Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types 1 , 2 . Multiple clinical trials with combinatorial immune ch...
        Saved in:
      
    
          | Published in | Nature medicine Vol. 26; no. 1; pp. 39 - 46 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Nature Publishing Group US
    
        01.01.2020
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1078-8956 1546-170X 1546-170X  | 
| DOI | 10.1038/s41591-019-0694-x | 
Cover
| Abstract | Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types
1
,
2
. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73
hi
macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73
−/−
mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma. | 
    
|---|---|
| AbstractList | Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73−/− mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma. Immune checkpoint therapy (ICT) with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of ICT is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing, however, the mechanistic rationale for tumor specific targeting of immune checkpoints remains elusive. To garner insight into tumor specific immunomodulatory targets, we analyzed tumors (N=94) representing 5 different cancer types, including those that respond relatively well to ICT and those that do not, such as glioblastoma (GBM), prostate cancer (PCa) and colorectal cancer (CRC). Through mass cytometry and single cell RNA-sequencing, we identified a unique population of CD73hi macrophages in GBM that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in GBM, we performed reverse translational studies using CD73−/− mice. We found that the absence of CD73 improved survival in a murine model of GBM treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve anti-tumor immune responses to ICT in GBM, and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types.sup.1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73.sup.hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73.sup.-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma. Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types . Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73 macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73 mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types 1 , 2 . Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73 hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73 −/− mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma. Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types.sup.1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73.sup.hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73.sup.-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.  | 
    
| Audience | Academic | 
    
| Author | Sharma, Padmanee Anandhan, Swetha Pe’er, Dana Ott, Martina Allison, James P. Kong, Ling Y. Sepesi, Boris Heimberger, Amy B. Zhao, Hao de Groot, John Goswami, Sangeeta Fernandez, Irina Vence, Luis Blando, Jorge Basu, Sreyashi Yadav, Shalini Singh Kopetz, Scott Walle, Thomas Cornish, Andrew E. Overman, Michael  | 
    
| AuthorAffiliation | 1 Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 4 The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA 10 Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 6 Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center, 69120 Heidelberg, Germany 3 Computational and Systems Biology Program, Sloan-Kettering-Institute, 1275 York Avenue, New York, NY 10065, USA 8 Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 5 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 9 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2 National Center for Tumor Diseases, Department of Medical Oncology, 69120 Heidelberg, Germany 7 Department of  | 
    
| AuthorAffiliation_xml | – name: 2 National Center for Tumor Diseases, Department of Medical Oncology, 69120 Heidelberg, Germany – name: 6 Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center, 69120 Heidelberg, Germany – name: 5 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 11 Department of Medicine, NYU School of Medicine, New York, NY 10016, USA – name: 9 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 10 Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 4 The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA – name: 7 Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 3 Computational and Systems Biology Program, Sloan-Kettering-Institute, 1275 York Avenue, New York, NY 10065, USA – name: 1 Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA – name: 8 Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA  | 
    
| Author_xml | – sequence: 1 givenname: Sangeeta surname: Goswami fullname: Goswami, Sangeeta organization: Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center – sequence: 2 givenname: Thomas orcidid: 0000-0003-4835-955X surname: Walle fullname: Walle, Thomas organization: Department of Medical Oncology, National Center for Tumor Diseases, Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center – sequence: 3 givenname: Andrew E. surname: Cornish fullname: Cornish, Andrew E. organization: Computational and Systems Biology Program, Sloan Kettering Institute, Department of Medicine, New York University School of Medicine – sequence: 4 givenname: Sreyashi surname: Basu fullname: Basu, Sreyashi organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Swetha surname: Anandhan fullname: Anandhan, Swetha organization: Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center – sequence: 6 givenname: Irina surname: Fernandez fullname: Fernandez, Irina organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center – sequence: 7 givenname: Luis surname: Vence fullname: Vence, Luis organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center – sequence: 8 givenname: Jorge surname: Blando fullname: Blando, Jorge organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center – sequence: 9 givenname: Hao surname: Zhao fullname: Zhao, Hao organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center – sequence: 10 givenname: Shalini Singh surname: Yadav fullname: Yadav, Shalini Singh organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center – sequence: 11 givenname: Martina surname: Ott fullname: Ott, Martina organization: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center – sequence: 12 givenname: Ling Y. surname: Kong fullname: Kong, Ling Y. organization: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center – sequence: 13 givenname: Amy B. orcidid: 0000-0002-9970-8695 surname: Heimberger fullname: Heimberger, Amy B. organization: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center – sequence: 14 givenname: John surname: de Groot fullname: de Groot, John organization: Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center – sequence: 15 givenname: Boris surname: Sepesi fullname: Sepesi, Boris organization: Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center – sequence: 16 givenname: Michael surname: Overman fullname: Overman, Michael organization: Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center – sequence: 17 givenname: Scott surname: Kopetz fullname: Kopetz, Scott organization: Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center – sequence: 18 givenname: James P. surname: Allison fullname: Allison, James P. organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Department of Immunology, The University of Texas MD Anderson Cancer Center – sequence: 19 givenname: Dana surname: Pe’er fullname: Pe’er, Dana organization: Computational and Systems Biology Program, Sloan Kettering Institute – sequence: 20 givenname: Padmanee orcidid: 0000-0003-4658-055X surname: Sharma fullname: Sharma, Padmanee email: padsharma@mdanderson.org organization: Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Department of Immunology, The University of Texas MD Anderson Cancer Center  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31873309$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkt1r2zAUxc3oWNtsf8BehmEwtgd3kmVb9kuhZF-BQmFfjL2IG_naUZGlTJK39L-fQrKlKdkofrDBv3Oke849TY6MNZgkTyk5o4TVr31By4ZmhDYZqZoiWz1ITmhZVBnl5NtR_Ca8zuqmrI6TU--vCSGMlM2j5JjRmjNGmpPk-2wYRoPp0tlOaWX61HbpYhzApGEcrPOpatEE1Sn06fQNZyn4FFJph7kyEKxToNMArseQKpP2Wtm5Bh_sAI-Thx1oj0-270ny5d3bz9MP2eXV-9n04jKTvCAh65jMmwbyGhFaWXKY17wt5zlyKSUnUMuadFxWVctzrAvGC4izIi0aWtE5bdkkyTe-o1nCzS_QWiydGsDdCErEOiixCUrEoMQ6KLGKovONaDnOB2xlnNHBTmhBif0_Ri1Eb38KTus8WkaDl1sDZ3-M6IMYlJeoNRi0oxd5zJexMo83niTP76DXdnQmZhKpItZAYhk7qgeNQpnOxnPl2lRcVJQyTmmeRyo7QPVoMF4ybkcsEff5swN8fFoclDwoeLUniEzAVehh9F7MPn28P3v1dZ99cYtdIOiw8FaPQVnj98Fnt5v5W8mfnY0A3wDSWe8ddkKqAGufOJrS_y2d3lHeZ1G22-Uja3p0u_L-LfoNYOMcUQ | 
    
| CitedBy_id | crossref_primary_10_1126_sciadv_add6626 crossref_primary_10_1146_annurev_med_042420_102102 crossref_primary_10_1146_annurev_immunol_110519_071134 crossref_primary_10_1159_000511107 crossref_primary_10_1159_000536649 crossref_primary_10_1002_jev2_12218 crossref_primary_10_1038_s41467_022_28372_y crossref_primary_10_1126_scitranslmed_adi2952 crossref_primary_10_3233_CBM_230217 crossref_primary_10_1136_jitc_2024_009210 crossref_primary_10_1016_j_trecan_2024_11_001 crossref_primary_10_1002_ctm2_206 crossref_primary_10_1038_s41577_020_0275_8 crossref_primary_10_1016_j_celrep_2024_115014 crossref_primary_10_1136_jitc_2024_010455 crossref_primary_10_1016_j_ygeno_2021_11_036 crossref_primary_10_3390_vaccines10040540 crossref_primary_10_1080_08820139_2024_2337022 crossref_primary_10_1016_j_cell_2021_03_023 crossref_primary_10_3389_fonc_2021_790676 crossref_primary_10_1002_jbio_202100329 crossref_primary_10_1186_s12935_023_02999_3 crossref_primary_10_1007_s00432_022_04211_x crossref_primary_10_1038_s41591_024_03138_9 crossref_primary_10_1126_sciadv_adj3301 crossref_primary_10_1172_JCI177413 crossref_primary_10_3390_jpm11121312 crossref_primary_10_1177_03946320221104548 crossref_primary_10_3390_cells14060403 crossref_primary_10_1016_j_cej_2023_146343 crossref_primary_10_1016_j_xcrm_2024_101443 crossref_primary_10_1021_acs_analchem_0c03512 crossref_primary_10_3389_fimmu_2023_1212209 crossref_primary_10_1158_1078_0432_CCR_21_2681 crossref_primary_10_3389_fimmu_2023_1121557 crossref_primary_10_3389_fimmu_2023_1238233 crossref_primary_10_1186_s13046_022_02251_2 crossref_primary_10_12688_f1000research_125163_1 crossref_primary_10_3389_fgene_2021_750675 crossref_primary_10_3390_neuroglia6010005 crossref_primary_10_1038_s43018_023_00620_0 crossref_primary_10_1172_jci_insight_142980 crossref_primary_10_1016_j_intimp_2020_106628 crossref_primary_10_1186_s13045_021_01105_2 crossref_primary_10_1158_2159_8290_CD_20_1680 crossref_primary_10_1038_s43018_023_00621_z crossref_primary_10_1038_s44321_024_00050_0 crossref_primary_10_1007_s10014_022_00431_8 crossref_primary_10_3389_fimmu_2022_1024921 crossref_primary_10_1002_cac2_12416 crossref_primary_10_1038_s41556_021_00805_8 crossref_primary_10_3389_fimmu_2025_1486868 crossref_primary_10_7554_eLife_92678 crossref_primary_10_1186_s12951_023_01997_x crossref_primary_10_1126_scitranslmed_add1016 crossref_primary_10_1186_s12951_022_01265_4 crossref_primary_10_3390_cancers12071960 crossref_primary_10_1016_j_intimp_2021_108183 crossref_primary_10_1002_gcc_22944 crossref_primary_10_3390_ijms232415612 crossref_primary_10_1038_s41551_021_00799_6 crossref_primary_10_1002_advs_202101672 crossref_primary_10_1158_2159_8290_CD_20_0603 crossref_primary_10_3390_cancers13164226 crossref_primary_10_3390_cancers13143400 crossref_primary_10_3389_fimmu_2024_1429812 crossref_primary_10_1016_j_coi_2021_01_001 crossref_primary_10_1097_CCO_0000000000000895 crossref_primary_10_1038_s41392_022_00990_4 crossref_primary_10_1016_j_tcb_2021_06_008 crossref_primary_10_1016_j_semcancer_2023_04_004 crossref_primary_10_1093_neuonc_noaa277 crossref_primary_10_1016_j_tips_2023_08_009 crossref_primary_10_3389_fonc_2020_01254 crossref_primary_10_3390_ijms222212330 crossref_primary_10_1007_s11302_023_09951_0 crossref_primary_10_1136_jitc_2021_003289 crossref_primary_10_3390_toxins14110806 crossref_primary_10_1016_j_intimp_2024_112797 crossref_primary_10_1186_s13046_022_02349_7 crossref_primary_10_1080_21655979_2021_1989259 crossref_primary_10_3390_cancers13174255 crossref_primary_10_3390_ijms222413382 crossref_primary_10_3390_life12081225 crossref_primary_10_1172_jci_insight_174753 crossref_primary_10_1038_s41467_022_32430_w crossref_primary_10_3390_ijms23137046 crossref_primary_10_1007_s44194_024_00031_y crossref_primary_10_1021_acsnano_2c12217 crossref_primary_10_3390_cancers13020229 crossref_primary_10_1038_s42003_023_05182_6 crossref_primary_10_1080_14737140_2020_1814747 crossref_primary_10_1016_j_bulcan_2020_12_002 crossref_primary_10_3389_fimmu_2021_797450 crossref_primary_10_3389_fimmu_2023_1255611 crossref_primary_10_3390_cells10082032 crossref_primary_10_1186_s13046_021_01874_1 crossref_primary_10_1016_j_jhep_2022_02_019 crossref_primary_10_1063_5_0232343 crossref_primary_10_3390_ijms222212314 crossref_primary_10_3389_fimmu_2020_599253 crossref_primary_10_1126_scitranslmed_abl4106 crossref_primary_10_1016_j_canlet_2021_12_008 crossref_primary_10_1093_neuonc_noaa255 crossref_primary_10_3390_v15020547 crossref_primary_10_1093_neuonc_noaa256 crossref_primary_10_1021_jacs_0c10755 crossref_primary_10_3389_fcell_2022_803947 crossref_primary_10_15252_embj_2021108130 crossref_primary_10_3390_cancers14225663 crossref_primary_10_1021_acs_analchem_0c02630 crossref_primary_10_3390_cells10010018 crossref_primary_10_1016_j_cell_2023_03_006 crossref_primary_10_1172_JCI176390 crossref_primary_10_1038_s41419_021_04359_3 crossref_primary_10_1038_s41467_020_20599_x crossref_primary_10_1021_acs_jmedchem_4c00825 crossref_primary_10_1016_j_phrs_2022_106308 crossref_primary_10_1007_s12094_021_02732_4 crossref_primary_10_1016_j_gpb_2021_02_004 crossref_primary_10_1097_WCO_0000000000000994 crossref_primary_10_1007_s12035_022_02996_z crossref_primary_10_1080_14737159_2021_1900735 crossref_primary_10_3390_cells10113165 crossref_primary_10_3390_ijms25052529 crossref_primary_10_3390_cells10113166 crossref_primary_10_1002_cbic_202400848 crossref_primary_10_1021_acs_bioconjchem_1c00220 crossref_primary_10_1021_acs_jmedchem_0c01086 crossref_primary_10_1039_D2BM01996E crossref_primary_10_1158_1535_7163_MCT_21_0802 crossref_primary_10_1038_s41467_023_36707_6 crossref_primary_10_3389_fimmu_2021_628966 crossref_primary_10_3389_fonc_2021_579351 crossref_primary_10_1186_s40478_023_01569_y crossref_primary_10_3389_fimmu_2020_00490 crossref_primary_10_3390_cancers14051319 crossref_primary_10_3389_fmolb_2021_669366 crossref_primary_10_1080_21655979_2023_2185434 crossref_primary_10_1038_s41568_021_00397_3 crossref_primary_10_1007_s00262_024_03689_3 crossref_primary_10_3389_fimmu_2021_713757 crossref_primary_10_1038_s41467_024_49189_x crossref_primary_10_1016_j_tcb_2021_05_008 crossref_primary_10_3389_fimmu_2023_1199631 crossref_primary_10_3390_brainsci13111602 crossref_primary_10_1016_j_cell_2021_12_004 crossref_primary_10_1136_jitc_2022_006457 crossref_primary_10_20517_cdr_2023_82 crossref_primary_10_3389_fimmu_2021_777073 crossref_primary_10_1016_j_isci_2024_110486 crossref_primary_10_1038_s41598_020_65729_z crossref_primary_10_1016_j_biopha_2022_113066 crossref_primary_10_3390_biomedicines10020236 crossref_primary_10_1016_j_semcancer_2024_07_005 crossref_primary_10_1002_iub_2905 crossref_primary_10_1016_j_humimm_2024_110774 crossref_primary_10_3390_ijms251910570 crossref_primary_10_1016_j_imlet_2023_03_005 crossref_primary_10_3390_ijms21197358 crossref_primary_10_1038_s41392_023_01683_2 crossref_primary_10_1172_JCI163446 crossref_primary_10_1016_j_heliyon_2024_e35231 crossref_primary_10_3389_fimmu_2024_1384249 crossref_primary_10_1038_s41467_021_26940_2 crossref_primary_10_3390_cancers15245790 crossref_primary_10_1007_s00262_020_02569_w crossref_primary_10_3390_biomedicines11061520 crossref_primary_10_1002_cjp2_205 crossref_primary_10_3390_ijms22010194 crossref_primary_10_18632_aging_204313 crossref_primary_10_1186_s12935_022_02589_9 crossref_primary_10_1186_s12943_022_01513_z crossref_primary_10_1111_imm_13517 crossref_primary_10_3390_cancers13020177 crossref_primary_10_1016_j_pan_2021_03_018 crossref_primary_10_1186_s12938_024_01320_1 crossref_primary_10_1016_j_coph_2020_08_003 crossref_primary_10_1016_j_molimm_2022_02_012 crossref_primary_10_3389_fonc_2025_1507940 crossref_primary_10_1016_j_trecan_2023_04_008 crossref_primary_10_7554_eLife_92678_2 crossref_primary_10_3389_fphar_2022_1038272 crossref_primary_10_1038_s41419_023_05753_9 crossref_primary_10_1007_s00401_022_02506_4 crossref_primary_10_1038_s41421_022_00498_9 crossref_primary_10_1186_s13045_022_01263_x crossref_primary_10_3390_cancers14194802 crossref_primary_10_1016_j_ncrna_2024_02_003 crossref_primary_10_3390_cancers14164032 crossref_primary_10_1038_s41388_023_02738_y crossref_primary_10_1038_s41598_024_84719_z crossref_primary_10_1038_s41416_022_01864_w crossref_primary_10_1016_j_ccell_2023_03_004 crossref_primary_10_1007_s10147_022_02242_5 crossref_primary_10_1093_noajnl_vdaa123 crossref_primary_10_1038_s41587_024_02193_4 crossref_primary_10_1016_j_ccell_2025_03_005 crossref_primary_10_1038_s41598_023_40592_w crossref_primary_10_1038_s41571_021_00518_9 crossref_primary_10_1080_08830185_2022_2101647 crossref_primary_10_3390_ijms222212297 crossref_primary_10_2147_OTT_S326178 crossref_primary_10_1186_s13073_023_01164_9 crossref_primary_10_1136_jitc_2020_002181 crossref_primary_10_3389_fimmu_2022_954039 crossref_primary_10_1073_pnas_2306973121 crossref_primary_10_14336_AD_2022_0621 crossref_primary_10_1124_pharmrev_121_000528 crossref_primary_10_3389_fimmu_2020_604967 crossref_primary_10_1038_s41587_023_01940_3 crossref_primary_10_1016_j_trecan_2022_04_010 crossref_primary_10_1158_2159_8290_CD_20_0219 crossref_primary_10_3389_fimmu_2022_837645 crossref_primary_10_1016_j_ccell_2024_05_001 crossref_primary_10_1186_s41065_021_00193_x crossref_primary_10_3389_fimmu_2025_1526296 crossref_primary_10_3390_cancers12092334 crossref_primary_10_3389_fmed_2023_1175507 crossref_primary_10_1016_j_tips_2022_04_002 crossref_primary_10_1016_j_ejca_2021_08_006 crossref_primary_10_1080_2162402X_2022_2030020 crossref_primary_10_1146_annurev_pathmechdis_051122_110348 crossref_primary_10_1016_j_heliyon_2024_e27329 crossref_primary_10_1021_acsnano_4c04553 crossref_primary_10_1136_jitc_2023_006846 crossref_primary_10_1084_jem_20220808 crossref_primary_10_1016_j_ymthe_2023_08_009 crossref_primary_10_1038_s41577_022_00737_w crossref_primary_10_1038_s41593_020_00789_y crossref_primary_10_1016_j_xcrm_2023_101177 crossref_primary_10_3390_brainsci14121286 crossref_primary_10_3390_ijms241310456 crossref_primary_10_1016_j_trecan_2023_11_005 crossref_primary_10_1101_gad_350693_123 crossref_primary_10_1016_j_bioactmat_2023_08_001 crossref_primary_10_3390_ijms241411759 crossref_primary_10_1016_j_immuni_2024_04_006 crossref_primary_10_1038_s43018_021_00260_2 crossref_primary_10_1093_hmg_ddaa137 crossref_primary_10_1186_s40478_021_01156_z crossref_primary_10_1016_j_trac_2022_116796 crossref_primary_10_1038_s41420_024_02171_4 crossref_primary_10_1038_s41467_021_24293_4 crossref_primary_10_3389_fimmu_2020_01590 crossref_primary_10_1016_j_annonc_2022_11_008 crossref_primary_10_1097_MD_0000000000036410 crossref_primary_10_1016_j_ajps_2025_101021 crossref_primary_10_1016_j_ejmech_2023_116028 crossref_primary_10_1016_j_coph_2020_07_001 crossref_primary_10_3389_fimmu_2021_679425  | 
    
| Cites_doi | 10.1093/neuonc/nov292 10.1158/0008-5472.CAN-16-2310 10.1038/s41591-018-0337-7 10.1158/1078-0432.CCR-16-3261 10.1523/JNEUROSCI.1118-18.2019 10.1158/0008-5472.CAN-10-4246 10.1186/s13059-017-1362-4 10.1016/j.cell.2015.05.047 10.1056/NEJMoa1003466 10.1016/j.drudis.2017.06.005 10.1016/j.molmed.2013.03.005 10.1186/s40425-017-0257-y 10.1016/j.cell.2018.05.060 10.1038/nbt.2594 10.1126/science.aan6733 10.1158/2326-6066.CIR-18-0054 10.1038/s41591-018-0339-5 10.1056/NEJMoa1510665 10.1056/NEJMoa1712126 10.1002/cyto.a.22625 10.3892/or.2016.5171 10.1158/0008-5472.CAN-16-0144 10.1016/j.cell.2015.03.030 10.1016/S1470-2045(17)30065-7 10.1016/j.cell.2017.07.024 10.1111/imr.12519 10.1007/s12035-018-1240-4 10.1038/nm.3337 10.1056/NEJMoa1504030 10.1056/NEJMoa1507643 10.1016/j.cell.2016.08.069 10.1038/s41593-019-0370-y 10.1073/pnas.1706559114 10.1016/j.cell.2018.05.061 10.1016/j.celrep.2019.04.091 10.1038/nm.4086 10.1016/S1470-2045(14)70189-5 10.1038/nprot.2015.020 10.1016/j.cell.2017.04.016 10.1016/j.cell.2017.04.014 10.1016/j.jneuroim.2012.02.009 10.1002/cyto.a.22271 10.1016/j.ymeth.2014.08.016 10.1126/science.aaa8172 10.1007/s12035-019-01730-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 COPYRIGHT 2020 Nature Publishing Group 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1038/s41591-019-0694-x | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Science (Gale in Context) ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library (Proquest) Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Biology  | 
    
| EISSN | 1546-170X | 
    
| EndPage | 46 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7182038 PMC7182038 A611371122 31873309 10_1038_s41591_019_0694_x  | 
    
| Genre | Journal Article Research Support, N.I.H., Extramural  | 
    
| GeographicLocations | United States | 
    
| GeographicLocations_xml | – name: United States | 
    
| GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) – fundername: Parker Foundation funderid: https://doi.org/10.13039/100001787 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) funderid: https://doi.org/10.13039/100000054 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: K12 CA088084 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCATS NIH HHS grantid: KL2 TR000370  | 
    
| GroupedDBID | --- .-4 .55 .GJ 0R~ 123 1CY 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 88I 8AO 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABUWG ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IEA IH2 IHR IHW INH INR IOF IOV ISR ITC J5H L7B LGEZI LK8 LOTEE M0L M1P M2O M2P M7P MK0 N9A NADUK NNMJJ NXXTH O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TSG TUS UKHRP UQL X7M XJT YHZ ZGI ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PUEGO AETEA CGR CUY CVF ECM EIF NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB ACMFV AGSTI AEIIB 7QG 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U7 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1078-8956 1546-170X  | 
    
| IngestDate | Sun Oct 26 03:55:16 EDT 2025 Tue Sep 30 16:35:52 EDT 2025 Thu Oct 02 19:32:51 EDT 2025 Mon Oct 06 17:47:54 EDT 2025 Mon Oct 20 21:49:44 EDT 2025 Thu Jun 12 20:38:50 EDT 2025 Mon Oct 20 16:27:56 EDT 2025 Thu Oct 16 14:51:00 EDT 2025 Thu Oct 16 14:16:42 EDT 2025 Thu May 22 21:23:43 EDT 2025 Thu Jul 24 02:16:12 EDT 2025 Wed Oct 01 04:32:39 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 21 02:37:40 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors Contributions Lead Contact. These authors contributed equally. Supervision and Study Oversight by P.S. Funding Acquisition, P.S.; Experiments were performed by S.G.,S.A., M.O., L.Y.K. Writing, Review & Editing, P.S., S.G., T.W., A.E.C., S.B.; Data analysis and interpretation were performed by P.S., S.G., T.W., A.E.C., S.B., S.A., I.F., L.V., J.B., H.Z., D.P., S.S., J.A.P. Patient samples were provided by A.B.H., J.d.G., B.S., M.O., S.K., P.S.  | 
    
| ORCID | 0000-0002-9970-8695 0000-0003-4658-055X 0000-0003-4835-955X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7182038 | 
    
| PMID | 31873309 | 
    
| PQID | 2343090733 | 
    
| PQPubID | 33975 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1038_s41591_019_0694_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182038 proquest_miscellaneous_2330335284 proquest_journals_2343090733 gale_infotracmisc_A611371122 gale_infotracgeneralonefile_A611371122 gale_infotracacademiconefile_A611371122 gale_incontextgauss_ISR_A611371122 gale_incontextgauss_IOV_A611371122 gale_healthsolutions_A611371122 pubmed_primary_31873309 crossref_citationtrail_10_1038_s41591_019_0694_x crossref_primary_10_1038_s41591_019_0694_x springer_journals_10_1038_s41591_019_0694_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-01-01 | 
    
| PublicationDateYYYYMMDD | 2020-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States  | 
    
| PublicationTitle | Nature medicine | 
    
| PublicationTitleAbbrev | Nat Med | 
    
| PublicationTitleAlternate | Nat Med | 
    
| PublicationYear | 2020 | 
    
| Publisher | Nature Publishing Group US Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group  | 
    
| References | Lavin (CR12) 2017; 169 Cannarile (CR34) 2017; 5 Chew (CR11) 2017; 114 Motzer (CR7) 2018; 378 Le (CR9) 2017; 357 Müller (CR21) 2017; 18 Saito (CR15) 2016; 22 CR18 Yan (CR20) 2019; 39 Andrews, Marciscano, Drake, Vignali (CR30) 2017; 276 Kwon (CR5) 2014; 15 Larkin (CR31) 2015; 373 Stack, Wang, Roman, Hoyt (CR43) 2014; 70 Azizi (CR44) 2018; 174 Perrot (CR36) 2019; 27 Zunder (CR39) 2015; 10 Takenaka (CR19) 2019; 22 Pyonteck (CR25) 2013; 19 Wei (CR13) 2017; 170 Pfannenstiel (CR32) 2019; 7 Van Gassen (CR42) 2015; 87 Chen (CR23) 2017; 77 Amir (CR40) 2013; 31 Pham, Luo, Liu, Harrison (CR24) 2012; 246 Borghaei (CR3) 2015; 373 Hodi (CR4) 2010; 363 Gao (CR14) 2016; 167 Chang (CR22) 2016; 76 Sharma, Allison (CR2) 2015; 348 Finck (CR38) 2013; 83 Wei (CR37) 2016; 18 Azambuja (CR17) 2019; 56 Cloughesy (CR28) 2019; 25 Papadopoulos (CR33) 2017; 23 Levine (CR41) 2015; 162 Chevrier (CR10) 2017; 169 Antonioli (CR35) 2017; 22 van Dijk (CR45) 2018; 174 Sharma, Allison (CR1) 2015; 161 Sharma (CR8) 2017; 18 Wang (CR26) 2016; 36 Schalper (CR27) 2019; 25 Motzer (CR6) 2015; 373 Stagg (CR29) 2011; 71 Antonioli, Pacher, Vizi, Haskó (CR16) 2013; 19 ED Kwon (694_CR5) 2014; 15 I Perrot (694_CR36) 2019; 27 MA Cannarile (694_CR34) 2017; 5 RJ Motzer (694_CR6) 2015; 373 JH Levine (694_CR41) 2015; 162 V Chew (694_CR11) 2017; 114 ER Zunder (694_CR39) 2015; 10 S Müller (694_CR21) 2017; 18 DT Le (694_CR9) 2017; 357 Z Chen (694_CR23) 2017; 77 SM Pyonteck (694_CR25) 2013; 19 TF Cloughesy (694_CR28) 2019; 25 Y Wang (694_CR26) 2016; 36 J Stagg (694_CR29) 2011; 71 Y Lavin (694_CR12) 2017; 169 JH Azambuja (694_CR17) 2019; 56 P Sharma (694_CR1) 2015; 161 R Finck (694_CR38) 2013; 83 P Sharma (694_CR8) 2017; 18 EC Stack (694_CR43) 2014; 70 694_CR18 J Larkin (694_CR31) 2015; 373 J Gao (694_CR14) 2016; 167 J Wei (694_CR37) 2016; 18 E Azizi (694_CR44) 2018; 174 K Pham (694_CR24) 2012; 246 AL Chang (694_CR22) 2016; 76 LW Pfannenstiel (694_CR32) 2019; 7 H Borghaei (694_CR3) 2015; 373 L Antonioli (694_CR16) 2013; 19 S Van Gassen (694_CR42) 2015; 87 RJ Motzer (694_CR7) 2018; 378 KA Schalper (694_CR27) 2019; 25 A Yan (694_CR20) 2019; 39 SC Wei (694_CR13) 2017; 170 LP Andrews (694_CR30) 2017; 276 S Chevrier (694_CR10) 2017; 169 D van Dijk (694_CR45) 2018; 174 el-AD Amir (694_CR40) 2013; 31 L Antonioli (694_CR35) 2017; 22 FS Hodi (694_CR4) 2010; 363 KP Papadopoulos (694_CR33) 2017; 23 P Sharma (694_CR2) 2015; 348 T Saito (694_CR15) 2016; 22 MC Takenaka (694_CR19) 2019; 22  | 
    
| References_xml | – volume: 18 start-page: 639 year: 2016 end-page: 648 ident: CR37 article-title: MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints publication-title: Neuro Oncol. doi: 10.1093/neuonc/nov292 – volume: 77 start-page: 2266 year: 2017 end-page: 2278 ident: CR23 article-title: Cellular and molecular identity of tumor-associated macrophages in glioblastoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2310 – volume: 25 start-page: 477 year: 2019 end-page: 486 ident: CR28 article-title: Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma publication-title: Nat. Med. doi: 10.1038/s41591-018-0337-7 – volume: 23 start-page: 5703 year: 2017 end-page: 5710 ident: CR33 article-title: First-in-human study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-3261 – ident: CR18 – volume: 39 start-page: 4387 year: 2019 end-page: 4402 ident: CR20 article-title: CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A adenosine receptor signaling publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1118-18.2019 – volume: 71 start-page: 2892 year: 2011 end-page: 2900 ident: CR29 article-title: CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4246 – volume: 18 year: 2017 ident: CR21 article-title: Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment publication-title: Genome Biol. doi: 10.1186/s13059-017-1362-4 – volume: 162 start-page: 184 year: 2015 end-page: 197 ident: CR41 article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 363 start-page: 711 year: 2010 end-page: 723 ident: CR4 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1003466 – volume: 22 start-page: 1686 year: 2017 end-page: 1696 ident: CR35 article-title: Switching off CD73: a way to boost the activity of conventional and targeted antineoplastic therapies publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.06.005 – volume: 19 start-page: 355 year: 2013 end-page: 367 ident: CR16 article-title: CD39 and CD73 in immunity and inflammation publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2013.03.005 – volume: 5 start-page: 53 year: 2017 ident: CR34 article-title: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy publication-title: J. Immunother. Cancer doi: 10.1186/s40425-017-0257-y – volume: 174 start-page: 1293 year: 2018 end-page: 1308.e36 ident: CR44 article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment publication-title: Cell doi: 10.1016/j.cell.2018.05.060 – volume: 31 start-page: 545 year: 2013 end-page: 552 ident: CR40 article-title: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2594 – volume: 357 start-page: 409 year: 2017 end-page: 413 ident: CR9 article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. publication-title: Science doi: 10.1126/science.aan6733 – volume: 7 start-page: 510 year: 2019 end-page: 525 ident: CR32 article-title: Immune-checkpoint blockade opposes CD8 T-cell suppression in human and murine cancer publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0054 – volume: 25 start-page: 470 year: 2019 end-page: 476 ident: CR27 article-title: Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma publication-title: Nat. Med. doi: 10.1038/s41591-018-0339-5 – volume: 373 start-page: 1803 year: 2015 end-page: 1813 ident: CR6 article-title: Nivolumab versus everolimus in advanced renal-cell carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1510665 – volume: 378 start-page: 1277 year: 2018 end-page: 1290 ident: CR7 article-title: Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1712126 – volume: 87 start-page: 636 year: 2015 end-page: 645 ident: CR42 article-title: FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data publication-title: Cytometry A doi: 10.1002/cyto.a.22625 – volume: 36 start-page: 3522 year: 2016 end-page: 3528 ident: CR26 article-title: Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis publication-title: Oncol. Rep. doi: 10.3892/or.2016.5171 – volume: 76 start-page: 5671 year: 2016 end-page: 5682 ident: CR22 article-title: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-0144 – volume: 161 start-page: 205 year: 2015 end-page: 214 ident: CR1 article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential publication-title: Cell doi: 10.1016/j.cell.2015.03.030 – volume: 18 start-page: 312 year: 2017 end-page: 322 ident: CR8 article-title: Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30065-7 – volume: 170 start-page: 1120 year: 2017 end-page: 1133.e17 ident: CR13 article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade publication-title: Cell doi: 10.1016/j.cell.2017.07.024 – volume: 276 start-page: 80 year: 2017 end-page: 96 ident: CR30 article-title: LAG3 (CD223) as a cancer immunotherapy target publication-title: Immunol. Rev. doi: 10.1111/imr.12519 – volume: 56 start-page: 3260 year: 2019 end-page: 3279 ident: CR17 article-title: CD73 downregulation decreases in vitro and in vivo glioblastoma growth publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-1240-4 – volume: 19 start-page: 1264 year: 2013 end-page: 1272 ident: CR25 article-title: CSF-1R inhibition alters macrophage polarization and blocks glioma progression publication-title: Nat. Med. doi: 10.1038/nm.3337 – volume: 373 start-page: 23 year: 2015 end-page: 34 ident: CR31 article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504030 – volume: 373 start-page: 1627 year: 2015 end-page: 1639 ident: CR3 article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1507643 – volume: 167 start-page: 397 year: 2016 end-page: 404.e9 ident: CR14 article-title: Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy publication-title: Cell doi: 10.1016/j.cell.2016.08.069 – volume: 22 start-page: 729 year: 2019 end-page: 740 ident: CR19 article-title: Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0370-y – volume: 114 start-page: E5900 year: 2017 end-page: E5909 ident: CR11 article-title: Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1706559114 – volume: 348 start-page: 56 year: 2015 end-page: 61 ident: CR2 article-title: The future of immune checkpoint therapy publication-title: Science – volume: 174 start-page: 716 year: 2018 end-page: 729.e27 ident: CR45 article-title: Recovering gene interactions from single-cell data using data diffusion publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 27 start-page: 2411 year: 2019 end-page: 2425.e9 ident: CR36 article-title: Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.04.091 – volume: 22 start-page: 679 year: 2016 end-page: 684 ident: CR15 article-title: Two FOXP3 CD4 T cell subpopulations distinctly control the prognosis of colorectal cancers publication-title: Nat. Med. doi: 10.1038/nm.4086 – volume: 15 start-page: 700 year: 2014 end-page: 712 ident: CR5 article-title: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70189-5 – volume: 10 start-page: 316 year: 2015 end-page: 333 ident: CR39 article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.020 – volume: 169 start-page: 736 year: 2017 end-page: 749.e18 ident: CR10 article-title: An immune atlas of clear cell renal cell carcinoma publication-title: Cell doi: 10.1016/j.cell.2017.04.016 – volume: 169 start-page: 750 year: 2017 end-page: 765.e17 ident: CR12 article-title: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses publication-title: Cell doi: 10.1016/j.cell.2017.04.014 – volume: 246 start-page: 10 year: 2012 end-page: 17 ident: CR24 article-title: CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5 publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2012.02.009 – volume: 83 start-page: 483 year: 2013 end-page: 494 ident: CR38 article-title: Normalization of mass cytometry data with bead standards publication-title: Cytometry A doi: 10.1002/cyto.a.22271 – volume: 70 start-page: 46 year: 2014 end-page: 58 ident: CR43 article-title: Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis publication-title: Methods doi: 10.1016/j.ymeth.2014.08.016 – volume: 31 start-page: 545 year: 2013 ident: 694_CR40 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2594 – volume: 348 start-page: 56 year: 2015 ident: 694_CR2 publication-title: Science doi: 10.1126/science.aaa8172 – volume: 25 start-page: 477 year: 2019 ident: 694_CR28 publication-title: Nat. Med. doi: 10.1038/s41591-018-0337-7 – volume: 5 start-page: 53 year: 2017 ident: 694_CR34 publication-title: J. Immunother. Cancer doi: 10.1186/s40425-017-0257-y – volume: 18 start-page: 639 year: 2016 ident: 694_CR37 publication-title: Neuro Oncol. doi: 10.1093/neuonc/nov292 – volume: 77 start-page: 2266 year: 2017 ident: 694_CR23 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-2310 – volume: 170 start-page: 1120 year: 2017 ident: 694_CR13 publication-title: Cell doi: 10.1016/j.cell.2017.07.024 – volume: 39 start-page: 4387 year: 2019 ident: 694_CR20 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1118-18.2019 – volume: 36 start-page: 3522 year: 2016 ident: 694_CR26 publication-title: Oncol. Rep. doi: 10.3892/or.2016.5171 – volume: 76 start-page: 5671 year: 2016 ident: 694_CR22 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-0144 – volume: 373 start-page: 1627 year: 2015 ident: 694_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1507643 – volume: 161 start-page: 205 year: 2015 ident: 694_CR1 publication-title: Cell doi: 10.1016/j.cell.2015.03.030 – volume: 378 start-page: 1277 year: 2018 ident: 694_CR7 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1712126 – volume: 167 start-page: 397 year: 2016 ident: 694_CR14 publication-title: Cell doi: 10.1016/j.cell.2016.08.069 – volume: 373 start-page: 23 year: 2015 ident: 694_CR31 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1504030 – volume: 7 start-page: 510 year: 2019 ident: 694_CR32 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0054 – volume: 22 start-page: 1686 year: 2017 ident: 694_CR35 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.06.005 – volume: 71 start-page: 2892 year: 2011 ident: 694_CR29 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-4246 – volume: 363 start-page: 711 year: 2010 ident: 694_CR4 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1003466 – volume: 25 start-page: 470 year: 2019 ident: 694_CR27 publication-title: Nat. Med. doi: 10.1038/s41591-018-0339-5 – volume: 174 start-page: 1293 year: 2018 ident: 694_CR44 publication-title: Cell doi: 10.1016/j.cell.2018.05.060 – volume: 18 start-page: 312 year: 2017 ident: 694_CR8 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(17)30065-7 – volume: 373 start-page: 1803 year: 2015 ident: 694_CR6 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1510665 – volume: 15 start-page: 700 year: 2014 ident: 694_CR5 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(14)70189-5 – volume: 114 start-page: E5900 year: 2017 ident: 694_CR11 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1706559114 – volume: 169 start-page: 750 year: 2017 ident: 694_CR12 publication-title: Cell doi: 10.1016/j.cell.2017.04.014 – volume: 18 year: 2017 ident: 694_CR21 publication-title: Genome Biol. doi: 10.1186/s13059-017-1362-4 – volume: 276 start-page: 80 year: 2017 ident: 694_CR30 publication-title: Immunol. Rev. doi: 10.1111/imr.12519 – volume: 19 start-page: 355 year: 2013 ident: 694_CR16 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2013.03.005 – volume: 70 start-page: 46 year: 2014 ident: 694_CR43 publication-title: Methods doi: 10.1016/j.ymeth.2014.08.016 – ident: 694_CR18 doi: 10.1007/s12035-019-01730-6 – volume: 10 start-page: 316 year: 2015 ident: 694_CR39 publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.020 – volume: 23 start-page: 5703 year: 2017 ident: 694_CR33 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-3261 – volume: 83 start-page: 483 year: 2013 ident: 694_CR38 publication-title: Cytometry A doi: 10.1002/cyto.a.22271 – volume: 246 start-page: 10 year: 2012 ident: 694_CR24 publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2012.02.009 – volume: 357 start-page: 409 year: 2017 ident: 694_CR9 publication-title: Science doi: 10.1126/science.aan6733 – volume: 19 start-page: 1264 year: 2013 ident: 694_CR25 publication-title: Nat. Med. doi: 10.1038/nm.3337 – volume: 27 start-page: 2411 year: 2019 ident: 694_CR36 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.04.091 – volume: 56 start-page: 3260 year: 2019 ident: 694_CR17 publication-title: Mol. Neurobiol. doi: 10.1007/s12035-018-1240-4 – volume: 174 start-page: 716 year: 2018 ident: 694_CR45 publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 169 start-page: 736 year: 2017 ident: 694_CR10 publication-title: Cell doi: 10.1016/j.cell.2017.04.016 – volume: 162 start-page: 184 year: 2015 ident: 694_CR41 publication-title: Cell doi: 10.1016/j.cell.2015.05.047 – volume: 22 start-page: 729 year: 2019 ident: 694_CR19 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0370-y – volume: 87 start-page: 636 year: 2015 ident: 694_CR42 publication-title: Cytometry A doi: 10.1002/cyto.a.22625 – volume: 22 start-page: 679 year: 2016 ident: 694_CR15 publication-title: Nat. Med. doi: 10.1038/nm.4086  | 
    
| SSID | ssj0003059 | 
    
| Score | 2.685477 | 
    
| Snippet | Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune... Immune checkpoint therapy (ICT) with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 39 | 
    
| SubjectTerms | 5'-Nucleotidase - metabolism 631/250/251 631/67/580 Algorithms Animal models Animals Antitumor activity Biomedical and Life Sciences Biomedicine Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - genetics Brain Neoplasms - immunology Brain Neoplasms - therapy Cancer Cancer Research CD73 antigen Cell Line, Tumor Clinical trials Colorectal cancer Colorectal carcinoma Combinatorial analysis CTLA-4 protein Cytometry Disease Models, Animal Drug therapy Gene Expression Regulation, Neoplastic Gene sequencing Glioblastoma Glioblastoma - diagnostic imaging Glioblastoma - genetics Glioblastoma - immunology Glioblastoma - therapy Glioblastoma multiforme GPI-Linked Proteins - metabolism Health aspects Humans Immune checkpoint Immune response Immunomodulation Immunomodulators Immunotherapy Infectious Diseases Letter Lymphocytes, Tumor-Infiltrating - immunology Macrophages Macrophages - metabolism Magnetic Resonance Imaging Metabolic Diseases Methods Mice, Inbred C57BL Molecular Medicine Molecular Targeted Therapy Myeloid Cells - metabolism Neurosciences Nucleotidases Patients PD-1 protein PD-L1 protein Physiological aspects Prostate cancer Receptor antibodies Ribonucleic acid RNA Solid tumors Therapy Translation Tumors  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VrbgeEJQrUMAgBBJV1GycxMkDQqW0apG6oNKiihfLcZxlpW2yNLui_ffMxEnaVKjw7M9W4jk89lwArzXa1Brp7qYpilugIuMq7hk3EEbnEddRGlFy8t4o2jkMPh-FR0swanNhKKyy1Ym1os5KTW_k6z4PuJdQi8EPs18udY0i72rbQkM1rRWy93WJsWuw7FNlrAEsf9wafd3vdDNyd2KjEGM3xqtB6-fk8XqFRxlFAVFST5QE7mnvpLqsry8cWJeDKTuP6m24uShm6uy3mk4vHFrbd-FOY22yDcse92DJFCtw3fafPFuBG3uNZ_0-_NilRBHDbA9vXJiVOasb-LH54rg8qdgks4FFpmKbnwRnqmKK4d7h1Zou7sjHzIaVs0nBxtNJmaJhPi-P1QM43N462Nxxm74LrhaBN3dzrvGQUn5skM10KFQaiyxMfSO01sJTsY69XOgoyoRv4oALJHESGLxrofmYDjP-EAZFWZjHwITyjY4M3upw6VBkSZablNZSKhRahQ547R5L3RQlp94YU1k7x3ksLVkkkkUSWeSpA--6KTNbkeMq8AsinLRJpZ00y41oOOQCbU3fgVc1gmphFBRsM1aLqpK7X77_B-jbfg_0tgHlJf6DVk2CA-4E1djqId_0kGNbYfxvwNUeEEVf94dbfpSN6qnkuaA48LIbppkUTleYckEYtFyork_gwCPLvt1eopLHuV7igOgxdgegguT9kWLysy5MLqgbAI8dWGtF4PyzriDRWicl_ybok6t_-Snc8ulBpH4jW4XB_GRhnqHVOE-fN6rgD8i_Z2E priority: 102 providerName: ProQuest  | 
    
| Title | Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma | 
    
| URI | https://link.springer.com/article/10.1038/s41591-019-0694-x https://www.ncbi.nlm.nih.gov/pubmed/31873309 https://www.proquest.com/docview/2343090733 https://www.proquest.com/docview/2330335284 https://pubmed.ncbi.nlm.nih.gov/PMC7182038 https://www.ncbi.nlm.nih.gov/pmc/articles/7182038  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1546-170X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003059 issn: 1546-170X databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED9trXh94DFegVEMQiAxpU3zcvKxHas2pJWprKjwJXIcp1S0SbUkYuOv55wXS4UG-5QP_jmKc2ff2f7dHcAbjj41R7mrvo_TzWS2UJmhCdWkgoe2wW3flsHJx2P7cGp-nFmzLehXsTA5aZ_7i260XHWjxfecW7le8V7FE-tRmXLccLahbVvofregPR2fDL4W3EJHddy8Yit6Brbap9qsusk0nF6CxkryfGTYju2a6nnDFm2uyJdM0iZdsr4zvQO3smjNLn6y5fKSWRrdg0k1oIKN8qObpX6X_9rI9XitEd-Hu6WTSgZF0wPYEtEO3CjKVl7swM3j8kL-IXw7kvElghSlv_FrSRySvO4fSbNVfJaQRVDwkURC9j9Qg7CEMIJqjjtyud9H9ScFG50sIjJfLmIf_fk0XrFHMB0dnO4fqmW5BpVTU0vV0OBo25juCNROblHmOzSwfF1QzjnVmMMdLaTctgOqC8c0KGqGawrcoqHX6fcD4zG0ojgST4FQpgtuC9wM4qstGrhBKHz5LsYsypmlgFYJzuNlLnNZUmPp5XfqhuMVsvZQ1p6UtXeuwPu6y7pI5HEV-KXUBq-IRa0XAW9g9_sGRRdVV-B1jpApNCLJ0ZmzLEm8o09f_gP0edIAvStBYYxj4KyMi8A_IVNzNZBvG8h5kZj8b8DdBhBXDN5srpTcK1esxNMN09BcWcJTgVd1s-wpWXiRiDOJQYdHpgMyFXhSzIn6X6JtwL6aqwBtzJYaIPOYN1tQ2fN85qV-K7BXzas_n3WFiPbqqfdvgT67Fvo53NblsUp-0rYLrfQsEy_Q90z9DmzTGe1AezAaDsf4HB6MTyadcg36DcPEgkA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BiKIPRvFWRRmNl0TS0O10O-0DMcglrLCrQTDElzqdTtdNlnalu4H9c_42z-kNSszqC8_zddKZM-c2cy4ArxXa1ArpboYhspsjXW1KbmnTEVrFLldu6FJycrfn7h45n47bx3Pwu8qFobDKSibmgjpKFd2Rr9nc4ZZPLQY_jH6Z1DWKXlerFhqybK0QreclxsrEjj09PUMXLlvvbCG939j2zvbh5q5ZdhkwlXCssRlzhSJZ2p7GTVVtIUNPRO3Q1kIpJSzpKc-KhXLdSNjac7jABfmORs8CjaWwFXGc9wYsONzx0flb-Ljd-3JQ6wLkJr-IevRMD12R6l2Ve2sZqk6KOqIkIpzQPG9oxqv64ZKCvBq8Wb_g3oHFSTKS0zM5HF5Skjv34G5p3bKN4jjehzmdLMHNot_ldAludcuX_AfwvUOJKZoVPcNxYpbGLG8YyMaTk_Q0Y4OoCGTSGdvcEpzJjEmGtEJXni4KkG9YEcbOBgnrDwdpiI7AOD2RD-HoWijwCOaTNNFPgAlpa-Vq9CJx6raI_CjWIc0lZVso2TbAqvY4UGURdOrFMQzyx3juBQVZAiRLQGQJzg14X38yKiqAzAKvEOGCIom1lh7BhttqcYG2rW3AqxxBtTcSCu7py0mWBZ3P3_4D9PWgAXpXguIU16BkmVCBO0E1vRrItw1kv6ho_jfgcgOIokY1h6vzGJSiLgsuGNOAl_UwfUnhe4lOJ4RBS4nqCDkGPC6Ob72XqFTwW8s3QDQOdg2gAujNkWTwMy-ELqj7APcMWK1Y4OK3ZpBoteaSfxP06ewlr8Di7mF3P9jv9PaewW2bLmPy-7llmB-fTvRztFjH4YtSLDD4cd2S6A_NxKT_ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDDHhAMG6BwQziIjFFTeMkTh4QmlaqlbGBBkMVL8ZxnFKpS8rSauuv8XWcEyfZMqHBy559bNk-d_tcCHmhwKZWgHc7joHdPBloWzJH2x7XKg2YCuIAk5N394LtA-_D0B8ukd91LgyGVdYysRTUSa7wjbzjMo85EbYY7KRVWMTnXv_d9JeNHaTwp7Vup2FIZEcvjsF9K94OeoDrl67bf_91a9uuOgzYinvOzE6ZAnEs3VDDhSqfyzjkiR-7miuluCNDFTopV0GQcFeHHuNwmMjT4FWAoRR3EwbrXiFXYVMRhhPyYePsIR9FJt4xtENwQuofVRZ2ClCaGG-E6UOwnH3S0onnNcMZ1Xg-bLP5u71Jrs-zqVwcy8nkjHrs3ya3KruWbhpCvEOWdLZKrplOl4tVsrJb_eHfJd8HmJKiqekWDgvTPKVlq0A6mx_mRwUdJyaESRd0q8cZlQWVFLAETjw-EQDHUBPATscZHU3GeQwuwCw_lPfIwaXc_32ynOWZfkgol65WgQb_EZb2eRIlqY5xLSl9rqRvEae-Y6Gq8ufYhWMiym94FgqDFgFoEYgWcWKRN82Uqan9cRHwOiJOmPTVRm6IzaDbZRysWtciz0sIrLqRIf2O5LwoxODTt_8A-rLfAnpdAaU5nEHJKpUCbgKrebUgX7UgR6aW-d8A11qAIGRUe7imR1EJuUKcsqRFnjXDOBMD9zKdzxEGbCSsIORZ5IEh3-YuQZ3AXCeyCG8RdgOApc_bI9n4Z1kCnWPfARZaZKNmgdNtXYCijYZL_o3QRxcfeZ2sgPwRHwd7O4_JDRdfYcqHuTWyPDua6ydgqs7ip6VMoOTHZQuhPzXFopk | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTnw98DG-AgMMQiAxpU3jxE4fq8G0IW2gQafCS-Q4zqhok2pJxMZfzzlOwlKhwZ79cxTn7nzn-Hd3AK8kxtQS5W5HEZqbJ5iyBXWU7XElE0Yli5hOTt4_YLsT78PUn67BsMmFqUj7Mpr10_min86-V9zK5UIOGp7YgOuS4zS4AuvMx_C7B-uTg0_jr4ZbGNjBqOrYipEBs4fcmTY3mTQY5OisNM9Hp-2wkWefdnzR6o58ziWt0iXbO9ObcL1Ml-Lsp5jPz7mlndtw2CzIsFF-9Msi6stfK7UeL7XiO3CrDlLJ2AzdhTWVbsBV07bybAOu7dcX8vfg257OL1HEtP7GtyVZQqq-f6QoF9lJTmax4SOpnGy_45SInAiCao4ncn3eR_Unho1OZik5ns-yCOP5IluI-zDZef9le9eu2zXYkntOYSdUom8TbqBQO6XPRRTw2I9cxaWU3BGBDJyES8Zi7qrAoxw1Y-QpPKJh1BkNY_oAemmWqkdAuHCVZAoPg_hon8ejOFGRfpYQPpfCt8BpBBfKupa5bqkxD6s7dRqERtYhyjrUsg5PLXjbTlmaQh4XgZ9rbQhNLmq7CYRjNhxSjiGqa8HLCqFLaKSao3MsyjwP9z4e_Qfo82EH9KYGJRmuQYo6LwK_hC7N1UG-7iCPTWHyvwE3O0DcMWR3uFHysN6x8tClHnVGuoWnBS_aYT1Ts_BSlZUagwGPLgfkWfDQ2ET7LdE34FxnZAHvWEsL0HXMuyOo7FU981q_Ldhq7OrPa10goq3W9P4t0MeXQj-BG67-rVL9aduEXnFSqqcYexbRs3q3-Q3Hrn5D | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+profiling+of+human+tumors+identifies+CD73+as+a+combinatorial+target+in+glioblastoma&rft.jtitle=Nature+medicine&rft.au=Goswami%2C+Sangeeta&rft.au=Walle%2C+Thomas&rft.au=Cornish%2C+Andrew+E&rft.au=Basu%2C+Sreyashi&rft.date=2020-01-01&rft.issn=1546-170X&rft.eissn=1546-170X&rft.volume=26&rft.issue=1&rft.spage=39&rft_id=info:doi/10.1038%2Fs41591-019-0694-x&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon |