ADVANCED IMAGE COMPRESSION METHODS: A COMPARATIVE ANALYSIS OF MODERN ALGORITHMS AND THEIR APPLICATIONS
The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The study examines many compression methods, including LZMA, LERC, ZSTD and their mixed forms and compares how well they perform in terms of compre...
Saved in:
| Published in | Scientific journal of Astana IT University (Online) pp. 91 - 102 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
30.09.2025
|
| Online Access | Get full text |
| ISSN | 2707-9031 2707-904X 2707-904X |
| DOI | 10.37943/23ZLAI3218 |
Cover
| Abstract | The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The study examines many compression methods, including LZMA, LERC, ZSTD and their mixed forms and compares how well they perform in terms of compression ratio, time required, memory efficiency and how much information entropy they keep. Machine learning methods for compression are used in the analysis, focusing on how they work with images from medical imaging as well as satellite data. Experiments are performed on standardized datasets, with the main goal of following the theoretical limits set by Shannon’s Source Coding Theorem. The study shows that using modern hybrid algorithms, it is possible to compress data by at least 4:1 and keep it safe, with LZMA and LERC combinations performing best when the data is subject to entropic constraints. The results show that using parallel processing leads to a 60% decrease in processing time when compared to traditional single-threaded methods. The results strengthen the theories and techniques needed for the next generation of compression systems, mainly for handling high-resolution images quickly. |
|---|---|
| AbstractList | The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The study examines many compression methods, including LZMA, LERC, ZSTD and their mixed forms and compares how well they perform in terms of compression ratio, time required, memory efficiency and how much information entropy they keep. Machine learning methods for compression are used in the analysis, focusing on how they work with images from medical imaging as well as satellite data. Experiments are performed on standardized datasets, with the main goal of following the theoretical limits set by Shannon’s Source Coding Theorem. The study shows that using modern hybrid algorithms, it is possible to compress data by at least 4:1 and keep it safe, with LZMA and LERC combinations performing best when the data is subject to entropic constraints. The results show that using parallel processing leads to a 60% decrease in processing time when compared to traditional single-threaded methods. The results strengthen the theories and techniques needed for the next generation of compression systems, mainly for handling high-resolution images quickly. |
| Author | Kirichenko, Lalita Tendikov, Noyan Nyssanov, Nursultan Kozhakhmet, Zhaksylyk Rzayeva, Leila |
| Author_xml | – sequence: 1 givenname: Leila orcidid: 0000-0002-3382-4685 surname: Rzayeva fullname: Rzayeva, Leila – sequence: 2 givenname: Nursultan orcidid: 0009-0002-8128-0595 surname: Nyssanov fullname: Nyssanov, Nursultan – sequence: 3 givenname: Noyan orcidid: 0009-0009-7251-8830 surname: Tendikov fullname: Tendikov, Noyan – sequence: 4 givenname: Lalita orcidid: 0000-0001-7069-5395 surname: Kirichenko fullname: Kirichenko, Lalita – sequence: 5 givenname: Zhaksylyk orcidid: 0009-0002-5449-3317 surname: Kozhakhmet fullname: Kozhakhmet, Zhaksylyk |
| BookMark | eNptkF1LwzAUhoNMcM5d-Qdyr9W0afrhXWizNtA2oylDvSlpm8CgbqNFZP5666ZeeXUO533O4fBcg9luv9MA3NroAfuhix8d_JpRjh07uABzx0e-FSL3efbXY_sKLMdx2yCCfBwQ258DQ-MNLSIWQ57ThMFI5OuSSclFAXNWpSKWT5CexrSkFd8wSAuavUguoVjBXMSsLCDNElHyKs3llMawShkvIV2vMx5NO6KQN-DSqH7Uy5-6ANWKVVFqZSKZmMxqp4esznSeQ7Rqia1apVSntReGmmjb61qHNMo0BjUYd4HRyCjHD4JWNS3xVNi4LgnxAtyfz77vDur4ofq-PgzbNzUcaxvVJ0u1gz97tf22NOF3Z7wd9uM4aPMf_esUfwGh8mNL |
| Cites_doi | 10.1109/CVPR.2018.00462 10.1109/CVPR.2018.00652 10.1109/CVPR.2018.00262 10.1109/CVPRW.2017.150 10.1109/TCSVT.2019.2892608 10.1109/TIP.2021.3058615 10.1109/CVPR.2017.291 10.1007/978-3-030-11021-5_5 10.1109/CVPR.2017.577 10.1109/CVPR.2018.00068 10.1109/JPROC.2017.2761740 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.37943/23ZLAI3218 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2707-904X |
| EndPage | 102 |
| ExternalDocumentID | 10.37943/23zlai3218 10_37943_23ZLAI3218 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 GROUPED_DOAJ ADTOC UNPAY |
| ID | FETCH-LOGICAL-c738-dfd625eac51acaaadee699e5e16dc25bafbf0b33d8fe0fa2788cabc56a9b44593 |
| IEDL.DBID | UNPAY |
| ISSN | 2707-9031 2707-904X |
| IngestDate | Wed Oct 29 12:16:02 EDT 2025 Wed Oct 29 21:08:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c738-dfd625eac51acaaadee699e5e16dc25bafbf0b33d8fe0fa2788cabc56a9b44593 |
| ORCID | 0009-0002-8128-0595 0000-0002-3382-4685 0009-0002-5449-3317 0000-0001-7069-5395 0009-0009-7251-8830 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journal.astanait.edu.kz/index.php/ojs/article/download/837/260 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_37943_23zlai3218 crossref_primary_10_37943_23ZLAI3218 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-30 |
| PublicationDateYYYYMMDD | 2025-09-30 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Scientific journal of Astana IT University (Online) |
| PublicationYear | 2025 |
| References | 15670 15681 15680 15663 15674 15662 15673 15661 15672 15660 15671 15682 15667 15678 15666 15677 15665 15676 15664 15675 15659 15669 15668 15679 |
| References_xml | – ident: 15663 – ident: 15662 – ident: 15668 doi: 10.1109/CVPR.2018.00462 – ident: 15664 – ident: 15665 – ident: 15659 – ident: 15666 – ident: 15677 doi: 10.1109/CVPR.2018.00652 – ident: 15667 – ident: 15680 – ident: 15681 – ident: 15682 – ident: 15661 – ident: 15676 doi: 10.1109/CVPR.2018.00262 – ident: 15669 doi: 10.1109/CVPRW.2017.150 – ident: 15670 doi: 10.1109/TCSVT.2019.2892608 – ident: 15674 – ident: 15673 doi: 10.1109/TIP.2021.3058615 – ident: 15675 doi: 10.1109/CVPR.2017.291 – ident: 15679 doi: 10.1007/978-3-030-11021-5_5 – ident: 15660 doi: 10.1109/CVPR.2017.577 – ident: 15678 doi: 10.1109/CVPR.2018.00068 – ident: 15671 doi: 10.1109/JPROC.2017.2761740 – ident: 15672 |
| SSID | ssib050738517 ssj0002873317 |
| Score | 2.3071303 |
| Snippet | The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 91 |
| Title | ADVANCED IMAGE COMPRESSION METHODS: A COMPARATIVE ANALYSIS OF MODERN ALGORITHMS AND THEIR APPLICATIONS |
| URI | https://journal.astanait.edu.kz/index.php/ojs/article/download/837/260 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2707-904X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050738517 issn: 2707-9031 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF216YETHwJEEVR7KEfHH-v11r2tGqc2iuMocVHKJZr9qkqjpCqJEDnw29m1napCHJC4WfYc7H2rmTfWznsInSapJCYIhZdSwTzbb8QeiFB6ITGgTCSYajwjy3GSX8Wf53R-gIb7WZhuBfvguBHctkf273Z-ox3oBCP89bfvfreqvnKC8mtQvm2zfMvMD9FRQi0n76Gjq_GEXztnORYwLw0aY8LuOp63g3rEiaP5Edkt4ZZEzvbjSWl6tl3dw88fsFw-qTfDF-hm_6btMZO7_nYj-nL3h4jj_3_KS_S8o6SYtyGv0IFevUbG1ivnWzPARckvM3xRlQ1YNvXiMqvzajA7x7y5zd1_ri8Z5mM-up4VM1wNcVkNsukY89FlNS3qvJzZpwNc51kxxXwyeZxffoPqYVZf5F7nyeBJZlOjMso2TDZZ0xAkACitkzTVVIeJkhEVYIQJBCHqzOjAQGQbbAlC0gRSEcc0JW9Rb7Ve6XcIS-XYEoTsjCaxNCASw4gjEExrFkpzjE73aCzuW-WNhe1YGtAWEfk64oUD7Rh9ekTqb3F7cN__Y9wH1Ns8bPVHSzU24gQdlr-yk243_QYhANJp |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF2V9MCJFgGiqKA9lKPjj_V6695WjVMbxXGUuCjlEs1-obZRUkEiRH59d22nqhAHJG6WPQd732rmjbXzHkJnSSqJCULhpVQwz_YbsQcilF5IDCgTCaYaz8hynOTX8Zc5nR-g4X4WplvBPjhuBLftkf37nd9oBzrBCH9999PvVtVXTlB-Dcq3bZZvmfkLdJhQy8l76PB6POE3zlmOBcxLg8aYsLuO5-2gHnHiaH5Edku4JZGz_XhWml5uVw_w-xcsl8_qzfAIfd-_aXvM5L6_3Yi-3P0h4vj_n3KMXnWUFPM25DU60Ks3yNh65XxrBrgo-VWGL6uyAcumXlxmdV4NZheYN7e5-8_1NcN8zEc3s2KGqyEuq0E2HWM-uqqmRZ2XM_t0gOs8K6aYTyZP88tvUT3M6svc6zwZPMlsalRG2YbJJmsaggQApXWSpprqMFEyogKMMIEgRJ0bHRiIbIMtQUiaQCrimKbkHeqt1iv9HmGpHFuCkJ3TJJYGRGIYcQSCac1CaU7Q2R6NxUOrvLGwHUsD2iIi30a8cKCdoM9PSP0tbg_uh3-MO0W9zY-t_mipxkZ86vbRIzcV0Tg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADVANCED+IMAGE+COMPRESSION+METHODS%3A+A+COMPARATIVE+ANALYSIS+OF+MODERN+ALGORITHMS+AND+THEIR+APPLICATIONS&rft.jtitle=Scientific+journal+of+Astana+IT+University+%28Online%29&rft.au=Rzayeva%2C+Leila&rft.au=Nyssanov%2C+Nursultan&rft.au=Tendikov%2C+Noyan&rft.au=Kirichenko%2C+Lalita&rft.date=2025-09-30&rft.issn=2707-9031&rft.eissn=2707-904X&rft.spage=91&rft.epage=102&rft_id=info:doi/10.37943%2F23ZLAI3218&rft.externalDBID=n%2Fa&rft.externalDocID=10_37943_23ZLAI3218 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2707-9031&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2707-9031&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2707-9031&client=summon |