ADVANCED IMAGE COMPRESSION METHODS: A COMPARATIVE ANALYSIS OF MODERN ALGORITHMS AND THEIR APPLICATIONS

The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The study examines many compression methods, including LZMA, LERC, ZSTD and their mixed forms and compares how well they perform in terms of compre...

Full description

Saved in:
Bibliographic Details
Published inScientific journal of Astana IT University (Online) pp. 91 - 102
Main Authors Rzayeva, Leila, Nyssanov, Nursultan, Tendikov, Noyan, Kirichenko, Lalita, Kozhakhmet, Zhaksylyk
Format Journal Article
LanguageEnglish
Published 30.09.2025
Online AccessGet full text
ISSN2707-9031
2707-904X
2707-904X
DOI10.37943/23ZLAI3218

Cover

Abstract The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The study examines many compression methods, including LZMA, LERC, ZSTD and their mixed forms and compares how well they perform in terms of compression ratio, time required, memory efficiency and how much information entropy they keep. Machine learning methods for compression are used in the analysis, focusing on how they work with images from medical imaging as well as satellite data. Experiments are performed on standardized datasets, with the main goal of following the theoretical limits set by Shannon’s Source Coding Theorem. The study shows that using modern hybrid algorithms, it is possible to compress data by at least 4:1 and keep it safe, with LZMA and LERC combinations performing best when the data is subject to entropic constraints. The results show that using parallel processing leads to a 60% decrease in processing time when compared to traditional single-threaded methods. The results strengthen the theories and techniques needed for the next generation of compression systems, mainly for handling high-resolution images quickly.
AbstractList The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The study examines many compression methods, including LZMA, LERC, ZSTD and their mixed forms and compares how well they perform in terms of compression ratio, time required, memory efficiency and how much information entropy they keep. Machine learning methods for compression are used in the analysis, focusing on how they work with images from medical imaging as well as satellite data. Experiments are performed on standardized datasets, with the main goal of following the theoretical limits set by Shannon’s Source Coding Theorem. The study shows that using modern hybrid algorithms, it is possible to compress data by at least 4:1 and keep it safe, with LZMA and LERC combinations performing best when the data is subject to entropic constraints. The results show that using parallel processing leads to a 60% decrease in processing time when compared to traditional single-threaded methods. The results strengthen the theories and techniques needed for the next generation of compression systems, mainly for handling high-resolution images quickly.
Author Kirichenko, Lalita
Tendikov, Noyan
Nyssanov, Nursultan
Kozhakhmet, Zhaksylyk
Rzayeva, Leila
Author_xml – sequence: 1
  givenname: Leila
  orcidid: 0000-0002-3382-4685
  surname: Rzayeva
  fullname: Rzayeva, Leila
– sequence: 2
  givenname: Nursultan
  orcidid: 0009-0002-8128-0595
  surname: Nyssanov
  fullname: Nyssanov, Nursultan
– sequence: 3
  givenname: Noyan
  orcidid: 0009-0009-7251-8830
  surname: Tendikov
  fullname: Tendikov, Noyan
– sequence: 4
  givenname: Lalita
  orcidid: 0000-0001-7069-5395
  surname: Kirichenko
  fullname: Kirichenko, Lalita
– sequence: 5
  givenname: Zhaksylyk
  orcidid: 0009-0002-5449-3317
  surname: Kozhakhmet
  fullname: Kozhakhmet, Zhaksylyk
BookMark eNptkF1LwzAUhoNMcM5d-Qdyr9W0afrhXWizNtA2oylDvSlpm8CgbqNFZP5666ZeeXUO533O4fBcg9luv9MA3NroAfuhix8d_JpRjh07uABzx0e-FSL3efbXY_sKLMdx2yCCfBwQ258DQ-MNLSIWQ57ThMFI5OuSSclFAXNWpSKWT5CexrSkFd8wSAuavUguoVjBXMSsLCDNElHyKs3llMawShkvIV2vMx5NO6KQN-DSqH7Uy5-6ANWKVVFqZSKZmMxqp4esznSeQ7Rqia1apVSntReGmmjb61qHNMo0BjUYd4HRyCjHD4JWNS3xVNi4LgnxAtyfz77vDur4ofq-PgzbNzUcaxvVJ0u1gz97tf22NOF3Z7wd9uM4aPMf_esUfwGh8mNL
Cites_doi 10.1109/CVPR.2018.00462
10.1109/CVPR.2018.00652
10.1109/CVPR.2018.00262
10.1109/CVPRW.2017.150
10.1109/TCSVT.2019.2892608
10.1109/TIP.2021.3058615
10.1109/CVPR.2017.291
10.1007/978-3-030-11021-5_5
10.1109/CVPR.2017.577
10.1109/CVPR.2018.00068
10.1109/JPROC.2017.2761740
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.37943/23ZLAI3218
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2707-904X
EndPage 102
ExternalDocumentID 10.37943/23zlai3218
10_37943_23ZLAI3218
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
GROUPED_DOAJ
ADTOC
UNPAY
ID FETCH-LOGICAL-c738-dfd625eac51acaaadee699e5e16dc25bafbf0b33d8fe0fa2788cabc56a9b44593
IEDL.DBID UNPAY
ISSN 2707-9031
2707-904X
IngestDate Wed Oct 29 12:16:02 EDT 2025
Wed Oct 29 21:08:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c738-dfd625eac51acaaadee699e5e16dc25bafbf0b33d8fe0fa2788cabc56a9b44593
ORCID 0009-0002-8128-0595
0000-0002-3382-4685
0009-0002-5449-3317
0000-0001-7069-5395
0009-0009-7251-8830
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journal.astanait.edu.kz/index.php/ojs/article/download/837/260
PageCount 12
ParticipantIDs unpaywall_primary_10_37943_23zlai3218
crossref_primary_10_37943_23ZLAI3218
PublicationCentury 2000
PublicationDate 2025-09-30
PublicationDateYYYYMMDD 2025-09-30
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Scientific journal of Astana IT University (Online)
PublicationYear 2025
References 15670
15681
15680
15663
15674
15662
15673
15661
15672
15660
15671
15682
15667
15678
15666
15677
15665
15676
15664
15675
15659
15669
15668
15679
References_xml – ident: 15663
– ident: 15662
– ident: 15668
  doi: 10.1109/CVPR.2018.00462
– ident: 15664
– ident: 15665
– ident: 15659
– ident: 15666
– ident: 15677
  doi: 10.1109/CVPR.2018.00652
– ident: 15667
– ident: 15680
– ident: 15681
– ident: 15682
– ident: 15661
– ident: 15676
  doi: 10.1109/CVPR.2018.00262
– ident: 15669
  doi: 10.1109/CVPRW.2017.150
– ident: 15670
  doi: 10.1109/TCSVT.2019.2892608
– ident: 15674
– ident: 15673
  doi: 10.1109/TIP.2021.3058615
– ident: 15675
  doi: 10.1109/CVPR.2017.291
– ident: 15679
  doi: 10.1007/978-3-030-11021-5_5
– ident: 15660
  doi: 10.1109/CVPR.2017.577
– ident: 15678
  doi: 10.1109/CVPR.2018.00068
– ident: 15671
  doi: 10.1109/JPROC.2017.2761740
– ident: 15672
SSID ssib050738517
ssj0002873317
Score 2.3071303
Snippet The paper examines in detail the modern methods of image compression, focusing on how advanced algorithms are used in practical digital imaging systems. The...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 91
Title ADVANCED IMAGE COMPRESSION METHODS: A COMPARATIVE ANALYSIS OF MODERN ALGORITHMS AND THEIR APPLICATIONS
URI https://journal.astanait.edu.kz/index.php/ojs/article/download/837/260
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2707-904X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050738517
  issn: 2707-9031
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF216YETHwJEEVR7KEfHH-v11r2tGqc2iuMocVHKJZr9qkqjpCqJEDnw29m1napCHJC4WfYc7H2rmTfWznsInSapJCYIhZdSwTzbb8QeiFB6ITGgTCSYajwjy3GSX8Wf53R-gIb7WZhuBfvguBHctkf273Z-ox3oBCP89bfvfreqvnKC8mtQvm2zfMvMD9FRQi0n76Gjq_GEXztnORYwLw0aY8LuOp63g3rEiaP5Edkt4ZZEzvbjSWl6tl3dw88fsFw-qTfDF-hm_6btMZO7_nYj-nL3h4jj_3_KS_S8o6SYtyGv0IFevUbG1ivnWzPARckvM3xRlQ1YNvXiMqvzajA7x7y5zd1_ri8Z5mM-up4VM1wNcVkNsukY89FlNS3qvJzZpwNc51kxxXwyeZxffoPqYVZf5F7nyeBJZlOjMso2TDZZ0xAkACitkzTVVIeJkhEVYIQJBCHqzOjAQGQbbAlC0gRSEcc0JW9Rb7Ve6XcIS-XYEoTsjCaxNCASw4gjEExrFkpzjE73aCzuW-WNhe1YGtAWEfk64oUD7Rh9ekTqb3F7cN__Y9wH1Ns8bPVHSzU24gQdlr-yk243_QYhANJp
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF2V9MCJFgGiqKA9lKPjj_V6695WjVMbxXGUuCjlEs1-obZRUkEiRH59d22nqhAHJG6WPQd732rmjbXzHkJnSSqJCULhpVQwz_YbsQcilF5IDCgTCaYaz8hynOTX8Zc5nR-g4X4WplvBPjhuBLftkf37nd9oBzrBCH9999PvVtVXTlB-Dcq3bZZvmfkLdJhQy8l76PB6POE3zlmOBcxLg8aYsLuO5-2gHnHiaH5Edku4JZGz_XhWml5uVw_w-xcsl8_qzfAIfd-_aXvM5L6_3Yi-3P0h4vj_n3KMXnWUFPM25DU60Ks3yNh65XxrBrgo-VWGL6uyAcumXlxmdV4NZheYN7e5-8_1NcN8zEc3s2KGqyEuq0E2HWM-uqqmRZ2XM_t0gOs8K6aYTyZP88tvUT3M6svc6zwZPMlsalRG2YbJJmsaggQApXWSpprqMFEyogKMMIEgRJ0bHRiIbIMtQUiaQCrimKbkHeqt1iv9HmGpHFuCkJ3TJJYGRGIYcQSCac1CaU7Q2R6NxUOrvLGwHUsD2iIi30a8cKCdoM9PSP0tbg_uh3-MO0W9zY-t_mipxkZ86vbRIzcV0Tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ADVANCED+IMAGE+COMPRESSION+METHODS%3A+A+COMPARATIVE+ANALYSIS+OF+MODERN+ALGORITHMS+AND+THEIR+APPLICATIONS&rft.jtitle=Scientific+journal+of+Astana+IT+University+%28Online%29&rft.au=Rzayeva%2C+Leila&rft.au=Nyssanov%2C+Nursultan&rft.au=Tendikov%2C+Noyan&rft.au=Kirichenko%2C+Lalita&rft.date=2025-09-30&rft.issn=2707-9031&rft.eissn=2707-904X&rft.spage=91&rft.epage=102&rft_id=info:doi/10.37943%2F23ZLAI3218&rft.externalDBID=n%2Fa&rft.externalDocID=10_37943_23ZLAI3218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2707-9031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2707-9031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2707-9031&client=summon