Integrated photonics enables continuous-beam electron phase modulation

Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2 , 3 , quantum dots 4 and defect centres 5 . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quan...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 600; no. 7890; pp. 653 - 658
Main Authors Henke, Jan-Wilke, Raja, Arslan Sajid, Feist, Armin, Huang, Guanhao, Arend, Germaine, Yang, Yujia, Kappert, F. Jasmin, Wang, Rui Ning, Möller, Marcel, Pan, Jiahe, Liu, Junqiu, Kfir, Ofer, Ropers, Claus, Kippenberg, Tobias J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.12.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-021-04197-5

Cover

Abstract Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2 , 3 , quantum dots 4 and defect centres 5 . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization 6 – 11 , enabling the observation of free-electron quantum walks 12 – 14 , attosecond electron pulses 10 , 15 – 17 and holographic electromagnetic imaging 18 . Chip-based photonics 19 , 20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse ( Q 0  ≈ 10 6 ) cavity enhancement and a waveguide designed for phase matching lead to efficient electron–light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy 21 . The fibre-coupled photonic structures feature single-optical-mode electron–light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates 22 , beam modulators and continuous-wave attosecond pulse trains 23 , resonantly enhanced spectroscopy 24 – 26 and dielectric laser acceleration 19 , 20 , 27 . Our work introduces a universal platform for exploring free-electron quantum optics 28 – 31 , with potential future developments in strong coupling, local quantum probing and electron–photon entanglement. A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology.
AbstractList Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2 , 3 , quantum dots 4 and defect centres 5 . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization 6 – 11 , enabling the observation of free-electron quantum walks 12 – 14 , attosecond electron pulses 10 , 15 – 17 and holographic electromagnetic imaging 18 . Chip-based photonics 19 , 20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse ( Q 0  ≈ 10 6 ) cavity enhancement and a waveguide designed for phase matching lead to efficient electron–light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy 21 . The fibre-coupled photonic structures feature single-optical-mode electron–light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates 22 , beam modulators and continuous-wave attosecond pulse trains 23 , resonantly enhanced spectroscopy 24 – 26 and dielectric laser acceleration 19 , 20 , 27 . Our work introduces a universal platform for exploring free-electron quantum optics 28 – 31 , with potential future developments in strong coupling, local quantum probing and electron–photon entanglement. A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology.
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms.sup.1, trapped ions.sup.2,3, quantum dots.sup.4 and defect centres.sup.5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization.sup.6-11, enabling the observation of free-electron quantum walks.sup.12-14, attosecond electron pulses.sup.10,15-17 and holographic electromagnetic imaging.sup.18. Chip-based photonics.sup.19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q.sub.0 [almost equal to] 10.sup.6) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy.sup.21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates.sup.22, beam modulators and continuous-wave attosecond pulse trains.sup.23, resonantly enhanced spectroscopy.sup.24-26 and dielectric laser acceleration.sup.19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics.sup.28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement.
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms , trapped ions , quantum dots and defect centres . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization , enabling the observation of free-electron quantum walks , attosecond electron pulses and holographic electromagnetic imaging . Chip-based photonics promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q  ≈ 10 ) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy . The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates , beam modulators and continuous-wave attosecond pulse trains , resonantly enhanced spectroscopy and dielectric laser acceleration . Our work introduces a universal platform for exploring free-electron quantum optics , with potential future developments in strong coupling, local quantum probing and electron-photon entanglement.
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement.Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement.
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electronenergy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electronphoton entanglement.
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms.sup.1, trapped ions.sup.2,3, quantum dots.sup.4 and defect centres.sup.5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization.sup.6-11, enabling the observation of free-electron quantum walks.sup.12-14, attosecond electron pulses.sup.10,15-17 and holographic electromagnetic imaging.sup.18. Chip-based photonics.sup.19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q.sub.0 [almost equal to] 10.sup.6) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy.sup.21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates.sup.22, beam modulators and continuous-wave attosecond pulse trains.sup.23, resonantly enhanced spectroscopy.sup.24-26 and dielectric laser acceleration.sup.19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics.sup.28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement. A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology.
Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2,3 , quantum dots 4 and defect centres 5 . Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization 6–11 , enabling the observation of free-electron quantum walks 12–14 , attosecond electron pulses 10,15–17 and holographic electromagnetic imaging 18 . Chip-based photonics 19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse ( Q 0  ≈ 10 6 ) cavity enhancement and a waveguide designed for phase matching lead to efficient electron–light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy 21 . The fibre-coupled photonic structures feature single-optical-mode electron–light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates 22 , beam modulators and continuous-wave attosecond pulse trains 23 , resonantly enhanced spectroscopy 24–26 and dielectric laser acceleration 19,20,27 . Our work introduces a universal platform for exploring free-electron quantum optics 28–31 , with potential future developments in strong coupling, local quantum probing and electron–photon entanglement.
Audience Academic
Author Raja, Arslan Sajid
Huang, Guanhao
Feist, Armin
Kappert, F. Jasmin
Yang, Yujia
Arend, Germaine
Liu, Junqiu
Henke, Jan-Wilke
Ropers, Claus
Kfir, Ofer
Wang, Rui Ning
Möller, Marcel
Kippenberg, Tobias J.
Pan, Jiahe
Author_xml – sequence: 1
  givenname: Jan-Wilke
  surname: Henke
  fullname: Henke, Jan-Wilke
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 2
  givenname: Arslan Sajid
  surname: Raja
  fullname: Raja, Arslan Sajid
  organization: Swiss Federal Institute of Technology Lausanne (EPFL)
– sequence: 3
  givenname: Armin
  orcidid: 0000-0003-1434-8895
  surname: Feist
  fullname: Feist, Armin
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 4
  givenname: Guanhao
  surname: Huang
  fullname: Huang, Guanhao
  organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL
– sequence: 5
  givenname: Germaine
  surname: Arend
  fullname: Arend, Germaine
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 6
  givenname: Yujia
  orcidid: 0000-0003-1524-7973
  surname: Yang
  fullname: Yang, Yujia
  organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL
– sequence: 7
  givenname: F. Jasmin
  surname: Kappert
  fullname: Kappert, F. Jasmin
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 8
  givenname: Rui Ning
  orcidid: 0000-0002-5704-3971
  surname: Wang
  fullname: Wang, Rui Ning
  organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL
– sequence: 9
  givenname: Marcel
  orcidid: 0000-0002-2518-5764
  surname: Möller
  fullname: Möller, Marcel
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 10
  givenname: Jiahe
  surname: Pan
  fullname: Pan, Jiahe
  organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL
– sequence: 11
  givenname: Junqiu
  orcidid: 0000-0003-2405-6028
  surname: Liu
  fullname: Liu, Junqiu
  organization: Swiss Federal Institute of Technology Lausanne (EPFL)
– sequence: 12
  givenname: Ofer
  orcidid: 0000-0003-1253-9372
  surname: Kfir
  fullname: Kfir, Ofer
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 13
  givenname: Claus
  orcidid: 0000-0002-9539-3817
  surname: Ropers
  fullname: Ropers, Claus
  email: claus.ropers@mpinat.mpg.de
  organization: Georg-August-Universität Göttingen, Max Planck Institute of Multidisciplinary Sciences
– sequence: 14
  givenname: Tobias J.
  orcidid: 0000-0002-3408-886X
  surname: Kippenberg
  fullname: Kippenberg, Tobias J.
  email: tobias.kippenberg@epfl.ch
  organization: Swiss Federal Institute of Technology Lausanne (EPFL), Center for Quantum Science and Engineering, EPFL
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34937900$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEYhYNU7If-AS9k0RtFpiaTyddNYVmsLhQFrXgZMpl3pikzyXaSEf33Zru17Za15GIg85zz5uWcQ7TngweEXhJ8TDCVH2JFmOQFLkmBK6JEwZ6gA1IJXlRcij10gHEpCywp30eHMV5ijBkR1TO0TytFhcL4AJ0ufYJuNAma2eoipOCdjTPwpu4hzmzwyfkpTLGowQwz6MGmMfiMmgizITRTb5IL_jl62po-woub7xH6cfrxfPG5OPv6abmYnxVWVGUqZI0NMYyypoRaQsuMhLxKLSpmucDMMCFbRbmsm5pj0yqjDK_atqxJpRjn9AidbHxXUz1AY8Gn0fR6NbrBjH90ME5v__HuQnfhl5ZcMSpkNnh7YzCGqwli0oOLFvreeMhr6pITWipKmcjomwfoZZhGn9dbU7wshRT8jupMD9r5NuS5dm2q5zkFrlSemqliB9WBh_zInGrr8vUW_3oHb1fuSt-HjndA-TQwOLvT9d2WYB0v_E6dmWLUy-_fttn3_2fn5z8XX7bpV_dzuQ3kX9EyUG4AO4YYR2hvEYL1us1602ad26yv26xZFskHIuvSdd_yoq5_XEo30pjn-A7Gu_AeUf0FrX8FOg
CitedBy_id crossref_primary_10_1103_PhysRevA_106_043708
crossref_primary_10_1021_acsphotonics_3c01574
crossref_primary_10_1038_s41563_023_01490_8
crossref_primary_10_1017_S1431927622003579
crossref_primary_10_1021_acsphotonics_3c00047
crossref_primary_10_1017_S1431927622007735
crossref_primary_10_1021_acsnano_3c11211
crossref_primary_10_1103_PhysRevB_109_134305
crossref_primary_10_1126_science_adn1876
crossref_primary_10_1126_sciadv_adp4096
crossref_primary_10_1017_S0022377823001319
crossref_primary_10_1515_nanoph_2023_0907
crossref_primary_10_1126_science_abo5037
crossref_primary_10_1021_acsnano_3c12977
crossref_primary_10_1088_1361_6633_ad9052
crossref_primary_10_1088_1674_1056_ad0141
crossref_primary_10_1016_j_inoche_2023_110991
crossref_primary_10_1016_j_sbi_2024_102805
crossref_primary_10_1038_s41566_024_01380_8
crossref_primary_10_1093_micmic_ozad067_193
crossref_primary_10_1103_PhysRevLett_132_035001
crossref_primary_10_1051_bioconf_202412909009
crossref_primary_10_1364_AO_514085
crossref_primary_10_1103_PhysRevLett_132_073801
crossref_primary_10_1021_acsnano_3c07593
crossref_primary_10_1364_OE_502407
crossref_primary_10_1088_1367_2630_ada8d0
crossref_primary_10_1103_PhysRevResearch_6_043033
crossref_primary_10_1038_s41467_023_38857_z
crossref_primary_10_1063_5_0118096
crossref_primary_10_1103_PhysRevLett_134_043803
crossref_primary_10_1126_sciadv_adh2425
crossref_primary_10_1103_PhysRevLett_134_043804
crossref_primary_10_1016_j_ultramic_2023_113759
crossref_primary_10_1088_1361_6455_ada989
crossref_primary_10_1016_j_ultramic_2022_113539
crossref_primary_10_1093_micmic_ozad067_181
crossref_primary_10_7498_aps_71_20221289
crossref_primary_10_1126_sciadv_adi9171
crossref_primary_10_1126_science_adk2489
crossref_primary_10_1016_j_micron_2022_103330
crossref_primary_10_1038_s41567_023_01954_3
crossref_primary_10_1016_j_crmeth_2022_100387
crossref_primary_10_7498_aps_71_20220158
crossref_primary_10_1002_adma_202203889
crossref_primary_10_1364_OE_491452
crossref_primary_10_1038_s41467_023_39979_0
crossref_primary_10_1063_5_0134993
crossref_primary_10_1103_PhysRevLett_131_113002
crossref_primary_10_1021_acsphotonics_2c00850
crossref_primary_10_1038_s41563_022_01449_1
crossref_primary_10_1126_science_abj7128
crossref_primary_10_1103_PhysRevA_109_023722
crossref_primary_10_1103_PhysRevLett_133_213801
crossref_primary_10_1051_bioconf_202412932004
crossref_primary_10_1103_PhysRevX_13_031001
crossref_primary_10_1103_PhysRevApplied_20_054045
crossref_primary_10_1038_s41534_022_00540_4
crossref_primary_10_1088_2053_1583_ad97c8
crossref_primary_10_1103_PhysRevResearch_4_013241
crossref_primary_10_1103_PhysRevResearch_5_043271
crossref_primary_10_1038_s41467_023_42054_3
crossref_primary_10_1093_jmicro_dfac054
crossref_primary_10_1103_PhysRevLett_133_250801
crossref_primary_10_1038_s41567_024_02743_2
crossref_primary_10_1063_4_0000284
crossref_primary_10_1051_bioconf_202412903003
crossref_primary_10_1103_PhysRevResearch_4_033071
crossref_primary_10_1364_AOP_461142
crossref_primary_10_1063_5_0156353
crossref_primary_10_1103_PhysRevLett_129_093401
crossref_primary_10_1016_j_scib_2023_06_006
crossref_primary_10_3389_fphy_2022_1061172
crossref_primary_10_1038_d41586_021_03767_x
crossref_primary_10_1103_PRXQuantum_5_010339
crossref_primary_10_1021_acsphotonics_2c01432
crossref_primary_10_1103_PhysRevA_111_012610
crossref_primary_10_1103_PRXQuantum_4_020351
crossref_primary_10_1515_nanoph_2024_0326
crossref_primary_10_1364_OE_542930
crossref_primary_10_1021_acs_nanolett_4c04491
crossref_primary_10_1364_OL_455763
crossref_primary_10_1103_PhysRevLett_128_235301
Cites_doi 10.1364/OL.40.004344
10.1126/science.1213504
10.1038/s41567-017-0007-6
10.1103/PhysRevLett.123.103602
10.1126/science.aah6875
10.1103/RevModPhys.82.209
10.1038/s41586-020-2811-x
10.1038/s41467-018-05021-x
10.1103/PhysRevResearch.2.043227
10.1126/science.abd2774
10.1038/s41586-020-2320-y
10.1038/s41566-017-0045-8
10.1103/PhysRevSTAB.11.061301
10.1038/s41467-021-21973-z
10.1039/D0NR07962F
10.1126/science.1166135
10.1364/JOSA.55.001205
10.1016/j.chemphys.2013.06.026
10.1088/1367-2630/10/7/073035
10.1038/s41377-021-00511-y
10.1038/nchem.1622
10.1126/sciadv.abb1393
10.1515/nanoph-2020-0263
10.1038/nature14463
10.1038/s41563-019-0409-1
10.1103/PhysRevLett.124.064801
10.1103/PhysRevApplied.7.024026
10.1103/PhysRevLett.120.103203
10.1038/s41566-018-0312-3
10.1038/s41563-019-0336-1
10.1103/RevModPhys.91.035003
10.1364/OPTICA.3.000020
10.1103/PhysRevLett.126.123901
10.1238/Physica.Topical.076a00127
10.1038/nature21699
10.1103/RevModPhys.87.347
10.1126/sciadv.aav8358
10.1103/PhysRevA.99.052107
10.1016/j.ultramic.2017.12.015
10.1126/science.aav5845
10.1021/acsphotonics.9b00830
10.1038/nphys3844
10.1364/OPTICA.6.001524
10.1038/ncomms7407
10.1103/PhysRevResearch.3.L032036
10.1364/OL.27.001669
10.1038/s41566-018-0309-y
10.1126/science.abg0330
10.1126/science.aay5734
10.1038/s41586-021-03812-9
10.1016/j.ultramic.2018.12.011
10.1364/OE.22.030786
10.1063/1.5009822
10.1021/acsphotonics.7b01393
10.1364/OL.43.003200
10.1126/sciadv.abe4270
10.1063/1.4984586
10.1126/science.1237125
10.1038/s41592-019-0552-2
10.1364/OL.41.003134
10.1126/science.aad4811
10.1038/s41586-020-2823-6
10.1103/PhysRevLett.126.233402
10.1038/s41586-020-2321-x
10.1038/ncomms11230
10.1126/science.1179314
10.1364/OE.25.019195
10.1038/nature22387
10.1103/RevModPhys.86.1337
10.1126/sciadv.abf6380
10.1126/science.abj7128
10.1038/nature08662
10.1088/1367-2630/12/12/123028
10.1038/s41567-020-01042-w
10.1021/nl1034732
10.1016/j.ultramic.2016.12.005
10.1117/12.2601565
10.22443/rms.emc2020.1040
10.1016/bs.aiep.2019.08.005
10.1126/science.aan8083
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Dec 23-Dec 30, 2021
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 23-Dec 30, 2021
DBID C6C
AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-021-04197-5
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



PubMed
MEDLINE - Academic


Agricultural Science Database

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 658
ExternalDocumentID PMC8695378
A687699783
34937900
10_1038_s41586_021_04197_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Switzerland
Germany
GeographicLocations_xml – name: Switzerland
– name: Germany
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAVBQ
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
0B8
1CY
1VW
354
3EH
3O-
3V.
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
M0L
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
RC3
SOI
7X8
AGSTI
PUEGO
5PM
ID FETCH-LOGICAL-c742t-8b0a1a535d2eb8ef5a8e103b745c6705a578f9368bdb60af9a9a64ff2b1495663
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 14:03:24 EDT 2025
Fri Sep 05 01:32:40 EDT 2025
Fri Jul 25 08:57:06 EDT 2025
Tue Jun 17 21:28:50 EDT 2025
Thu Jun 12 23:42:42 EDT 2025
Tue Jun 10 15:32:08 EDT 2025
Tue Jun 10 20:14:17 EDT 2025
Fri Jun 27 04:10:34 EDT 2025
Fri Jun 27 04:17:09 EDT 2025
Wed Feb 19 02:11:02 EST 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 02:32:32 EDT 2025
Fri Feb 21 02:37:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7890
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c742t-8b0a1a535d2eb8ef5a8e103b745c6705a578f9368bdb60af9a9a64ff2b1495663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3408-886X
0000-0003-1524-7973
0000-0002-9539-3817
0000-0003-1253-9372
0000-0002-2518-5764
0000-0003-1434-8895
0000-0002-5704-3971
0000-0003-2405-6028
OpenAccessLink https://www.nature.com/articles/s41586-021-04197-5
PMID 34937900
PQID 2616227876
PQPubID 40569
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8695378
proquest_miscellaneous_2613293357
proquest_journals_2616227876
gale_infotracmisc_A687699783
gale_infotracgeneralonefile_A687699783
gale_infotraccpiq_687699783
gale_infotracacademiconefile_A687699783
gale_incontextgauss_ISR_A687699783
gale_incontextgauss_ATWCN_A687699783
pubmed_primary_34937900
crossref_primary_10_1038_s41586_021_04197_5
crossref_citationtrail_10_1038_s41586_021_04197_5
springer_journals_10_1038_s41586_021_04197_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-23
PublicationDateYYYYMMDD 2021-12-23
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Piazza (CR7) 2015; 6
Priebe (CR10) 2017; 11
Pomarico (CR60) 2018; 5
Sapra (CR20) 2020; 367
Polman, Kociak, García de Abajo (CR54) 2019; 18
Dahan (CR14) 2021; 373
van der Veen, Kwon, Tissot, Hauser, Zewail (CR33) 2013; 5
Lagos, Trügler, Hohenester, Batson (CR78) 2017; 543
Kimble (CR49) 1998; T76
Ryabov, Thurner, Nabben, Tsarev, Baum (CR23) 2020; 6
García de Abajo (CR8) 2010; 82
Shiloh (CR27) 2021; 597
Wang (CR37) 2020; 582
Barwick, Flannigan, Zewail (CR6) 2009; 462
Liu (CR45) 2019; 6
Niffenegger (CR3) 2020; 586
Echternkamp, Feist, Schäfer, Ropers (CR13) 2016; 12
García de Abajo, Konečná (CR40) 2021; 126
Thompson (CR1) 2013; 340
Mehta (CR2) 2020; 586
Kozák (CR46) 2017; 25
Danz, Domröse, Ropers (CR35) 2021; 371
Kippenberg, Spillane, Vahala (CR59) 2002; 27
Yurtsever, Zewail (CR73) 2009; 326
Yurtsever, van der Veen, Zewail (CR36) 2012; 335
Obrzud (CR65) 2019; 13
Park, Lin, Zewail (CR50) 2010; 12
Leedle (CR58) 2015; 40
Brasch, Chen, Schiller, Kippenberg (CR62) 2014; 22
CR42
CR81
Kozák, Schönenberger, Hommelhoff (CR17) 2018; 120
Pfeiffer (CR57) 2016; 3
Gover, Yariv (CR24) 2020; 124
Houdellier, Caruso, Weber, Kociak, Arbouet (CR72) 2018; 186
Vanacore (CR39) 2019; 18
Liu (CR56) 2021; 12
Sipahigil (CR5) 2016; 354
Schwartz (CR22) 2019; 16
Rubiano da Silva (CR76) 2018; 8
Marin-Palomo (CR64) 2017; 546
Morimoto, Baum (CR16) 2018; 14
Liebtrau (CR38) 2021; 10
Christopher (CR53) 2020; 9
Lodahl, Mahmoodian, Stobbe (CR4) 2015; 87
Feist, Rubiano da Silva, Liang, Ropers, Schäfer (CR74) 2018; 5
García de Abajo, Kociak (CR21) 2008; 10
Malitson (CR61) 1965; 55
Liu (CR69) 2016; 41
Yalunin, Feist, Ropers (CR26) 2021; 3
Hachtel (CR79) 2019; 363
CR52
Pan, Gover (CR30) 2019; 99
Feist (CR70) 2017; 176
Zewail (CR32) 2010; 328
Di Giulio, Kociak, de Abajo (CR29) 2019; 6
Feist (CR12) 2015; 521
Cremons, Plemmons, Flannigan (CR34) 2016; 7
Li (CR80) 2021; 371
Gover (CR41) 2019; 91
Brasch (CR55) 2016; 351
Pfeiffer, Liu, Geiselmann, Kippenberg (CR67) 2017; 7
Kfir, Di Giulio, de Abajo, Ropers (CR43) 2021; 7
Das (CR44) 2019; 203
Liu (CR68) 2018; 43
Feist, Yalunin, Schäfer, Ropers (CR11) 2020; 2
Madan (CR18) 2019; 5
Kfir (CR28) 2019; 123
Cao, Jiang, Åkerman, Weissenrieder (CR77) 2021; 13
CR63
Vanacore (CR9) 2018; 9
Zhao, Sun, Fan (CR25) 2021; 126
Dahan (CR47) 2020; 16
Kfir (CR48) 2020; 582
Piazza (CR71) 2013; 423
Ben Hayun (CR31) 2021; 7
Sears (CR15) 2008; 11
England (CR19) 2014; 86
Suh (CR66) 2019; 13
Bendaña, Polman, García de Abajo (CR51) 2011; 11
Schliep, Quarterman, Wang, Flannigan (CR75) 2017; 110
M-G Suh (4197_CR66) 2019; 13
A Feist (4197_CR12) 2015; 521
O Kfir (4197_CR43) 2021; 7
A Feist (4197_CR70) 2017; 176
KE Priebe (4197_CR10) 2017; 11
FJ García de Abajo (4197_CR40) 2021; 126
RJ Niffenegger (4197_CR3) 2020; 586
E Pomarico (4197_CR60) 2018; 5
L Piazza (4197_CR71) 2013; 423
FJ García de Abajo (4197_CR21) 2008; 10
T Danz (4197_CR35) 2021; 371
RM van der Veen (4197_CR33) 2013; 5
SV Yalunin (4197_CR26) 2021; 3
MJ Lagos (4197_CR78) 2017; 543
FJ García de Abajo (4197_CR8) 2010; 82
Z Zhao (4197_CR25) 2021; 126
J Christopher (4197_CR53) 2020; 9
JD Thompson (4197_CR1) 2013; 340
O Kfir (4197_CR28) 2019; 123
A Yurtsever (4197_CR36) 2012; 335
IH Malitson (4197_CR61) 1965; 55
4197_CR63
M Liebtrau (4197_CR38) 2021; 10
DR Cremons (4197_CR34) 2016; 7
KB Schliep (4197_CR75) 2017; 110
I Madan (4197_CR18) 2019; 5
A Gover (4197_CR24) 2020; 124
V Brasch (4197_CR62) 2014; 22
A Ryabov (4197_CR23) 2020; 6
P Das (4197_CR44) 2019; 203
J Liu (4197_CR69) 2016; 41
F Houdellier (4197_CR72) 2018; 186
A Sipahigil (4197_CR5) 2016; 354
O Kfir (4197_CR48) 2020; 582
KK Mehta (4197_CR2) 2020; 586
J Liu (4197_CR68) 2018; 43
E Obrzud (4197_CR65) 2019; 13
N Rubiano da Silva (4197_CR76) 2018; 8
R Shiloh (4197_CR27) 2021; 597
KE Echternkamp (4197_CR13) 2016; 12
4197_CR52
R Dahan (4197_CR47) 2020; 16
A Yurtsever (4197_CR73) 2009; 326
M Kozák (4197_CR17) 2018; 120
R Dahan (4197_CR14) 2021; 373
K Wang (4197_CR37) 2020; 582
ST Park (4197_CR50) 2010; 12
P Marin-Palomo (4197_CR64) 2017; 546
CMS Sears (4197_CR15) 2008; 11
M Kozák (4197_CR46) 2017; 25
RJ England (4197_CR19) 2014; 86
HJ Kimble (4197_CR49) 1998; T76
L Piazza (4197_CR7) 2015; 6
A Polman (4197_CR54) 2019; 18
JA Hachtel (4197_CR79) 2019; 363
V Di Giulio (4197_CR29) 2019; 6
A Gover (4197_CR41) 2019; 91
Y Morimoto (4197_CR16) 2018; 14
B Barwick (4197_CR6) 2009; 462
P Lodahl (4197_CR4) 2015; 87
O Schwartz (4197_CR22) 2019; 16
G Cao (4197_CR77) 2021; 13
Y Pan (4197_CR30) 2019; 99
C Liu (4197_CR45) 2019; 6
A Feist (4197_CR74) 2018; 5
4197_CR42
J Liu (4197_CR56) 2021; 12
A Feist (4197_CR11) 2020; 2
X Li (4197_CR80) 2021; 371
AH Zewail (4197_CR32) 2010; 328
GM Vanacore (4197_CR39) 2019; 18
V Brasch (4197_CR55) 2016; 351
GM Vanacore (4197_CR9) 2018; 9
4197_CR81
X Bendaña (4197_CR51) 2011; 11
NV Sapra (4197_CR20) 2020; 367
TJ Kippenberg (4197_CR59) 2002; 27
MHP Pfeiffer (4197_CR57) 2016; 3
MHP Pfeiffer (4197_CR67) 2017; 7
KJ Leedle (4197_CR58) 2015; 40
A Ben Hayun (4197_CR31) 2021; 7
34937890 - Nature. 2021 Dec;600(7890):610-611
References_xml – volume: 40
  start-page: 4344
  year: 2015
  ident: CR58
  article-title: Dielectric laser acceleration of sub-100 keV electrons with silicon dual-pillar grating structures
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.004344
– volume: 335
  start-page: 59
  year: 2012
  end-page: 64
  ident: CR36
  article-title: Subparticle ultrafast spectrum imaging in 4D electron microscopy
  publication-title: Science
  doi: 10.1126/science.1213504
– volume: 14
  start-page: 252
  year: 2018
  end-page: 256
  ident: CR16
  article-title: Diffraction and microscopy with attosecond electron pulse trains
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0007-6
– volume: 123
  start-page: 103602
  year: 2019
  ident: CR28
  article-title: Entanglements of electrons and cavity photons in the strong-coupling regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.103602
– volume: 354
  start-page: 847
  year: 2016
  end-page: 850
  ident: CR5
  article-title: An integrated diamond nanophotonics platform for quantum-optical networks
  publication-title: Science
  doi: 10.1126/science.aah6875
– volume: 82
  start-page: 209
  year: 2010
  end-page: 275
  ident: CR8
  article-title: Optical excitations in electron microscopy
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.209
– volume: 586
  start-page: 538
  year: 2020
  end-page: 542
  ident: CR3
  article-title: Integrated multi-wavelength control of an ion qubit
  publication-title: Nature
  doi: 10.1038/s41586-020-2811-x
– volume: 9
  year: 2018
  ident: CR9
  article-title: Attosecond coherent control of free-electron wave functions using semi-infinite light fields
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05021-x
– volume: 2
  start-page: 043227
  year: 2020
  ident: CR11
  article-title: High-purity free-electron momentum states prepared by three-dimensional optical phase modulation
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043227
– volume: 371
  start-page: 371
  year: 2021
  end-page: 374
  ident: CR35
  article-title: Ultrafast nanoimaging of the order parameter in a structural phase transition
  publication-title: Science
  doi: 10.1126/science.abd2774
– volume: 582
  start-page: 46
  year: 2020
  end-page: 49
  ident: CR48
  article-title: Controlling free electrons with optical whispering-gallery modes
  publication-title: Nature
  doi: 10.1038/s41586-020-2320-y
– volume: 11
  start-page: 793
  year: 2017
  end-page: 797
  ident: CR10
  article-title: Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-017-0045-8
– volume: 11
  start-page: 061301
  year: 2008
  ident: CR15
  article-title: Production and characterization of attosecond electron bunch trains
  publication-title: Phys. Rev. Spec. Top. Accel. Beams
  doi: 10.1103/PhysRevSTAB.11.061301
– volume: 12
  year: 2021
  ident: CR56
  article-title: High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21973-z
– volume: 13
  start-page: 3746
  year: 2021
  end-page: 3756
  ident: CR77
  article-title: Femtosecond laser driven precessing magnetic gratings
  publication-title: Nanoscale
  doi: 10.1039/D0NR07962F
– volume: 328
  start-page: 187
  year: 2010
  end-page: 193
  ident: CR32
  article-title: Four-dimensional electron microscopy
  publication-title: Science
  doi: 10.1126/science.1166135
– volume: 55
  start-page: 1205
  year: 1965
  end-page: 1209
  ident: CR61
  article-title: Interspecimen comparison of the refractive index of fused silica
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.55.001205
– volume: 423
  start-page: 79
  year: 2013
  end-page: 84
  ident: CR71
  article-title: Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2013.06.026
– volume: 10
  start-page: 073035
  year: 2008
  ident: CR21
  article-title: Electron energy-gain spectroscopy
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/7/073035
– ident: CR42
– volume: 10
  year: 2021
  ident: CR38
  article-title: Spontaneous and stimulated electron– photon interactions in nanoscale plasmonic near fields
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00511-y
– volume: 5
  start-page: 395
  year: 2013
  end-page: 402
  ident: CR33
  article-title: Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1622
– volume: 6
  start-page: eabb1393
  year: 2020
  ident: CR23
  article-title: Attosecond metrology in a continuous-beam transmission electron microscope
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1393
– volume: 9
  start-page: 4381
  year: 2020
  end-page: 4406
  ident: CR53
  article-title: Electron-driven photon sources for correlative electron-photon spectroscopy with electron microscopes
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0263
– volume: 521
  start-page: 200
  year: 2015
  end-page: 203
  ident: CR12
  article-title: Quantum coherent optical phase modulation in an ultrafast transmission electron microscope
  publication-title: Nature
  doi: 10.1038/nature14463
– volume: 18
  start-page: 1158
  year: 2019
  end-page: 1171
  ident: CR54
  article-title: Electron-beam spectroscopy for nanophotonics
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0409-1
– volume: 124
  start-page: 064801
  year: 2020
  ident: CR24
  article-title: Free-electron–bound-electron resonant interaction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.064801
– volume: 7
  start-page: 024026
  year: 2017
  ident: CR67
  article-title: Coupling ideality of integrated planar high-Q microresonators
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.024026
– volume: 120
  start-page: 103203
  year: 2018
  ident: CR17
  article-title: Ponderomotive generation and detection of attosecond free-electron pulse trains
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.103203
– volume: 13
  start-page: 25
  year: 2019
  end-page: 30
  ident: CR66
  article-title: Searching for exoplanets using a microresonator astrocomb
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0312-3
– volume: 18
  start-page: 573
  year: 2019
  end-page: 579
  ident: CR39
  article-title: Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0336-1
– volume: 91
  start-page: 035003
  year: 2019
  ident: CR41
  article-title: Superradiant and stimulated-superradiant emission of bunched electron beams
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.035003
– volume: 3
  start-page: 20
  year: 2016
  end-page: 25
  ident: CR57
  article-title: Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000020
– volume: 126
  start-page: 123901
  year: 2021
  ident: CR40
  article-title: Optical modulation of electron beams in free space
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.123901
– volume: T76
  start-page: 127
  year: 1998
  ident: CR49
  article-title: Strong interactions of single atoms and photons in cavity QED
  publication-title: Phys. Scripta
  doi: 10.1238/Physica.Topical.076a00127
– volume: 543
  start-page: 529
  year: 2017
  end-page: 532
  ident: CR78
  article-title: Mapping vibrational surface and bulk modes in a single nanocube
  publication-title: Nature
  doi: 10.1038/nature21699
– ident: CR81
– volume: 87
  start-page: 347
  year: 2015
  end-page: 400
  ident: CR4
  article-title: Interfacing single photons and single quantum dots with photonic nanostructures
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.347
– volume: 5
  start-page: eaav8358
  year: 2019
  ident: CR18
  article-title: Holographic imaging of electromagnetic fields via electron-light quantum interference
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8358
– volume: 99
  start-page: 052107
  year: 2019
  ident: CR30
  article-title: Spontaneous and stimulated emissions of a preformed quantum free-electron wave function
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.052107
– volume: 186
  start-page: 128
  year: 2018
  end-page: 138
  ident: CR72
  article-title: Development of a high brightness ultrafast transmission electron microscope based on a laser-driven cold field emission source
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.12.015
– volume: 363
  start-page: 525
  year: 2019
  end-page: 528
  ident: CR79
  article-title: Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope
  publication-title: Science
  doi: 10.1126/science.aav5845
– volume: 6
  start-page: 2499
  year: 2019
  end-page: 2508
  ident: CR45
  article-title: Continuous wave resonant photon stimulated electron energy-gain and electron energy-loss spectroscopy of individual plasmonic nanoparticles
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.9b00830
– volume: 12
  start-page: 1000
  year: 2016
  end-page: 1004
  ident: CR13
  article-title: Ramsey-type phase control of free-electron beams
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3844
– volume: 6
  start-page: 1524
  year: 2019
  ident: CR29
  article-title: Probing quantum optical excitations with fast electrons
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001524
– volume: 8
  start-page: 031052
  year: 2018
  ident: CR76
  article-title: Nanoscale mapping of ultrafast magnetization dynamics with femtosecond Lorentz microscopy
  publication-title: Phys. Rev. X
– volume: 6
  year: 2015
  ident: CR7
  article-title: Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7407
– volume: 3
  start-page: L032036
  year: 2021
  ident: CR26
  article-title: Tailored high-contrast attosecond electron pulses for coherent excitation and scattering
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L032036
– volume: 27
  start-page: 1669
  year: 2002
  end-page: 1671
  ident: CR59
  article-title: Modal coupling in traveling-wave resonators
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001669
– volume: 13
  start-page: 31
  year: 2019
  end-page: 35
  ident: CR65
  article-title: A microphotonic astrocomb
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0309-y
– volume: 371
  start-page: 1364
  year: 2021
  end-page: 1367
  ident: CR80
  article-title: Three-dimensional vectorial imaging of surface phonon polaritons
  publication-title: Science
  doi: 10.1126/science.abg0330
– volume: 367
  start-page: 79
  year: 2020
  end-page: 83
  ident: CR20
  article-title: On-chip integrated laser-driven particle accelerator
  publication-title: Science
  doi: 10.1126/science.aay5734
– volume: 597
  start-page: 498
  year: 2021
  end-page: 502
  ident: CR27
  article-title: Electron phase-space control in photonic chip-based particle acceleration
  publication-title: Nature
  doi: 10.1038/s41586-021-03812-9
– volume: 203
  start-page: 44
  year: 2019
  end-page: 51
  ident: CR44
  article-title: Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.12.011
– volume: 22
  start-page: 30786
  year: 2014
  end-page: 30794
  ident: CR62
  article-title: Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics
  publication-title: Opt. Express
  doi: 10.1364/OE.22.030786
– volume: 5
  start-page: 014302
  year: 2018
  ident: CR74
  article-title: Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy
  publication-title: Struct. Dynam.
  doi: 10.1063/1.5009822
– volume: 5
  start-page: 759
  year: 2018
  end-page: 764
  ident: CR60
  article-title: meV resolution in laser-assisted energy-filtered transmission electron microscopy
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.7b01393
– volume: 43
  start-page: 3200
  year: 2018
  end-page: 3203
  ident: CR68
  article-title: Double inverse nanotapers for efficient light coupling to integrated photonic devices
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.003200
– volume: 7
  start-page: eabe4270
  year: 2021
  ident: CR31
  article-title: Shaping quantum photonic states using free electrons
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe4270
– volume: 110
  start-page: 222404
  year: 2017
  ident: CR75
  article-title: Picosecond Fresnel transmission electron microscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4984586
– volume: 340
  start-page: 1202
  year: 2013
  end-page: 1205
  ident: CR1
  article-title: Coupling a single trapped atom to a nanoscale optical cavity
  publication-title: Science
  doi: 10.1126/science.1237125
– volume: 16
  start-page: 1016
  year: 2019
  end-page: 1020
  ident: CR22
  article-title: Laser phase plate for transmission electron microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0552-2
– ident: CR63
– volume: 41
  start-page: 3134
  year: 2016
  end-page: 3137
  ident: CR69
  article-title: Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.003134
– volume: 351
  start-page: 357
  year: 2016
  end-page: 360
  ident: CR55
  article-title: Photonic chip– based optical frequency comb using soliton Cherenkov radiation
  publication-title: Science
  doi: 10.1126/science.aad4811
– volume: 586
  start-page: 533
  year: 2020
  end-page: 537
  ident: CR2
  article-title: Integrated optical multi-ion quantum logic
  publication-title: Nature
  doi: 10.1038/s41586-020-2823-6
– volume: 126
  start-page: 233402
  year: 2021
  ident: CR25
  article-title: Quantum entanglement and modulation enhancement of free-electron–bound-electron interaction
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.233402
– volume: 582
  start-page: 50
  year: 2020
  end-page: 54
  ident: CR37
  article-title: Coherent interaction between free electrons and a photonic cavity
  publication-title: Nature
  doi: 10.1038/s41586-020-2321-x
– volume: 7
  year: 2016
  ident: CR34
  article-title: Femtosecond electron imaging of defect-modulated phonon dynamics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11230
– ident: CR52
– volume: 326
  start-page: 708
  year: 2009
  end-page: 712
  ident: CR73
  article-title: 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy
  publication-title: Science
  doi: 10.1126/science.1179314
– volume: 25
  start-page: 19195
  year: 2017
  end-page: 19204
  ident: CR46
  article-title: Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface
  publication-title: Opt. Express
  doi: 10.1364/OE.25.019195
– volume: 546
  start-page: 274
  year: 2017
  end-page: 279
  ident: CR64
  article-title: Microresonator-based solitons for massively parallel coherent optical communications
  publication-title: Nature
  doi: 10.1038/nature22387
– volume: 86
  start-page: 1337
  year: 2014
  end-page: 1389
  ident: CR19
  article-title: Dielectric laser accelerators
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1337
– volume: 7
  start-page: eabf6380
  year: 2021
  ident: CR43
  article-title: Optical coherence transfer mediated by free electrons
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf6380
– volume: 373
  start-page: eabj7128
  year: 2021
  ident: CR14
  article-title: Imprinting the quantum statistics of photons on free electrons
  publication-title: Science
  doi: 10.1126/science.abj7128
– volume: 462
  start-page: 902
  year: 2009
  end-page: 906
  ident: CR6
  article-title: Photon-induced near-field electron microscopy
  publication-title: Nature
  doi: 10.1038/nature08662
– volume: 12
  start-page: 123028
  year: 2010
  ident: CR50
  article-title: Photon-induced near-field electron microscopy (PINEM): theoretical and experimental
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/12/123028
– volume: 16
  start-page: 1123
  year: 2020
  end-page: 1131
  ident: CR47
  article-title: Resonant phase-matching between a light wave and a free-electron wavefunction
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01042-w
– volume: 11
  start-page: 5099
  year: 2011
  end-page: 5103
  ident: CR51
  article-title: Single-photon generation by electron beams
  publication-title: Nano Lett.
  doi: 10.1021/nl1034732
– volume: 176
  start-page: 63
  year: 2017
  end-page: 73
  ident: CR70
  article-title: Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.12.005
– volume: 13
  start-page: 3746
  year: 2021
  ident: 4197_CR77
  publication-title: Nanoscale
  doi: 10.1039/D0NR07962F
– volume: 543
  start-page: 529
  year: 2017
  ident: 4197_CR78
  publication-title: Nature
  doi: 10.1038/nature21699
– volume: 462
  start-page: 902
  year: 2009
  ident: 4197_CR6
  publication-title: Nature
  doi: 10.1038/nature08662
– volume: 110
  start-page: 222404
  year: 2017
  ident: 4197_CR75
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4984586
– volume: 16
  start-page: 1123
  year: 2020
  ident: 4197_CR47
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01042-w
– volume: 10
  start-page: 073035
  year: 2008
  ident: 4197_CR21
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/7/073035
– volume: 82
  start-page: 209
  year: 2010
  ident: 4197_CR8
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.209
– volume: 12
  year: 2021
  ident: 4197_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21973-z
– volume: 326
  start-page: 708
  year: 2009
  ident: 4197_CR73
  publication-title: Science
  doi: 10.1126/science.1179314
– volume: 597
  start-page: 498
  year: 2021
  ident: 4197_CR27
  publication-title: Nature
  doi: 10.1038/s41586-021-03812-9
– volume: 203
  start-page: 44
  year: 2019
  ident: 4197_CR44
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.12.011
– volume: 582
  start-page: 50
  year: 2020
  ident: 4197_CR37
  publication-title: Nature
  doi: 10.1038/s41586-020-2321-x
– volume: 373
  start-page: eabj7128
  year: 2021
  ident: 4197_CR14
  publication-title: Science
  doi: 10.1126/science.abj7128
– volume: 176
  start-page: 63
  year: 2017
  ident: 4197_CR70
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2016.12.005
– volume: 328
  start-page: 187
  year: 2010
  ident: 4197_CR32
  publication-title: Science
  doi: 10.1126/science.1166135
– volume: 11
  start-page: 061301
  year: 2008
  ident: 4197_CR15
  publication-title: Phys. Rev. Spec. Top. Accel. Beams
  doi: 10.1103/PhysRevSTAB.11.061301
– volume: 5
  start-page: 395
  year: 2013
  ident: 4197_CR33
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1622
– volume: 41
  start-page: 3134
  year: 2016
  ident: 4197_CR69
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.003134
– volume: 3
  start-page: L032036
  year: 2021
  ident: 4197_CR26
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L032036
– volume: 335
  start-page: 59
  year: 2012
  ident: 4197_CR36
  publication-title: Science
  doi: 10.1126/science.1213504
– volume: 13
  start-page: 31
  year: 2019
  ident: 4197_CR65
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0309-y
– volume: 124
  start-page: 064801
  year: 2020
  ident: 4197_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.064801
– volume: 13
  start-page: 25
  year: 2019
  ident: 4197_CR66
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0312-3
– volume: 120
  start-page: 103203
  year: 2018
  ident: 4197_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.103203
– volume: 6
  start-page: 1524
  year: 2019
  ident: 4197_CR29
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001524
– volume: 10
  year: 2021
  ident: 4197_CR38
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00511-y
– ident: 4197_CR42
  doi: 10.1117/12.2601565
– volume: 340
  start-page: 1202
  year: 2013
  ident: 4197_CR1
  publication-title: Science
  doi: 10.1126/science.1237125
– volume: 7
  year: 2016
  ident: 4197_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11230
– volume: 371
  start-page: 371
  year: 2021
  ident: 4197_CR35
  publication-title: Science
  doi: 10.1126/science.abd2774
– volume: 12
  start-page: 123028
  year: 2010
  ident: 4197_CR50
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/12/123028
– volume: 9
  year: 2018
  ident: 4197_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05021-x
– volume: 6
  year: 2015
  ident: 4197_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7407
– volume: 6
  start-page: 2499
  year: 2019
  ident: 4197_CR45
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.9b00830
– volume: 11
  start-page: 5099
  year: 2011
  ident: 4197_CR51
  publication-title: Nano Lett.
  doi: 10.1021/nl1034732
– ident: 4197_CR52
  doi: 10.22443/rms.emc2020.1040
– volume: 7
  start-page: eabf6380
  year: 2021
  ident: 4197_CR43
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf6380
– volume: 16
  start-page: 1016
  year: 2019
  ident: 4197_CR22
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0552-2
– volume: 40
  start-page: 4344
  year: 2015
  ident: 4197_CR58
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.004344
– volume: 2
  start-page: 043227
  year: 2020
  ident: 4197_CR11
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043227
– volume: 11
  start-page: 793
  year: 2017
  ident: 4197_CR10
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-017-0045-8
– volume: 423
  start-page: 79
  year: 2013
  ident: 4197_CR71
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2013.06.026
– ident: 4197_CR81
  doi: 10.1016/bs.aiep.2019.08.005
– volume: 27
  start-page: 1669
  year: 2002
  ident: 4197_CR59
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001669
– volume: 22
  start-page: 30786
  year: 2014
  ident: 4197_CR62
  publication-title: Opt. Express
  doi: 10.1364/OE.22.030786
– volume: T76
  start-page: 127
  year: 1998
  ident: 4197_CR49
  publication-title: Phys. Scripta
  doi: 10.1238/Physica.Topical.076a00127
– volume: 18
  start-page: 1158
  year: 2019
  ident: 4197_CR54
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0409-1
– volume: 3
  start-page: 20
  year: 2016
  ident: 4197_CR57
  publication-title: Optica
  doi: 10.1364/OPTICA.3.000020
– volume: 363
  start-page: 525
  year: 2019
  ident: 4197_CR79
  publication-title: Science
  doi: 10.1126/science.aav5845
– volume: 367
  start-page: 79
  year: 2020
  ident: 4197_CR20
  publication-title: Science
  doi: 10.1126/science.aay5734
– volume: 7
  start-page: eabe4270
  year: 2021
  ident: 4197_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe4270
– volume: 8
  start-page: 031052
  year: 2018
  ident: 4197_CR76
  publication-title: Phys. Rev. X
– volume: 126
  start-page: 233402
  year: 2021
  ident: 4197_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.233402
– volume: 351
  start-page: 357
  year: 2016
  ident: 4197_CR55
  publication-title: Science
  doi: 10.1126/science.aad4811
– volume: 87
  start-page: 347
  year: 2015
  ident: 4197_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.347
– volume: 354
  start-page: 847
  year: 2016
  ident: 4197_CR5
  publication-title: Science
  doi: 10.1126/science.aah6875
– volume: 99
  start-page: 052107
  year: 2019
  ident: 4197_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.052107
– volume: 5
  start-page: 759
  year: 2018
  ident: 4197_CR60
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.7b01393
– volume: 5
  start-page: eaav8358
  year: 2019
  ident: 4197_CR18
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8358
– volume: 123
  start-page: 103602
  year: 2019
  ident: 4197_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.103602
– volume: 586
  start-page: 533
  year: 2020
  ident: 4197_CR2
  publication-title: Nature
  doi: 10.1038/s41586-020-2823-6
– volume: 91
  start-page: 035003
  year: 2019
  ident: 4197_CR41
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.035003
– volume: 9
  start-page: 4381
  year: 2020
  ident: 4197_CR53
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0263
– volume: 18
  start-page: 573
  year: 2019
  ident: 4197_CR39
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0336-1
– volume: 25
  start-page: 19195
  year: 2017
  ident: 4197_CR46
  publication-title: Opt. Express
  doi: 10.1364/OE.25.019195
– volume: 14
  start-page: 252
  year: 2018
  ident: 4197_CR16
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0007-6
– volume: 586
  start-page: 538
  year: 2020
  ident: 4197_CR3
  publication-title: Nature
  doi: 10.1038/s41586-020-2811-x
– ident: 4197_CR63
  doi: 10.1126/science.aan8083
– volume: 12
  start-page: 1000
  year: 2016
  ident: 4197_CR13
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3844
– volume: 86
  start-page: 1337
  year: 2014
  ident: 4197_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1337
– volume: 126
  start-page: 123901
  year: 2021
  ident: 4197_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.123901
– volume: 43
  start-page: 3200
  year: 2018
  ident: 4197_CR68
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.003200
– volume: 521
  start-page: 200
  year: 2015
  ident: 4197_CR12
  publication-title: Nature
  doi: 10.1038/nature14463
– volume: 186
  start-page: 128
  year: 2018
  ident: 4197_CR72
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2017.12.015
– volume: 55
  start-page: 1205
  year: 1965
  ident: 4197_CR61
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.55.001205
– volume: 582
  start-page: 46
  year: 2020
  ident: 4197_CR48
  publication-title: Nature
  doi: 10.1038/s41586-020-2320-y
– volume: 5
  start-page: 014302
  year: 2018
  ident: 4197_CR74
  publication-title: Struct. Dynam.
  doi: 10.1063/1.5009822
– volume: 6
  start-page: eabb1393
  year: 2020
  ident: 4197_CR23
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1393
– volume: 546
  start-page: 274
  year: 2017
  ident: 4197_CR64
  publication-title: Nature
  doi: 10.1038/nature22387
– volume: 7
  start-page: 024026
  year: 2017
  ident: 4197_CR67
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.7.024026
– volume: 371
  start-page: 1364
  year: 2021
  ident: 4197_CR80
  publication-title: Science
  doi: 10.1126/science.abg0330
– reference: 34937890 - Nature. 2021 Dec;600(7890):610-611
SSID ssj0005174
Score 2.620427
Snippet Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2 ,...
Integrated photonics facilitates extensive control over fundamental light–matter interactions in manifold quantum systems including atoms 1 , trapped ions 2,3...
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms , trapped ions ,...
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms.sup.1, trapped...
Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 653
SubjectTerms 140/125
142/126
639/624/400/1103
639/624/400/482
639/766/483/1255
639/766/483/3924
Analysis
Attosecond pulses
Continuous radiation
Electron beams
Electron energy
Electron microscopy
Electron states
Energy
Entanglement
Free electrons
Humanities and Social Sciences
Influence
Laser applications
Lasers
Light
Light scattering
Methods
Microscopy
Modulators
multidisciplinary
Phase matching
Phase modulation
Photonics
Propagation
Radiation
Science
Science (multidisciplinary)
Sidebands
Silicon
Silicon nitride
Spectrum analysis
Waveguides
SummonAdditionalLinks – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiJZXaEEBVTwEFk4cO85xtWLVItEDtKI3y3HsdiWaLGT3_zN2km2zWpA4z5fI8YxnxvHMZ4AjbjNmqTUE3WJKfEZACq4T4kziNKdVKit_ovv1VByfZ18u-MUOpEMvTCjaD5SWwU0P1WGfWgw00pfL4uY3S4qc8DtwV-aMe6ueiulNWccG83LfKEOZ3PKOUTDadMm3YtJmveTGoWmIRbOH8KBPIuNJN-w92LH1PtwLxZym3Ye9fsG28bueVfr9I5idDMQQVby4apaeEreNbWidamNfsT6vV82qJaXV1_FwOw5CMczF103VX_P1GM5nn8-mx6S_RIEY3PUuiSypTjRnvEptKa3jWlqcjTLPuBE55RqXrCuYkGVVCqpdoQstMufSMuydBHsCu3VT22cQ09Qkha14WTHrOQ2lFk5jxkYd5oCMugiSYTaV6RnG_UUXP1U46WZSdRpQqAEVNKB4BB_Wzyw6fo1_oo-8kpQnrqh9ZcylXrWtmpz9mJ6qiUDPXvhfWRG83gY7-f5tBHrbg1yDozS670fAb_WUWCPkwQhpFvNf6pb0zUh62Sl222sOR0Bcx2YsHixP9X6kVbi_Fb5ZORcRvFqL_ZO-Nq62aBYewzBpYzyP4GlnqOupZBmmnwWlEeQjE14DPLv4WFLPrwLLuBQFZ7mM4ONg7DfD-ruGnv8f_ADup349JilJ2SHsLn-v7AvM8pbly7Cs_wCsIkdN
  priority: 102
  providerName: Springer Nature
Title Integrated photonics enables continuous-beam electron phase modulation
URI https://link.springer.com/article/10.1038/s41586-021-04197-5
https://www.ncbi.nlm.nih.gov/pubmed/34937900
https://www.proquest.com/docview/2616227876
https://www.proquest.com/docview/2613293357
https://pubmed.ncbi.nlm.nih.gov/PMC8695378
Volume 600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9Bq0l7mYB9ZbAqm9A-NCKcOHach2lqKzqYtGpioPXNchIHKo2kkPb_3zl1WlIxXvIQX758n47vfgdwyHRINdGph2Yx8ExE4MVM-V6e-rliJAtEZnZ0f4756WX4Y8ImWzBuamFMWmVjE2tDnZWp-Ud-jJE-N2WbEf82u_VM1yizu9q00FC2tUL2tYYY24YuPpuRDnQHJ-Nf5-ukjw1cZltGQ6g4rtCVCZOQi8vr0I8jj7Vc1abBvuexNrMpN7ZUa0812oFnNsR0-0uZ2IUtXezBkzrVM632YNeqc-V-spjTn5_D6KyBjcjc2XU5N4C5lavrwqrKNfns02JRLiov0erGbXrnICk6QfemzGwTsBdwOTq5GJ56tsWCl-KaeO6JhChfMcqyQCdC50wJjbORRCFLeUSYQoXOY8pFkiWcqDxWseJhngdJvbLi9CV0irLQr8ElQerHOmNJRrVBPBSK5wrjOZJjhEhJ7oDfzKZMLf64aYPxV9b74FTIJQckckDWHJDMgS-ra2ZL9I1HqQ8Nk6SBtShM3syVWlSV7F_8GY5ln6PoxOZHlwPvHyI7-33eIvpoifIS3zJVtloBv9UAZrUo91uU6Wx6K--NfmiNXi0Z-9BtDlqEqOVpe7iRPGmtTCXXOuHAu9WwudJkzhUaxcLQUAzpKIsceLUU1NVU0hCD05gQB6KWCK8IDPZ4e6SYXtcY5ILHjEbCgaNG2Nev9X8OvXn8K_bhaWD0zw-8gB5AZ3630G8x5psnPdiOJhEexdA3x9H3HnT7o8Fg3LMqjmeHfPgPU1FVCQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLfGEIIXxMa_sAEBDRiCaJdc7pI8IFQNqpZtfYBO9O24JJetEks60grxpfiM2GnSLtXY257tnJKzz_bF9s8AO8L43DCTOGgWPYciAicS2nWyxM20YKkXppTRPRrI3rH_ZSRGa_C36YWhssrGJlaGOi0S-ke-h5G-pLbNQH6cnDs0NYqyq80IjblaHJg_v_HKVn7of0L5vvK87ufhfs-ppwo4CV4Dp04YM-1qwUXqmTg0mdChcRmPA18kMmBCow5nEZdhnMaS6SzSkZZ-lnlxdZmQHNe9ATd9SjHi-QlGwbKkZAX1uW7SYTzcK9FRhlTui5d3340CR7Qc4ao7uOAPV2s1VxK2lR_s3oO7dQBrd-YatwFrJt-EW1UhaVJuwkZtLEp7t0a0fnsfuv0GlCK1J6fFlOB4S9tUbVulTdXy43xWzEonNvrMbibzICu6WPusSOsRYw_g-Fq2-iGs50VuHoPNvMSNTCrilBvCUwy1zDRGiyzD-JOzzAK32U2V1OjmNGTjp6qy7DxUcwkolICqJKCEBe8Wz0zm2B5Xcu-QkBSBZuRUlXOiZ2WpOsPv-wPVkaiYEf1Gs-DlZWz9b19bTG9qpqzAt0x03QuB30pwXC3OrRZnMhmfqwvU1y3qyVywly2z3WJEG5K0yY3mqdqGlWp54ix4sSDTk1SXlxtUC-LhGDByEVjwaK6oi63kPoa-EWMWBC0VXjAQsnmbko9PK4TzUEaCB6EF7xtlX77W_yX05OqveA63e8OjQ3XYHxxswR2PzqLrOR7fhvXpr5l5itHlNH5WHWkbfly3DfkHqeeGRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiJZXaIGAyksQrRPHiXOo0NJ21aWwqvoQvRknsduVaLIlu0L8RX4V46yzbValt55nYiWe8TzimW8A1pkKqSIq89AsBp6JCLyESd_Tma8lI3nAc3Oj-20Q7RyFX47Z8QL8bXphTFllYxNrQ52XmflH3sFIPzJtm3HU0bYsYm-r92l07pkJUuamtRmnIe2YhXyjhhuzTR676s9vTOeqjf4Wyv51EPS2Dzd3PDtxwMswRRx7PCXSl4yyPFApV5pJrnxC0zhkWRQTJlG_dUIjnuZpRKROZCKjUOsgrRONiOK6t2ApRq-PieDS5-3B3v5FwckcJrRt4SGUdyp0o9wUA2NqH_pJ7LGWm5x3Fpe85Xwl59x1bu0le_fhng1v3e5UH5dhQRUrcLsuM82qFVi2pqRy31m86_cPoNdvICtyd3Rajg1Yb-Wquqmrck0t_bCYlJPKS5U8c5u5PciKDtg9K3M7gOwhHN3IZj-CxaIs1BNwSZD5icpZmlNl0Ba5jLTEWJJojE4p0Q74zW6KzGKfmxEcP0V9B0-5mEpAoARELQHBHPgwe2Y0Rf64lnvdCEkYSI3CKOeJnFSV6B5-3xyIboRqm5ifbA68uoqtf7DfYnprmXSJb5lJ2ymB32rAulqcqy3ObDQ8F5eob1rUk6lgr1pmrcWIFiZrkxvNE9bCVeLiPDrwckY2T5qqvUKhWhgeiuEkZbEDj6eKOttKGmJgnBDiQNxS4RmDwT1vU4rhaY1_zqOE0Zg78LFR9ovX-r-Enl7_FS_gDtoT8bU_2F2Fu4E5in7gBXQNFse_JuoZhp7j9Lk90y78uGkz8g9ktZEf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+photonics+enables+continuous-beam+electron+phase+modulation&rft.jtitle=Nature+%28London%29&rft.au=Henke%2C+Jan-Wilke&rft.au=Raja%2C+Arslan+Sajid&rft.au=Feist%2C+Armin&rft.au=Huang%2C+Guanhao&rft.date=2021-12-23&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=600&rft.issue=7890&rft.spage=653&rft_id=info:doi/10.1038%2Fs41586-021-04197-5&rft.externalDocID=A687699783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon