Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing
Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in...
Saved in:
Published in | Nature biotechnology Vol. 38; no. 8; pp. 954 - 961 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.08.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1087-0156 1546-1696 1546-1696 |
DOI | 10.1038/s41587-020-0470-y |
Cover
Abstract | Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.
Single-cell CRISPR screens are readily multiplexed and scaled with an improved version of Perturb-seq. |
---|---|
AbstractList | Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.Single-cell CRISPR screens are readily multiplexed and scaled with an improved version of Perturb-seq. Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments. Single-cell CRISPR screens are readily multiplexed and scaled with an improved version of Perturb-seq. Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments. Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves the efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments. Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments. |
Audience | Academic |
Author | Replogle, Joseph M. Fiddes, Ian T. Arthur, Joseph G. Chen, Jin Norman, Thomas M. Xu, Albert Pfeiffer, Katherine A. Meer, Elliott J. Srinivas, Niranjan Alvarado, Luigi J. Cogan, J. Zachery Hussmann, Jeffrey A. Weissman, Jonathan S. Terry, Jessica M. Riordan, Daniel P. Mikkelsen, Tarjei S. Adamson, Britt |
AuthorAffiliation | 8 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA 3 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA 4 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA 7 10x Genomics Inc., Pleasanton, California, 94566, USA 9 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA 1 Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA 2 Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA 6 Present address: Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA 5 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA |
AuthorAffiliation_xml | – name: 3 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA – name: 8 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA – name: 6 Present address: Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA – name: 7 10x Genomics Inc., Pleasanton, California, 94566, USA – name: 5 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA – name: 9 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA – name: 1 Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA – name: 2 Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA – name: 4 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA |
Author_xml | – sequence: 1 givenname: Joseph M. orcidid: 0000-0003-1832-919X surname: Replogle fullname: Replogle, Joseph M. organization: Medical Scientist Training Program, University of California, San Francisco, Tetrad Graduate Program, University of California, San Francisco, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco – sequence: 2 givenname: Thomas M. surname: Norman fullname: Norman, Thomas M. organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco, Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center – sequence: 3 givenname: Albert orcidid: 0000-0001-5938-561X surname: Xu fullname: Xu, Albert organization: Medical Scientist Training Program, University of California, San Francisco, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco – sequence: 4 givenname: Jeffrey A. orcidid: 0000-0002-7778-9893 surname: Hussmann fullname: Hussmann, Jeffrey A. organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco, Department of Microbiology and Immunology, University of California, San Francisco – sequence: 5 givenname: Jin surname: Chen fullname: Chen, Jin organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco – sequence: 6 givenname: J. Zachery surname: Cogan fullname: Cogan, J. Zachery organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco – sequence: 7 givenname: Elliott J. surname: Meer fullname: Meer, Elliott J. organization: 10x Genomics Inc – sequence: 8 givenname: Jessica M. surname: Terry fullname: Terry, Jessica M. organization: 10x Genomics Inc – sequence: 9 givenname: Daniel P. surname: Riordan fullname: Riordan, Daniel P. organization: 10x Genomics Inc – sequence: 10 givenname: Niranjan surname: Srinivas fullname: Srinivas, Niranjan organization: 10x Genomics Inc – sequence: 11 givenname: Ian T. surname: Fiddes fullname: Fiddes, Ian T. organization: 10x Genomics Inc – sequence: 12 givenname: Joseph G. surname: Arthur fullname: Arthur, Joseph G. organization: 10x Genomics Inc – sequence: 13 givenname: Luigi J. orcidid: 0000-0002-7448-5384 surname: Alvarado fullname: Alvarado, Luigi J. organization: 10x Genomics Inc – sequence: 14 givenname: Katherine A. surname: Pfeiffer fullname: Pfeiffer, Katherine A. organization: 10x Genomics Inc – sequence: 15 givenname: Tarjei S. orcidid: 0000-0002-8133-3135 surname: Mikkelsen fullname: Mikkelsen, Tarjei S. organization: 10x Genomics Inc – sequence: 16 givenname: Jonathan S. orcidid: 0000-0003-2445-670X surname: Weissman fullname: Weissman, Jonathan S. email: jonathan.weissman@ucsf.edu organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco – sequence: 17 givenname: Britt orcidid: 0000-0002-9451-5819 surname: Adamson fullname: Adamson, Britt email: badamson@princeton.edu organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Department of Molecular Biology, Princeton University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32231336$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFDEYhgep2IP-AG9kwBsLTs1pkpmbwrJ4WChWtuqVEDLJN9OU2cyaZKT7782wre0WLRJIQvK8bw7fe5jtucFBlr3E6AQjWr0LDJeVKBBBBWICFZsn2QEuGS8wr_lemqNpF5d8PzsM4QohxBnnz7J9SgjFlPKD7Md8WDXWqTh4q_o8WNf1UGjo-3y-XFx8WeZBewAX8maTG-tBx7wbrYF8-XmWa7WOo4dcOZNH5TuIYPIAP0dwOjk9z562qg_w4mY8yr59eP91_qk4O_-4mM_OCi0oj4VqTYlUDaZGYAxXFLVt3ZRMaEobwyvWaGAVI9w0SrCKUEoNAV4CUFoyxOhRdrr1XY_NCowGF73q5drblfIbOSgrd3ecvZTd8EsKhtOPkGTw5sbAD-nyIcqVDdMnKAfDGCShVUlEzeiEvn6AXg2jd-l5kjDBBa0rJB6nKCoxL0l5R3WqB2ldO6Tb6eloOeMUC8yqiifq5C9UagZWVqdEtDat7wiOdwSJiXAdOzWGIBcXy_9nz7_vsm_vsc2YwgIhdcF2lzFsJTv4q_tV-VOO2_AlQGwB7YcQPLRS26iiHaYi2V5iJKeYy23MZYq5nGIuN0mJHyhvzR_TkK0mJNZ14O9K8m_RbwJLC3Y |
CitedBy_id | crossref_primary_10_1016_j_cell_2023_03_035 crossref_primary_10_1016_j_molcel_2023_02_011 crossref_primary_10_1089_crispr_2021_0063 crossref_primary_10_3389_fragi_2021_714926 crossref_primary_10_1038_s41592_021_01153_z crossref_primary_10_1126_sciimmunol_abm1920 crossref_primary_10_1080_14728222_2020_1820986 crossref_primary_10_14348_molcells_2021_0002 crossref_primary_10_3324_haematol_2023_284901 crossref_primary_10_1038_s41598_023_46426_z crossref_primary_10_1016_j_gde_2021_08_006 crossref_primary_10_1016_j_cels_2024_12_002 crossref_primary_10_1038_s41587_024_02475_x crossref_primary_10_1016_j_xgen_2024_100672 crossref_primary_10_1515_hsz_2023_0174 crossref_primary_10_1021_acssynbio_0c00499 crossref_primary_10_1016_j_cell_2021_03_025 crossref_primary_10_1186_s13059_020_02118_9 crossref_primary_10_1002_ctm2_694 crossref_primary_10_1073_pnas_2207392119 crossref_primary_10_1021_acscentsci_2c00836 crossref_primary_10_3389_fgeed_2021_630600 crossref_primary_10_1016_j_copbio_2021_02_003 crossref_primary_10_1126_science_add1856 crossref_primary_10_1016_j_biopha_2020_111007 crossref_primary_10_1016_j_ggedit_2021_100008 crossref_primary_10_1016_j_gendis_2020_09_003 crossref_primary_10_1038_s43588_022_00263_8 crossref_primary_10_3390_ncrna7040079 crossref_primary_10_1093_bioinformatics_btaa1078 crossref_primary_10_3389_fendo_2023_1148412 crossref_primary_10_1186_s13059_024_03351_2 crossref_primary_10_3390_cancers15143566 crossref_primary_10_1016_j_biotechadv_2023_108261 crossref_primary_10_61958_NCOX2261 crossref_primary_10_1016_j_stemcr_2021_02_006 crossref_primary_10_3390_ijms222413524 crossref_primary_10_1016_j_bbrep_2025_101938 crossref_primary_10_1002_advs_202204484 crossref_primary_10_1016_j_tim_2020_09_006 crossref_primary_10_1038_s41596_020_00456_3 crossref_primary_10_1038_s43018_024_00789_y crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_1016_j_crmeth_2024_100737 crossref_primary_10_1093_narcan_zcac038 crossref_primary_10_1016_j_crbiot_2023_100127 crossref_primary_10_1002_1873_3468_14884 crossref_primary_10_1016_j_cell_2022_05_013 crossref_primary_10_1002_ggn2_202100038 crossref_primary_10_1038_s12276_024_01212_3 crossref_primary_10_1038_s41551_024_01204_8 crossref_primary_10_1186_s13045_023_01495_5 crossref_primary_10_1016_j_ajhg_2024_06_018 crossref_primary_10_1038_s41587_021_00927_2 crossref_primary_10_1002_mds_28998 crossref_primary_10_1016_j_biomaterials_2021_121276 crossref_primary_10_1016_j_molcel_2024_08_005 crossref_primary_10_1186_s13059_022_02660_8 crossref_primary_10_7554_eLife_94884 crossref_primary_10_15252_msb_202110768 crossref_primary_10_1016_j_xgen_2024_100630 crossref_primary_10_1016_j_cell_2022_06_039 crossref_primary_10_1016_j_csbj_2020_10_016 crossref_primary_10_1042_BST20230190 crossref_primary_10_1016_j_it_2021_03_003 crossref_primary_10_1038_s41587_024_02347_4 crossref_primary_10_1016_j_neuron_2020_09_001 crossref_primary_10_1021_acsnano_2c05494 crossref_primary_10_1186_s12864_023_09754_y crossref_primary_10_1126_science_ado5978 crossref_primary_10_3389_fimmu_2022_1041451 crossref_primary_10_1093_narcan_zcad034 crossref_primary_10_1002_wsbm_1570 crossref_primary_10_1038_s10038_020_00844_3 crossref_primary_10_1038_s41586_023_06733_x crossref_primary_10_1038_s41593_024_01611_9 crossref_primary_10_1038_s42003_023_05351_7 crossref_primary_10_1016_j_cell_2021_10_002 crossref_primary_10_1016_j_tig_2024_03_010 crossref_primary_10_1093_lifemedi_lnac057 crossref_primary_10_1007_s00412_023_00796_5 crossref_primary_10_1016_j_mocell_2024_100147 crossref_primary_10_1016_j_xgen_2022_100177 crossref_primary_10_1038_s43586_022_00157_z crossref_primary_10_1007_s12015_023_10506_4 crossref_primary_10_1146_annurev_genet_072920_013842 crossref_primary_10_1038_s41467_023_36150_7 crossref_primary_10_1038_s41587_024_02224_0 crossref_primary_10_1038_s41590_022_01224_z crossref_primary_10_7554_eLife_70341 crossref_primary_10_1073_pnas_2010738117 crossref_primary_10_1038_s41467_021_23213_w crossref_primary_10_1038_s41587_024_02213_3 crossref_primary_10_3390_genes13122211 crossref_primary_10_1016_j_mocell_2024_100092 crossref_primary_10_1371_journal_pntd_0012922 crossref_primary_10_1038_s41467_021_24324_0 crossref_primary_10_1038_s41586_024_07954_4 crossref_primary_10_1093_bioinformatics_btab209 crossref_primary_10_1016_j_drudis_2023_103540 crossref_primary_10_1097_HEP_0000000000001066 crossref_primary_10_1038_s41568_022_00441_w crossref_primary_10_7554_eLife_66406 crossref_primary_10_1038_s41571_024_00966_z crossref_primary_10_1002_ggn2_202200014 crossref_primary_10_1016_j_cels_2020_06_004 crossref_primary_10_1038_s41556_025_01626_9 crossref_primary_10_1136_jmedgenet_2022_108588 crossref_primary_10_1126_sciadv_ado1693 crossref_primary_10_1101_cshperspect_a041382 crossref_primary_10_1038_s41467_022_28884_7 crossref_primary_10_1016_j_tibtech_2020_10_013 crossref_primary_10_1038_s41569_021_00589_2 crossref_primary_10_1093_nar_gkae858 crossref_primary_10_1038_s41580_022_00571_x crossref_primary_10_1042_BCJ20210535 crossref_primary_10_1038_s41467_022_33024_2 crossref_primary_10_1038_s41467_022_34320_7 crossref_primary_10_3389_fpls_2022_934002 crossref_primary_10_1158_2159_8290_CD_20_1503 crossref_primary_10_1016_j_molcel_2021_12_002 crossref_primary_10_1089_crispr_2022_0052 crossref_primary_10_1038_s41592_022_01705_x crossref_primary_10_1016_j_ccell_2022_06_001 crossref_primary_10_1038_s41588_023_01471_2 crossref_primary_10_1002_eji_202048712 crossref_primary_10_1186_s13059_020_02044_w crossref_primary_10_1007_s12016_024_09001_6 crossref_primary_10_1080_21541264_2023_2200721 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_7554_eLife_94884_3 crossref_primary_10_1016_j_molcel_2020_06_012 crossref_primary_10_1016_j_cell_2024_07_035 crossref_primary_10_1186_s13059_024_03404_6 crossref_primary_10_1016_j_hest_2024_05_002 crossref_primary_10_1186_s13059_021_02554_1 crossref_primary_10_3389_fbinf_2024_1340339 crossref_primary_10_1016_j_cell_2021_01_012 crossref_primary_10_1038_s41587_023_01905_6 crossref_primary_10_1002_smll_202107795 crossref_primary_10_1038_s41576_021_00409_w crossref_primary_10_1038_s41598_024_77314_9 crossref_primary_10_1016_j_xgen_2024_100609 crossref_primary_10_1038_s41577_022_00802_4 crossref_primary_10_3892_ol_2024_14285 crossref_primary_10_1016_j_eng_2024_10_019 crossref_primary_10_15252_msb_202110255 crossref_primary_10_1038_s41467_024_52490_4 crossref_primary_10_2174_011574888X265479231127065541 crossref_primary_10_1038_s41467_023_41788_4 crossref_primary_10_1093_stmcls_sxad022 crossref_primary_10_1007_s12551_023_01091_4 crossref_primary_10_2217_pme_2020_0056 crossref_primary_10_1093_hmg_ddac204 crossref_primary_10_1038_s41586_023_06570_y crossref_primary_10_1093_biostatistics_kxae010 crossref_primary_10_1073_pnas_2218812120 crossref_primary_10_1038_s41586_024_07259_6 crossref_primary_10_7554_eLife_81856 crossref_primary_10_1038_s41569_021_00669_3 crossref_primary_10_1002_1873_3468_14709 crossref_primary_10_1038_s41551_023_01085_3 crossref_primary_10_1016_j_mib_2022_102221 crossref_primary_10_1016_j_ajpath_2023_09_012 crossref_primary_10_1093_bioinformatics_btab375 crossref_primary_10_1038_s41587_023_01948_9 crossref_primary_10_1126_science_abj4008 crossref_primary_10_3390_ijms25010658 crossref_primary_10_1161_ATVBAHA_123_318328 crossref_primary_10_3389_fcell_2023_1158373 crossref_primary_10_1016_j_xgen_2025_100766 crossref_primary_10_1038_s43586_021_00093_4 crossref_primary_10_1186_s13059_021_02545_2 crossref_primary_10_3389_fcell_2024_1500474 crossref_primary_10_1093_nar_gkad656 crossref_primary_10_1126_sciimmunol_add6774 crossref_primary_10_4049_jimmunol_2000954 crossref_primary_10_1016_j_chom_2023_09_003 crossref_primary_10_4103_1673_5374_313038 crossref_primary_10_7554_eLife_85542 crossref_primary_10_1038_s41596_021_00596_0 crossref_primary_10_1038_s41467_023_40408_5 crossref_primary_10_3390_cells13070568 crossref_primary_10_1016_j_tig_2023_10_009 crossref_primary_10_1186_s43897_023_00049_0 crossref_primary_10_1038_s41467_023_41792_8 crossref_primary_10_1016_j_tig_2023_10_012 crossref_primary_10_1186_s13059_024_03254_2 crossref_primary_10_1016_j_cell_2024_04_050 crossref_primary_10_1093_bib_bbad123 crossref_primary_10_1186_s12711_021_00662_x crossref_primary_10_1038_s41592_022_01436_z crossref_primary_10_1016_j_preteyeres_2022_101151 crossref_primary_10_1038_s41587_023_01685_z crossref_primary_10_1038_s41587_023_01949_8 crossref_primary_10_1038_s41588_024_01904_6 crossref_primary_10_3390_cancers14102515 crossref_primary_10_1007_s00395_022_00972_1 crossref_primary_10_1016_j_bbcan_2024_189212 |
Cites_doi | 10.1016/j.cell.2019.09.016 10.1038/nmeth.4177 10.1016/j.cell.2015.04.044 10.1016/j.cell.2013.08.021 10.1126/science.aax4438 10.1038/s41586-019-1711-4 10.1016/j.cell.2016.11.038 10.1016/j.cell.2017.10.023 10.1016/j.molcel.2017.03.007 10.1038/ncomms14049 10.1038/nbt.4282 10.1038/nbt.3973 10.1016/j.cell.2017.10.049 10.1016/j.cell.2016.11.048 10.1039/C8LC01239C 10.1016/j.stem.2016.01.022 10.1016/j.ymthe.2018.04.017 10.1038/nmeth.4380 10.1016/j.cell.2015.05.002 10.1038/s41592-019-0392-0 10.1038/s41592-018-0259-9 10.1016/j.cell.2018.11.029 10.7554/eLife.19760 10.1016/j.cell.2016.11.039 10.1016/j.tig.2018.06.001 10.1016/j.cell.2018.11.022 10.1371/journal.pone.0198635 10.1038/s41592-019-0614-5 10.1016/j.cell.2014.09.029 10.1038/s41586-019-1184-5 10.1038/nmeth.4604 10.1016/j.cell.2013.06.044 10.1016/j.cell.2018.06.010 10.1101/800631 10.1523/ENEURO.0495-18.2019 10.1101/262121 10.1101/298349 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 COPYRIGHT 2020 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM N95 IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 PRINS 7X8 5PM |
DOI | 10.1038/s41587-020-0470-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale Business: Insights Opposing Viewpoints (Gale in Context) Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central China MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 961 |
ExternalDocumentID | PMC7416462 A631714886 32231336 10_1038_s41587_020_0470_y |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute (HHMI) funderid: https://doi.org/10.13039/100000011 – fundername: Jane Coffin Childs Memorial Fund for Medical Research (JCC Fund) funderid: https://doi.org/10.13039/100001033 – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: HR0011-19-2-0007 funderid: https://doi.org/10.13039/100000185 – fundername: Chan Zuckerberg Initiative – fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation) grantid: DRG-[2211-15]; DRG-2262-16 funderid: https://doi.org/10.13039/100001021 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: F31 NS115380; GM134154; P50 GM102706; U01 CA168370; R01 DA036858; RM1HG009490 funderid: https://doi.org/10.13039/100000002 – fundername: Princeton University (Princeton) funderid: https://doi.org/10.13039/100006734 – fundername: 10x Genomics – fundername: NCI NIH HHS grantid: U01 CA168370 – fundername: NIDA NIH HHS grantid: R01 DA036858 – fundername: NIGMS NIH HHS grantid: K99 GM134154 – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: F31 NS115380 – fundername: NIGMS NIH HHS grantid: T32 GM007618 – fundername: NIGMS NIH HHS grantid: R00 GM134154 – fundername: NHGRI NIH HHS grantid: RM1 HG009490 – fundername: NIGMS NIH HHS grantid: P50 GM102706 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c736t-afd50a9ed90edd6a30ff9b547c33bd684bce48426dba7482333d2e65ee3354043 |
IEDL.DBID | 8FG |
ISSN | 1087-0156 1546-1696 |
IngestDate | Thu Aug 21 17:37:56 EDT 2025 Fri Sep 05 14:22:23 EDT 2025 Fri Jul 25 09:07:58 EDT 2025 Fri Jul 25 09:08:36 EDT 2025 Tue Jun 17 21:22:55 EDT 2025 Wed Aug 20 08:29:16 EDT 2025 Fri Jun 27 03:35:07 EDT 2025 Fri Jun 27 04:59:39 EDT 2025 Fri Jun 27 02:51:41 EDT 2025 Mon Jul 21 05:34:01 EDT 2025 Tue Jul 01 04:10:01 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Fri Feb 21 02:38:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c736t-afd50a9ed90edd6a30ff9b547c33bd684bce48426dba7482333d2e65ee3354043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 J.M.R., T.M.N., J.S.W., and B.A. conceived, designed, and interpreted the experiments and wrote the manuscript. J.M.R. and B.A. designed, built, and validated modified guide constant regions, expression vectors, dual-guide constructs, and libraries. J.M.R. and B.A. performed Perturb-seq experiments with contributions from A.X., J.C., and J.Z.C. J.M.R. analyzed Perturb-seq data with support from T.M.N., J.A.H., and B.A. T.M.N. and J.M.R. designed the target enrichment strategy in discussion with I.T.F., J.G.A., L.J.A., and K.A.P. J.M.R. performed the target enrichment experiments and analysis. D.P.R. designed the library of candidate capture sequences. 10x Genomics with E.J.M, J.M.T, D.P.R., N.S., and T.S.M built the Chromium Single Cell 3’ Reagent Kits v3 with Feature Barcoding technology. Author Contributions |
ORCID | 0000-0001-5938-561X 0000-0003-2445-670X 0000-0003-1832-919X 0000-0002-8133-3135 0000-0002-7778-9893 0000-0002-9451-5819 0000-0002-7448-5384 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7416462 |
PMID | 32231336 |
PQID | 2430516525 |
PQPubID | 47191 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416462 proquest_miscellaneous_2385279432 proquest_journals_2476739807 proquest_journals_2430516525 gale_infotracmisc_A631714886 gale_infotracacademiconefile_A631714886 gale_incontextgauss_ISR_A631714886 gale_incontextgauss_IOV_A631714886 gale_businessinsightsgauss_A631714886 pubmed_primary_32231336 crossref_citationtrail_10_1038_s41587_020_0470_y crossref_primary_10_1038_s41587_020_0470_y springer_journals_10_1038_s41587_020_0470_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Gilbert (CR25) 2014; 159 Zheng (CR20) 2017; 8 Gilbert (CR26) 2013; 154 Jaitin (CR6) 2016; 167 Xie, Duan, Li, Zhou, Hon (CR7) 2017; 66 Horlbeck (CR28) 2018; 174 Salomon (CR34) 2019; 19 CR36 Mandegar (CR27) 2016; 18 Chan (CR37) 2019; 570 CR12 Packer, Trapnell (CR1) 2018; 34 CR10 CR31 Klein (CR19) 2015; 161 Rubin (CR3) 2018; 176 Peterson (CR23) 2017; 35 Horlbeck (CR29) 2016; 5 Cleary, Cong, Cheung, Lander, Regev (CR32) 2017; 171 Adamson (CR4) 2016; 167 Saikia (CR35) 2019; 16 Feldman (CR2) 2019; 179 Xie, Cooley, Armendariz, Zhou, Hon (CR11) 2018; 13 Macosko (CR18) 2015; 161 Stoeckius (CR22) 2017; 14 Zhang (CR24) 2018; 36 Norman (CR17) 2019; 365 Hill (CR9) 2018; 15 Mimitou (CR21) 2019; 16 Gasperini (CR13) 2019; 176 Datlinger (CR8) 2017; 14 Moreno (CR30) 2018; 26 Ran (CR16) 2013; 154 Subramanian (CR33) 2017; 171 Smits (CR14) 2019; 16 Dixit (CR5) 2016; 167 Anzalone (CR15) 2019; 576 B Adamson (470_CR4) 2016; 167 AM Moreno (470_CR30) 2018; 26 LA Gilbert (470_CR25) 2014; 159 LA Gilbert (470_CR26) 2013; 154 R Salomon (470_CR34) 2019; 19 S Xie (470_CR7) 2017; 66 M Gasperini (470_CR13) 2019; 176 470_CR31 M Saikia (470_CR35) 2019; 16 D Feldman (470_CR2) 2019; 179 P Datlinger (470_CR8) 2017; 14 AM Klein (470_CR19) 2015; 161 M Stoeckius (470_CR22) 2017; 14 EP Mimitou (470_CR21) 2019; 16 D Jaitin (470_CR6) 2016; 167 MA Mandegar (470_CR27) 2016; 18 A Subramanian (470_CR33) 2017; 171 VM Peterson (470_CR23) 2017; 35 MA Horlbeck (470_CR28) 2018; 174 S-Q Zhang (470_CR24) 2018; 36 GX Zheng (470_CR20) 2017; 8 MM Chan (470_CR37) 2019; 570 AH Smits (470_CR14) 2019; 16 AJ Hill (470_CR9) 2018; 15 J Packer (470_CR1) 2018; 34 A Dixit (470_CR5) 2016; 167 AF Ran (470_CR16) 2013; 154 EZ Macosko (470_CR18) 2015; 161 B Cleary (470_CR32) 2017; 171 470_CR36 TM Norman (470_CR17) 2019; 365 470_CR12 AJ Rubin (470_CR3) 2018; 176 470_CR10 MA Horlbeck (470_CR29) 2016; 5 S Xie (470_CR11) 2018; 13 AV Anzalone (470_CR15) 2019; 576 |
References_xml | – volume: 179 start-page: 787 year: 2019 end-page: 799.e17 ident: CR2 article-title: Optical pooled screens in human cells publication-title: Cell. doi: 10.1016/j.cell.2019.09.016 – volume: 14 start-page: 297 year: 2017 end-page: 301 ident: CR8 article-title: Pooled CRISPR screening with single-cell transcriptome readout publication-title: Nat. Methods doi: 10.1038/nmeth.4177 – volume: 161 start-page: 1187 year: 2015 end-page: 1201 ident: CR19 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 154 start-page: 1380 year: 2013 end-page: 1389 ident: CR16 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 365 start-page: 786 year: 2019 end-page: 793 ident: CR17 article-title: Exploring genetic interaction manifolds constructed from rich single-cell phenotypes publication-title: Science doi: 10.1126/science.aax4438 – volume: 576 start-page: 149 year: 2019 end-page: 157 ident: CR15 article-title: Search-and-replace genome editing without double-strand breaks or donor DNA publication-title: Nature doi: 10.1038/s41586-019-1711-4 – ident: CR12 – volume: 167 start-page: 1853 year: 2016 end-page: 1866.e17 ident: CR5 article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens publication-title: Cell. doi: 10.1016/j.cell.2016.11.038 – volume: 171 start-page: 1424 year: 2017 end-page: 1436.e18 ident: CR32 article-title: Efficient generation of transcriptomic profiles by random composite measurements publication-title: Cell doi: 10.1016/j.cell.2017.10.023 – ident: CR10 – volume: 66 start-page: 285 year: 2017 end-page: 299.e5 ident: CR7 article-title: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.03.007 – volume: 8 year: 2017 ident: CR20 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 36 start-page: 1156 year: 2018 end-page: 1159 ident: CR24 article-title: High-throughput determination of the antigen specificities of T cell receptors in single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4282 – volume: 35 start-page: 936 year: 2017 end-page: 939 ident: CR23 article-title: Multiplexed quantification of proteins and transcripts in single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3973 – volume: 171 start-page: 1437 year: 2017 end-page: 1452.e17 ident: CR33 article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles publication-title: Cell. doi: 10.1016/j.cell.2017.10.049 – volume: 167 start-page: 1867 year: 2016 end-page: 1882.e21 ident: CR4 article-title: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response publication-title: Cell. doi: 10.1016/j.cell.2016.11.048 – volume: 19 start-page: 1706 year: 2019 end-page: 1727 ident: CR34 article-title: Droplet-based single cell RNAseq tools: a practical guide publication-title: Lab. Chip doi: 10.1039/C8LC01239C – volume: 18 start-page: 541 year: 2016 end-page: 553 ident: CR27 article-title: CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.01.022 – volume: 26 start-page: 1818 year: 2018 end-page: 1827 ident: CR30 article-title: In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.04.017 – volume: 14 start-page: 865 year: 2017 end-page: 868 ident: CR22 article-title: Simultaneous epitope and transcriptome measurement in single cells publication-title: Nat. Methods doi: 10.1038/nmeth.4380 – volume: 161 start-page: 1202 year: 2015 end-page: 1214 ident: CR18 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 16 start-page: 409 year: 2019 end-page: 412 ident: CR21 article-title: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells publication-title: Nat. Methods doi: 10.1038/s41592-019-0392-0 – volume: 16 start-page: 59 year: 2019 end-page: 62 ident: CR35 article-title: Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells publication-title: Nat. Methods doi: 10.1038/s41592-018-0259-9 – ident: CR31 – volume: 176 start-page: 377 year: 2019 end-page: 390.e19 ident: CR13 article-title: A genome-wide framework for mapping gene regulation via cellular genetic screens publication-title: Cell. doi: 10.1016/j.cell.2018.11.029 – volume: 5 start-page: e19760 year: 2016 ident: CR29 article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation publication-title: eLife doi: 10.7554/eLife.19760 – volume: 167 start-page: 1883 year: 2016 end-page: 1896.e15 ident: CR6 article-title: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq publication-title: Cell. doi: 10.1016/j.cell.2016.11.039 – volume: 34 start-page: 653 year: 2018 end-page: 665 ident: CR1 article-title: Single-cell multi-omics: an engine for new quantitative models of gene regulation publication-title: Trends Genet. doi: 10.1016/j.tig.2018.06.001 – volume: 176 start-page: 361 year: 2018 end-page: 376.e17 ident: CR3 article-title: Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks publication-title: Cell. doi: 10.1016/j.cell.2018.11.022 – ident: CR36 – volume: 13 start-page: e0198635 year: 2018 ident: CR11 article-title: Frequent sgRNA-barcode recombination in single-cell perturbation assays publication-title: PLoS ONE doi: 10.1371/journal.pone.0198635 – volume: 16 start-page: 1087 year: 2019 end-page: 1093 ident: CR14 article-title: Biological plasticity rescues target activity in CRISPR knock outs publication-title: Nat. Methods doi: 10.1038/s41592-019-0614-5 – volume: 159 start-page: 647 year: 2014 end-page: 661 ident: CR25 article-title: Genome-scale CRISPR-mediated control of gene repression and activation publication-title: Cell doi: 10.1016/j.cell.2014.09.029 – volume: 570 start-page: 77 year: 2019 end-page: 82 ident: CR37 article-title: Molecular recording of mammalian embryogenesis publication-title: Nature doi: 10.1038/s41586-019-1184-5 – volume: 15 start-page: 271 year: 2018 ident: CR9 article-title: On the design of CRISPR-based single-cell molecular screens publication-title: Nat. Methods doi: 10.1038/nmeth.4604 – volume: 154 start-page: 442 year: 2013 end-page: 451 ident: CR26 article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes publication-title: Cell doi: 10.1016/j.cell.2013.06.044 – volume: 174 start-page: 953 year: 2018 end-page: 967.e22 ident: CR28 article-title: Mapping the genetic landscape of human cells publication-title: Cell doi: 10.1016/j.cell.2018.06.010 – volume: 171 start-page: 1437 year: 2017 ident: 470_CR33 publication-title: Cell. doi: 10.1016/j.cell.2017.10.049 – volume: 167 start-page: 1853 year: 2016 ident: 470_CR5 publication-title: Cell. doi: 10.1016/j.cell.2016.11.038 – volume: 5 start-page: e19760 year: 2016 ident: 470_CR29 publication-title: eLife doi: 10.7554/eLife.19760 – volume: 570 start-page: 77 year: 2019 ident: 470_CR37 publication-title: Nature doi: 10.1038/s41586-019-1184-5 – volume: 14 start-page: 297 year: 2017 ident: 470_CR8 publication-title: Nat. Methods doi: 10.1038/nmeth.4177 – ident: 470_CR36 doi: 10.1101/800631 – volume: 167 start-page: 1883 year: 2016 ident: 470_CR6 publication-title: Cell. doi: 10.1016/j.cell.2016.11.039 – volume: 34 start-page: 653 year: 2018 ident: 470_CR1 publication-title: Trends Genet. doi: 10.1016/j.tig.2018.06.001 – volume: 16 start-page: 1087 year: 2019 ident: 470_CR14 publication-title: Nat. Methods doi: 10.1038/s41592-019-0614-5 – ident: 470_CR31 doi: 10.1523/ENEURO.0495-18.2019 – volume: 161 start-page: 1202 year: 2015 ident: 470_CR18 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 8 year: 2017 ident: 470_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 179 start-page: 787 year: 2019 ident: 470_CR2 publication-title: Cell. doi: 10.1016/j.cell.2019.09.016 – volume: 365 start-page: 786 year: 2019 ident: 470_CR17 publication-title: Science doi: 10.1126/science.aax4438 – volume: 171 start-page: 1424 year: 2017 ident: 470_CR32 publication-title: Cell doi: 10.1016/j.cell.2017.10.023 – volume: 176 start-page: 361 year: 2018 ident: 470_CR3 publication-title: Cell. doi: 10.1016/j.cell.2018.11.022 – volume: 18 start-page: 541 year: 2016 ident: 470_CR27 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.01.022 – volume: 16 start-page: 409 year: 2019 ident: 470_CR21 publication-title: Nat. Methods doi: 10.1038/s41592-019-0392-0 – volume: 19 start-page: 1706 year: 2019 ident: 470_CR34 publication-title: Lab. Chip doi: 10.1039/C8LC01239C – volume: 176 start-page: 377 year: 2019 ident: 470_CR13 publication-title: Cell. doi: 10.1016/j.cell.2018.11.029 – volume: 167 start-page: 1867 year: 2016 ident: 470_CR4 publication-title: Cell. doi: 10.1016/j.cell.2016.11.048 – volume: 14 start-page: 865 year: 2017 ident: 470_CR22 publication-title: Nat. Methods doi: 10.1038/nmeth.4380 – volume: 15 start-page: 271 year: 2018 ident: 470_CR9 publication-title: Nat. Methods doi: 10.1038/nmeth.4604 – volume: 154 start-page: 1380 year: 2013 ident: 470_CR16 publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 26 start-page: 1818 year: 2018 ident: 470_CR30 publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.04.017 – ident: 470_CR12 doi: 10.1101/262121 – volume: 159 start-page: 647 year: 2014 ident: 470_CR25 publication-title: Cell doi: 10.1016/j.cell.2014.09.029 – volume: 13 start-page: e0198635 year: 2018 ident: 470_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0198635 – volume: 174 start-page: 953 year: 2018 ident: 470_CR28 publication-title: Cell doi: 10.1016/j.cell.2018.06.010 – volume: 576 start-page: 149 year: 2019 ident: 470_CR15 publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 36 start-page: 1156 year: 2018 ident: 470_CR24 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4282 – volume: 161 start-page: 1187 year: 2015 ident: 470_CR19 publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 154 start-page: 442 year: 2013 ident: 470_CR26 publication-title: Cell doi: 10.1016/j.cell.2013.06.044 – volume: 66 start-page: 285 year: 2017 ident: 470_CR7 publication-title: Mol. Cell. doi: 10.1016/j.molcel.2017.03.007 – volume: 16 start-page: 59 year: 2019 ident: 470_CR35 publication-title: Nat. Methods doi: 10.1038/s41592-018-0259-9 – ident: 470_CR10 doi: 10.1101/298349 – volume: 35 start-page: 936 year: 2017 ident: 470_CR23 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3973 |
SSID | ssj0006466 |
Score | 2.672942 |
Snippet | Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 954 |
SubjectTerms | 631/208/191/1472 631/208/191/2018 631/337/2019 631/553/2490/1472 Agriculture Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cholesterol Combinatorial analysis CRISPR CRISPR-Cas Systems Deoxyribonucleic acid DNA DNA repair Epistasis Expression vectors Gene Expression Regulation Gene sequencing Gene Targeting HEK293 Cells High-Throughput Nucleotide Sequencing Humans Hybridization Letter Libraries Life Sciences Methods Nucleic Acid Amplification Techniques - methods Perturbation Ribonucleic acid RNA RNA sequencing RNA, Guide, CRISPR-Cas Systems - genetics Single-Cell Analysis Transcriptome |
Title | Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing |
URI | https://link.springer.com/article/10.1038/s41587-020-0470-y https://www.ncbi.nlm.nih.gov/pubmed/32231336 https://www.proquest.com/docview/2430516525 https://www.proquest.com/docview/2476739807 https://www.proquest.com/docview/2385279432 https://pubmed.ncbi.nlm.nih.gov/PMC7416462 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJhA8IChfhVEZBEICRUvi-CNPqJ1WNqSVqWOoD5Mix3bGpCktpH3of89d4nZLpU28NFJ9cZu78519d_kdIR9SVsRMOh1ocEfYwiwOtOEmSArDdJ5aqVN8d_h4JA7Pku8TPvEBt8qXVa5sYm2o7dRgjHwvRmyqSPCYf539CbBrFGZXfQuNLbITgadBPVfDb2tLLJpcZRQqLK_kYpXVZGqvAseF38ZY3CjDYNnyS5vW-YZ72iyd3Mif1m5p-IQ89vtJ2m8U4Cm558oOud90mFx2yKMbeIMd8uDYZ9KfkXMwBHAoxiM3aCDFiMGVCzCMT_fHR6cnYwr2BM-4NF_Sxu_Ri8WldXQ86lOjZ5h5oLq0tKkld5b6qmyY6Tk5Gx783D8MfKeFwEgm5oEuLA916mwaOmuFZmFRpDlPpGEst0IluXGJAmducy0TFTPGbOwEd45h3ChhL8h2OS3dK0J5yozQseHKholVsAFFkDQeFakCRgveJeGKz5nxMOTYDeMqq9PhTGWNaDIQTYaiyZZd8nl9y6zB4LiL-CMKL_M9POGjwihHdaEXVZX1BcOO70qJLnlf0yEGRolFNg3B0Y9f_0F0Om4RffJExRSexGj_YgPwA7G1WpS7LUpYyaY9vFK4zFuSKrvW-1uGpZAMeCu75N16GCfG4rnSTRdAwxSPEQgw7pKXjfqu-Qj2nEWMwW_LlmKvCRB-vD1SXv6uYchxL58ImPPLaglc_61bxfP67md8Qx7G9ZrECstdsj3_u3BvYdc3z3tkS05kr17gPbLTHw4GI7gODkYn43-4kFSq |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEF8PCMpXYYBBTEigaKkdO84DQtWgtGwtqNvQHpCCYztj0pQW0gr1n-Jv5C4f3VJpEy976UP9q5vcne98vvMdIa8injIeOu1pMEfYwox52gjjBanhOolsqCO8Ozwcyf5B8PlQHK6Rv_VdGEyrrHVioajtxOAZ-RbD2lQdKZh4P_3lYdcojK7WLTRKsdhxiz_gsuXvBh-Av5uM9T7ub_e9qquAZ0IuZ55OrfB15GzkO2ul5n6aRokIQsN5YqUKEuMCBYbLJjoMFOOcW-akcI7jGUnAYd4r5GoAvh2uItX7tNT8soyNdnyF6ZxC1lFUrrZyMJT4LcNkytD3Fg07uGoNzpjD1VTNlXhtYQZ7d8jtav9Ku6XA3SVrLmuRa2VHy0WL3DpT37BFrg-ryP098h0UDzjh6OKDxFM8oThxHoYN6PZ4sPd1TEF_oU9NkwUt7Sw9mh9bR8ejLjV6ipEOqjNLy9x1Z2mVBQ4z3ScHl8KDB2Q9m2TuEaEi4kZqZoSyfmAVbHixKJvopJECQkvRJn5N59hUZc-x-8ZJXITfuYpL1sTAmhhZEy_a5M3yJ9Oy5sdF4E1kXlz1DIWPHE9V8iM9z_O4Kzl2mFdKtsnLAoc1NzJM6ikBgy_f_gO0N26AXlegdAJvYnR1kQLogbW8GsiNBhI0h2kO1wIXV5orj0_X2TnDoQw50DZskxfLYZwYk_UyN5kDhivBsPAga5OHpfgu6Qj2g3c4h_8OG4K9BGC58-ZIdvyzKHuOvkMgYc639RI4faxz2fP44nd8Tm7094e78e5gtPOE3GTF-sTszg2yPvs9d09hxzlLnhXLnJIfl61X_gHTq44n |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEBM8IBhfhQEGMSGBoqV2_JEHhKqNsjJWpo6hPSAFx3bGpCkdpBXqv8Zfx10-uqXSJl720of6Vze5O9_5fOc7Ql7FPGNceRMYMEfYwowFxgobRJnlJo2dMjHeHd4dyu2D6NOhOFwif5u7MJhW2ejEUlG7scUz8g2Gtam6UjCxkdVpEXtb_fenvwLsIIWR1qadRiUiO372B9y34t1gC3i9zlj_w9fN7aDuMBBYxeUkMJkToYm9i0PvnDQ8zLI4FZGynKdO6ii1PtJgxFxqVKQZ59wxL4X3HM9LIg7zXiPXFVcxphPq_se5FZBVnLQbakztFLKJqHK9UYDRxG8ZJlaqMJi1bOKiZThnGhfTNhdit6VJ7N8ht-u9LO1VwneXLPl8ldyoulvOVsmtc7UOV8nKbh3Fv0e-gxIChxzdfZB-iqcVJz7AEALdHA3290YUdBn61zSd0crm0qPpsfN0NOxRa04x6kFN7miVx-4drTPCYab75OBKePCALOfj3D8iVMTcSsOs0C6MnIbNLxZoE90s1kBoKTokbOic2LoEOnbiOEnKUDzXScWaBFiTIGuSWYe8mf_ktKr_cRl4HZmX1P1D4aPAE5biyEyLIulJjt3mtZYd8rLEYf2NHCW5Agy-fPsP0P6oBXpdg7IxvIk19aUKoAfW9Woh11pI0CK2PdwIXFJrsSI5W3MXDCupONBWdciL-TBOjIl7uR9PAcO1YFiEkHXIw0p853QEW8K7nMN_q5ZgzwFY-rw9kh__LEugox8RSZjzbbMEzh7rQvY8vvwdn5MV0CjJ58Fw5wm5ycrliYmea2R58nvqn8Lmc5I-K1c5JT-uWq38A8-Sklw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+single-cell+CRISPR+screens+by+direct+guide+RNA+capture+and+targeted+sequencing&rft.jtitle=Nature+biotechnology&rft.au=Replogle%2C+Joseph+M&rft.au=Norman%2C+Thomas+M&rft.au=Xu%2C+Albert&rft.au=Hussmann%2C+Jeffrey+A&rft.date=2020-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=38&rft.issue=8&rft.spage=954&rft_id=info:doi/10.1038%2Fs41587-020-0470-y&rft.externalDBID=ISR&rft.externalDocID=A631714886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |