDynamics of a quantum phase transitionPhys. Rev. Lett.2005951057012005PhRvL..95j5701Z10.1103/PhysRevLett.95.105701
ChenDWhiteMBorriesCdeMarcoBQuantum quench of an atomic Mott insulatorPhys. Rev. Lett.20111062353042011PhRvL.106w5304C10.1103/PhysRevLett.106.235304
CherngRWLevitovLSEntropy and correlation functions of a driven quantum spin chainPhys. Rev. A2006730436142006PhRvA..73d3614C10.1103/PhysRevA.73.043614
ÖstlundSRommerSThermodynamic limit of density matrix renormalizationPhys. Rev. Lett.199575353735401995PhRvL..75.3537O10.1103/PhysRevLett.75.3537
ZhuangYChanglaniHJTubmanNMHughesTLPhase diagram of the ′3 parafermionic chain with chiral interactionsPhys. Rev. B2015920351542015PhRvB..92c5154Z10.1103/PhysRevB.92.035154
Gerster, M., Haggenmiller, B., Tschirsich, F., Silvi, P. & Montangero, S. Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble–Zurek mechanism. Preprint at https://arxiv.org/abs/1807.10611 (2018).
HaldaneFDMBakPBohrTPhase diagrams of surface structures from Bethe-ansatz solutions of the quantum sine-Gordon modelPhys. Rev. B19832827431983PhRvB..28.2743H10.1103/PhysRevB.28.2743
GardasBDziarmagaJZurekWHZwolakMDefects in quantum computersSci. Rep.201882018NatSR...8.4539G10.1038/s41598-018-22763-25852091
FendleyPParafermionic edge zero modes in ′n-invariant spin chainsJ. Stat. Mech.20122012P11020302366910.1088/1742-5468/2012/11/P11020
WhitsittSSamajdarRSachdevSQuantum field theory for the chiral clock transition in one spatial dimensionPhys. Rev. B2018982051182018PhRvB..98t5118W1:CAS:528:DC%2BC1MXltVOmtrY%3D10.1103/PhysRevB.98.205118
AlexanderSLattice gas transition of He on Grafoil. A continous transition with cubic termsPhys. Lett. A1975543533541975PhLA...54..353A10.1016/0375-9601(75)90766-5
YeomansJANNNI and clock modelsPhysica B+C19841271871921984PhyBC.127..187Y7626151:CAS:528:DyaL2MXosVGgsA%3D%3D10.1016/S0378-4363(84)80029-7
Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum optimization for maximum independent set using Rydberg atom arrays. Preprint at https://arxiv.org/abs/1808.10816 (2018).
del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X
AnquezMQuantum Kibble–Zurek mechanism in a spin-1 Bose–Einstein condensatePhys. Rev. Lett.20161161553012016PhRvL.116o5301A1:STN:280:DC%2BC28bkvV2qsg%3D%3D10.1103/PhysRevLett.116.155301
BarredoDLienhardVde LéséleucSLahayeTBrowaeysASynthetic three-dimensional atomic structures assembled atom by atomNature201856179822018Natur.561...79B1:CAS:528:DC%2BC1cXhs1OmsrjL10.1038/s41586-018-0450-2
WhiteSRDensity matrix formulation for quantum renormalization groupsPhys. Rev. Lett.199269286328661992PhRvL..69.2863W1:STN:280:DC%2BC2sfptF2isg%3D%3D10.1103/PhysRevLett.69.2863
Peschel, I., Wang, X., Kaulke, M. & Hallberg, K. (eds) Density-Matrix Renormalization (Springer, Berlin, 1999).
HuseDAFisherMEDomain walls and the melting of commensurate surface phasesPhys. Rev. Lett.1982497937961982PhRvL..49..793H1:CAS:528:DyaL38XlsFWhsbc%3D10.1103/PhysRevLett.49.793
PirvuBMurgVCiracJIVerstraeteFMatrix product operator representationsNew J. Phys.2010120250122010NJPh...12b5012P260248110.1088/1367-2630/12/2/025012
KibbleTWBTopology of cosmic domains and stringsJ. Phys. Math. Gen.19769138713981976JPhA....9.1387K10.1088/0305-4470/9/8/029
DziarmagaJDynamics of a quantum phase transition: exact solution of the quantum ising modelPhys. Rev. Lett.2005952457012005PhRvL..95x5701D10.1103/PhysRevLett.95.245701
EndresMThe ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transitionNature20124874544582012Natur.487..454E1:CAS:528:DC%2BC38XhtFWjtLnE10.1038/nature11255
OstlundSIncommensurate and commensurate phases in asymmetric clock modelsPhys. Rev. B1981243984051981PhRvB..24..398O5971161:CAS:528:DyaL3MXltVelt7Y%3D10.1103/PhysRevB.24.398
PolkovnikovASenguptaKSilvaAVengalattoreMNonequilibrium dynamics of closed interacting quantum systemsRev. Mod. Phys.2011838638832011RvMP...83..863P10.1103/RevModPhys.83.863
ClarkLWFengLChinCUniversal space–time scaling symmetry in the dynamics of bosons across a quantum phase transitionScience20163546066102016Sci...354..606C35610861:CAS:528:DC%2BC28XhslKgt7vP10.1126/science.aaf9657
McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at https://arxiv.org/abs/0804.2509 (2008).
PolkovnikovAUniversal adiabatic dynamics in the vicinity of a quantum critical pointPhys. Rev. B2005721612012005PhRvB..72p1201P10.1103/PhysRevB.72.161201
WhiteSRDensity-matrix algorithms for quantum renormalization groupsPhys. Rev. B19934810345103561993PhRvB..4810345W1:CAS:528:DyaK2cXhsFWquw%3D%3D10.1103/PhysRevB.48.10345
WeimerHMüllerMLesanovskyIZollerPBüchlerHPA Rydberg quantum simulatorNat. Phys.201063823881:CAS:528:DC%2BC3cXlsFOnt78%3D10.1038/nphys1614
DukelskyJMartin-DelgadoMANishinoTSierraGEquivalence of the variational matrix product method and the density matrix renormalization group applied to spin chainsEurophys. Lett.1998434574621998EL.....43..457D1:CAS:528:DyaK1cXlsFagu7s%3D10.1209/epl/i1998-00381-x
DuttaAQuantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information2015CambridgeCambridge Univ. Press10.1017/CBO9781107706057
TagliacozzoLCeliAOrlandPMitchelMWLewensteinMSimulation of non-Abelian gauge theories with optical latticesNat. Commun.201342013NatCo...4E2615T1:STN:280:DC%2BC2c7gt1Siuw%3D%3D10.1038/ncomms3615
ZurekWHCosmological experiments in superfluid helium?Nature19853175055081985Natur.317..505Z1:CAS:528:DyaL2MXmtVWjtrw%3D10.1038/317505a0
JoséJVKadanoffLPKirkpatrickSNelsonDRRenormalization vortices, and symmetry-breaking perturbations in the two-dimensional planar modelPhys. Rev. B197716121712411977PhRvB..16.1217J10.1103/PhysRevB.16.1217erratum 17, 1477 (1978)
SchollwöckUThe density-matrix renormalization groupRev. Mod. Phys.2005772593152005RvMP...77..259S215050610.1103/RevModPhys.77.259
SachdevSQuantum Phase Transitions20092nd ednCambridgeCambridge Univ. Press1233.82003
BernienHProbing many-body dynamics on a 51-atom quantum simulatorNature20175515795842017Natur.551..579B1:CAS:528:DC%2BC2sXhvFWht7fL10.1038/nature24622
KumarAWuT-YGiraldo MejiaFWeissDSSorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demonNature201856183872018Natur.561...83K1:CAS:528:DC%2BC1cXhs1OmsrvI10.1038/s41586-018-0458-7
NavonNGauntALSmithRPHadzibabicZCritical dynamics of spontaneous symmetry breaking in a homogenous Bose gasScience20153471671702015Sci...347..167N1:CAS:528:DC%2BC2MXitFemtA%3D%3D10.1126/science.1258676
MoessnerRSondhiSLFradkinEShort-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theoriesPhys. Rev. B2001650245042002PhRvB..65b4504M10.1103/PhysRevB.65.024504
BraunSEmergence of coherence and the dynamics of quantum phase transitionsProc. Natl Acad. Sci.2015112364136462015PNAS..112.3641B1:CAS:528:DC%2BC2MXktVCgtrg%3D
SachdevSSenguptaKGirvinSMMott insulators in strong electric fieldsPhys. Rev. B2002660751282002PhRvB..66g5128S10.1103/PhysRevB.66.075128
KolodrubetzMClarkBKHuseDANonequilibrium dynamical critical scaling of the quantum Ising chainPhys. Rev. Lett.20121090157012012PhRvL.109a5701K10.1103/PhysRevLett.109.015701
FendleyPSenguptaKSachdevSCompeting density-wave orders in a one-dimensional hard-boson modelPhys. Rev. B2004690751062004PhRvB..69g5106F10.1103/PhysRevB.69.075106
WuF-YThe Potts modelRev. Mod. Phys1982542352681982RvMP...54..235W64137010.1103/RevModPhys.54.235
BaxterRJHard hexagons: exact solutionJ. Phys. Math. Gen.19801361701980JPhA...13L..61B56053310.1088/0305-4470/13/3/007
RommerSÖstlundSClass of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization groupPhys. Rev. B199755216421811997PhRvB..55.2164R10.1103/PhysRevB.55.2164
HuseDASimple three-state model with infinitely many phasesPhys. Rev. B198124518051941981PhRvB..24.5180H59711210.1103/PhysRevB.24.5180
ChepigaNMilaFFloating phase versus chiral transition in a 1D hard-boson modelPhys. Rev. Lett.20191220172052019PhRvL.122a7205C10.1103/PhysRevLett.122.017205
JaschkeDMaedaKWhalenJDWallMLCarrLDCritical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chainNew J. Phys.2017190330322017NJPh...19c3032J10.1088/1367-2630/aa65bc
A Dutta (1070_CR29) 2015
M Kolodrubetz (1070_CR22) 2012; 109
B Gardas (1070_CR15) 2018; 8
Y Zhuang (1070_CR49) 2015; 92
P Fendley (1070_CR51) 2012; 2012
J Dziarmaga (1070_CR9) 2005; 95
DA Huse (1070_CR10) 1982; 49
S Sachdev (1070_CR52) 2002; 66
F-Y Wu (1070_CR53) 1982; 54
A Kumar (1070_CR32) 2018; 561
A Polkovnikov (1070_CR7) 2005; 72
TWB Kibble (1070_CR2) 1976; 9
H Levine (1070_CR35) 2018; 121
DA Huse (1070_CR50) 1983; 121
S Whitsitt (1070_CR26) 2018; 98
S Östlund (1070_CR38) 1995; 75
RW Cherng (1070_CR23) 2006; 73
A Polkovnikov (1070_CR6) 2011; 83
U Schollwöck (1070_CR44) 2005; 77
D Chen (1070_CR19) 2011; 106
S Braun (1070_CR20) 2015; 112
N Chepiga (1070_CR27) 2019; 122
1070_CR33
H Bernien (1070_CR21) 2017; 551
B Pirvu (1070_CR43) 2010; 12
JV José (1070_CR56) 1977; 16
N Navon (1070_CR5) 2015; 347
WH Zurek (1070_CR3) 1985; 317
M Endres (1070_CR34) 2016; 354
U Schollwöck (1070_CR45) 2011; 369
LP Kadanoff (1070_CR57) 1977; 39
S Alexander (1070_CR54) 1975; 54
J Dukelsky (1070_CR40) 1998; 43
1070_CR46
L Tagliacozzo (1070_CR12) 2013; 4
1070_CR41
M Anquez (1070_CR16) 2016; 116
P Fendley (1070_CR24) 2004; 69
R Samajdar (1070_CR25) 2018; 98
1070_CR42
RJ Baxter (1070_CR55) 1980; 13
S Rommer (1070_CR39) 1997; 55
DA Huse (1070_CR48) 1981; 24
J Yeomans (1070_CR58) 1984; 127
SR White (1070_CR36) 1992; 69
A Campo del (1070_CR4) 2014; 29
SR White (1070_CR37) 1993; 48
FDM Haldane (1070_CR28) 1983; 28
S Ostlund (1070_CR11) 1981; 24
1070_CR14
WH Zurek (1070_CR8) 2005; 95
LW Clark (1070_CR17) 2016; 354
D Jaschke (1070_CR47) 2017; 19
S Sachdev (1070_CR1) 2009
H Weimer (1070_CR13) 2010; 6
M Endres (1070_CR18) 2012; 487
R Moessner (1070_CR30) 2001; 65
D Barredo (1070_CR31) 2018; 561
References_xml – reference: TagliacozzoLCeliAOrlandPMitchelMWLewensteinMSimulation of non-Abelian gauge theories with optical latticesNat. Commun.201342013NatCo...4E2615T1:STN:280:DC%2BC2c7gt1Siuw%3D%3D10.1038/ncomms3615
– reference: HuseDASzpilkaAMFisherMEMelting and wetting transitions in the three-state chiral clock modelPhysica A19831213633981983PhyA..121..363H10.1016/0378-4371(83)90001-8
– reference: WuF-YThe Potts modelRev. Mod. Phys1982542352681982RvMP...54..235W64137010.1103/RevModPhys.54.235
– reference: KibbleTWBTopology of cosmic domains and stringsJ. Phys. Math. Gen.19769138713981976JPhA....9.1387K10.1088/0305-4470/9/8/029
– reference: KumarAWuT-YGiraldo MejiaFWeissDSSorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demonNature201856183872018Natur.561...83K1:CAS:528:DC%2BC1cXhs1OmsrvI10.1038/s41586-018-0458-7
– reference: WhiteSRDensity matrix formulation for quantum renormalization groupsPhys. Rev. Lett.199269286328661992PhRvL..69.2863W1:STN:280:DC%2BC2sfptF2isg%3D%3D10.1103/PhysRevLett.69.2863
– reference: ChepigaNMilaFFloating phase versus chiral transition in a 1D hard-boson modelPhys. Rev. Lett.20191220172052019PhRvL.122a7205C10.1103/PhysRevLett.122.017205
– reference: AlexanderSLattice gas transition of He on Grafoil. A continous transition with cubic termsPhys. Lett. A1975543533541975PhLA...54..353A10.1016/0375-9601(75)90766-5
– reference: FendleyPSenguptaKSachdevSCompeting density-wave orders in a one-dimensional hard-boson modelPhys. Rev. B2004690751062004PhRvB..69g5106F10.1103/PhysRevB.69.075106
– reference: PirvuBMurgVCiracJIVerstraeteFMatrix product operator representationsNew J. Phys.2010120250122010NJPh...12b5012P260248110.1088/1367-2630/12/2/025012
– reference: Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum optimization for maximum independent set using Rydberg atom arrays. Preprint at https://arxiv.org/abs/1808.10816 (2018).
– reference: BraunSEmergence of coherence and the dynamics of quantum phase transitionsProc. Natl Acad. Sci.2015112364136462015PNAS..112.3641B1:CAS:528:DC%2BC2MXktVCgtrg%3D
– reference: ZurekWHDornerUZollerPDynamics of a quantum phase transitionPhys. Rev. Lett.2005951057012005PhRvL..95j5701Z10.1103/PhysRevLett.95.105701
– reference: ZhuangYChanglaniHJTubmanNMHughesTLPhase diagram of the ′3 parafermionic chain with chiral interactionsPhys. Rev. B2015920351542015PhRvB..92c5154Z10.1103/PhysRevB.92.035154
– reference: KolodrubetzMClarkBKHuseDANonequilibrium dynamical critical scaling of the quantum Ising chainPhys. Rev. Lett.20121090157012012PhRvL.109a5701K10.1103/PhysRevLett.109.015701
– reference: RommerSÖstlundSClass of ansatz wave functions for one-dimensional spin systems and their relation to the density matrix renormalization groupPhys. Rev. B199755216421811997PhRvB..55.2164R10.1103/PhysRevB.55.2164
– reference: SchollwöckUThe density-matrix renormalization groupRev. Mod. Phys.2005772593152005RvMP...77..259S215050610.1103/RevModPhys.77.259
– reference: PolkovnikovAUniversal adiabatic dynamics in the vicinity of a quantum critical pointPhys. Rev. B2005721612012005PhRvB..72p1201P10.1103/PhysRevB.72.161201
– reference: OstlundSIncommensurate and commensurate phases in asymmetric clock modelsPhys. Rev. B1981243984051981PhRvB..24..398O5971161:CAS:528:DyaL3MXltVelt7Y%3D10.1103/PhysRevB.24.398
– reference: SamajdarRChoiSPichlerHLukinMDSachdevSNumerical study of the chiral ′3 quantum phase transition in one spatial dimensionPhys. Rev. A2018980236142018PhRvA..98b3614S1:CAS:528:DC%2BC1MXlsV2ms7Y%3D10.1103/PhysRevA.98.023614
– reference: Peschel, I., Wang, X., Kaulke, M. & Hallberg, K. (eds) Density-Matrix Renormalization (Springer, Berlin, 1999).
– reference: del CampoAZurekWHUniversality of phase transition dynamics: topological defects from symmetry breakingInt. J. Mod. Phys. A201429143001810.1142/S0217751X1430018X
– reference: SachdevSSenguptaKGirvinSMMott insulators in strong electric fieldsPhys. Rev. B2002660751282002PhRvB..66g5128S10.1103/PhysRevB.66.075128
– reference: WhiteSRDensity-matrix algorithms for quantum renormalization groupsPhys. Rev. B19934810345103561993PhRvB..4810345W1:CAS:528:DyaK2cXhsFWquw%3D%3D10.1103/PhysRevB.48.10345
– reference: McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at https://arxiv.org/abs/0804.2509 (2008).
– reference: WhitsittSSamajdarRSachdevSQuantum field theory for the chiral clock transition in one spatial dimensionPhys. Rev. B2018982051182018PhRvB..98t5118W1:CAS:528:DC%2BC1MXltVOmtrY%3D10.1103/PhysRevB.98.205118
– reference: Farhi, E., Goldstone, J., Gutmann, S. & Spiser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).
– reference: HaldaneFDMBakPBohrTPhase diagrams of surface structures from Bethe-ansatz solutions of the quantum sine-Gordon modelPhys. Rev. B19832827431983PhRvB..28.2743H10.1103/PhysRevB.28.2743
– reference: SachdevSQuantum Phase Transitions20092nd ednCambridgeCambridge Univ. Press1233.82003
– reference: SchollwöckUThe density-matrix renormalization group: a short introductionPhil. Trans. R. Soc. A2011369264326612011RSPTA.369.2643S281181910.1098/rsta.2010.0382
– reference: DuttaAQuantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information2015CambridgeCambridge Univ. Press10.1017/CBO9781107706057
– reference: PolkovnikovASenguptaKSilvaAVengalattoreMNonequilibrium dynamics of closed interacting quantum systemsRev. Mod. Phys.2011838638832011RvMP...83..863P10.1103/RevModPhys.83.863
– reference: MoessnerRSondhiSLFradkinEShort-ranged resonating valence bond physics, quantum dimer models, and Ising gauge theoriesPhys. Rev. B2001650245042002PhRvB..65b4504M10.1103/PhysRevB.65.024504
– reference: EndresMThe ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transitionNature20124874544582012Natur.487..454E1:CAS:528:DC%2BC38XhtFWjtLnE10.1038/nature11255
– reference: HuseDASimple three-state model with infinitely many phasesPhys. Rev. B198124518051941981PhRvB..24.5180H59711210.1103/PhysRevB.24.5180
– reference: ClarkLWFengLChinCUniversal space–time scaling symmetry in the dynamics of bosons across a quantum phase transitionScience20163546066102016Sci...354..606C35610861:CAS:528:DC%2BC28XhslKgt7vP10.1126/science.aaf9657
– reference: ZurekWHCosmological experiments in superfluid helium?Nature19853175055081985Natur.317..505Z1:CAS:528:DyaL2MXmtVWjtrw%3D10.1038/317505a0
– reference: WeimerHMüllerMLesanovskyIZollerPBüchlerHPA Rydberg quantum simulatorNat. Phys.201063823881:CAS:528:DC%2BC3cXlsFOnt78%3D10.1038/nphys1614
– reference: EndresMAtom-by-atom assembly of defect-free one-dimensional cold atom arraysScience2016354102410272016Sci...354.1024E1:CAS:528:DC%2BC28XhvV2gsLjO10.1126/science.aah3752
– reference: YeomansJANNNI and clock modelsPhysica B+C19841271871921984PhyBC.127..187Y7626151:CAS:528:DyaL2MXosVGgsA%3D%3D10.1016/S0378-4363(84)80029-7
– reference: AnquezMQuantum Kibble–Zurek mechanism in a spin-1 Bose–Einstein condensatePhys. Rev. Lett.20161161553012016PhRvL.116o5301A1:STN:280:DC%2BC28bkvV2qsg%3D%3D10.1103/PhysRevLett.116.155301
– reference: CherngRWLevitovLSEntropy and correlation functions of a driven quantum spin chainPhys. Rev. A2006730436142006PhRvA..73d3614C10.1103/PhysRevA.73.043614
– reference: JaschkeDMaedaKWhalenJDWallMLCarrLDCritical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chainNew J. Phys.2017190330322017NJPh...19c3032J10.1088/1367-2630/aa65bc
– reference: ChenDWhiteMBorriesCdeMarcoBQuantum quench of an atomic Mott insulatorPhys. Rev. Lett.20111062353042011PhRvL.106w5304C10.1103/PhysRevLett.106.235304
– reference: FendleyPParafermionic edge zero modes in ′n-invariant spin chainsJ. Stat. Mech.20122012P11020302366910.1088/1742-5468/2012/11/P11020
– reference: HuseDAFisherMEDomain walls and the melting of commensurate surface phasesPhys. Rev. Lett.1982497937961982PhRvL..49..793H1:CAS:528:DyaL38XlsFWhsbc%3D10.1103/PhysRevLett.49.793
– reference: ÖstlundSRommerSThermodynamic limit of density matrix renormalizationPhys. Rev. Lett.199575353735401995PhRvL..75.3537O10.1103/PhysRevLett.75.3537
– reference: NavonNGauntALSmithRPHadzibabicZCritical dynamics of spontaneous symmetry breaking in a homogenous Bose gasScience20153471671702015Sci...347..167N1:CAS:528:DC%2BC2MXitFemtA%3D%3D10.1126/science.1258676
– reference: DukelskyJMartin-DelgadoMANishinoTSierraGEquivalence of the variational matrix product method and the density matrix renormalization group applied to spin chainsEurophys. Lett.1998434574621998EL.....43..457D1:CAS:528:DyaK1cXlsFagu7s%3D10.1209/epl/i1998-00381-x
– reference: BaxterRJHard hexagons: exact solutionJ. Phys. Math. Gen.19801361701980JPhA...13L..61B56053310.1088/0305-4470/13/3/007
– reference: KadanoffLPConnections between the critical behavior of the planar model and that of the eight-vertex modelPhys. Rev. Lett.1977399039051977PhRvL..39..903K44626910.1103/PhysRevLett.39.903
– reference: Gerster, M., Haggenmiller, B., Tschirsich, F., Silvi, P. & Montangero, S. Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble–Zurek mechanism. Preprint at https://arxiv.org/abs/1807.10611 (2018).
– reference: BernienHProbing many-body dynamics on a 51-atom quantum simulatorNature20175515795842017Natur.551..579B1:CAS:528:DC%2BC2sXhvFWht7fL10.1038/nature24622
– reference: JoséJVKadanoffLPKirkpatrickSNelsonDRRenormalization vortices, and symmetry-breaking perturbations in the two-dimensional planar modelPhys. Rev. B197716121712411977PhRvB..16.1217J10.1103/PhysRevB.16.1217erratum 17, 1477 (1978)
– reference: LevineHHigh-fidelity control and entanglement of Rydberg-atom qubitsPhys. Rev. Lett.20181211236032018PhRvL.121l3603L1:CAS:528:DC%2BC1MXltVyltL0%3D10.1103/PhysRevLett.121.123603
– reference: DziarmagaJDynamics of a quantum phase transition: exact solution of the quantum ising modelPhys. Rev. Lett.2005952457012005PhRvL..95x5701D10.1103/PhysRevLett.95.245701
– reference: GardasBDziarmagaJZurekWHZwolakMDefects in quantum computersSci. Rep.201882018NatSR...8.4539G10.1038/s41598-018-22763-25852091
– reference: BarredoDLienhardVde LéséleucSLahayeTBrowaeysASynthetic three-dimensional atomic structures assembled atom by atomNature201856179822018Natur.561...79B1:CAS:528:DC%2BC1cXhs1OmsrjL10.1038/s41586-018-0450-2
– volume: 69
  start-page: 075106
  year: 2004
  ident: 1070_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.075106
– volume: 49
  start-page: 793
  year: 1982
  ident: 1070_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.793
– volume: 24
  start-page: 398
  year: 1981
  ident: 1070_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.398
– volume: 39
  start-page: 903
  year: 1977
  ident: 1070_CR57
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.39.903
– volume: 116
  start-page: 155301
  year: 2016
  ident: 1070_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.155301
– volume: 73
  start-page: 043614
  year: 2006
  ident: 1070_CR23
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.73.043614
– ident: 1070_CR42
– volume: 487
  start-page: 454
  year: 2012
  ident: 1070_CR18
  publication-title: Nature
  doi: 10.1038/nature11255
– volume: 77
  start-page: 259
  year: 2005
  ident: 1070_CR44
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.259
– volume: 106
  start-page: 235304
  year: 2011
  ident: 1070_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.235304
– volume: 354
  start-page: 1024
  year: 2016
  ident: 1070_CR34
  publication-title: Science
  doi: 10.1126/science.aah3752
– volume: 16
  start-page: 1217
  year: 1977
  ident: 1070_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.16.1217
– volume: 12
  start-page: 025012
  year: 2010
  ident: 1070_CR43
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/2/025012
– volume: 121
  start-page: 123603
  year: 2018
  ident: 1070_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.123603
– volume: 48
  start-page: 10345
  year: 1993
  ident: 1070_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.10345
– volume: 72
  start-page: 161201
  year: 2005
  ident: 1070_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.161201
– volume: 112
  start-page: 3641
  year: 2015
  ident: 1070_CR20
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1408861112
– volume: 29
  start-page: 1430018
  year: 2014
  ident: 1070_CR4
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X1430018X
– volume: 109
  start-page: 015701
  year: 2012
  ident: 1070_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.015701
– volume: 347
  start-page: 167
  year: 2015
  ident: 1070_CR5
  publication-title: Science
  doi: 10.1126/science.1258676
– volume: 19
  start-page: 033032
  year: 2017
  ident: 1070_CR47
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa65bc
– volume: 354
  start-page: 606
  year: 2016
  ident: 1070_CR17
  publication-title: Science
  doi: 10.1126/science.aaf9657
– volume: 561
  start-page: 79
  year: 2018
  ident: 1070_CR31
  publication-title: Nature
  doi: 10.1038/s41586-018-0450-2
– volume: 43
  start-page: 457
  year: 1998
  ident: 1070_CR40
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1998-00381-x
– volume: 317
  start-page: 505
  year: 1985
  ident: 1070_CR3
  publication-title: Nature
  doi: 10.1038/317505a0
– volume: 121
  start-page: 363
  year: 1983
  ident: 1070_CR50
  publication-title: Physica A
  doi: 10.1016/0378-4371(83)90001-8
– volume: 95
  start-page: 105701
  year: 2005
  ident: 1070_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.105701
– volume-title: Quantum Phase Transitions
  year: 2009
  ident: 1070_CR1
– volume: 98
  start-page: 205118
  year: 2018
  ident: 1070_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.205118
– ident: 1070_CR41
  doi: 10.1007/BFb0106062
– volume: 561
  start-page: 83
  year: 2018
  ident: 1070_CR32
  publication-title: Nature
  doi: 10.1038/s41586-018-0458-7
– volume: 4
  year: 2013
  ident: 1070_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3615
– volume: 9
  start-page: 1387
  year: 1976
  ident: 1070_CR2
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/9/8/029
– ident: 1070_CR14
– volume: 66
  start-page: 075128
  year: 2002
  ident: 1070_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.075128
– volume: 369
  start-page: 2643
  year: 2011
  ident: 1070_CR45
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2010.0382
– ident: 1070_CR33
– volume: 83
  start-page: 863
  year: 2011
  ident: 1070_CR6
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.863
– ident: 1070_CR46
  doi: 10.1103/PhysRevB.100.024311
– volume: 75
  start-page: 3537
  year: 1995
  ident: 1070_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.3537
– volume: 127
  start-page: 187
  year: 1984
  ident: 1070_CR58
  publication-title: Physica B+C
  doi: 10.1016/S0378-4363(84)80029-7
– volume: 55
  start-page: 2164
  year: 1997
  ident: 1070_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.2164
– volume: 28
  start-page: 2743
  year: 1983
  ident: 1070_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.2743
– volume: 92
  start-page: 035154
  year: 2015
  ident: 1070_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.035154
– volume: 8
  year: 2018
  ident: 1070_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22763-2
– volume: 13
  start-page: 61
  year: 1980
  ident: 1070_CR55
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/13/3/007
– volume: 122
  start-page: 017205
  year: 2019
  ident: 1070_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.017205
– volume: 95
  start-page: 245701
  year: 2005
  ident: 1070_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.245701
– volume: 2012
  start-page: P11020
  year: 2012
  ident: 1070_CR51
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2012/11/P11020
– volume-title: Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information
  year: 2015
  ident: 1070_CR29
  doi: 10.1017/CBO9781107706057
– volume: 65
  start-page: 024504
  year: 2001
  ident: 1070_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.024504
– volume: 6
  start-page: 382
  year: 2010
  ident: 1070_CR13
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1614
– volume: 98
  start-page: 023614
  year: 2018
  ident: 1070_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.023614
– volume: 69
  start-page: 2863
  year: 1992
  ident: 1070_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 54
  start-page: 353
  year: 1975
  ident: 1070_CR54
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(75)90766-5
– volume: 54
  start-page: 235
  year: 1982
  ident: 1070_CR53
  publication-title: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.54.235
– volume: 551
  start-page: 579
  year: 2017
  ident: 1070_CR21
  publication-title: Nature
  doi: 10.1038/nature24622
– volume: 24
  start-page: 5180
  year: 1981
  ident: 1070_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.24.5180
SSID ssj0005174
Score 2.7103958
Snippet Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations 1 . These fluctuations play...
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations . These fluctuations play a...
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations.sup.1. These fluctuations...
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a...
Not provided.
SourceID osti
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 207
SubjectTerms 639/766/119/2795
639/766/483/3926
Computer simulation
Critical phenomena
Dynamics
Excited state chemistry
Humanities and Social Sciences
Ising model
Letter
multidisciplinary
Phase transitions
Phase transitions (Physics)
Physics research
Quantum mechanics
Quantum phenomena
Scaling
Science
Science & Technology - Other Topics
Science (multidisciplinary)
Symmetry
Time dependence
Transition points
Universe
Title Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
URI https://link.springer.com/article/10.1038/s41586-019-1070-1
https://www.ncbi.nlm.nih.gov/pubmed/30936552
https://www.proquest.com/docview/2211916392
https://www.proquest.com/docview/2202196260
https://www.osti.gov/biblio/1613070
Volume 568
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtNAcNUmQuKCaHmFlmhBFU9Z9dvrA0JJ1FBARFBaEfWy2l2vq4jGTuPkwI1_4A_5EmbsdYIh9OLLzmycned6XoQcMOAbHQep5QgmLbDQ2mK-TC2pAy1TW7thhLXDH0fh8Zn_fhyMt8ioroXBtMpaJ5aKOskVfiM_dMtWZGBP3TezKwunRmF0tR6hIcxoheR12WJsm7RBJQd2i7T7R6NPJ-ukj7_6MtdxTo8dFmDKGN6uY1BNkW05DUtl9HUrB8Hb5Iz-E0gt7dPwNrllHEvaqzhhh2zpbJfcKBM8VbFLdowQF_S56TT94g45_7yEg11O6YeJlJf614-f58u5_kanGuuBJ8WUiiyhykxDoEk1vb6geUYFNZldU6y9oiffE0wUo8VkivPA8vldcjY8Oh0cW2bYgqUi319Y0hYsUU6UMqCS9nztqNQVkSukFwe-FwmRgjlXtqMCZoepK92YhTrxhMOS2E087x5pZXmmHxCKmF4oA1spwPBBaWifuZ4MvFAzKdIOseuD5cp0IseBGJe8jIh7jFe04EALjrTgToe8XKHMqjYc1wEfILU4trfIMH_mQiyLgvdOvw5GvBeAz-PafhR1yJNNYO--nDSAnhmgNId3VMJULcA_xcZZDci9BqSaTa74H6tPG6sXFak3bbPfAARpV81fQRbk4B9hk1-F2VBqwR28BkY2INecyY0uKvhacjrk8WoZ98X8ukznS4QBXy_Gy22H3K84enXOGCsPgwCwX9Usvt78v0R4eP2r7JGbLopamQO1T1qL-VI_AvduIbtkOxpH8GQDB5_Dt13S7g37_VHXSPNvWQtL4w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1KqKEFwQLVtoAYPKrlFnPJtzQCgqVAlpI1FSEfVibI-nimhm0kwilBv_wH_wUXwJ782SMBB669nvOY7f6nkbITsc-MY0_dhyJFcWWGhjcU_FljK-UbFtWBBi7fBhL2gfex8G_mCN_KxqYTCtstKJuaKOUo3fyHdZ3ooM7Cl7Oz63cGoURlerERoFW3TN_Bs82bI3nXdA36eM7b_v77WtcqqApUPPm1rKljzSThhzOI5xPePomMmQSeU2fc8NpYzBbmnb0T63g5gp1uSBiVzp8KjJIvwACir_iochRpCfcBAuU0r-6vpcRVFdvpuBoeT4dm-C4gtty6nZwdIarKcg1qtc3X_CtLn1279JbpRuK20VfLZB1kyySa7m6aM62yQbpYrI6Iuyj_XLW-Tk4wzINhvR7lCpM_Pr-4-T2cR8pSOD1cbDbERlElFdzlqg0TyRI9iNpgmVtMwbG2FlFz2aR5iGRrPhCKeNpZPb5PhSLv0OWU_SxNwjFDHdQPm21oDhgUoyHmeu8t3AcCXjBrGrixW67HOO4zbORB5vd7koaCGAFgJpIZwGebVAGRdNPi4C3kFqCWyekWB2zqmcZZlo9T_v9UTLB4-K2V4YNsiTVWCdT0c1oOclUJzCGbUsayLgn2JbrhrkVg1Sj4fn4o_VZ7XV04LUq7bZrgGCLtH1X0EWFOB9YQthjblWeiocfGSGNiBXnClKTZeJpVw2yOPFMu6L2XuJSWcIA55kE5_ODXK34OjFPWMkPvB9wH5dsfhy8_8S4f7FR3lErrX7hwfioNPrbpHrDMUuz7baJuvTycw8AEdyqh7m0kvJl8tWF78BbWp-jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMx0KpagbggWl6hBQwqb6266305hwqFtlFLICppK6pejO31VhHNbttNhHLjH_grPoMvYWbjbVgIvfXsGcfxjOex8yJklQPfmGaYOp7kygENbRweqNRRJjQqdQ2LYqwd_tiNtg-C94fh4Rz5WdXCYFplJRNLQZ3kGr-Rr7GyFRnoU7aW2rSI3c3229MzBydIYaS1Gqch7ZiFZL1sN2aLPDpm_A3cuWJ9ZxNo_4yx9tb-xrZjJw44Og6CoaNcyRPtxSmHoxo_MJ5OmYyZVH4zDPxYyhR0mnY9HXI3SpliTR6ZxJceT5oswY-joA4WYtD64AguvNvq7vamCSd_9YSuYqw-XytAjXL07JsgFmPX8Wpa0uqK-Rwe_SxD-J8gbqkb27fITWvU0taECxfJnMmWyLUyuVQXS2TRCpCCvrRdrl_dJkefRkDU0YB2-kqdmF_ffxyNzs1XOjBYi9wvBlRmCdV2EgNNxpkcwG40z6ikNqtsgHVftDdOMEmNFv0BziLLz--Qgyu59rtkPsszc59QxPQjFbpaA0YAAssEnPkq9CPDlUwbxK0uVmjbBR2HcZyIMhrvczGhhQBaCKSF8Brk9QXK6aQFyGXAq0gtga01MmTSYzkqCtHa_7zRFa0Q7C3mBnHcIE9nge3s9WpALyxQmsMZtbQVE_BPsWlXDXK5BqlP-2fij9XntdXjCalnbbNSAwRJo-u_giwowDbDBsMaM7H0UHjogsYuIFecKawcLMT01TbIk4tl3Bdz-zKTjxAG7MwmOtYNcm_C0Rf3jHH6KAwB-03F4tPN_0uEB5cf5TG5DqJDfNjpdpbJDYavrkzFWiHzw_OReQhW5lA9ss-Xki9XLTF-A1ZUiWo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Kibble%E2%80%93Zurek+mechanism+and+critical+dynamics+on+a+programmable+Rydberg+simulator&rft.jtitle=Nature+%28London%29&rft.au=Keesling%2C+Alexander&rft.au=Omran%2C+Ahmed&rft.au=Levine%2C+Harry&rft.au=Bernien%2C+Hannes&rft.date=2019-04-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=568&rft.issue=7751&rft.spage=207&rft.epage=211&rft_id=info:doi/10.1038%2Fs41586-019-1070-1&rft.externalDocID=10_1038_s41586_019_1070_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon