Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma

Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types 1 , 2 . Multiple clinical trials with combinatorial immune ch...

Full description

Saved in:
Bibliographic Details
Published inNature medicine Vol. 26; no. 1; pp. 39 - 46
Main Authors Goswami, Sangeeta, Walle, Thomas, Cornish, Andrew E., Basu, Sreyashi, Anandhan, Swetha, Fernandez, Irina, Vence, Luis, Blando, Jorge, Zhao, Hao, Yadav, Shalini Singh, Ott, Martina, Kong, Ling Y., Heimberger, Amy B., de Groot, John, Sepesi, Boris, Overman, Michael, Kopetz, Scott, Allison, James P., Pe’er, Dana, Sharma, Padmanee
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1078-8956
1546-170X
1546-170X
DOI10.1038/s41591-019-0694-x

Cover

Abstract Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types 1 , 2 . Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73 hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73 −/− mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.
AbstractList Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73−/− mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.
Immune checkpoint therapy (ICT) with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of ICT is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing, however, the mechanistic rationale for tumor specific targeting of immune checkpoints remains elusive. To garner insight into tumor specific immunomodulatory targets, we analyzed tumors (N=94) representing 5 different cancer types, including those that respond relatively well to ICT and those that do not, such as glioblastoma (GBM), prostate cancer (PCa) and colorectal cancer (CRC). Through mass cytometry and single cell RNA-sequencing, we identified a unique population of CD73hi macrophages in GBM that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in GBM, we performed reverse translational studies using CD73−/− mice. We found that the absence of CD73 improved survival in a murine model of GBM treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve anti-tumor immune responses to ICT in GBM, and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types.sup.1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73.sup.hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73.sup.-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types . Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73 macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73 mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types 1 , 2 . Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73 hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73 −/− mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies. Analysis of a mass cytometry dataset for different human solid tumors coupled with murine reverse translational experiments suggests that targeting CD73 could enhance the efficacy of checkpoint inhibitor therapy in glioblastoma.
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune checkpoint therapy is limited to a subset of patients with specific tumor types.sup.1,2. Multiple clinical trials with combinatorial immune checkpoint strategies are ongoing; however, the mechanistic rationale for tumor-specific targeting of immune checkpoints is elusive. To garner an insight into tumor-specific immunomodulatory targets, we analyzed 94 patients representing five different cancer types, including those that respond relatively well to immune checkpoint therapy and those that do not, such as glioblastoma multiforme, prostate cancer and colorectal cancer. Through mass cytometry and single-cell RNA sequencing, we identified a unique population of CD73.sup.hi macrophages in glioblastoma multiforme that persists after anti-PD-1 treatment. To test if targeting CD73 would be important for a successful combination strategy in glioblastoma multiforme, we performed reverse translational studies using CD73.sup.-/- mice. We found that the absence of CD73 improved survival in a murine model of glioblastoma multiforme treated with anti-CTLA-4 and anti-PD-1. Our data identified CD73 as a specific immunotherapeutic target to improve antitumor immune responses to immune checkpoint therapy in glioblastoma multiforme and demonstrate that comprehensive human and reverse translational studies can be used for rational design of combinatorial immune checkpoint strategies.
Audience Academic
Author Sharma, Padmanee
Anandhan, Swetha
Pe’er, Dana
Ott, Martina
Allison, James P.
Kong, Ling Y.
Sepesi, Boris
Heimberger, Amy B.
Zhao, Hao
de Groot, John
Goswami, Sangeeta
Fernandez, Irina
Vence, Luis
Blando, Jorge
Basu, Sreyashi
Yadav, Shalini Singh
Kopetz, Scott
Walle, Thomas
Cornish, Andrew E.
Overman, Michael
AuthorAffiliation 1 Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
4 The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
10 Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
6 Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center, 69120 Heidelberg, Germany
3 Computational and Systems Biology Program, Sloan-Kettering-Institute, 1275 York Avenue, New York, NY 10065, USA
8 Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
5 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
9 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2 National Center for Tumor Diseases, Department of Medical Oncology, 69120 Heidelberg, Germany
7 Department of
AuthorAffiliation_xml – name: 2 National Center for Tumor Diseases, Department of Medical Oncology, 69120 Heidelberg, Germany
– name: 6 Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center, 69120 Heidelberg, Germany
– name: 5 Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 11 Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
– name: 9 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 10 Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 4 The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
– name: 7 Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 3 Computational and Systems Biology Program, Sloan-Kettering-Institute, 1275 York Avenue, New York, NY 10065, USA
– name: 1 Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
– name: 8 Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Sangeeta
  surname: Goswami
  fullname: Goswami, Sangeeta
  organization: Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 2
  givenname: Thomas
  orcidid: 0000-0003-4835-955X
  surname: Walle
  fullname: Walle, Thomas
  organization: Department of Medical Oncology, National Center for Tumor Diseases, Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center
– sequence: 3
  givenname: Andrew E.
  surname: Cornish
  fullname: Cornish, Andrew E.
  organization: Computational and Systems Biology Program, Sloan Kettering Institute, Department of Medicine, New York University School of Medicine
– sequence: 4
  givenname: Sreyashi
  surname: Basu
  fullname: Basu, Sreyashi
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center
– sequence: 5
  givenname: Swetha
  surname: Anandhan
  fullname: Anandhan, Swetha
  organization: Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 6
  givenname: Irina
  surname: Fernandez
  fullname: Fernandez, Irina
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center
– sequence: 7
  givenname: Luis
  surname: Vence
  fullname: Vence, Luis
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center
– sequence: 8
  givenname: Jorge
  surname: Blando
  fullname: Blando, Jorge
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center
– sequence: 9
  givenname: Hao
  surname: Zhao
  fullname: Zhao, Hao
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center
– sequence: 10
  givenname: Shalini Singh
  surname: Yadav
  fullname: Yadav, Shalini Singh
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center
– sequence: 11
  givenname: Martina
  surname: Ott
  fullname: Ott, Martina
  organization: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center
– sequence: 12
  givenname: Ling Y.
  surname: Kong
  fullname: Kong, Ling Y.
  organization: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center
– sequence: 13
  givenname: Amy B.
  orcidid: 0000-0002-9970-8695
  surname: Heimberger
  fullname: Heimberger, Amy B.
  organization: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center
– sequence: 14
  givenname: John
  surname: de Groot
  fullname: de Groot, John
  organization: Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 15
  givenname: Boris
  surname: Sepesi
  fullname: Sepesi, Boris
  organization: Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center
– sequence: 16
  givenname: Michael
  surname: Overman
  fullname: Overman, Michael
  organization: Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 17
  givenname: Scott
  surname: Kopetz
  fullname: Kopetz, Scott
  organization: Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 18
  givenname: James P.
  surname: Allison
  fullname: Allison, James P.
  organization: The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Department of Immunology, The University of Texas MD Anderson Cancer Center
– sequence: 19
  givenname: Dana
  surname: Pe’er
  fullname: Pe’er, Dana
  organization: Computational and Systems Biology Program, Sloan Kettering Institute
– sequence: 20
  givenname: Padmanee
  orcidid: 0000-0003-4658-055X
  surname: Sharma
  fullname: Sharma, Padmanee
  email: padsharma@mdanderson.org
  organization: Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Department of Immunology, The University of Texas MD Anderson Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31873309$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1r2zAUxc3oWNtsf8BehmEwtgd3kmVb9kuhZF-BQmFfjL2IG_naUZGlTJK39L-fQrKlKdkofrDBv3Oke849TY6MNZgkTyk5o4TVr31By4ZmhDYZqZoiWz1ITmhZVBnl5NtR_Ca8zuqmrI6TU--vCSGMlM2j5JjRmjNGmpPk-2wYRoPp0tlOaWX61HbpYhzApGEcrPOpatEE1Sn06fQNZyn4FFJph7kyEKxToNMArseQKpP2Wtm5Bh_sAI-Thx1oj0-270ny5d3bz9MP2eXV-9n04jKTvCAh65jMmwbyGhFaWXKY17wt5zlyKSUnUMuadFxWVctzrAvGC4izIi0aWtE5bdkkyTe-o1nCzS_QWiydGsDdCErEOiixCUrEoMQ6KLGKovONaDnOB2xlnNHBTmhBif0_Ri1Eb38KTus8WkaDl1sDZ3-M6IMYlJeoNRi0oxd5zJexMo83niTP76DXdnQmZhKpItZAYhk7qgeNQpnOxnPl2lRcVJQyTmmeRyo7QPVoMF4ybkcsEff5swN8fFoclDwoeLUniEzAVehh9F7MPn28P3v1dZ99cYtdIOiw8FaPQVnj98Fnt5v5W8mfnY0A3wDSWe8ddkKqAGufOJrS_y2d3lHeZ1G22-Uja3p0u_L-LfoNYOMcUQ
CitedBy_id crossref_primary_10_1126_sciadv_add6626
crossref_primary_10_1146_annurev_med_042420_102102
crossref_primary_10_1146_annurev_immunol_110519_071134
crossref_primary_10_1159_000511107
crossref_primary_10_1159_000536649
crossref_primary_10_1002_jev2_12218
crossref_primary_10_1038_s41467_022_28372_y
crossref_primary_10_1126_scitranslmed_adi2952
crossref_primary_10_3233_CBM_230217
crossref_primary_10_1136_jitc_2024_009210
crossref_primary_10_1016_j_trecan_2024_11_001
crossref_primary_10_1002_ctm2_206
crossref_primary_10_1038_s41577_020_0275_8
crossref_primary_10_1016_j_celrep_2024_115014
crossref_primary_10_1136_jitc_2024_010455
crossref_primary_10_1016_j_ygeno_2021_11_036
crossref_primary_10_3390_vaccines10040540
crossref_primary_10_1080_08820139_2024_2337022
crossref_primary_10_1016_j_cell_2021_03_023
crossref_primary_10_3389_fonc_2021_790676
crossref_primary_10_1002_jbio_202100329
crossref_primary_10_1186_s12935_023_02999_3
crossref_primary_10_1007_s00432_022_04211_x
crossref_primary_10_1038_s41591_024_03138_9
crossref_primary_10_1126_sciadv_adj3301
crossref_primary_10_1172_JCI177413
crossref_primary_10_3390_jpm11121312
crossref_primary_10_1177_03946320221104548
crossref_primary_10_3390_cells14060403
crossref_primary_10_1016_j_cej_2023_146343
crossref_primary_10_1016_j_xcrm_2024_101443
crossref_primary_10_1021_acs_analchem_0c03512
crossref_primary_10_3389_fimmu_2023_1212209
crossref_primary_10_1158_1078_0432_CCR_21_2681
crossref_primary_10_3389_fimmu_2023_1121557
crossref_primary_10_3389_fimmu_2023_1238233
crossref_primary_10_1186_s13046_022_02251_2
crossref_primary_10_12688_f1000research_125163_1
crossref_primary_10_3389_fgene_2021_750675
crossref_primary_10_3390_neuroglia6010005
crossref_primary_10_1038_s43018_023_00620_0
crossref_primary_10_1172_jci_insight_142980
crossref_primary_10_1016_j_intimp_2020_106628
crossref_primary_10_1186_s13045_021_01105_2
crossref_primary_10_1158_2159_8290_CD_20_1680
crossref_primary_10_1038_s43018_023_00621_z
crossref_primary_10_1038_s44321_024_00050_0
crossref_primary_10_1007_s10014_022_00431_8
crossref_primary_10_3389_fimmu_2022_1024921
crossref_primary_10_1002_cac2_12416
crossref_primary_10_1038_s41556_021_00805_8
crossref_primary_10_3389_fimmu_2025_1486868
crossref_primary_10_7554_eLife_92678
crossref_primary_10_1186_s12951_023_01997_x
crossref_primary_10_1126_scitranslmed_add1016
crossref_primary_10_1186_s12951_022_01265_4
crossref_primary_10_3390_cancers12071960
crossref_primary_10_1016_j_intimp_2021_108183
crossref_primary_10_1002_gcc_22944
crossref_primary_10_3390_ijms232415612
crossref_primary_10_1038_s41551_021_00799_6
crossref_primary_10_1002_advs_202101672
crossref_primary_10_1158_2159_8290_CD_20_0603
crossref_primary_10_3390_cancers13164226
crossref_primary_10_3390_cancers13143400
crossref_primary_10_3389_fimmu_2024_1429812
crossref_primary_10_1016_j_coi_2021_01_001
crossref_primary_10_1097_CCO_0000000000000895
crossref_primary_10_1038_s41392_022_00990_4
crossref_primary_10_1016_j_tcb_2021_06_008
crossref_primary_10_1016_j_semcancer_2023_04_004
crossref_primary_10_1093_neuonc_noaa277
crossref_primary_10_1016_j_tips_2023_08_009
crossref_primary_10_3389_fonc_2020_01254
crossref_primary_10_3390_ijms222212330
crossref_primary_10_1007_s11302_023_09951_0
crossref_primary_10_1136_jitc_2021_003289
crossref_primary_10_3390_toxins14110806
crossref_primary_10_1016_j_intimp_2024_112797
crossref_primary_10_1186_s13046_022_02349_7
crossref_primary_10_1080_21655979_2021_1989259
crossref_primary_10_3390_cancers13174255
crossref_primary_10_3390_ijms222413382
crossref_primary_10_3390_life12081225
crossref_primary_10_1172_jci_insight_174753
crossref_primary_10_1038_s41467_022_32430_w
crossref_primary_10_3390_ijms23137046
crossref_primary_10_1007_s44194_024_00031_y
crossref_primary_10_1021_acsnano_2c12217
crossref_primary_10_3390_cancers13020229
crossref_primary_10_1038_s42003_023_05182_6
crossref_primary_10_1080_14737140_2020_1814747
crossref_primary_10_1016_j_bulcan_2020_12_002
crossref_primary_10_3389_fimmu_2021_797450
crossref_primary_10_3389_fimmu_2023_1255611
crossref_primary_10_3390_cells10082032
crossref_primary_10_1186_s13046_021_01874_1
crossref_primary_10_1016_j_jhep_2022_02_019
crossref_primary_10_1063_5_0232343
crossref_primary_10_3390_ijms222212314
crossref_primary_10_3389_fimmu_2020_599253
crossref_primary_10_1126_scitranslmed_abl4106
crossref_primary_10_1016_j_canlet_2021_12_008
crossref_primary_10_1093_neuonc_noaa255
crossref_primary_10_3390_v15020547
crossref_primary_10_1093_neuonc_noaa256
crossref_primary_10_1021_jacs_0c10755
crossref_primary_10_3389_fcell_2022_803947
crossref_primary_10_15252_embj_2021108130
crossref_primary_10_3390_cancers14225663
crossref_primary_10_1021_acs_analchem_0c02630
crossref_primary_10_3390_cells10010018
crossref_primary_10_1016_j_cell_2023_03_006
crossref_primary_10_1172_JCI176390
crossref_primary_10_1038_s41419_021_04359_3
crossref_primary_10_1038_s41467_020_20599_x
crossref_primary_10_1021_acs_jmedchem_4c00825
crossref_primary_10_1016_j_phrs_2022_106308
crossref_primary_10_1007_s12094_021_02732_4
crossref_primary_10_1016_j_gpb_2021_02_004
crossref_primary_10_1097_WCO_0000000000000994
crossref_primary_10_1007_s12035_022_02996_z
crossref_primary_10_1080_14737159_2021_1900735
crossref_primary_10_3390_cells10113165
crossref_primary_10_3390_ijms25052529
crossref_primary_10_3390_cells10113166
crossref_primary_10_1002_cbic_202400848
crossref_primary_10_1021_acs_bioconjchem_1c00220
crossref_primary_10_1021_acs_jmedchem_0c01086
crossref_primary_10_1039_D2BM01996E
crossref_primary_10_1158_1535_7163_MCT_21_0802
crossref_primary_10_1038_s41467_023_36707_6
crossref_primary_10_3389_fimmu_2021_628966
crossref_primary_10_3389_fonc_2021_579351
crossref_primary_10_1186_s40478_023_01569_y
crossref_primary_10_3389_fimmu_2020_00490
crossref_primary_10_3390_cancers14051319
crossref_primary_10_3389_fmolb_2021_669366
crossref_primary_10_1080_21655979_2023_2185434
crossref_primary_10_1038_s41568_021_00397_3
crossref_primary_10_1007_s00262_024_03689_3
crossref_primary_10_3389_fimmu_2021_713757
crossref_primary_10_1038_s41467_024_49189_x
crossref_primary_10_1016_j_tcb_2021_05_008
crossref_primary_10_3389_fimmu_2023_1199631
crossref_primary_10_3390_brainsci13111602
crossref_primary_10_1016_j_cell_2021_12_004
crossref_primary_10_1136_jitc_2022_006457
crossref_primary_10_20517_cdr_2023_82
crossref_primary_10_3389_fimmu_2021_777073
crossref_primary_10_1016_j_isci_2024_110486
crossref_primary_10_1038_s41598_020_65729_z
crossref_primary_10_1016_j_biopha_2022_113066
crossref_primary_10_3390_biomedicines10020236
crossref_primary_10_1016_j_semcancer_2024_07_005
crossref_primary_10_1002_iub_2905
crossref_primary_10_1016_j_humimm_2024_110774
crossref_primary_10_3390_ijms251910570
crossref_primary_10_1016_j_imlet_2023_03_005
crossref_primary_10_3390_ijms21197358
crossref_primary_10_1038_s41392_023_01683_2
crossref_primary_10_1172_JCI163446
crossref_primary_10_1016_j_heliyon_2024_e35231
crossref_primary_10_3389_fimmu_2024_1384249
crossref_primary_10_1038_s41467_021_26940_2
crossref_primary_10_3390_cancers15245790
crossref_primary_10_1007_s00262_020_02569_w
crossref_primary_10_3390_biomedicines11061520
crossref_primary_10_1002_cjp2_205
crossref_primary_10_3390_ijms22010194
crossref_primary_10_18632_aging_204313
crossref_primary_10_1186_s12935_022_02589_9
crossref_primary_10_1186_s12943_022_01513_z
crossref_primary_10_1111_imm_13517
crossref_primary_10_3390_cancers13020177
crossref_primary_10_1016_j_pan_2021_03_018
crossref_primary_10_1186_s12938_024_01320_1
crossref_primary_10_1016_j_coph_2020_08_003
crossref_primary_10_1016_j_molimm_2022_02_012
crossref_primary_10_3389_fonc_2025_1507940
crossref_primary_10_1016_j_trecan_2023_04_008
crossref_primary_10_7554_eLife_92678_2
crossref_primary_10_3389_fphar_2022_1038272
crossref_primary_10_1038_s41419_023_05753_9
crossref_primary_10_1007_s00401_022_02506_4
crossref_primary_10_1038_s41421_022_00498_9
crossref_primary_10_1186_s13045_022_01263_x
crossref_primary_10_3390_cancers14194802
crossref_primary_10_1016_j_ncrna_2024_02_003
crossref_primary_10_3390_cancers14164032
crossref_primary_10_1038_s41388_023_02738_y
crossref_primary_10_1038_s41598_024_84719_z
crossref_primary_10_1038_s41416_022_01864_w
crossref_primary_10_1016_j_ccell_2023_03_004
crossref_primary_10_1007_s10147_022_02242_5
crossref_primary_10_1093_noajnl_vdaa123
crossref_primary_10_1038_s41587_024_02193_4
crossref_primary_10_1016_j_ccell_2025_03_005
crossref_primary_10_1038_s41598_023_40592_w
crossref_primary_10_1038_s41571_021_00518_9
crossref_primary_10_1080_08830185_2022_2101647
crossref_primary_10_3390_ijms222212297
crossref_primary_10_2147_OTT_S326178
crossref_primary_10_1186_s13073_023_01164_9
crossref_primary_10_1136_jitc_2020_002181
crossref_primary_10_3389_fimmu_2022_954039
crossref_primary_10_1073_pnas_2306973121
crossref_primary_10_14336_AD_2022_0621
crossref_primary_10_1124_pharmrev_121_000528
crossref_primary_10_3389_fimmu_2020_604967
crossref_primary_10_1038_s41587_023_01940_3
crossref_primary_10_1016_j_trecan_2022_04_010
crossref_primary_10_1158_2159_8290_CD_20_0219
crossref_primary_10_3389_fimmu_2022_837645
crossref_primary_10_1016_j_ccell_2024_05_001
crossref_primary_10_1186_s41065_021_00193_x
crossref_primary_10_3389_fimmu_2025_1526296
crossref_primary_10_3390_cancers12092334
crossref_primary_10_3389_fmed_2023_1175507
crossref_primary_10_1016_j_tips_2022_04_002
crossref_primary_10_1016_j_ejca_2021_08_006
crossref_primary_10_1080_2162402X_2022_2030020
crossref_primary_10_1146_annurev_pathmechdis_051122_110348
crossref_primary_10_1016_j_heliyon_2024_e27329
crossref_primary_10_1021_acsnano_4c04553
crossref_primary_10_1136_jitc_2023_006846
crossref_primary_10_1084_jem_20220808
crossref_primary_10_1016_j_ymthe_2023_08_009
crossref_primary_10_1038_s41577_022_00737_w
crossref_primary_10_1038_s41593_020_00789_y
crossref_primary_10_1016_j_xcrm_2023_101177
crossref_primary_10_3390_brainsci14121286
crossref_primary_10_3390_ijms241310456
crossref_primary_10_1016_j_trecan_2023_11_005
crossref_primary_10_1101_gad_350693_123
crossref_primary_10_1016_j_bioactmat_2023_08_001
crossref_primary_10_3390_ijms241411759
crossref_primary_10_1016_j_immuni_2024_04_006
crossref_primary_10_1038_s43018_021_00260_2
crossref_primary_10_1093_hmg_ddaa137
crossref_primary_10_1186_s40478_021_01156_z
crossref_primary_10_1016_j_trac_2022_116796
crossref_primary_10_1038_s41420_024_02171_4
crossref_primary_10_1038_s41467_021_24293_4
crossref_primary_10_3389_fimmu_2020_01590
crossref_primary_10_1016_j_annonc_2022_11_008
crossref_primary_10_1097_MD_0000000000036410
crossref_primary_10_1016_j_ajps_2025_101021
crossref_primary_10_1016_j_ejmech_2023_116028
crossref_primary_10_1016_j_coph_2020_07_001
crossref_primary_10_3389_fimmu_2021_679425
Cites_doi 10.1093/neuonc/nov292
10.1158/0008-5472.CAN-16-2310
10.1038/s41591-018-0337-7
10.1158/1078-0432.CCR-16-3261
10.1523/JNEUROSCI.1118-18.2019
10.1158/0008-5472.CAN-10-4246
10.1186/s13059-017-1362-4
10.1016/j.cell.2015.05.047
10.1056/NEJMoa1003466
10.1016/j.drudis.2017.06.005
10.1016/j.molmed.2013.03.005
10.1186/s40425-017-0257-y
10.1016/j.cell.2018.05.060
10.1038/nbt.2594
10.1126/science.aan6733
10.1158/2326-6066.CIR-18-0054
10.1038/s41591-018-0339-5
10.1056/NEJMoa1510665
10.1056/NEJMoa1712126
10.1002/cyto.a.22625
10.3892/or.2016.5171
10.1158/0008-5472.CAN-16-0144
10.1016/j.cell.2015.03.030
10.1016/S1470-2045(17)30065-7
10.1016/j.cell.2017.07.024
10.1111/imr.12519
10.1007/s12035-018-1240-4
10.1038/nm.3337
10.1056/NEJMoa1504030
10.1056/NEJMoa1507643
10.1016/j.cell.2016.08.069
10.1038/s41593-019-0370-y
10.1073/pnas.1706559114
10.1016/j.cell.2018.05.061
10.1016/j.celrep.2019.04.091
10.1038/nm.4086
10.1016/S1470-2045(14)70189-5
10.1038/nprot.2015.020
10.1016/j.cell.2017.04.016
10.1016/j.cell.2017.04.014
10.1016/j.jneuroim.2012.02.009
10.1002/cyto.a.22271
10.1016/j.ymeth.2014.08.016
10.1126/science.aaa8172
10.1007/s12035-019-01730-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
COPYRIGHT 2020 Nature Publishing Group
2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1038/s41591-019-0694-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Science (Gale in Context)
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library (Proquest)
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE

MEDLINE - Academic





Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 46
ExternalDocumentID oai:pubmedcentral.nih.gov:7182038
PMC7182038
A611371122
31873309
10_1038_s41591_019_0694_x
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
– fundername: Parker Foundation
  funderid: https://doi.org/10.13039/100001787
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  funderid: https://doi.org/10.13039/100000054
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: K12 CA088084
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCATS NIH HHS
  grantid: KL2 TR000370
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PUEGO
AETEA
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ACMFV
AGSTI
AEIIB
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3
IEDL.DBID UNPAY
ISSN 1078-8956
1546-170X
IngestDate Sun Oct 26 03:55:16 EDT 2025
Tue Sep 30 16:35:52 EDT 2025
Thu Oct 02 19:32:51 EDT 2025
Mon Oct 06 17:47:54 EDT 2025
Mon Oct 20 21:49:44 EDT 2025
Thu Jun 12 20:38:50 EDT 2025
Mon Oct 20 16:27:56 EDT 2025
Thu Oct 16 14:51:00 EDT 2025
Thu Oct 16 14:16:42 EDT 2025
Thu May 22 21:23:43 EDT 2025
Thu Jul 24 02:16:12 EDT 2025
Wed Oct 01 04:32:39 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c740t-f3c299a28eeadc57ab87d5b2e7ccc70a8c80f7c66d72e84374a694e149161b1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors Contributions
Lead Contact.
These authors contributed equally.
Supervision and Study Oversight by P.S. Funding Acquisition, P.S.; Experiments were performed by S.G.,S.A., M.O., L.Y.K. Writing, Review & Editing, P.S., S.G., T.W., A.E.C., S.B.; Data analysis and interpretation were performed by P.S., S.G., T.W., A.E.C., S.B., S.A., I.F., L.V., J.B., H.Z., D.P., S.S., J.A.P. Patient samples were provided by A.B.H., J.d.G., B.S., M.O., S.K., P.S.
ORCID 0000-0002-9970-8695
0000-0003-4658-055X
0000-0003-4835-955X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7182038
PMID 31873309
PQID 2343090733
PQPubID 33975
PageCount 8
ParticipantIDs unpaywall_primary_10_1038_s41591_019_0694_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7182038
proquest_miscellaneous_2330335284
proquest_journals_2343090733
gale_infotracmisc_A611371122
gale_infotracgeneralonefile_A611371122
gale_infotracacademiconefile_A611371122
gale_incontextgauss_ISR_A611371122
gale_incontextgauss_IOV_A611371122
gale_healthsolutions_A611371122
pubmed_primary_31873309
crossref_citationtrail_10_1038_s41591_019_0694_x
crossref_primary_10_1038_s41591_019_0694_x
springer_journals_10_1038_s41591_019_0694_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Lavin (CR12) 2017; 169
Cannarile (CR34) 2017; 5
Chew (CR11) 2017; 114
Motzer (CR7) 2018; 378
Le (CR9) 2017; 357
Müller (CR21) 2017; 18
Saito (CR15) 2016; 22
CR18
Yan (CR20) 2019; 39
Andrews, Marciscano, Drake, Vignali (CR30) 2017; 276
Kwon (CR5) 2014; 15
Larkin (CR31) 2015; 373
Stack, Wang, Roman, Hoyt (CR43) 2014; 70
Azizi (CR44) 2018; 174
Perrot (CR36) 2019; 27
Zunder (CR39) 2015; 10
Takenaka (CR19) 2019; 22
Pyonteck (CR25) 2013; 19
Wei (CR13) 2017; 170
Pfannenstiel (CR32) 2019; 7
Van Gassen (CR42) 2015; 87
Chen (CR23) 2017; 77
Amir (CR40) 2013; 31
Pham, Luo, Liu, Harrison (CR24) 2012; 246
Borghaei (CR3) 2015; 373
Hodi (CR4) 2010; 363
Gao (CR14) 2016; 167
Chang (CR22) 2016; 76
Sharma, Allison (CR2) 2015; 348
Finck (CR38) 2013; 83
Wei (CR37) 2016; 18
Azambuja (CR17) 2019; 56
Cloughesy (CR28) 2019; 25
Papadopoulos (CR33) 2017; 23
Levine (CR41) 2015; 162
Chevrier (CR10) 2017; 169
Antonioli (CR35) 2017; 22
van Dijk (CR45) 2018; 174
Sharma, Allison (CR1) 2015; 161
Sharma (CR8) 2017; 18
Wang (CR26) 2016; 36
Schalper (CR27) 2019; 25
Motzer (CR6) 2015; 373
Stagg (CR29) 2011; 71
Antonioli, Pacher, Vizi, Haskó (CR16) 2013; 19
ED Kwon (694_CR5) 2014; 15
I Perrot (694_CR36) 2019; 27
MA Cannarile (694_CR34) 2017; 5
RJ Motzer (694_CR6) 2015; 373
JH Levine (694_CR41) 2015; 162
V Chew (694_CR11) 2017; 114
ER Zunder (694_CR39) 2015; 10
S Müller (694_CR21) 2017; 18
DT Le (694_CR9) 2017; 357
Z Chen (694_CR23) 2017; 77
SM Pyonteck (694_CR25) 2013; 19
TF Cloughesy (694_CR28) 2019; 25
Y Wang (694_CR26) 2016; 36
J Stagg (694_CR29) 2011; 71
Y Lavin (694_CR12) 2017; 169
JH Azambuja (694_CR17) 2019; 56
P Sharma (694_CR1) 2015; 161
R Finck (694_CR38) 2013; 83
P Sharma (694_CR8) 2017; 18
EC Stack (694_CR43) 2014; 70
694_CR18
J Larkin (694_CR31) 2015; 373
J Gao (694_CR14) 2016; 167
J Wei (694_CR37) 2016; 18
E Azizi (694_CR44) 2018; 174
K Pham (694_CR24) 2012; 246
AL Chang (694_CR22) 2016; 76
LW Pfannenstiel (694_CR32) 2019; 7
H Borghaei (694_CR3) 2015; 373
L Antonioli (694_CR16) 2013; 19
S Van Gassen (694_CR42) 2015; 87
RJ Motzer (694_CR7) 2018; 378
KA Schalper (694_CR27) 2019; 25
A Yan (694_CR20) 2019; 39
SC Wei (694_CR13) 2017; 170
LP Andrews (694_CR30) 2017; 276
S Chevrier (694_CR10) 2017; 169
D van Dijk (694_CR45) 2018; 174
el-AD Amir (694_CR40) 2013; 31
L Antonioli (694_CR35) 2017; 22
FS Hodi (694_CR4) 2010; 363
KP Papadopoulos (694_CR33) 2017; 23
P Sharma (694_CR2) 2015; 348
T Saito (694_CR15) 2016; 22
MC Takenaka (694_CR19) 2019; 22
References_xml – volume: 18
  start-page: 639
  year: 2016
  end-page: 648
  ident: CR37
  article-title: MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/nov292
– volume: 77
  start-page: 2266
  year: 2017
  end-page: 2278
  ident: CR23
  article-title: Cellular and molecular identity of tumor-associated macrophages in glioblastoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2310
– volume: 25
  start-page: 477
  year: 2019
  end-page: 486
  ident: CR28
  article-title: Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0337-7
– volume: 23
  start-page: 5703
  year: 2017
  end-page: 5710
  ident: CR33
  article-title: First-in-human study of AMG 820, a monoclonal anti-colony-stimulating factor 1 receptor antibody, in patients with advanced solid tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3261
– ident: CR18
– volume: 39
  start-page: 4387
  year: 2019
  end-page: 4402
  ident: CR20
  article-title: CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A adenosine receptor signaling
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1118-18.2019
– volume: 71
  start-page: 2892
  year: 2011
  end-page: 2900
  ident: CR29
  article-title: CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4246
– volume: 18
  year: 2017
  ident: CR21
  article-title: Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1362-4
– volume: 162
  start-page: 184
  year: 2015
  end-page: 197
  ident: CR41
  article-title: Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 363
  start-page: 711
  year: 2010
  end-page: 723
  ident: CR4
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1003466
– volume: 22
  start-page: 1686
  year: 2017
  end-page: 1696
  ident: CR35
  article-title: Switching off CD73: a way to boost the activity of conventional and targeted antineoplastic therapies
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.06.005
– volume: 19
  start-page: 355
  year: 2013
  end-page: 367
  ident: CR16
  article-title: CD39 and CD73 in immunity and inflammation
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2013.03.005
– volume: 5
  start-page: 53
  year: 2017
  ident: CR34
  article-title: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-017-0257-y
– volume: 174
  start-page: 1293
  year: 2018
  end-page: 1308.e36
  ident: CR44
  article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 31
  start-page: 545
  year: 2013
  end-page: 552
  ident: CR40
  article-title: viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2594
– volume: 357
  start-page: 409
  year: 2017
  end-page: 413
  ident: CR9
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
  publication-title: Science
  doi: 10.1126/science.aan6733
– volume: 7
  start-page: 510
  year: 2019
  end-page: 525
  ident: CR32
  article-title: Immune-checkpoint blockade opposes CD8 T-cell suppression in human and murine cancer
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0054
– volume: 25
  start-page: 470
  year: 2019
  end-page: 476
  ident: CR27
  article-title: Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0339-5
– volume: 373
  start-page: 1803
  year: 2015
  end-page: 1813
  ident: CR6
  article-title: Nivolumab versus everolimus in advanced renal-cell carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1510665
– volume: 378
  start-page: 1277
  year: 2018
  end-page: 1290
  ident: CR7
  article-title: Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1712126
– volume: 87
  start-page: 636
  year: 2015
  end-page: 645
  ident: CR42
  article-title: FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22625
– volume: 36
  start-page: 3522
  year: 2016
  end-page: 3528
  ident: CR26
  article-title: Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.5171
– volume: 76
  start-page: 5671
  year: 2016
  end-page: 5682
  ident: CR22
  article-title: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-0144
– volume: 161
  start-page: 205
  year: 2015
  end-page: 214
  ident: CR1
  article-title: Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.030
– volume: 18
  start-page: 312
  year: 2017
  end-page: 322
  ident: CR8
  article-title: Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30065-7
– volume: 170
  start-page: 1120
  year: 2017
  end-page: 1133.e17
  ident: CR13
  article-title: Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.024
– volume: 276
  start-page: 80
  year: 2017
  end-page: 96
  ident: CR30
  article-title: LAG3 (CD223) as a cancer immunotherapy target
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12519
– volume: 56
  start-page: 3260
  year: 2019
  end-page: 3279
  ident: CR17
  article-title: CD73 downregulation decreases in vitro and in vivo glioblastoma growth
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-018-1240-4
– volume: 19
  start-page: 1264
  year: 2013
  end-page: 1272
  ident: CR25
  article-title: CSF-1R inhibition alters macrophage polarization and blocks glioma progression
  publication-title: Nat. Med.
  doi: 10.1038/nm.3337
– volume: 373
  start-page: 23
  year: 2015
  end-page: 34
  ident: CR31
  article-title: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504030
– volume: 373
  start-page: 1627
  year: 2015
  end-page: 1639
  ident: CR3
  article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1507643
– volume: 167
  start-page: 397
  year: 2016
  end-page: 404.e9
  ident: CR14
  article-title: Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.069
– volume: 22
  start-page: 729
  year: 2019
  end-page: 740
  ident: CR19
  article-title: Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0370-y
– volume: 114
  start-page: E5900
  year: 2017
  end-page: E5909
  ident: CR11
  article-title: Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706559114
– volume: 348
  start-page: 56
  year: 2015
  end-page: 61
  ident: CR2
  article-title: The future of immune checkpoint therapy
  publication-title: Science
– volume: 174
  start-page: 716
  year: 2018
  end-page: 729.e27
  ident: CR45
  article-title: Recovering gene interactions from single-cell data using data diffusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 27
  start-page: 2411
  year: 2019
  end-page: 2425.e9
  ident: CR36
  article-title: Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.04.091
– volume: 22
  start-page: 679
  year: 2016
  end-page: 684
  ident: CR15
  article-title: Two FOXP3 CD4 T cell subpopulations distinctly control the prognosis of colorectal cancers
  publication-title: Nat. Med.
  doi: 10.1038/nm.4086
– volume: 15
  start-page: 700
  year: 2014
  end-page: 712
  ident: CR5
  article-title: Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(14)70189-5
– volume: 10
  start-page: 316
  year: 2015
  end-page: 333
  ident: CR39
  article-title: Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.020
– volume: 169
  start-page: 736
  year: 2017
  end-page: 749.e18
  ident: CR10
  article-title: An immune atlas of clear cell renal cell carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.016
– volume: 169
  start-page: 750
  year: 2017
  end-page: 765.e17
  ident: CR12
  article-title: Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.014
– volume: 246
  start-page: 10
  year: 2012
  end-page: 17
  ident: CR24
  article-title: CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5
  publication-title: J. Neuroimmunol.
  doi: 10.1016/j.jneuroim.2012.02.009
– volume: 83
  start-page: 483
  year: 2013
  end-page: 494
  ident: CR38
  article-title: Normalization of mass cytometry data with bead standards
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22271
– volume: 70
  start-page: 46
  year: 2014
  end-page: 58
  ident: CR43
  article-title: Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.08.016
– volume: 31
  start-page: 545
  year: 2013
  ident: 694_CR40
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2594
– volume: 348
  start-page: 56
  year: 2015
  ident: 694_CR2
  publication-title: Science
  doi: 10.1126/science.aaa8172
– volume: 25
  start-page: 477
  year: 2019
  ident: 694_CR28
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0337-7
– volume: 5
  start-page: 53
  year: 2017
  ident: 694_CR34
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-017-0257-y
– volume: 18
  start-page: 639
  year: 2016
  ident: 694_CR37
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/nov292
– volume: 77
  start-page: 2266
  year: 2017
  ident: 694_CR23
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-2310
– volume: 170
  start-page: 1120
  year: 2017
  ident: 694_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2017.07.024
– volume: 39
  start-page: 4387
  year: 2019
  ident: 694_CR20
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1118-18.2019
– volume: 36
  start-page: 3522
  year: 2016
  ident: 694_CR26
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.5171
– volume: 76
  start-page: 5671
  year: 2016
  ident: 694_CR22
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-0144
– volume: 373
  start-page: 1627
  year: 2015
  ident: 694_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1507643
– volume: 161
  start-page: 205
  year: 2015
  ident: 694_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.030
– volume: 378
  start-page: 1277
  year: 2018
  ident: 694_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1712126
– volume: 167
  start-page: 397
  year: 2016
  ident: 694_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.069
– volume: 373
  start-page: 23
  year: 2015
  ident: 694_CR31
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504030
– volume: 7
  start-page: 510
  year: 2019
  ident: 694_CR32
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0054
– volume: 22
  start-page: 1686
  year: 2017
  ident: 694_CR35
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.06.005
– volume: 71
  start-page: 2892
  year: 2011
  ident: 694_CR29
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-4246
– volume: 363
  start-page: 711
  year: 2010
  ident: 694_CR4
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1003466
– volume: 25
  start-page: 470
  year: 2019
  ident: 694_CR27
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0339-5
– volume: 174
  start-page: 1293
  year: 2018
  ident: 694_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 18
  start-page: 312
  year: 2017
  ident: 694_CR8
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30065-7
– volume: 373
  start-page: 1803
  year: 2015
  ident: 694_CR6
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1510665
– volume: 15
  start-page: 700
  year: 2014
  ident: 694_CR5
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(14)70189-5
– volume: 114
  start-page: E5900
  year: 2017
  ident: 694_CR11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1706559114
– volume: 169
  start-page: 750
  year: 2017
  ident: 694_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.014
– volume: 18
  year: 2017
  ident: 694_CR21
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1362-4
– volume: 276
  start-page: 80
  year: 2017
  ident: 694_CR30
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12519
– volume: 19
  start-page: 355
  year: 2013
  ident: 694_CR16
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2013.03.005
– volume: 70
  start-page: 46
  year: 2014
  ident: 694_CR43
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.08.016
– ident: 694_CR18
  doi: 10.1007/s12035-019-01730-6
– volume: 10
  start-page: 316
  year: 2015
  ident: 694_CR39
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2015.020
– volume: 23
  start-page: 5703
  year: 2017
  ident: 694_CR33
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3261
– volume: 83
  start-page: 483
  year: 2013
  ident: 694_CR38
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22271
– volume: 246
  start-page: 10
  year: 2012
  ident: 694_CR24
  publication-title: J. Neuroimmunol.
  doi: 10.1016/j.jneuroim.2012.02.009
– volume: 357
  start-page: 409
  year: 2017
  ident: 694_CR9
  publication-title: Science
  doi: 10.1126/science.aan6733
– volume: 19
  start-page: 1264
  year: 2013
  ident: 694_CR25
  publication-title: Nat. Med.
  doi: 10.1038/nm.3337
– volume: 27
  start-page: 2411
  year: 2019
  ident: 694_CR36
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.04.091
– volume: 56
  start-page: 3260
  year: 2019
  ident: 694_CR17
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-018-1240-4
– volume: 174
  start-page: 716
  year: 2018
  ident: 694_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 169
  start-page: 736
  year: 2017
  ident: 694_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.016
– volume: 162
  start-page: 184
  year: 2015
  ident: 694_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.047
– volume: 22
  start-page: 729
  year: 2019
  ident: 694_CR19
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0370-y
– volume: 87
  start-page: 636
  year: 2015
  ident: 694_CR42
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22625
– volume: 22
  start-page: 679
  year: 2016
  ident: 694_CR15
  publication-title: Nat. Med.
  doi: 10.1038/nm.4086
SSID ssj0003059
Score 2.685477
Snippet Immune checkpoint therapy with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of immune...
Immune checkpoint therapy (ICT) with anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of many solid tumors. However, the clinical efficacy of...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms 5'-Nucleotidase - metabolism
631/250/251
631/67/580
Algorithms
Animal models
Animals
Antitumor activity
Biomedical and Life Sciences
Biomedicine
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - genetics
Brain Neoplasms - immunology
Brain Neoplasms - therapy
Cancer
Cancer Research
CD73 antigen
Cell Line, Tumor
Clinical trials
Colorectal cancer
Colorectal carcinoma
Combinatorial analysis
CTLA-4 protein
Cytometry
Disease Models, Animal
Drug therapy
Gene Expression Regulation, Neoplastic
Gene sequencing
Glioblastoma
Glioblastoma - diagnostic imaging
Glioblastoma - genetics
Glioblastoma - immunology
Glioblastoma - therapy
Glioblastoma multiforme
GPI-Linked Proteins - metabolism
Health aspects
Humans
Immune checkpoint
Immune response
Immunomodulation
Immunomodulators
Immunotherapy
Infectious Diseases
Letter
Lymphocytes, Tumor-Infiltrating - immunology
Macrophages
Macrophages - metabolism
Magnetic Resonance Imaging
Metabolic Diseases
Methods
Mice, Inbred C57BL
Molecular Medicine
Molecular Targeted Therapy
Myeloid Cells - metabolism
Neurosciences
Nucleotidases
Patients
PD-1 protein
PD-L1 protein
Physiological aspects
Prostate cancer
Receptor antibodies
Ribonucleic acid
RNA
Solid tumors
Therapy
Translation
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwEB6VrbgeEJQrUMAgBBJV1GycxMkDQqW0apG6oNKiihfLcZxlpW2yNLui_ffMxEnaVKjw7M9W4jk89lwArzXa1Brp7qYpilugIuMq7hk3EEbnEddRGlFy8t4o2jkMPh-FR0swanNhKKyy1Ym1os5KTW_k6z4PuJdQi8EPs18udY0i72rbQkM1rRWy93WJsWuw7FNlrAEsf9wafd3vdDNyd2KjEGM3xqtB6-fk8XqFRxlFAVFST5QE7mnvpLqsry8cWJeDKTuP6m24uShm6uy3mk4vHFrbd-FOY22yDcse92DJFCtw3fafPFuBG3uNZ_0-_NilRBHDbA9vXJiVOasb-LH54rg8qdgks4FFpmKbnwRnqmKK4d7h1Zou7sjHzIaVs0nBxtNJmaJhPi-P1QM43N462Nxxm74LrhaBN3dzrvGQUn5skM10KFQaiyxMfSO01sJTsY69XOgoyoRv4oALJHESGLxrofmYDjP-EAZFWZjHwITyjY4M3upw6VBkSZablNZSKhRahQ547R5L3RQlp94YU1k7x3ksLVkkkkUSWeSpA--6KTNbkeMq8AsinLRJpZ00y41oOOQCbU3fgVc1gmphFBRsM1aLqpK7X77_B-jbfg_0tgHlJf6DVk2CA-4E1djqId_0kGNbYfxvwNUeEEVf94dbfpSN6qnkuaA48LIbppkUTleYckEYtFyork_gwCPLvt1eopLHuV7igOgxdgegguT9kWLysy5MLqgbAI8dWGtF4PyzriDRWicl_ybok6t_-Snc8ulBpH4jW4XB_GRhnqHVOE-fN6rgD8i_Z2E
  priority: 102
  providerName: ProQuest
Title Immune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma
URI https://link.springer.com/article/10.1038/s41591-019-0694-x
https://www.ncbi.nlm.nih.gov/pubmed/31873309
https://www.proquest.com/docview/2343090733
https://www.proquest.com/docview/2330335284
https://pubmed.ncbi.nlm.nih.gov/PMC7182038
https://www.ncbi.nlm.nih.gov/pmc/articles/7182038
UnpaywallVersion submittedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1546-170X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1546-170X
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwED9trXh94DFegVEMQiAxpU3zcvKxHas2pJWprKjwJXIcp1S0SbUkYuOv55wXS4UG-5QP_jmKc2ff2f7dHcAbjj41R7mrvo_TzWS2UJmhCdWkgoe2wW3flsHJx2P7cGp-nFmzLehXsTA5aZ_7i260XHWjxfecW7le8V7FE-tRmXLccLahbVvofregPR2fDL4W3EJHddy8Yit6Brbap9qsusk0nF6CxkryfGTYju2a6nnDFm2uyJdM0iZdsr4zvQO3smjNLn6y5fKSWRrdg0k1oIKN8qObpX6X_9rI9XitEd-Hu6WTSgZF0wPYEtEO3CjKVl7swM3j8kL-IXw7kvElghSlv_FrSRySvO4fSbNVfJaQRVDwkURC9j9Qg7CEMIJqjjtyud9H9ScFG50sIjJfLmIf_fk0XrFHMB0dnO4fqmW5BpVTU0vV0OBo25juCNROblHmOzSwfF1QzjnVmMMdLaTctgOqC8c0KGqGawrcoqHX6fcD4zG0ojgST4FQpgtuC9wM4qstGrhBKHz5LsYsypmlgFYJzuNlLnNZUmPp5XfqhuMVsvZQ1p6UtXeuwPu6y7pI5HEV-KXUBq-IRa0XAW9g9_sGRRdVV-B1jpApNCLJ0ZmzLEm8o09f_gP0edIAvStBYYxj4KyMi8A_IVNzNZBvG8h5kZj8b8DdBhBXDN5srpTcK1esxNMN09BcWcJTgVd1s-wpWXiRiDOJQYdHpgMyFXhSzIn6X6JtwL6aqwBtzJYaIPOYN1tQ2fN85qV-K7BXzas_n3WFiPbqqfdvgT67Fvo53NblsUp-0rYLrfQsEy_Q90z9DmzTGe1AezAaDsf4HB6MTyadcg36DcPEgkA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BiKIPRvFWRRmNl0TS0O10O-0DMcglrLCrQTDElzqdTtdNlnalu4H9c_42z-kNSszqC8_zddKZM-c2cy4ArxXa1ArpboYhspsjXW1KbmnTEVrFLldu6FJycrfn7h45n47bx3Pwu8qFobDKSibmgjpKFd2Rr9nc4ZZPLQY_jH6Z1DWKXlerFhqybK0QreclxsrEjj09PUMXLlvvbCG939j2zvbh5q5ZdhkwlXCssRlzhSJZ2p7GTVVtIUNPRO3Q1kIpJSzpKc-KhXLdSNjac7jABfmORs8CjaWwFXGc9wYsONzx0flb-Ljd-3JQ6wLkJr-IevRMD12R6l2Ve2sZqk6KOqIkIpzQPG9oxqv64ZKCvBq8Wb_g3oHFSTKS0zM5HF5Skjv34G5p3bKN4jjehzmdLMHNot_ldAludcuX_AfwvUOJKZoVPcNxYpbGLG8YyMaTk_Q0Y4OoCGTSGdvcEpzJjEmGtEJXni4KkG9YEcbOBgnrDwdpiI7AOD2RD-HoWijwCOaTNNFPgAlpa-Vq9CJx6raI_CjWIc0lZVso2TbAqvY4UGURdOrFMQzyx3juBQVZAiRLQGQJzg14X38yKiqAzAKvEOGCIom1lh7BhttqcYG2rW3AqxxBtTcSCu7py0mWBZ3P3_4D9PWgAXpXguIU16BkmVCBO0E1vRrItw1kv6ho_jfgcgOIokY1h6vzGJSiLgsuGNOAl_UwfUnhe4lOJ4RBS4nqCDkGPC6Ob72XqFTwW8s3QDQOdg2gAujNkWTwMy-ELqj7APcMWK1Y4OK3ZpBoteaSfxP06ewlr8Di7mF3P9jv9PaewW2bLmPy-7llmB-fTvRztFjH4YtSLDD4cd2S6A_NxKT_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDDHhAMG6BwQziIjFFTeMkTh4QmlaqlbGBBkMVL8ZxnFKpS8rSauuv8XWcEyfZMqHBy559bNk-d_tcCHmhwKZWgHc7joHdPBloWzJH2x7XKg2YCuIAk5N394LtA-_D0B8ukd91LgyGVdYysRTUSa7wjbzjMo85EbYY7KRVWMTnXv_d9JeNHaTwp7Vup2FIZEcvjsF9K94OeoDrl67bf_91a9uuOgzYinvOzE6ZAnEs3VDDhSqfyzjkiR-7miuluCNDFTopV0GQcFeHHuNwmMjT4FWAoRR3EwbrXiFXYVMRhhPyYePsIR9FJt4xtENwQuofVRZ2ClCaGG-E6UOwnH3S0onnNcMZ1Xg-bLP5u71Jrs-zqVwcy8nkjHrs3ya3KruWbhpCvEOWdLZKrplOl4tVsrJb_eHfJd8HmJKiqekWDgvTPKVlq0A6mx_mRwUdJyaESRd0q8cZlQWVFLAETjw-EQDHUBPATscZHU3GeQwuwCw_lPfIwaXc_32ynOWZfkgol65WgQb_EZb2eRIlqY5xLSl9rqRvEae-Y6Gq8ufYhWMiym94FgqDFgFoEYgWcWKRN82Uqan9cRHwOiJOmPTVRm6IzaDbZRysWtciz0sIrLqRIf2O5LwoxODTt_8A-rLfAnpdAaU5nEHJKpUCbgKrebUgX7UgR6aW-d8A11qAIGRUe7imR1EJuUKcsqRFnjXDOBMD9zKdzxEGbCSsIORZ5IEh3-YuQZ3AXCeyCG8RdgOApc_bI9n4Z1kCnWPfARZaZKNmgdNtXYCijYZL_o3QRxcfeZ2sgPwRHwd7O4_JDRdfYcqHuTWyPDua6ydgqs7ip6VMoOTHZQuhPzXFopk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTnw98DG-AgMMQiAxpU3jxE4fq8G0IW2gQafCS-Q4zqhok2pJxMZfzzlOwlKhwZ79cxTn7nzn-Hd3AK8kxtQS5W5HEZqbJ5iyBXWU7XElE0Yli5hOTt4_YLsT78PUn67BsMmFqUj7Mpr10_min86-V9zK5UIOGp7YgOuS4zS4AuvMx_C7B-uTg0_jr4ZbGNjBqOrYipEBs4fcmTY3mTQY5OisNM9Hp-2wkWefdnzR6o58ziWt0iXbO9ObcL1Ml-Lsp5jPz7mlndtw2CzIsFF-9Msi6stfK7UeL7XiO3CrDlLJ2AzdhTWVbsBV07bybAOu7dcX8vfg257OL1HEtP7GtyVZQqq-f6QoF9lJTmax4SOpnGy_45SInAiCao4ncn3eR_Unho1OZik5ns-yCOP5IluI-zDZef9le9eu2zXYkntOYSdUom8TbqBQO6XPRRTw2I9cxaWU3BGBDJyES8Zi7qrAoxw1Y-QpPKJh1BkNY_oAemmWqkdAuHCVZAoPg_hon8ejOFGRfpYQPpfCt8BpBBfKupa5bqkxD6s7dRqERtYhyjrUsg5PLXjbTlmaQh4XgZ9rbQhNLmq7CYRjNhxSjiGqa8HLCqFLaKSao3MsyjwP9z4e_Qfo82EH9KYGJRmuQYo6LwK_hC7N1UG-7iCPTWHyvwE3O0DcMWR3uFHysN6x8tClHnVGuoWnBS_aYT1Ts_BSlZUagwGPLgfkWfDQ2ET7LdE34FxnZAHvWEsL0HXMuyOo7FU981q_Ldhq7OrPa10goq3W9P4t0MeXQj-BG67-rVL9aduEXnFSqqcYexbRs3q3-Q3Hrn5D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+profiling+of+human+tumors+identifies+CD73+as+a+combinatorial+target+in+glioblastoma&rft.jtitle=Nature+medicine&rft.au=Goswami%2C+Sangeeta&rft.au=Walle%2C+Thomas&rft.au=Cornish%2C+Andrew+E&rft.au=Basu%2C+Sreyashi&rft.date=2020-01-01&rft.issn=1546-170X&rft.eissn=1546-170X&rft.volume=26&rft.issue=1&rft.spage=39&rft_id=info:doi/10.1038%2Fs41591-019-0694-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon