Integrated photonics enables continuous-beam electron phase modulation
Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2 , 3 , quantum dots 4 and defect centres 5 . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quan...
Saved in:
Published in | Nature (London) Vol. 600; no. 7890; pp. 653 - 658 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.12.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-021-04197-5 |
Cover
Abstract | Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms
1
, trapped ions
2
,
3
, quantum dots
4
and defect centres
5
. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization
6
–
11
, enabling the observation of free-electron quantum walks
12
–
14
, attosecond electron pulses
10
,
15
–
17
and holographic electromagnetic imaging
18
. Chip-based photonics
19
,
20
promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (
Q
0
≈ 10
6
) cavity enhancement and a waveguide designed for phase matching lead to efficient electron–light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy
21
. The fibre-coupled photonic structures feature single-optical-mode electron–light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates
22
, beam modulators and continuous-wave attosecond pulse trains
23
, resonantly enhanced spectroscopy
24
–
26
and dielectric laser acceleration
19
,
20
,
27
. Our work introduces a universal platform for exploring free-electron quantum optics
28
–
31
, with potential future developments in strong coupling, local quantum probing and electron–photon entanglement.
A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology. |
---|---|
AbstractList | Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms
1
, trapped ions
2
,
3
, quantum dots
4
and defect centres
5
. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization
6
–
11
, enabling the observation of free-electron quantum walks
12
–
14
, attosecond electron pulses
10
,
15
–
17
and holographic electromagnetic imaging
18
. Chip-based photonics
19
,
20
promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (
Q
0
≈ 10
6
) cavity enhancement and a waveguide designed for phase matching lead to efficient electron–light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy
21
. The fibre-coupled photonic structures feature single-optical-mode electron–light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates
22
, beam modulators and continuous-wave attosecond pulse trains
23
, resonantly enhanced spectroscopy
24
–
26
and dielectric laser acceleration
19
,
20
,
27
. Our work introduces a universal platform for exploring free-electron quantum optics
28
–
31
, with potential future developments in strong coupling, local quantum probing and electron–photon entanglement.
A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology. Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms.sup.1, trapped ions.sup.2,3, quantum dots.sup.4 and defect centres.sup.5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization.sup.6-11, enabling the observation of free-electron quantum walks.sup.12-14, attosecond electron pulses.sup.10,15-17 and holographic electromagnetic imaging.sup.18. Chip-based photonics.sup.19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q.sub.0 [almost equal to] 10.sup.6) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy.sup.21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates.sup.22, beam modulators and continuous-wave attosecond pulse trains.sup.23, resonantly enhanced spectroscopy.sup.24-26 and dielectric laser acceleration.sup.19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics.sup.28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement. Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms , trapped ions , quantum dots and defect centres . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization , enabling the observation of free-electron quantum walks , attosecond electron pulses and holographic electromagnetic imaging . Chip-based photonics promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q ≈ 10 ) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy . The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates , beam modulators and continuous-wave attosecond pulse trains , resonantly enhanced spectroscopy and dielectric laser acceleration . Our work introduces a universal platform for exploring free-electron quantum optics , with potential future developments in strong coupling, local quantum probing and electron-photon entanglement. Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement.Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement. Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electronenergy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electronphoton entanglement. Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms.sup.1, trapped ions.sup.2,3, quantum dots.sup.4 and defect centres.sup.5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization.sup.6-11, enabling the observation of free-electron quantum walks.sup.12-14, attosecond electron pulses.sup.10,15-17 and holographic electromagnetic imaging.sup.18. Chip-based photonics.sup.19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q.sub.0 [almost equal to] 10.sup.6) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy.sup.21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates.sup.22, beam modulators and continuous-wave attosecond pulse trains.sup.23, resonantly enhanced spectroscopy.sup.24-26 and dielectric laser acceleration.sup.19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics.sup.28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement. A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology. Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2,3 , quantum dots 4 and defect centres 5 . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization 6–11 , enabling the observation of free-electron quantum walks 12–14 , attosecond electron pulses 10,15–17 and holographic electromagnetic imaging 18 . Chip-based photonics 19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse ( Q 0 ≈ 10 6 ) cavity enhancement and a waveguide designed for phase matching lead to efficient electron–light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy 21 . The fibre-coupled photonic structures feature single-optical-mode electron–light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates 22 , beam modulators and continuous-wave attosecond pulse trains 23 , resonantly enhanced spectroscopy 24–26 and dielectric laser acceleration 19,20,27 . Our work introduces a universal platform for exploring free-electron quantum optics 28–31 , with potential future developments in strong coupling, local quantum probing and electron–photon entanglement. |
Audience | Academic |
Author | Raja, Arslan Sajid Huang, Guanhao Feist, Armin Kappert, F. Jasmin Yang, Yujia Arend, Germaine Liu, Junqiu Henke, Jan-Wilke Ropers, Claus Kfir, Ofer Wang, Rui Ning Möller, Marcel Kippenberg, Tobias J. Pan, Jiahe |
Author_xml | – sequence: 1 givenname: Jan-Wilke surname: Henke fullname: Henke, Jan-Wilke organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 2 givenname: Arslan Sajid surname: Raja fullname: Raja, Arslan Sajid organization: Swiss Federal Institute of Technology Lausanne (EPFL) – sequence: 3 givenname: Armin orcidid: 0000-0003-1434-8895 surname: Feist fullname: Feist, Armin organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 4 givenname: Guanhao surname: Huang fullname: Huang, Guanhao organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL – sequence: 5 givenname: Germaine surname: Arend fullname: Arend, Germaine organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 6 givenname: Yujia orcidid: 0000-0003-1524-7973 surname: Yang fullname: Yang, Yujia organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL – sequence: 7 givenname: F. Jasmin surname: Kappert fullname: Kappert, F. Jasmin organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 8 givenname: Rui Ning orcidid: 0000-0002-5704-3971 surname: Wang fullname: Wang, Rui Ning organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL – sequence: 9 givenname: Marcel orcidid: 0000-0002-2518-5764 surname: Möller fullname: Möller, Marcel organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 10 givenname: Jiahe surname: Pan fullname: Pan, Jiahe organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL – sequence: 11 givenname: Junqiu orcidid: 0000-0003-2405-6028 surname: Liu fullname: Liu, Junqiu organization: Swiss Federal Institute of Technology Lausanne (EPFL) – sequence: 12 givenname: Ofer orcidid: 0000-0003-1253-9372 surname: Kfir fullname: Kfir, Ofer organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 13 givenname: Claus orcidid: 0000-0002-9539-3817 surname: Ropers fullname: Ropers, Claus email: claus.ropers@mpinat.mpg.de organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences – sequence: 14 givenname: Tobias J. orcidid: 0000-0002-3408-886X surname: Kippenberg fullname: Kippenberg, Tobias J. email: tobias.kippenberg@epfl.ch organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34937900$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEYhYNU7If-AS9k0RtFpiaTyddNYVmsLhQFrXgZMpl3pikzyXaSEf33Zru17Za15GIg85zz5uWcQ7TngweEXhJ8TDCVH2JFmOQFLkmBK6JEwZ6gA1IJXlRcij10gHEpCywp30eHMV5ijBkR1TO0TytFhcL4AJ0ufYJuNAma2eoipOCdjTPwpu4hzmzwyfkpTLGowQwz6MGmMfiMmgizITRTb5IL_jl62po-woub7xH6cfrxfPG5OPv6abmYnxVWVGUqZI0NMYyypoRaQsuMhLxKLSpmucDMMCFbRbmsm5pj0yqjDK_atqxJpRjn9AidbHxXUz1AY8Gn0fR6NbrBjH90ME5v__HuQnfhl5ZcMSpkNnh7YzCGqwli0oOLFvreeMhr6pITWipKmcjomwfoZZhGn9dbU7wshRT8jupMD9r5NuS5dm2q5zkFrlSemqliB9WBh_zInGrr8vUW_3oHb1fuSt-HjndA-TQwOLvT9d2WYB0v_E6dmWLUy-_fttn3_2fn5z8XX7bpV_dzuQ3kX9EyUG4AO4YYR2hvEYL1us1602ad26yv26xZFskHIuvSdd_yoq5_XEo30pjn-A7Gu_AeUf0FrX8FOg |
CitedBy_id | crossref_primary_10_1103_PhysRevA_106_043708 crossref_primary_10_1021_acsphotonics_3c01574 crossref_primary_10_1038_s41563_023_01490_8 crossref_primary_10_1017_S1431927622003579 crossref_primary_10_1021_acsphotonics_3c00047 crossref_primary_10_1017_S1431927622007735 crossref_primary_10_1021_acsnano_3c11211 crossref_primary_10_1103_PhysRevB_109_134305 crossref_primary_10_1126_science_adn1876 crossref_primary_10_1126_sciadv_adp4096 crossref_primary_10_1017_S0022377823001319 crossref_primary_10_1515_nanoph_2023_0907 crossref_primary_10_1126_science_abo5037 crossref_primary_10_1021_acsnano_3c12977 crossref_primary_10_1088_1361_6633_ad9052 crossref_primary_10_1088_1674_1056_ad0141 crossref_primary_10_1016_j_inoche_2023_110991 crossref_primary_10_1016_j_sbi_2024_102805 crossref_primary_10_1038_s41566_024_01380_8 crossref_primary_10_1093_micmic_ozad067_193 crossref_primary_10_1103_PhysRevLett_132_035001 crossref_primary_10_1051_bioconf_202412909009 crossref_primary_10_1364_AO_514085 crossref_primary_10_1103_PhysRevLett_132_073801 crossref_primary_10_1021_acsnano_3c07593 crossref_primary_10_1364_OE_502407 crossref_primary_10_1088_1367_2630_ada8d0 crossref_primary_10_1103_PhysRevResearch_6_043033 crossref_primary_10_1038_s41467_023_38857_z crossref_primary_10_1063_5_0118096 crossref_primary_10_1103_PhysRevLett_134_043803 crossref_primary_10_1126_sciadv_adh2425 crossref_primary_10_1103_PhysRevLett_134_043804 crossref_primary_10_1016_j_ultramic_2023_113759 crossref_primary_10_1088_1361_6455_ada989 crossref_primary_10_1016_j_ultramic_2022_113539 crossref_primary_10_1093_micmic_ozad067_181 crossref_primary_10_7498_aps_71_20221289 crossref_primary_10_1126_sciadv_adi9171 crossref_primary_10_1126_science_adk2489 crossref_primary_10_1016_j_micron_2022_103330 crossref_primary_10_1038_s41567_023_01954_3 crossref_primary_10_1016_j_crmeth_2022_100387 crossref_primary_10_7498_aps_71_20220158 crossref_primary_10_1002_adma_202203889 crossref_primary_10_1364_OE_491452 crossref_primary_10_1038_s41467_023_39979_0 crossref_primary_10_1063_5_0134993 crossref_primary_10_1103_PhysRevLett_131_113002 crossref_primary_10_1021_acsphotonics_2c00850 crossref_primary_10_1038_s41563_022_01449_1 crossref_primary_10_1126_science_abj7128 crossref_primary_10_1103_PhysRevA_109_023722 crossref_primary_10_1103_PhysRevLett_133_213801 crossref_primary_10_1051_bioconf_202412932004 crossref_primary_10_1103_PhysRevX_13_031001 crossref_primary_10_1103_PhysRevApplied_20_054045 crossref_primary_10_1038_s41534_022_00540_4 crossref_primary_10_1088_2053_1583_ad97c8 crossref_primary_10_1103_PhysRevResearch_4_013241 crossref_primary_10_1103_PhysRevResearch_5_043271 crossref_primary_10_1038_s41467_023_42054_3 crossref_primary_10_1093_jmicro_dfac054 crossref_primary_10_1103_PhysRevLett_133_250801 crossref_primary_10_1038_s41567_024_02743_2 crossref_primary_10_1063_4_0000284 crossref_primary_10_1051_bioconf_202412903003 crossref_primary_10_1103_PhysRevResearch_4_033071 crossref_primary_10_1364_AOP_461142 crossref_primary_10_1063_5_0156353 crossref_primary_10_1103_PhysRevLett_129_093401 crossref_primary_10_1016_j_scib_2023_06_006 crossref_primary_10_3389_fphy_2022_1061172 crossref_primary_10_1038_d41586_021_03767_x crossref_primary_10_1103_PRXQuantum_5_010339 crossref_primary_10_1021_acsphotonics_2c01432 crossref_primary_10_1103_PhysRevA_111_012610 crossref_primary_10_1103_PRXQuantum_4_020351 crossref_primary_10_1515_nanoph_2024_0326 crossref_primary_10_1364_OE_542930 crossref_primary_10_1021_acs_nanolett_4c04491 crossref_primary_10_1364_OL_455763 crossref_primary_10_1103_PhysRevLett_128_235301 |
Cites_doi | 10.1364/OL.40.004344 10.1126/science.1213504 10.1038/s41567-017-0007-6 10.1103/PhysRevLett.123.103602 10.1126/science.aah6875 10.1103/RevModPhys.82.209 10.1038/s41586-020-2811-x 10.1038/s41467-018-05021-x 10.1103/PhysRevResearch.2.043227 10.1126/science.abd2774 10.1038/s41586-020-2320-y 10.1038/s41566-017-0045-8 10.1103/PhysRevSTAB.11.061301 10.1038/s41467-021-21973-z 10.1039/D0NR07962F 10.1126/science.1166135 10.1364/JOSA.55.001205 10.1016/j.chemphys.2013.06.026 10.1088/1367-2630/10/7/073035 10.1038/s41377-021-00511-y 10.1038/nchem.1622 10.1126/sciadv.abb1393 10.1515/nanoph-2020-0263 10.1038/nature14463 10.1038/s41563-019-0409-1 10.1103/PhysRevLett.124.064801 10.1103/PhysRevApplied.7.024026 10.1103/PhysRevLett.120.103203 10.1038/s41566-018-0312-3 10.1038/s41563-019-0336-1 10.1103/RevModPhys.91.035003 10.1364/OPTICA.3.000020 10.1103/PhysRevLett.126.123901 10.1238/Physica.Topical.076a00127 10.1038/nature21699 10.1103/RevModPhys.87.347 10.1126/sciadv.aav8358 10.1103/PhysRevA.99.052107 10.1016/j.ultramic.2017.12.015 10.1126/science.aav5845 10.1021/acsphotonics.9b00830 10.1038/nphys3844 10.1364/OPTICA.6.001524 10.1038/ncomms7407 10.1103/PhysRevResearch.3.L032036 10.1364/OL.27.001669 10.1038/s41566-018-0309-y 10.1126/science.abg0330 10.1126/science.aay5734 10.1038/s41586-021-03812-9 10.1016/j.ultramic.2018.12.011 10.1364/OE.22.030786 10.1063/1.5009822 10.1021/acsphotonics.7b01393 10.1364/OL.43.003200 10.1126/sciadv.abe4270 10.1063/1.4984586 10.1126/science.1237125 10.1038/s41592-019-0552-2 10.1364/OL.41.003134 10.1126/science.aad4811 10.1038/s41586-020-2823-6 10.1103/PhysRevLett.126.233402 10.1038/s41586-020-2321-x 10.1038/ncomms11230 10.1126/science.1179314 10.1364/OE.25.019195 10.1038/nature22387 10.1103/RevModPhys.86.1337 10.1126/sciadv.abf6380 10.1126/science.abj7128 10.1038/nature08662 10.1088/1367-2630/12/12/123028 10.1038/s41567-020-01042-w 10.1021/nl1034732 10.1016/j.ultramic.2016.12.005 10.1117/12.2601565 10.22443/rms.emc2020.1040 10.1016/bs.aiep.2019.08.005 10.1126/science.aan8083 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Dec 23-Dec 30, 2021 |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 23-Dec 30, 2021 |
DBID | C6C AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-021-04197-5 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 658 |
ExternalDocumentID | PMC8695378 A687699783 34937900 10_1038_s41586_021_04197_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Switzerland Germany |
GeographicLocations_xml | – name: Switzerland – name: Germany |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ .HR 00M 08P 0B8 1CY 1VW 354 3EH 3O- 3V. 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE M0L MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 SOI 7X8 AGSTI PUEGO 5PM |
ID | FETCH-LOGICAL-c742t-8b0a1a535d2eb8ef5a8e103b745c6705a578f9368bdb60af9a9a64ff2b1495663 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 14:03:24 EDT 2025 Fri Sep 05 01:32:40 EDT 2025 Fri Jul 25 08:57:06 EDT 2025 Tue Jun 17 21:28:50 EDT 2025 Thu Jun 12 23:42:42 EDT 2025 Tue Jun 10 15:32:08 EDT 2025 Tue Jun 10 20:14:17 EDT 2025 Fri Jun 27 04:10:34 EDT 2025 Fri Jun 27 04:17:09 EDT 2025 Wed Feb 19 02:11:02 EST 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 02:32:32 EDT 2025 Fri Feb 21 02:37:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7890 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c742t-8b0a1a535d2eb8ef5a8e103b745c6705a578f9368bdb60af9a9a64ff2b1495663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3408-886X 0000-0003-1524-7973 0000-0002-9539-3817 0000-0003-1253-9372 0000-0002-2518-5764 0000-0003-1434-8895 0000-0002-5704-3971 0000-0003-2405-6028 |
OpenAccessLink | https://www.nature.com/articles/s41586-021-04197-5 |
PMID | 34937900 |
PQID | 2616227876 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8695378 proquest_miscellaneous_2613293357 proquest_journals_2616227876 gale_infotracmisc_A687699783 gale_infotracgeneralonefile_A687699783 gale_infotraccpiq_687699783 gale_infotracacademiconefile_A687699783 gale_incontextgauss_ISR_A687699783 gale_incontextgauss_ATWCN_A687699783 pubmed_primary_34937900 crossref_primary_10_1038_s41586_021_04197_5 crossref_citationtrail_10_1038_s41586_021_04197_5 springer_journals_10_1038_s41586_021_04197_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-23 |
PublicationDateYYYYMMDD | 2021-12-23 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Piazza (CR7) 2015; 6 Priebe (CR10) 2017; 11 Pomarico (CR60) 2018; 5 Sapra (CR20) 2020; 367 Polman, Kociak, García de Abajo (CR54) 2019; 18 Dahan (CR14) 2021; 373 van der Veen, Kwon, Tissot, Hauser, Zewail (CR33) 2013; 5 Lagos, Trügler, Hohenester, Batson (CR78) 2017; 543 Kimble (CR49) 1998; T76 Ryabov, Thurner, Nabben, Tsarev, Baum (CR23) 2020; 6 García de Abajo (CR8) 2010; 82 Shiloh (CR27) 2021; 597 Wang (CR37) 2020; 582 Barwick, Flannigan, Zewail (CR6) 2009; 462 Liu (CR45) 2019; 6 Niffenegger (CR3) 2020; 586 Echternkamp, Feist, Schäfer, Ropers (CR13) 2016; 12 García de Abajo, Konečná (CR40) 2021; 126 Thompson (CR1) 2013; 340 Mehta (CR2) 2020; 586 Kozák (CR46) 2017; 25 Danz, Domröse, Ropers (CR35) 2021; 371 Kippenberg, Spillane, Vahala (CR59) 2002; 27 Yurtsever, Zewail (CR73) 2009; 326 Yurtsever, van der Veen, Zewail (CR36) 2012; 335 Obrzud (CR65) 2019; 13 Park, Lin, Zewail (CR50) 2010; 12 Leedle (CR58) 2015; 40 Brasch, Chen, Schiller, Kippenberg (CR62) 2014; 22 CR42 CR81 Kozák, Schönenberger, Hommelhoff (CR17) 2018; 120 Pfeiffer (CR57) 2016; 3 Gover, Yariv (CR24) 2020; 124 Houdellier, Caruso, Weber, Kociak, Arbouet (CR72) 2018; 186 Vanacore (CR39) 2019; 18 Liu (CR56) 2021; 12 Sipahigil (CR5) 2016; 354 Schwartz (CR22) 2019; 16 Rubiano da Silva (CR76) 2018; 8 Marin-Palomo (CR64) 2017; 546 Morimoto, Baum (CR16) 2018; 14 Liebtrau (CR38) 2021; 10 Christopher (CR53) 2020; 9 Lodahl, Mahmoodian, Stobbe (CR4) 2015; 87 Feist, Rubiano da Silva, Liang, Ropers, Schäfer (CR74) 2018; 5 García de Abajo, Kociak (CR21) 2008; 10 Malitson (CR61) 1965; 55 Liu (CR69) 2016; 41 Yalunin, Feist, Ropers (CR26) 2021; 3 Hachtel (CR79) 2019; 363 CR52 Pan, Gover (CR30) 2019; 99 Feist (CR70) 2017; 176 Zewail (CR32) 2010; 328 Di Giulio, Kociak, de Abajo (CR29) 2019; 6 Feist (CR12) 2015; 521 Cremons, Plemmons, Flannigan (CR34) 2016; 7 Li (CR80) 2021; 371 Gover (CR41) 2019; 91 Brasch (CR55) 2016; 351 Pfeiffer, Liu, Geiselmann, Kippenberg (CR67) 2017; 7 Kfir, Di Giulio, de Abajo, Ropers (CR43) 2021; 7 Das (CR44) 2019; 203 Liu (CR68) 2018; 43 Feist, Yalunin, Schäfer, Ropers (CR11) 2020; 2 Madan (CR18) 2019; 5 Kfir (CR28) 2019; 123 Cao, Jiang, Åkerman, Weissenrieder (CR77) 2021; 13 CR63 Vanacore (CR9) 2018; 9 Zhao, Sun, Fan (CR25) 2021; 126 Dahan (CR47) 2020; 16 Kfir (CR48) 2020; 582 Piazza (CR71) 2013; 423 Ben Hayun (CR31) 2021; 7 Sears (CR15) 2008; 11 England (CR19) 2014; 86 Suh (CR66) 2019; 13 Bendaña, Polman, García de Abajo (CR51) 2011; 11 Schliep, Quarterman, Wang, Flannigan (CR75) 2017; 110 M-G Suh (4197_CR66) 2019; 13 A Feist (4197_CR12) 2015; 521 O Kfir (4197_CR43) 2021; 7 A Feist (4197_CR70) 2017; 176 KE Priebe (4197_CR10) 2017; 11 FJ García de Abajo (4197_CR40) 2021; 126 RJ Niffenegger (4197_CR3) 2020; 586 E Pomarico (4197_CR60) 2018; 5 L Piazza (4197_CR71) 2013; 423 FJ García de Abajo (4197_CR21) 2008; 10 T Danz (4197_CR35) 2021; 371 RM van der Veen (4197_CR33) 2013; 5 SV Yalunin (4197_CR26) 2021; 3 MJ Lagos (4197_CR78) 2017; 543 FJ García de Abajo (4197_CR8) 2010; 82 Z Zhao (4197_CR25) 2021; 126 J Christopher (4197_CR53) 2020; 9 JD Thompson (4197_CR1) 2013; 340 O Kfir (4197_CR28) 2019; 123 A Yurtsever (4197_CR36) 2012; 335 IH Malitson (4197_CR61) 1965; 55 4197_CR63 M Liebtrau (4197_CR38) 2021; 10 DR Cremons (4197_CR34) 2016; 7 KB Schliep (4197_CR75) 2017; 110 I Madan (4197_CR18) 2019; 5 A Gover (4197_CR24) 2020; 124 V Brasch (4197_CR62) 2014; 22 A Ryabov (4197_CR23) 2020; 6 P Das (4197_CR44) 2019; 203 J Liu (4197_CR69) 2016; 41 F Houdellier (4197_CR72) 2018; 186 A Sipahigil (4197_CR5) 2016; 354 O Kfir (4197_CR48) 2020; 582 KK Mehta (4197_CR2) 2020; 586 J Liu (4197_CR68) 2018; 43 E Obrzud (4197_CR65) 2019; 13 N Rubiano da Silva (4197_CR76) 2018; 8 R Shiloh (4197_CR27) 2021; 597 KE Echternkamp (4197_CR13) 2016; 12 4197_CR52 R Dahan (4197_CR47) 2020; 16 A Yurtsever (4197_CR73) 2009; 326 M Kozák (4197_CR17) 2018; 120 R Dahan (4197_CR14) 2021; 373 K Wang (4197_CR37) 2020; 582 ST Park (4197_CR50) 2010; 12 P Marin-Palomo (4197_CR64) 2017; 546 CMS Sears (4197_CR15) 2008; 11 M Kozák (4197_CR46) 2017; 25 RJ England (4197_CR19) 2014; 86 HJ Kimble (4197_CR49) 1998; T76 L Piazza (4197_CR7) 2015; 6 A Polman (4197_CR54) 2019; 18 JA Hachtel (4197_CR79) 2019; 363 V Di Giulio (4197_CR29) 2019; 6 A Gover (4197_CR41) 2019; 91 Y Morimoto (4197_CR16) 2018; 14 B Barwick (4197_CR6) 2009; 462 P Lodahl (4197_CR4) 2015; 87 O Schwartz (4197_CR22) 2019; 16 G Cao (4197_CR77) 2021; 13 Y Pan (4197_CR30) 2019; 99 C Liu (4197_CR45) 2019; 6 A Feist (4197_CR74) 2018; 5 4197_CR42 J Liu (4197_CR56) 2021; 12 A Feist (4197_CR11) 2020; 2 X Li (4197_CR80) 2021; 371 AH Zewail (4197_CR32) 2010; 328 GM Vanacore (4197_CR39) 2019; 18 V Brasch (4197_CR55) 2016; 351 GM Vanacore (4197_CR9) 2018; 9 4197_CR81 X Bendaña (4197_CR51) 2011; 11 NV Sapra (4197_CR20) 2020; 367 TJ Kippenberg (4197_CR59) 2002; 27 MHP Pfeiffer (4197_CR57) 2016; 3 MHP Pfeiffer (4197_CR67) 2017; 7 KJ Leedle (4197_CR58) 2015; 40 A Ben Hayun (4197_CR31) 2021; 7 34937890 - Nature. 2021 Dec;600(7890):610-611 |
References_xml | – volume: 40 start-page: 4344 year: 2015 ident: CR58 article-title: Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures publication-title: Opt. Lett. doi: 10.1364/OL.40.004344 – volume: 335 start-page: 59 year: 2012 end-page: 64 ident: CR36 article-title: Subparticle ultrafast spectrum imaging in 4D electron microscopy publication-title: Science doi: 10.1126/science.1213504 – volume: 14 start-page: 252 year: 2018 end-page: 256 ident: CR16 article-title: Diffraction and microscopy with attosecond electron pulse trains publication-title: Nat. Phys. doi: 10.1038/s41567-017-0007-6 – volume: 123 start-page: 103602 year: 2019 ident: CR28 article-title: Entanglements of electrons and cavity photons in the strong-coupling regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.103602 – volume: 354 start-page: 847 year: 2016 end-page: 850 ident: CR5 article-title: An integrated diamond nanophotonics platform for quantum-optical networks publication-title: Science doi: 10.1126/science.aah6875 – volume: 82 start-page: 209 year: 2010 end-page: 275 ident: CR8 article-title: Optical excitations in electron microscopy publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.209 – volume: 586 start-page: 538 year: 2020 end-page: 542 ident: CR3 article-title: Integrated multi-wavelength control of an ion qubit publication-title: Nature doi: 10.1038/s41586-020-2811-x – volume: 9 year: 2018 ident: CR9 article-title: Attosecond coherent control of free-electron wave functions using semi-infinite light fields publication-title: Nat. Commun. doi: 10.1038/s41467-018-05021-x – volume: 2 start-page: 043227 year: 2020 ident: CR11 article-title: High-purity free-electron momentum states prepared by three-dimensional optical phase modulation publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043227 – volume: 371 start-page: 371 year: 2021 end-page: 374 ident: CR35 article-title: Ultrafast nanoimaging of the order parameter in a structural phase transition publication-title: Science doi: 10.1126/science.abd2774 – volume: 582 start-page: 46 year: 2020 end-page: 49 ident: CR48 article-title: Controlling free electrons with optical whispering-gallery modes publication-title: Nature doi: 10.1038/s41586-020-2320-y – volume: 11 start-page: 793 year: 2017 end-page: 797 ident: CR10 article-title: Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy publication-title: Nat. Photon. doi: 10.1038/s41566-017-0045-8 – volume: 11 start-page: 061301 year: 2008 ident: CR15 article-title: Production and characterization of attosecond electron bunch trains publication-title: Phys. Rev. Spec. Top. Accel. Beams doi: 10.1103/PhysRevSTAB.11.061301 – volume: 12 year: 2021 ident: CR56 article-title: High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits publication-title: Nat. Commun. doi: 10.1038/s41467-021-21973-z – volume: 13 start-page: 3746 year: 2021 end-page: 3756 ident: CR77 article-title: Femtosecond laser driven precessing magnetic gratings publication-title: Nanoscale doi: 10.1039/D0NR07962F – volume: 328 start-page: 187 year: 2010 end-page: 193 ident: CR32 article-title: Four-dimensional electron microscopy publication-title: Science doi: 10.1126/science.1166135 – volume: 55 start-page: 1205 year: 1965 end-page: 1209 ident: CR61 article-title: Interspecimen comparison of the refractive index of fused silica publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.55.001205 – volume: 423 start-page: 79 year: 2013 end-page: 84 ident: CR71 article-title: Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2013.06.026 – volume: 10 start-page: 073035 year: 2008 ident: CR21 article-title: Electron energy-gain spectroscopy publication-title: New J. Phys. doi: 10.1088/1367-2630/10/7/073035 – ident: CR42 – volume: 10 year: 2021 ident: CR38 article-title: Spontaneous and stimulated electron– photon interactions in nanoscale plasmonic near fields publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00511-y – volume: 5 start-page: 395 year: 2013 end-page: 402 ident: CR33 article-title: Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy publication-title: Nat. Chem. doi: 10.1038/nchem.1622 – volume: 6 start-page: eabb1393 year: 2020 ident: CR23 article-title: Attosecond metrology in a continuous-beam transmission electron microscope publication-title: Sci. Adv. doi: 10.1126/sciadv.abb1393 – volume: 9 start-page: 4381 year: 2020 end-page: 4406 ident: CR53 article-title: Electron-driven photon sources for correlative electron-photon spectroscopy with electron microscopes publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0263 – volume: 521 start-page: 200 year: 2015 end-page: 203 ident: CR12 article-title: Quantum coherent optical phase modulation in an ultrafast transmission electron microscope publication-title: Nature doi: 10.1038/nature14463 – volume: 18 start-page: 1158 year: 2019 end-page: 1171 ident: CR54 article-title: Electron-beam spectroscopy for nanophotonics publication-title: Nat. Mater. doi: 10.1038/s41563-019-0409-1 – volume: 124 start-page: 064801 year: 2020 ident: CR24 article-title: Free-electron–bound-electron resonant interaction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.064801 – volume: 7 start-page: 024026 year: 2017 ident: CR67 article-title: Coupling ideality of integrated planar high-Q microresonators publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.024026 – volume: 120 start-page: 103203 year: 2018 ident: CR17 article-title: Ponderomotive generation and detection of attosecond free-electron pulse trains publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.103203 – volume: 13 start-page: 25 year: 2019 end-page: 30 ident: CR66 article-title: Searching for exoplanets using a microresonator astrocomb publication-title: Nat. Photon. doi: 10.1038/s41566-018-0312-3 – volume: 18 start-page: 573 year: 2019 end-page: 579 ident: CR39 article-title: Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields publication-title: Nat. Mater. doi: 10.1038/s41563-019-0336-1 – volume: 91 start-page: 035003 year: 2019 ident: CR41 article-title: Superradiant and stimulated-superradiant emission of bunched electron beams publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.035003 – volume: 3 start-page: 20 year: 2016 end-page: 25 ident: CR57 article-title: Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics publication-title: Optica doi: 10.1364/OPTICA.3.000020 – volume: 126 start-page: 123901 year: 2021 ident: CR40 article-title: Optical modulation of electron beams in free space publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.123901 – volume: T76 start-page: 127 year: 1998 ident: CR49 article-title: Strong interactions of single atoms and photons in cavity QED publication-title: Phys. Scripta doi: 10.1238/Physica.Topical.076a00127 – volume: 543 start-page: 529 year: 2017 end-page: 532 ident: CR78 article-title: Mapping vibrational surface and bulk modes in a single nanocube publication-title: Nature doi: 10.1038/nature21699 – ident: CR81 – volume: 87 start-page: 347 year: 2015 end-page: 400 ident: CR4 article-title: Interfacing single photons and single quantum dots with photonic nanostructures publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.347 – volume: 5 start-page: eaav8358 year: 2019 ident: CR18 article-title: Holographic imaging of electromagnetic fields via electron-light quantum interference publication-title: Sci. Adv. doi: 10.1126/sciadv.aav8358 – volume: 99 start-page: 052107 year: 2019 ident: CR30 article-title: Spontaneous and stimulated emissions of a preformed quantum free-electron wave function publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.052107 – volume: 186 start-page: 128 year: 2018 end-page: 138 ident: CR72 article-title: Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.12.015 – volume: 363 start-page: 525 year: 2019 end-page: 528 ident: CR79 article-title: Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope publication-title: Science doi: 10.1126/science.aav5845 – volume: 6 start-page: 2499 year: 2019 end-page: 2508 ident: CR45 article-title: Continuous wave resonant photon stimulated electron energy-gain and electron energy-loss spectroscopy of individual plasmonic nanoparticles publication-title: ACS Photon. doi: 10.1021/acsphotonics.9b00830 – volume: 12 start-page: 1000 year: 2016 end-page: 1004 ident: CR13 article-title: Ramsey-type phase control of free-electron beams publication-title: Nat. Phys. doi: 10.1038/nphys3844 – volume: 6 start-page: 1524 year: 2019 ident: CR29 article-title: Probing quantum optical excitations with fast electrons publication-title: Optica doi: 10.1364/OPTICA.6.001524 – volume: 8 start-page: 031052 year: 2018 ident: CR76 article-title: Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy publication-title: Phys. Rev. X – volume: 6 year: 2015 ident: CR7 article-title: Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field publication-title: Nat. Commun. doi: 10.1038/ncomms7407 – volume: 3 start-page: L032036 year: 2021 ident: CR26 article-title: Tailored high-contrast attosecond electron pulses for coherent excitation and scattering publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L032036 – volume: 27 start-page: 1669 year: 2002 end-page: 1671 ident: CR59 article-title: Modal coupling in traveling-wave resonators publication-title: Opt. Lett. doi: 10.1364/OL.27.001669 – volume: 13 start-page: 31 year: 2019 end-page: 35 ident: CR65 article-title: A microphotonic astrocomb publication-title: Nat. Photon. doi: 10.1038/s41566-018-0309-y – volume: 371 start-page: 1364 year: 2021 end-page: 1367 ident: CR80 article-title: Three-dimensional vectorial imaging of surface phonon polaritons publication-title: Science doi: 10.1126/science.abg0330 – volume: 367 start-page: 79 year: 2020 end-page: 83 ident: CR20 article-title: On-chip integrated laser-driven particle accelerator publication-title: Science doi: 10.1126/science.aay5734 – volume: 597 start-page: 498 year: 2021 end-page: 502 ident: CR27 article-title: Electron phase-space control in photonic chip-based particle acceleration publication-title: Nature doi: 10.1038/s41586-021-03812-9 – volume: 203 start-page: 44 year: 2019 end-page: 51 ident: CR44 article-title: Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2018.12.011 – volume: 22 start-page: 30786 year: 2014 end-page: 30794 ident: CR62 article-title: Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics publication-title: Opt. Express doi: 10.1364/OE.22.030786 – volume: 5 start-page: 014302 year: 2018 ident: CR74 article-title: Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy publication-title: Struct. Dynam. doi: 10.1063/1.5009822 – volume: 5 start-page: 759 year: 2018 end-page: 764 ident: CR60 article-title: meV resolution in laser-assisted energy-filtered transmission electron microscopy publication-title: ACS Photon. doi: 10.1021/acsphotonics.7b01393 – volume: 43 start-page: 3200 year: 2018 end-page: 3203 ident: CR68 article-title: Double inverse nanotapers for efficient light coupling to integrated photonic devices publication-title: Opt. Lett. doi: 10.1364/OL.43.003200 – volume: 7 start-page: eabe4270 year: 2021 ident: CR31 article-title: Shaping quantum photonic states using free electrons publication-title: Sci. Adv. doi: 10.1126/sciadv.abe4270 – volume: 110 start-page: 222404 year: 2017 ident: CR75 article-title: Picosecond Fresnel transmission electron microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4984586 – volume: 340 start-page: 1202 year: 2013 end-page: 1205 ident: CR1 article-title: Coupling a single trapped atom to a nanoscale optical cavity publication-title: Science doi: 10.1126/science.1237125 – volume: 16 start-page: 1016 year: 2019 end-page: 1020 ident: CR22 article-title: Laser phase plate for transmission electron microscopy publication-title: Nat. Methods doi: 10.1038/s41592-019-0552-2 – ident: CR63 – volume: 41 start-page: 3134 year: 2016 end-page: 3137 ident: CR69 article-title: Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers publication-title: Opt. Lett. doi: 10.1364/OL.41.003134 – volume: 351 start-page: 357 year: 2016 end-page: 360 ident: CR55 article-title: Photonic chip– based optical frequency comb using soliton Cherenkov radiation publication-title: Science doi: 10.1126/science.aad4811 – volume: 586 start-page: 533 year: 2020 end-page: 537 ident: CR2 article-title: Integrated optical multi-ion quantum logic publication-title: Nature doi: 10.1038/s41586-020-2823-6 – volume: 126 start-page: 233402 year: 2021 ident: CR25 article-title: Quantum entanglement and modulation enhancement of free-electron–bound-electron interaction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.233402 – volume: 582 start-page: 50 year: 2020 end-page: 54 ident: CR37 article-title: Coherent interaction between free electrons and a photonic cavity publication-title: Nature doi: 10.1038/s41586-020-2321-x – volume: 7 year: 2016 ident: CR34 article-title: Femtosecond electron imaging of defect-modulated phonon dynamics publication-title: Nat. Commun. doi: 10.1038/ncomms11230 – ident: CR52 – volume: 326 start-page: 708 year: 2009 end-page: 712 ident: CR73 article-title: 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy publication-title: Science doi: 10.1126/science.1179314 – volume: 25 start-page: 19195 year: 2017 end-page: 19204 ident: CR46 article-title: Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface publication-title: Opt. Express doi: 10.1364/OE.25.019195 – volume: 546 start-page: 274 year: 2017 end-page: 279 ident: CR64 article-title: Microresonator-based solitons for massively parallel coherent optical communications publication-title: Nature doi: 10.1038/nature22387 – volume: 86 start-page: 1337 year: 2014 end-page: 1389 ident: CR19 article-title: Dielectric laser accelerators publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1337 – volume: 7 start-page: eabf6380 year: 2021 ident: CR43 article-title: Optical coherence transfer mediated by free electrons publication-title: Sci. Adv. doi: 10.1126/sciadv.abf6380 – volume: 373 start-page: eabj7128 year: 2021 ident: CR14 article-title: Imprinting the quantum statistics of photons on free electrons publication-title: Science doi: 10.1126/science.abj7128 – volume: 462 start-page: 902 year: 2009 end-page: 906 ident: CR6 article-title: Photon-induced near-field electron microscopy publication-title: Nature doi: 10.1038/nature08662 – volume: 12 start-page: 123028 year: 2010 ident: CR50 article-title: Photon-induced near-field electron microscopy (PINEM): theoretical and experimental publication-title: New J. Phys. doi: 10.1088/1367-2630/12/12/123028 – volume: 16 start-page: 1123 year: 2020 end-page: 1131 ident: CR47 article-title: Resonant phase-matching between a light wave and a free-electron wavefunction publication-title: Nat. Phys. doi: 10.1038/s41567-020-01042-w – volume: 11 start-page: 5099 year: 2011 end-page: 5103 ident: CR51 article-title: Single-photon generation by electron beams publication-title: Nano Lett. doi: 10.1021/nl1034732 – volume: 176 start-page: 63 year: 2017 end-page: 73 ident: CR70 article-title: Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.12.005 – volume: 13 start-page: 3746 year: 2021 ident: 4197_CR77 publication-title: Nanoscale doi: 10.1039/D0NR07962F – volume: 543 start-page: 529 year: 2017 ident: 4197_CR78 publication-title: Nature doi: 10.1038/nature21699 – volume: 462 start-page: 902 year: 2009 ident: 4197_CR6 publication-title: Nature doi: 10.1038/nature08662 – volume: 110 start-page: 222404 year: 2017 ident: 4197_CR75 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4984586 – volume: 16 start-page: 1123 year: 2020 ident: 4197_CR47 publication-title: Nat. Phys. doi: 10.1038/s41567-020-01042-w – volume: 10 start-page: 073035 year: 2008 ident: 4197_CR21 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/7/073035 – volume: 82 start-page: 209 year: 2010 ident: 4197_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.209 – volume: 12 year: 2021 ident: 4197_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21973-z – volume: 326 start-page: 708 year: 2009 ident: 4197_CR73 publication-title: Science doi: 10.1126/science.1179314 – volume: 597 start-page: 498 year: 2021 ident: 4197_CR27 publication-title: Nature doi: 10.1038/s41586-021-03812-9 – volume: 203 start-page: 44 year: 2019 ident: 4197_CR44 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2018.12.011 – volume: 582 start-page: 50 year: 2020 ident: 4197_CR37 publication-title: Nature doi: 10.1038/s41586-020-2321-x – volume: 373 start-page: eabj7128 year: 2021 ident: 4197_CR14 publication-title: Science doi: 10.1126/science.abj7128 – volume: 176 start-page: 63 year: 2017 ident: 4197_CR70 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.12.005 – volume: 328 start-page: 187 year: 2010 ident: 4197_CR32 publication-title: Science doi: 10.1126/science.1166135 – volume: 11 start-page: 061301 year: 2008 ident: 4197_CR15 publication-title: Phys. Rev. Spec. Top. Accel. Beams doi: 10.1103/PhysRevSTAB.11.061301 – volume: 5 start-page: 395 year: 2013 ident: 4197_CR33 publication-title: Nat. Chem. doi: 10.1038/nchem.1622 – volume: 41 start-page: 3134 year: 2016 ident: 4197_CR69 publication-title: Opt. Lett. doi: 10.1364/OL.41.003134 – volume: 3 start-page: L032036 year: 2021 ident: 4197_CR26 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L032036 – volume: 335 start-page: 59 year: 2012 ident: 4197_CR36 publication-title: Science doi: 10.1126/science.1213504 – volume: 13 start-page: 31 year: 2019 ident: 4197_CR65 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0309-y – volume: 124 start-page: 064801 year: 2020 ident: 4197_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.064801 – volume: 13 start-page: 25 year: 2019 ident: 4197_CR66 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0312-3 – volume: 120 start-page: 103203 year: 2018 ident: 4197_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.103203 – volume: 6 start-page: 1524 year: 2019 ident: 4197_CR29 publication-title: Optica doi: 10.1364/OPTICA.6.001524 – volume: 10 year: 2021 ident: 4197_CR38 publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00511-y – ident: 4197_CR42 doi: 10.1117/12.2601565 – volume: 340 start-page: 1202 year: 2013 ident: 4197_CR1 publication-title: Science doi: 10.1126/science.1237125 – volume: 7 year: 2016 ident: 4197_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms11230 – volume: 371 start-page: 371 year: 2021 ident: 4197_CR35 publication-title: Science doi: 10.1126/science.abd2774 – volume: 12 start-page: 123028 year: 2010 ident: 4197_CR50 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/12/123028 – volume: 9 year: 2018 ident: 4197_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05021-x – volume: 6 year: 2015 ident: 4197_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms7407 – volume: 6 start-page: 2499 year: 2019 ident: 4197_CR45 publication-title: ACS Photon. doi: 10.1021/acsphotonics.9b00830 – volume: 11 start-page: 5099 year: 2011 ident: 4197_CR51 publication-title: Nano Lett. doi: 10.1021/nl1034732 – ident: 4197_CR52 doi: 10.22443/rms.emc2020.1040 – volume: 7 start-page: eabf6380 year: 2021 ident: 4197_CR43 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf6380 – volume: 16 start-page: 1016 year: 2019 ident: 4197_CR22 publication-title: Nat. Methods doi: 10.1038/s41592-019-0552-2 – volume: 40 start-page: 4344 year: 2015 ident: 4197_CR58 publication-title: Opt. Lett. doi: 10.1364/OL.40.004344 – volume: 2 start-page: 043227 year: 2020 ident: 4197_CR11 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043227 – volume: 11 start-page: 793 year: 2017 ident: 4197_CR10 publication-title: Nat. Photon. doi: 10.1038/s41566-017-0045-8 – volume: 423 start-page: 79 year: 2013 ident: 4197_CR71 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2013.06.026 – ident: 4197_CR81 doi: 10.1016/bs.aiep.2019.08.005 – volume: 27 start-page: 1669 year: 2002 ident: 4197_CR59 publication-title: Opt. Lett. doi: 10.1364/OL.27.001669 – volume: 22 start-page: 30786 year: 2014 ident: 4197_CR62 publication-title: Opt. Express doi: 10.1364/OE.22.030786 – volume: T76 start-page: 127 year: 1998 ident: 4197_CR49 publication-title: Phys. Scripta doi: 10.1238/Physica.Topical.076a00127 – volume: 18 start-page: 1158 year: 2019 ident: 4197_CR54 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0409-1 – volume: 3 start-page: 20 year: 2016 ident: 4197_CR57 publication-title: Optica doi: 10.1364/OPTICA.3.000020 – volume: 363 start-page: 525 year: 2019 ident: 4197_CR79 publication-title: Science doi: 10.1126/science.aav5845 – volume: 367 start-page: 79 year: 2020 ident: 4197_CR20 publication-title: Science doi: 10.1126/science.aay5734 – volume: 7 start-page: eabe4270 year: 2021 ident: 4197_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe4270 – volume: 8 start-page: 031052 year: 2018 ident: 4197_CR76 publication-title: Phys. Rev. X – volume: 126 start-page: 233402 year: 2021 ident: 4197_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.233402 – volume: 351 start-page: 357 year: 2016 ident: 4197_CR55 publication-title: Science doi: 10.1126/science.aad4811 – volume: 87 start-page: 347 year: 2015 ident: 4197_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.347 – volume: 354 start-page: 847 year: 2016 ident: 4197_CR5 publication-title: Science doi: 10.1126/science.aah6875 – volume: 99 start-page: 052107 year: 2019 ident: 4197_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.052107 – volume: 5 start-page: 759 year: 2018 ident: 4197_CR60 publication-title: ACS Photon. doi: 10.1021/acsphotonics.7b01393 – volume: 5 start-page: eaav8358 year: 2019 ident: 4197_CR18 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav8358 – volume: 123 start-page: 103602 year: 2019 ident: 4197_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.103602 – volume: 586 start-page: 533 year: 2020 ident: 4197_CR2 publication-title: Nature doi: 10.1038/s41586-020-2823-6 – volume: 91 start-page: 035003 year: 2019 ident: 4197_CR41 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.035003 – volume: 9 start-page: 4381 year: 2020 ident: 4197_CR53 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0263 – volume: 18 start-page: 573 year: 2019 ident: 4197_CR39 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0336-1 – volume: 25 start-page: 19195 year: 2017 ident: 4197_CR46 publication-title: Opt. Express doi: 10.1364/OE.25.019195 – volume: 14 start-page: 252 year: 2018 ident: 4197_CR16 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0007-6 – volume: 586 start-page: 538 year: 2020 ident: 4197_CR3 publication-title: Nature doi: 10.1038/s41586-020-2811-x – ident: 4197_CR63 doi: 10.1126/science.aan8083 – volume: 12 start-page: 1000 year: 2016 ident: 4197_CR13 publication-title: Nat. Phys. doi: 10.1038/nphys3844 – volume: 86 start-page: 1337 year: 2014 ident: 4197_CR19 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1337 – volume: 126 start-page: 123901 year: 2021 ident: 4197_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.123901 – volume: 43 start-page: 3200 year: 2018 ident: 4197_CR68 publication-title: Opt. Lett. doi: 10.1364/OL.43.003200 – volume: 521 start-page: 200 year: 2015 ident: 4197_CR12 publication-title: Nature doi: 10.1038/nature14463 – volume: 186 start-page: 128 year: 2018 ident: 4197_CR72 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.12.015 – volume: 55 start-page: 1205 year: 1965 ident: 4197_CR61 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.55.001205 – volume: 582 start-page: 46 year: 2020 ident: 4197_CR48 publication-title: Nature doi: 10.1038/s41586-020-2320-y – volume: 5 start-page: 014302 year: 2018 ident: 4197_CR74 publication-title: Struct. Dynam. doi: 10.1063/1.5009822 – volume: 6 start-page: eabb1393 year: 2020 ident: 4197_CR23 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb1393 – volume: 546 start-page: 274 year: 2017 ident: 4197_CR64 publication-title: Nature doi: 10.1038/nature22387 – volume: 7 start-page: 024026 year: 2017 ident: 4197_CR67 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.7.024026 – volume: 371 start-page: 1364 year: 2021 ident: 4197_CR80 publication-title: Science doi: 10.1126/science.abg0330 – reference: 34937890 - Nature. 2021 Dec;600(7890):610-611 |
SSID | ssj0005174 |
Score | 2.620427 |
Snippet | Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms
1
, trapped ions
2
,... Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2,3... Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms , trapped ions ,... Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms.sup.1, trapped... Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3,... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 653 |
SubjectTerms | 140/125 142/126 639/624/400/1103 639/624/400/482 639/766/483/1255 639/766/483/3924 Analysis Attosecond pulses Continuous radiation Electron beams Electron energy Electron microscopy Electron states Energy Entanglement Free electrons Humanities and Social Sciences Influence Laser applications Lasers Light Light scattering Methods Microscopy Modulators multidisciplinary Phase matching Phase modulation Photonics Propagation Radiation Science Science (multidisciplinary) Sidebands Silicon Silicon nitride Spectrum analysis Waveguides |
SummonAdditionalLinks | – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiJZXaEEBVTwEFk4cO85xtWLVItEDtKI3y3HsdiWaLGT3_zN2km2zWpA4z5fI8YxnxvHMZ4AjbjNmqTUE3WJKfEZACq4T4kziNKdVKit_ovv1VByfZ18u-MUOpEMvTCjaD5SWwU0P1WGfWgw00pfL4uY3S4qc8DtwV-aMe6ueiulNWccG83LfKEOZ3PKOUTDadMm3YtJmveTGoWmIRbOH8KBPIuNJN-w92LH1PtwLxZym3Ye9fsG28bueVfr9I5idDMQQVby4apaeEreNbWidamNfsT6vV82qJaXV1_FwOw5CMczF103VX_P1GM5nn8-mx6S_RIEY3PUuiSypTjRnvEptKa3jWlqcjTLPuBE55RqXrCuYkGVVCqpdoQstMufSMuydBHsCu3VT22cQ09Qkha14WTHrOQ2lFk5jxkYd5oCMugiSYTaV6RnG_UUXP1U46WZSdRpQqAEVNKB4BB_Wzyw6fo1_oo-8kpQnrqh9ZcylXrWtmpz9mJ6qiUDPXvhfWRG83gY7-f5tBHrbg1yDozS670fAb_WUWCPkwQhpFvNf6pb0zUh62Sl222sOR0Bcx2YsHixP9X6kVbi_Fb5ZORcRvFqL_ZO-Nq62aBYewzBpYzyP4GlnqOupZBmmnwWlEeQjE14DPLv4WFLPrwLLuBQFZ7mM4ONg7DfD-ruGnv8f_ADup349JilJ2SHsLn-v7AvM8pbly7Cs_wCsIkdN priority: 102 providerName: Springer Nature |
Title | Integrated photonics enables continuous-beam electron phase modulation |
URI | https://link.springer.com/article/10.1038/s41586-021-04197-5 https://www.ncbi.nlm.nih.gov/pubmed/34937900 https://www.proquest.com/docview/2616227876 https://www.proquest.com/docview/2613293357 https://pubmed.ncbi.nlm.nih.gov/PMC8695378 |
Volume | 600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9Bq0l7mYB9ZbAqm9A-NCKcOHach2lqKzqYtGpioPXNchIHKo2kkPb_3zl1WlIxXvIQX758n47vfgdwyHRINdGph2Yx8ExE4MVM-V6e-rliJAtEZnZ0f4756WX4Y8ImWzBuamFMWmVjE2tDnZWp-Ud-jJE-N2WbEf82u_VM1yizu9q00FC2tUL2tYYY24YuPpuRDnQHJ-Nf5-ukjw1cZltGQ6g4rtCVCZOQi8vr0I8jj7Vc1abBvuexNrMpN7ZUa0812oFnNsR0-0uZ2IUtXezBkzrVM632YNeqc-V-spjTn5_D6KyBjcjc2XU5N4C5lavrwqrKNfns02JRLiov0erGbXrnICk6QfemzGwTsBdwOTq5GJ56tsWCl-KaeO6JhChfMcqyQCdC50wJjbORRCFLeUSYQoXOY8pFkiWcqDxWseJhngdJvbLi9CV0irLQr8ElQerHOmNJRrVBPBSK5wrjOZJjhEhJ7oDfzKZMLf64aYPxV9b74FTIJQckckDWHJDMgS-ra2ZL9I1HqQ8Nk6SBtShM3syVWlSV7F_8GY5ln6PoxOZHlwPvHyI7-33eIvpoifIS3zJVtloBv9UAZrUo91uU6Wx6K--NfmiNXi0Z-9BtDlqEqOVpe7iRPGmtTCXXOuHAu9WwudJkzhUaxcLQUAzpKIsceLUU1NVU0hCD05gQB6KWCK8IDPZ4e6SYXtcY5ILHjEbCgaNG2Nev9X8OvXn8K_bhaWD0zw-8gB5AZ3630G8x5psnPdiOJhEexdA3x9H3HnT7o8Fg3LMqjmeHfPgPU1FVCQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLfGEIIXxMa_sAEBDRiCaJdc7pI8IFQNqpZtfYBO9O24JJetEks60grxpfiM2GnSLtXY257tnJKzz_bF9s8AO8L43DCTOGgWPYciAicS2nWyxM20YKkXppTRPRrI3rH_ZSRGa_C36YWhssrGJlaGOi0S-ke-h5G-pLbNQH6cnDs0NYqyq80IjblaHJg_v_HKVn7of0L5vvK87ufhfs-ppwo4CV4Dp04YM-1qwUXqmTg0mdChcRmPA18kMmBCow5nEZdhnMaS6SzSkZZ-lnlxdZmQHNe9ATd9SjHi-QlGwbKkZAX1uW7SYTzcK9FRhlTui5d3340CR7Qc4ao7uOAPV2s1VxK2lR_s3oO7dQBrd-YatwFrJt-EW1UhaVJuwkZtLEp7t0a0fnsfuv0GlCK1J6fFlOB4S9tUbVulTdXy43xWzEonNvrMbibzICu6WPusSOsRYw_g-Fq2-iGs50VuHoPNvMSNTCrilBvCUwy1zDRGiyzD-JOzzAK32U2V1OjmNGTjp6qy7DxUcwkolICqJKCEBe8Wz0zm2B5Xcu-QkBSBZuRUlXOiZ2WpOsPv-wPVkaiYEf1Gs-DlZWz9b19bTG9qpqzAt0x03QuB30pwXC3OrRZnMhmfqwvU1y3qyVywly2z3WJEG5K0yY3mqdqGlWp54ix4sSDTk1SXlxtUC-LhGDByEVjwaK6oi63kPoa-EWMWBC0VXjAQsnmbko9PK4TzUEaCB6EF7xtlX77W_yX05OqveA63e8OjQ3XYHxxswR2PzqLrOR7fhvXpr5l5itHlNH5WHWkbfly3DfkHqeeGRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiJZXaIGAyksQrRPHiXOo0NJ21aWwqvoQvRknsduVaLIlu0L8RX4V46yzbValt55nYiWe8TzimW8A1pkKqSIq89AsBp6JCLyESd_Tma8lI3nAc3Oj-20Q7RyFX47Z8QL8bXphTFllYxNrQ52XmflH3sFIPzJtm3HU0bYsYm-r92l07pkJUuamtRmnIe2YhXyjhhuzTR676s9vTOeqjf4Wyv51EPS2Dzd3PDtxwMswRRx7PCXSl4yyPFApV5pJrnxC0zhkWRQTJlG_dUIjnuZpRKROZCKjUOsgrRONiOK6t2ApRq-PieDS5-3B3v5FwckcJrRt4SGUdyp0o9wUA2NqH_pJ7LGWm5x3Fpe85Xwl59x1bu0le_fhng1v3e5UH5dhQRUrcLsuM82qFVi2pqRy31m86_cPoNdvICtyd3Rajg1Yb-Wquqmrck0t_bCYlJPKS5U8c5u5PciKDtg9K3M7gOwhHN3IZj-CxaIs1BNwSZD5icpZmlNl0Ba5jLTEWJJojE4p0Q74zW6KzGKfmxEcP0V9B0-5mEpAoARELQHBHPgwe2Y0Rf64lnvdCEkYSI3CKOeJnFSV6B5-3xyIboRqm5ifbA68uoqtf7DfYnprmXSJb5lJ2ymB32rAulqcqy3ObDQ8F5eob1rUk6lgr1pmrcWIFiZrkxvNE9bCVeLiPDrwckY2T5qqvUKhWhgeiuEkZbEDj6eKOttKGmJgnBDiQNxS4RmDwT1vU4rhaY1_zqOE0Zg78LFR9ovX-r-Enl7_FS_gDtoT8bU_2F2Fu4E5in7gBXQNFse_JuoZhp7j9Lk90y78uGkz8g9ktZEf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+photonics+enables+continuous-beam+electron+phase+modulation&rft.jtitle=Nature+%28London%29&rft.au=Henke%2C+Jan-Wilke&rft.au=Raja%2C+Arslan+Sajid&rft.au=Feist%2C+Armin&rft.au=Huang%2C+Guanhao&rft.date=2021-12-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=600&rft.issue=7890&rft.spage=653&rft_id=info:doi/10.1038%2Fs41586-021-04197-5&rft.externalDocID=A687699783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |