Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing

Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 38; no. 8; pp. 954 - 961
Main Authors Replogle, Joseph M., Norman, Thomas M., Xu, Albert, Hussmann, Jeffrey A., Chen, Jin, Cogan, J. Zachery, Meer, Elliott J., Terry, Jessica M., Riordan, Daniel P., Srinivas, Niranjan, Fiddes, Ian T., Arthur, Joseph G., Alvarado, Luigi J., Pfeiffer, Katherine A., Mikkelsen, Tarjei S., Weissman, Jonathan S., Adamson, Britt
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.08.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1087-0156
1546-1696
1546-1696
DOI10.1038/s41587-020-0470-y

Cover

Abstract Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments. Single-cell CRISPR screens are readily multiplexed and scaled with an improved version of Perturb-seq.
AbstractList Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.Single-cell CRISPR screens are readily multiplexed and scaled with an improved version of Perturb-seq.
Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments. Single-cell CRISPR screens are readily multiplexed and scaled with an improved version of Perturb-seq.
Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.
Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves the efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.
Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited by reliance on indirect indexing of single-guide RNAs (sgRNAs). Here we present direct-capture Perturb-seq, a versatile screening approach in which expressed sgRNAs are sequenced alongside single-cell transcriptomes. Direct-capture Perturb-seq enables detection of multiple distinct sgRNA sequences from individual cells and thus allows pooled single-cell CRISPR screens to be easily paired with combinatorial perturbation libraries that contain dual-guide expression vectors. We demonstrate the utility of this approach for high-throughput investigations of genetic interactions and, leveraging this ability, dissect epistatic interactions between cholesterol biogenesis and DNA repair. Using direct capture Perturb-seq, we also show that targeting individual genes with multiple sgRNAs per cell improves efficacy of CRISPR interference and activation, facilitating the use of compact, highly active CRISPR libraries for single-cell screens. Last, we show that hybridization-based target enrichment permits sensitive, specific sequencing of informative transcripts from single-cell RNA-seq experiments.
Audience Academic
Author Replogle, Joseph M.
Fiddes, Ian T.
Arthur, Joseph G.
Chen, Jin
Norman, Thomas M.
Xu, Albert
Pfeiffer, Katherine A.
Meer, Elliott J.
Srinivas, Niranjan
Alvarado, Luigi J.
Cogan, J. Zachery
Hussmann, Jeffrey A.
Weissman, Jonathan S.
Terry, Jessica M.
Riordan, Daniel P.
Mikkelsen, Tarjei S.
Adamson, Britt
AuthorAffiliation 8 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
3 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
4 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
7 10x Genomics Inc., Pleasanton, California, 94566, USA
9 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
1 Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
2 Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
6 Present address: Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
5 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
AuthorAffiliation_xml – name: 3 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 8 Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
– name: 6 Present address: Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
– name: 7 10x Genomics Inc., Pleasanton, California, 94566, USA
– name: 5 California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 9 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
– name: 1 Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 2 Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
– name: 4 Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
Author_xml – sequence: 1
  givenname: Joseph M.
  orcidid: 0000-0003-1832-919X
  surname: Replogle
  fullname: Replogle, Joseph M.
  organization: Medical Scientist Training Program, University of California, San Francisco, Tetrad Graduate Program, University of California, San Francisco, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco
– sequence: 2
  givenname: Thomas M.
  surname: Norman
  fullname: Norman, Thomas M.
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco, Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center
– sequence: 3
  givenname: Albert
  orcidid: 0000-0001-5938-561X
  surname: Xu
  fullname: Xu, Albert
  organization: Medical Scientist Training Program, University of California, San Francisco, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco
– sequence: 4
  givenname: Jeffrey A.
  orcidid: 0000-0002-7778-9893
  surname: Hussmann
  fullname: Hussmann, Jeffrey A.
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco, Department of Microbiology and Immunology, University of California, San Francisco
– sequence: 5
  givenname: Jin
  surname: Chen
  fullname: Chen, Jin
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco
– sequence: 6
  givenname: J. Zachery
  surname: Cogan
  fullname: Cogan, J. Zachery
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco
– sequence: 7
  givenname: Elliott J.
  surname: Meer
  fullname: Meer, Elliott J.
  organization: 10x Genomics Inc
– sequence: 8
  givenname: Jessica M.
  surname: Terry
  fullname: Terry, Jessica M.
  organization: 10x Genomics Inc
– sequence: 9
  givenname: Daniel P.
  surname: Riordan
  fullname: Riordan, Daniel P.
  organization: 10x Genomics Inc
– sequence: 10
  givenname: Niranjan
  surname: Srinivas
  fullname: Srinivas, Niranjan
  organization: 10x Genomics Inc
– sequence: 11
  givenname: Ian T.
  surname: Fiddes
  fullname: Fiddes, Ian T.
  organization: 10x Genomics Inc
– sequence: 12
  givenname: Joseph G.
  surname: Arthur
  fullname: Arthur, Joseph G.
  organization: 10x Genomics Inc
– sequence: 13
  givenname: Luigi J.
  orcidid: 0000-0002-7448-5384
  surname: Alvarado
  fullname: Alvarado, Luigi J.
  organization: 10x Genomics Inc
– sequence: 14
  givenname: Katherine A.
  surname: Pfeiffer
  fullname: Pfeiffer, Katherine A.
  organization: 10x Genomics Inc
– sequence: 15
  givenname: Tarjei S.
  orcidid: 0000-0002-8133-3135
  surname: Mikkelsen
  fullname: Mikkelsen, Tarjei S.
  organization: 10x Genomics Inc
– sequence: 16
  givenname: Jonathan S.
  orcidid: 0000-0003-2445-670X
  surname: Weissman
  fullname: Weissman, Jonathan S.
  email: jonathan.weissman@ucsf.edu
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Howard Hughes Medical Institute, University of California, San Francisco, California Institute for Quantitative Biomedical Research, University of California, San Francisco
– sequence: 17
  givenname: Britt
  orcidid: 0000-0002-9451-5819
  surname: Adamson
  fullname: Adamson, Britt
  email: badamson@princeton.edu
  organization: Lewis-Sigler Institute for Integrative Genomics, Princeton University, Department of Molecular Biology, Princeton University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32231336$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFDEYhgep2IP-AG9kwBsLTs1pkpmbwrJ4WChWtuqVEDLJN9OU2cyaZKT7782wre0WLRJIQvK8bw7fe5jtucFBlr3E6AQjWr0LDJeVKBBBBWICFZsn2QEuGS8wr_lemqNpF5d8PzsM4QohxBnnz7J9SgjFlPKD7Md8WDXWqTh4q_o8WNf1UGjo-3y-XFx8WeZBewAX8maTG-tBx7wbrYF8-XmWa7WOo4dcOZNH5TuIYPIAP0dwOjk9z562qg_w4mY8yr59eP91_qk4O_-4mM_OCi0oj4VqTYlUDaZGYAxXFLVt3ZRMaEobwyvWaGAVI9w0SrCKUEoNAV4CUFoyxOhRdrr1XY_NCowGF73q5drblfIbOSgrd3ecvZTd8EsKhtOPkGTw5sbAD-nyIcqVDdMnKAfDGCShVUlEzeiEvn6AXg2jd-l5kjDBBa0rJB6nKCoxL0l5R3WqB2ldO6Tb6eloOeMUC8yqiifq5C9UagZWVqdEtDat7wiOdwSJiXAdOzWGIBcXy_9nz7_vsm_vsc2YwgIhdcF2lzFsJTv4q_tV-VOO2_AlQGwB7YcQPLRS26iiHaYi2V5iJKeYy23MZYq5nGIuN0mJHyhvzR_TkK0mJNZ14O9K8m_RbwJLC3Y
CitedBy_id crossref_primary_10_1016_j_cell_2023_03_035
crossref_primary_10_1016_j_molcel_2023_02_011
crossref_primary_10_1089_crispr_2021_0063
crossref_primary_10_3389_fragi_2021_714926
crossref_primary_10_1038_s41592_021_01153_z
crossref_primary_10_1126_sciimmunol_abm1920
crossref_primary_10_1080_14728222_2020_1820986
crossref_primary_10_14348_molcells_2021_0002
crossref_primary_10_3324_haematol_2023_284901
crossref_primary_10_1038_s41598_023_46426_z
crossref_primary_10_1016_j_gde_2021_08_006
crossref_primary_10_1016_j_cels_2024_12_002
crossref_primary_10_1038_s41587_024_02475_x
crossref_primary_10_1016_j_xgen_2024_100672
crossref_primary_10_1515_hsz_2023_0174
crossref_primary_10_1021_acssynbio_0c00499
crossref_primary_10_1016_j_cell_2021_03_025
crossref_primary_10_1186_s13059_020_02118_9
crossref_primary_10_1002_ctm2_694
crossref_primary_10_1073_pnas_2207392119
crossref_primary_10_1021_acscentsci_2c00836
crossref_primary_10_3389_fgeed_2021_630600
crossref_primary_10_1016_j_copbio_2021_02_003
crossref_primary_10_1126_science_add1856
crossref_primary_10_1016_j_biopha_2020_111007
crossref_primary_10_1016_j_ggedit_2021_100008
crossref_primary_10_1016_j_gendis_2020_09_003
crossref_primary_10_1038_s43588_022_00263_8
crossref_primary_10_3390_ncrna7040079
crossref_primary_10_1093_bioinformatics_btaa1078
crossref_primary_10_3389_fendo_2023_1148412
crossref_primary_10_1186_s13059_024_03351_2
crossref_primary_10_3390_cancers15143566
crossref_primary_10_1016_j_biotechadv_2023_108261
crossref_primary_10_61958_NCOX2261
crossref_primary_10_1016_j_stemcr_2021_02_006
crossref_primary_10_3390_ijms222413524
crossref_primary_10_1016_j_bbrep_2025_101938
crossref_primary_10_1002_advs_202204484
crossref_primary_10_1016_j_tim_2020_09_006
crossref_primary_10_1038_s41596_020_00456_3
crossref_primary_10_1038_s43018_024_00789_y
crossref_primary_10_1007_s11427_021_2057_0
crossref_primary_10_1016_j_crmeth_2024_100737
crossref_primary_10_1093_narcan_zcac038
crossref_primary_10_1016_j_crbiot_2023_100127
crossref_primary_10_1002_1873_3468_14884
crossref_primary_10_1016_j_cell_2022_05_013
crossref_primary_10_1002_ggn2_202100038
crossref_primary_10_1038_s12276_024_01212_3
crossref_primary_10_1038_s41551_024_01204_8
crossref_primary_10_1186_s13045_023_01495_5
crossref_primary_10_1016_j_ajhg_2024_06_018
crossref_primary_10_1038_s41587_021_00927_2
crossref_primary_10_1002_mds_28998
crossref_primary_10_1016_j_biomaterials_2021_121276
crossref_primary_10_1016_j_molcel_2024_08_005
crossref_primary_10_1186_s13059_022_02660_8
crossref_primary_10_7554_eLife_94884
crossref_primary_10_15252_msb_202110768
crossref_primary_10_1016_j_xgen_2024_100630
crossref_primary_10_1016_j_cell_2022_06_039
crossref_primary_10_1016_j_csbj_2020_10_016
crossref_primary_10_1042_BST20230190
crossref_primary_10_1016_j_it_2021_03_003
crossref_primary_10_1038_s41587_024_02347_4
crossref_primary_10_1016_j_neuron_2020_09_001
crossref_primary_10_1021_acsnano_2c05494
crossref_primary_10_1186_s12864_023_09754_y
crossref_primary_10_1126_science_ado5978
crossref_primary_10_3389_fimmu_2022_1041451
crossref_primary_10_1093_narcan_zcad034
crossref_primary_10_1002_wsbm_1570
crossref_primary_10_1038_s10038_020_00844_3
crossref_primary_10_1038_s41586_023_06733_x
crossref_primary_10_1038_s41593_024_01611_9
crossref_primary_10_1038_s42003_023_05351_7
crossref_primary_10_1016_j_cell_2021_10_002
crossref_primary_10_1016_j_tig_2024_03_010
crossref_primary_10_1093_lifemedi_lnac057
crossref_primary_10_1007_s00412_023_00796_5
crossref_primary_10_1016_j_mocell_2024_100147
crossref_primary_10_1016_j_xgen_2022_100177
crossref_primary_10_1038_s43586_022_00157_z
crossref_primary_10_1007_s12015_023_10506_4
crossref_primary_10_1146_annurev_genet_072920_013842
crossref_primary_10_1038_s41467_023_36150_7
crossref_primary_10_1038_s41587_024_02224_0
crossref_primary_10_1038_s41590_022_01224_z
crossref_primary_10_7554_eLife_70341
crossref_primary_10_1073_pnas_2010738117
crossref_primary_10_1038_s41467_021_23213_w
crossref_primary_10_1038_s41587_024_02213_3
crossref_primary_10_3390_genes13122211
crossref_primary_10_1016_j_mocell_2024_100092
crossref_primary_10_1371_journal_pntd_0012922
crossref_primary_10_1038_s41467_021_24324_0
crossref_primary_10_1038_s41586_024_07954_4
crossref_primary_10_1093_bioinformatics_btab209
crossref_primary_10_1016_j_drudis_2023_103540
crossref_primary_10_1097_HEP_0000000000001066
crossref_primary_10_1038_s41568_022_00441_w
crossref_primary_10_7554_eLife_66406
crossref_primary_10_1038_s41571_024_00966_z
crossref_primary_10_1002_ggn2_202200014
crossref_primary_10_1016_j_cels_2020_06_004
crossref_primary_10_1038_s41556_025_01626_9
crossref_primary_10_1136_jmedgenet_2022_108588
crossref_primary_10_1126_sciadv_ado1693
crossref_primary_10_1101_cshperspect_a041382
crossref_primary_10_1038_s41467_022_28884_7
crossref_primary_10_1016_j_tibtech_2020_10_013
crossref_primary_10_1038_s41569_021_00589_2
crossref_primary_10_1093_nar_gkae858
crossref_primary_10_1038_s41580_022_00571_x
crossref_primary_10_1042_BCJ20210535
crossref_primary_10_1038_s41467_022_33024_2
crossref_primary_10_1038_s41467_022_34320_7
crossref_primary_10_3389_fpls_2022_934002
crossref_primary_10_1158_2159_8290_CD_20_1503
crossref_primary_10_1016_j_molcel_2021_12_002
crossref_primary_10_1089_crispr_2022_0052
crossref_primary_10_1038_s41592_022_01705_x
crossref_primary_10_1016_j_ccell_2022_06_001
crossref_primary_10_1038_s41588_023_01471_2
crossref_primary_10_1002_eji_202048712
crossref_primary_10_1186_s13059_020_02044_w
crossref_primary_10_1007_s12016_024_09001_6
crossref_primary_10_1080_21541264_2023_2200721
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_7554_eLife_94884_3
crossref_primary_10_1016_j_molcel_2020_06_012
crossref_primary_10_1016_j_cell_2024_07_035
crossref_primary_10_1186_s13059_024_03404_6
crossref_primary_10_1016_j_hest_2024_05_002
crossref_primary_10_1186_s13059_021_02554_1
crossref_primary_10_3389_fbinf_2024_1340339
crossref_primary_10_1016_j_cell_2021_01_012
crossref_primary_10_1038_s41587_023_01905_6
crossref_primary_10_1002_smll_202107795
crossref_primary_10_1038_s41576_021_00409_w
crossref_primary_10_1038_s41598_024_77314_9
crossref_primary_10_1016_j_xgen_2024_100609
crossref_primary_10_1038_s41577_022_00802_4
crossref_primary_10_3892_ol_2024_14285
crossref_primary_10_1016_j_eng_2024_10_019
crossref_primary_10_15252_msb_202110255
crossref_primary_10_1038_s41467_024_52490_4
crossref_primary_10_2174_011574888X265479231127065541
crossref_primary_10_1038_s41467_023_41788_4
crossref_primary_10_1093_stmcls_sxad022
crossref_primary_10_1007_s12551_023_01091_4
crossref_primary_10_2217_pme_2020_0056
crossref_primary_10_1093_hmg_ddac204
crossref_primary_10_1038_s41586_023_06570_y
crossref_primary_10_1093_biostatistics_kxae010
crossref_primary_10_1073_pnas_2218812120
crossref_primary_10_1038_s41586_024_07259_6
crossref_primary_10_7554_eLife_81856
crossref_primary_10_1038_s41569_021_00669_3
crossref_primary_10_1002_1873_3468_14709
crossref_primary_10_1038_s41551_023_01085_3
crossref_primary_10_1016_j_mib_2022_102221
crossref_primary_10_1016_j_ajpath_2023_09_012
crossref_primary_10_1093_bioinformatics_btab375
crossref_primary_10_1038_s41587_023_01948_9
crossref_primary_10_1126_science_abj4008
crossref_primary_10_3390_ijms25010658
crossref_primary_10_1161_ATVBAHA_123_318328
crossref_primary_10_3389_fcell_2023_1158373
crossref_primary_10_1016_j_xgen_2025_100766
crossref_primary_10_1038_s43586_021_00093_4
crossref_primary_10_1186_s13059_021_02545_2
crossref_primary_10_3389_fcell_2024_1500474
crossref_primary_10_1093_nar_gkad656
crossref_primary_10_1126_sciimmunol_add6774
crossref_primary_10_4049_jimmunol_2000954
crossref_primary_10_1016_j_chom_2023_09_003
crossref_primary_10_4103_1673_5374_313038
crossref_primary_10_7554_eLife_85542
crossref_primary_10_1038_s41596_021_00596_0
crossref_primary_10_1038_s41467_023_40408_5
crossref_primary_10_3390_cells13070568
crossref_primary_10_1016_j_tig_2023_10_009
crossref_primary_10_1186_s43897_023_00049_0
crossref_primary_10_1038_s41467_023_41792_8
crossref_primary_10_1016_j_tig_2023_10_012
crossref_primary_10_1186_s13059_024_03254_2
crossref_primary_10_1016_j_cell_2024_04_050
crossref_primary_10_1093_bib_bbad123
crossref_primary_10_1186_s12711_021_00662_x
crossref_primary_10_1038_s41592_022_01436_z
crossref_primary_10_1016_j_preteyeres_2022_101151
crossref_primary_10_1038_s41587_023_01685_z
crossref_primary_10_1038_s41587_023_01949_8
crossref_primary_10_1038_s41588_024_01904_6
crossref_primary_10_3390_cancers14102515
crossref_primary_10_1007_s00395_022_00972_1
crossref_primary_10_1016_j_bbcan_2024_189212
Cites_doi 10.1016/j.cell.2019.09.016
10.1038/nmeth.4177
10.1016/j.cell.2015.04.044
10.1016/j.cell.2013.08.021
10.1126/science.aax4438
10.1038/s41586-019-1711-4
10.1016/j.cell.2016.11.038
10.1016/j.cell.2017.10.023
10.1016/j.molcel.2017.03.007
10.1038/ncomms14049
10.1038/nbt.4282
10.1038/nbt.3973
10.1016/j.cell.2017.10.049
10.1016/j.cell.2016.11.048
10.1039/C8LC01239C
10.1016/j.stem.2016.01.022
10.1016/j.ymthe.2018.04.017
10.1038/nmeth.4380
10.1016/j.cell.2015.05.002
10.1038/s41592-019-0392-0
10.1038/s41592-018-0259-9
10.1016/j.cell.2018.11.029
10.7554/eLife.19760
10.1016/j.cell.2016.11.039
10.1016/j.tig.2018.06.001
10.1016/j.cell.2018.11.022
10.1371/journal.pone.0198635
10.1038/s41592-019-0614-5
10.1016/j.cell.2014.09.029
10.1038/s41586-019-1184-5
10.1038/nmeth.4604
10.1016/j.cell.2013.06.044
10.1016/j.cell.2018.06.010
10.1101/800631
10.1523/ENEURO.0495-18.2019
10.1101/262121
10.1101/298349
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
COPYRIGHT 2020 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
N95
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
PRINS
7X8
5PM
DOI 10.1038/s41587-020-0470-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale Business: Insights
Opposing Viewpoints (Gale in Context)
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central China
MEDLINE - Academic
DatabaseTitleList Research Library Prep





MEDLINE - Academic


Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 961
ExternalDocumentID PMC7416462
A631714886
32231336
10_1038_s41587_020_0470_y
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Howard Hughes Medical Institute (HHMI)
  funderid: https://doi.org/10.13039/100000011
– fundername: Jane Coffin Childs Memorial Fund for Medical Research (JCC Fund)
  funderid: https://doi.org/10.13039/100001033
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: HR0011-19-2-0007
  funderid: https://doi.org/10.13039/100000185
– fundername: Chan Zuckerberg Initiative
– fundername: Damon Runyon Cancer Research Foundation (Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation)
  grantid: DRG-[2211-15]; DRG-2262-16
  funderid: https://doi.org/10.13039/100001021
– fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: F31 NS115380; GM134154; P50 GM102706; U01 CA168370; R01 DA036858; RM1HG009490
  funderid: https://doi.org/10.13039/100000002
– fundername: Princeton University (Princeton)
  funderid: https://doi.org/10.13039/100006734
– fundername: 10x Genomics
– fundername: NCI NIH HHS
  grantid: U01 CA168370
– fundername: NIDA NIH HHS
  grantid: R01 DA036858
– fundername: NIGMS NIH HHS
  grantid: K99 GM134154
– fundername: Howard Hughes Medical Institute
– fundername: NINDS NIH HHS
  grantid: F31 NS115380
– fundername: NIGMS NIH HHS
  grantid: T32 GM007618
– fundername: NIGMS NIH HHS
  grantid: R00 GM134154
– fundername: NHGRI NIH HHS
  grantid: RM1 HG009490
– fundername: NIGMS NIH HHS
  grantid: P50 GM102706
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c736t-afd50a9ed90edd6a30ff9b547c33bd684bce48426dba7482333d2e65ee3354043
IEDL.DBID 8FG
ISSN 1087-0156
1546-1696
IngestDate Thu Aug 21 17:37:56 EDT 2025
Fri Sep 05 14:22:23 EDT 2025
Fri Jul 25 09:07:58 EDT 2025
Fri Jul 25 09:08:36 EDT 2025
Tue Jun 17 21:22:55 EDT 2025
Wed Aug 20 08:29:16 EDT 2025
Fri Jun 27 03:35:07 EDT 2025
Fri Jun 27 04:59:39 EDT 2025
Fri Jun 27 02:51:41 EDT 2025
Mon Jul 21 05:34:01 EDT 2025
Tue Jul 01 04:10:01 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Fri Feb 21 02:38:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c736t-afd50a9ed90edd6a30ff9b547c33bd684bce48426dba7482333d2e65ee3354043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
J.M.R., T.M.N., J.S.W., and B.A. conceived, designed, and interpreted the experiments and wrote the manuscript. J.M.R. and B.A. designed, built, and validated modified guide constant regions, expression vectors, dual-guide constructs, and libraries. J.M.R. and B.A. performed Perturb-seq experiments with contributions from A.X., J.C., and J.Z.C. J.M.R. analyzed Perturb-seq data with support from T.M.N., J.A.H., and B.A. T.M.N. and J.M.R. designed the target enrichment strategy in discussion with I.T.F., J.G.A., L.J.A., and K.A.P. J.M.R. performed the target enrichment experiments and analysis. D.P.R. designed the library of candidate capture sequences. 10x Genomics with E.J.M, J.M.T, D.P.R., N.S., and T.S.M built the Chromium Single Cell 3’ Reagent Kits v3 with Feature Barcoding technology.
Author Contributions
ORCID 0000-0001-5938-561X
0000-0003-2445-670X
0000-0003-1832-919X
0000-0002-8133-3135
0000-0002-7778-9893
0000-0002-9451-5819
0000-0002-7448-5384
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7416462
PMID 32231336
PQID 2430516525
PQPubID 47191
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416462
proquest_miscellaneous_2385279432
proquest_journals_2476739807
proquest_journals_2430516525
gale_infotracmisc_A631714886
gale_infotracacademiconefile_A631714886
gale_incontextgauss_ISR_A631714886
gale_incontextgauss_IOV_A631714886
gale_businessinsightsgauss_A631714886
pubmed_primary_32231336
crossref_citationtrail_10_1038_s41587_020_0470_y
crossref_primary_10_1038_s41587_020_0470_y
springer_journals_10_1038_s41587_020_0470_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Gilbert (CR25) 2014; 159
Zheng (CR20) 2017; 8
Gilbert (CR26) 2013; 154
Jaitin (CR6) 2016; 167
Xie, Duan, Li, Zhou, Hon (CR7) 2017; 66
Horlbeck (CR28) 2018; 174
Salomon (CR34) 2019; 19
CR36
Mandegar (CR27) 2016; 18
Chan (CR37) 2019; 570
CR12
Packer, Trapnell (CR1) 2018; 34
CR10
CR31
Klein (CR19) 2015; 161
Rubin (CR3) 2018; 176
Peterson (CR23) 2017; 35
Horlbeck (CR29) 2016; 5
Cleary, Cong, Cheung, Lander, Regev (CR32) 2017; 171
Adamson (CR4) 2016; 167
Saikia (CR35) 2019; 16
Feldman (CR2) 2019; 179
Xie, Cooley, Armendariz, Zhou, Hon (CR11) 2018; 13
Macosko (CR18) 2015; 161
Stoeckius (CR22) 2017; 14
Zhang (CR24) 2018; 36
Norman (CR17) 2019; 365
Hill (CR9) 2018; 15
Mimitou (CR21) 2019; 16
Gasperini (CR13) 2019; 176
Datlinger (CR8) 2017; 14
Moreno (CR30) 2018; 26
Ran (CR16) 2013; 154
Subramanian (CR33) 2017; 171
Smits (CR14) 2019; 16
Dixit (CR5) 2016; 167
Anzalone (CR15) 2019; 576
B Adamson (470_CR4) 2016; 167
AM Moreno (470_CR30) 2018; 26
LA Gilbert (470_CR25) 2014; 159
LA Gilbert (470_CR26) 2013; 154
R Salomon (470_CR34) 2019; 19
S Xie (470_CR7) 2017; 66
M Gasperini (470_CR13) 2019; 176
470_CR31
M Saikia (470_CR35) 2019; 16
D Feldman (470_CR2) 2019; 179
P Datlinger (470_CR8) 2017; 14
AM Klein (470_CR19) 2015; 161
M Stoeckius (470_CR22) 2017; 14
EP Mimitou (470_CR21) 2019; 16
D Jaitin (470_CR6) 2016; 167
MA Mandegar (470_CR27) 2016; 18
A Subramanian (470_CR33) 2017; 171
VM Peterson (470_CR23) 2017; 35
MA Horlbeck (470_CR28) 2018; 174
S-Q Zhang (470_CR24) 2018; 36
GX Zheng (470_CR20) 2017; 8
MM Chan (470_CR37) 2019; 570
AH Smits (470_CR14) 2019; 16
AJ Hill (470_CR9) 2018; 15
J Packer (470_CR1) 2018; 34
A Dixit (470_CR5) 2016; 167
AF Ran (470_CR16) 2013; 154
EZ Macosko (470_CR18) 2015; 161
B Cleary (470_CR32) 2017; 171
470_CR36
TM Norman (470_CR17) 2019; 365
470_CR12
AJ Rubin (470_CR3) 2018; 176
470_CR10
MA Horlbeck (470_CR29) 2016; 5
S Xie (470_CR11) 2018; 13
AV Anzalone (470_CR15) 2019; 576
References_xml – volume: 179
  start-page: 787
  year: 2019
  end-page: 799.e17
  ident: CR2
  article-title: Optical pooled screens in human cells
  publication-title: Cell.
  doi: 10.1016/j.cell.2019.09.016
– volume: 14
  start-page: 297
  year: 2017
  end-page: 301
  ident: CR8
  article-title: Pooled CRISPR screening with single-cell transcriptome readout
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4177
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: CR19
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 154
  start-page: 1380
  year: 2013
  end-page: 1389
  ident: CR16
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 365
  start-page: 786
  year: 2019
  end-page: 793
  ident: CR17
  article-title: Exploring genetic interaction manifolds constructed from rich single-cell phenotypes
  publication-title: Science
  doi: 10.1126/science.aax4438
– volume: 576
  start-page: 149
  year: 2019
  end-page: 157
  ident: CR15
  article-title: Search-and-replace genome editing without double-strand breaks or donor DNA
  publication-title: Nature
  doi: 10.1038/s41586-019-1711-4
– ident: CR12
– volume: 167
  start-page: 1853
  year: 2016
  end-page: 1866.e17
  ident: CR5
  article-title: Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.038
– volume: 171
  start-page: 1424
  year: 2017
  end-page: 1436.e18
  ident: CR32
  article-title: Efficient generation of transcriptomic profiles by random composite measurements
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.023
– ident: CR10
– volume: 66
  start-page: 285
  year: 2017
  end-page: 299.e5
  ident: CR7
  article-title: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.03.007
– volume: 8
  year: 2017
  ident: CR20
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 36
  start-page: 1156
  year: 2018
  end-page: 1159
  ident: CR24
  article-title: High-throughput determination of the antigen specificities of T cell receptors in single cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4282
– volume: 35
  start-page: 936
  year: 2017
  end-page: 939
  ident: CR23
  article-title: Multiplexed quantification of proteins and transcripts in single cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3973
– volume: 171
  start-page: 1437
  year: 2017
  end-page: 1452.e17
  ident: CR33
  article-title: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.10.049
– volume: 167
  start-page: 1867
  year: 2016
  end-page: 1882.e21
  ident: CR4
  article-title: A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.048
– volume: 19
  start-page: 1706
  year: 2019
  end-page: 1727
  ident: CR34
  article-title: Droplet-based single cell RNAseq tools: a practical guide
  publication-title: Lab. Chip
  doi: 10.1039/C8LC01239C
– volume: 18
  start-page: 541
  year: 2016
  end-page: 553
  ident: CR27
  article-title: CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.01.022
– volume: 26
  start-page: 1818
  year: 2018
  end-page: 1827
  ident: CR30
  article-title: In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.04.017
– volume: 14
  start-page: 865
  year: 2017
  end-page: 868
  ident: CR22
  article-title: Simultaneous epitope and transcriptome measurement in single cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4380
– volume: 161
  start-page: 1202
  year: 2015
  end-page: 1214
  ident: CR18
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 16
  start-page: 409
  year: 2019
  end-page: 412
  ident: CR21
  article-title: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0392-0
– volume: 16
  start-page: 59
  year: 2019
  end-page: 62
  ident: CR35
  article-title: Simultaneous multiplexed amplicon sequencing and transcriptome profiling in single cells
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0259-9
– ident: CR31
– volume: 176
  start-page: 377
  year: 2019
  end-page: 390.e19
  ident: CR13
  article-title: A genome-wide framework for mapping gene regulation via cellular genetic screens
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.11.029
– volume: 5
  start-page: e19760
  year: 2016
  ident: CR29
  article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
  publication-title: eLife
  doi: 10.7554/eLife.19760
– volume: 167
  start-page: 1883
  year: 2016
  end-page: 1896.e15
  ident: CR6
  article-title: Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.039
– volume: 34
  start-page: 653
  year: 2018
  end-page: 665
  ident: CR1
  article-title: Single-cell multi-omics: an engine for new quantitative models of gene regulation
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.06.001
– volume: 176
  start-page: 361
  year: 2018
  end-page: 376.e17
  ident: CR3
  article-title: Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.11.022
– ident: CR36
– volume: 13
  start-page: e0198635
  year: 2018
  ident: CR11
  article-title: Frequent sgRNA-barcode recombination in single-cell perturbation assays
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0198635
– volume: 16
  start-page: 1087
  year: 2019
  end-page: 1093
  ident: CR14
  article-title: Biological plasticity rescues target activity in CRISPR knock outs
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0614-5
– volume: 159
  start-page: 647
  year: 2014
  end-page: 661
  ident: CR25
  article-title: Genome-scale CRISPR-mediated control of gene repression and activation
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 570
  start-page: 77
  year: 2019
  end-page: 82
  ident: CR37
  article-title: Molecular recording of mammalian embryogenesis
  publication-title: Nature
  doi: 10.1038/s41586-019-1184-5
– volume: 15
  start-page: 271
  year: 2018
  ident: CR9
  article-title: On the design of CRISPR-based single-cell molecular screens
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4604
– volume: 154
  start-page: 442
  year: 2013
  end-page: 451
  ident: CR26
  article-title: CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
– volume: 174
  start-page: 953
  year: 2018
  end-page: 967.e22
  ident: CR28
  article-title: Mapping the genetic landscape of human cells
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.010
– volume: 171
  start-page: 1437
  year: 2017
  ident: 470_CR33
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.10.049
– volume: 167
  start-page: 1853
  year: 2016
  ident: 470_CR5
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.038
– volume: 5
  start-page: e19760
  year: 2016
  ident: 470_CR29
  publication-title: eLife
  doi: 10.7554/eLife.19760
– volume: 570
  start-page: 77
  year: 2019
  ident: 470_CR37
  publication-title: Nature
  doi: 10.1038/s41586-019-1184-5
– volume: 14
  start-page: 297
  year: 2017
  ident: 470_CR8
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4177
– ident: 470_CR36
  doi: 10.1101/800631
– volume: 167
  start-page: 1883
  year: 2016
  ident: 470_CR6
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.039
– volume: 34
  start-page: 653
  year: 2018
  ident: 470_CR1
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2018.06.001
– volume: 16
  start-page: 1087
  year: 2019
  ident: 470_CR14
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0614-5
– ident: 470_CR31
  doi: 10.1523/ENEURO.0495-18.2019
– volume: 161
  start-page: 1202
  year: 2015
  ident: 470_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 8
  year: 2017
  ident: 470_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 179
  start-page: 787
  year: 2019
  ident: 470_CR2
  publication-title: Cell.
  doi: 10.1016/j.cell.2019.09.016
– volume: 365
  start-page: 786
  year: 2019
  ident: 470_CR17
  publication-title: Science
  doi: 10.1126/science.aax4438
– volume: 171
  start-page: 1424
  year: 2017
  ident: 470_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2017.10.023
– volume: 176
  start-page: 361
  year: 2018
  ident: 470_CR3
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.11.022
– volume: 18
  start-page: 541
  year: 2016
  ident: 470_CR27
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.01.022
– volume: 16
  start-page: 409
  year: 2019
  ident: 470_CR21
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0392-0
– volume: 19
  start-page: 1706
  year: 2019
  ident: 470_CR34
  publication-title: Lab. Chip
  doi: 10.1039/C8LC01239C
– volume: 176
  start-page: 377
  year: 2019
  ident: 470_CR13
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.11.029
– volume: 167
  start-page: 1867
  year: 2016
  ident: 470_CR4
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.048
– volume: 14
  start-page: 865
  year: 2017
  ident: 470_CR22
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4380
– volume: 15
  start-page: 271
  year: 2018
  ident: 470_CR9
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4604
– volume: 154
  start-page: 1380
  year: 2013
  ident: 470_CR16
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 26
  start-page: 1818
  year: 2018
  ident: 470_CR30
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2018.04.017
– ident: 470_CR12
  doi: 10.1101/262121
– volume: 159
  start-page: 647
  year: 2014
  ident: 470_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.029
– volume: 13
  start-page: e0198635
  year: 2018
  ident: 470_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0198635
– volume: 174
  start-page: 953
  year: 2018
  ident: 470_CR28
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.010
– volume: 576
  start-page: 149
  year: 2019
  ident: 470_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-1711-4
– volume: 36
  start-page: 1156
  year: 2018
  ident: 470_CR24
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4282
– volume: 161
  start-page: 1187
  year: 2015
  ident: 470_CR19
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 154
  start-page: 442
  year: 2013
  ident: 470_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.044
– volume: 66
  start-page: 285
  year: 2017
  ident: 470_CR7
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2017.03.007
– volume: 16
  start-page: 59
  year: 2019
  ident: 470_CR35
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0259-9
– ident: 470_CR10
  doi: 10.1101/298349
– volume: 35
  start-page: 936
  year: 2017
  ident: 470_CR23
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3973
SSID ssj0006466
Score 2.672942
Snippet Single-cell CRISPR screens enable the exploration of mammalian gene function and genetic regulatory networks. However, use of this technology has been limited...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 954
SubjectTerms 631/208/191/1472
631/208/191/2018
631/337/2019
631/553/2490/1472
Agriculture
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cholesterol
Combinatorial analysis
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA repair
Epistasis
Expression vectors
Gene Expression Regulation
Gene sequencing
Gene Targeting
HEK293 Cells
High-Throughput Nucleotide Sequencing
Humans
Hybridization
Letter
Libraries
Life Sciences
Methods
Nucleic Acid Amplification Techniques - methods
Perturbation
Ribonucleic acid
RNA
RNA sequencing
RNA, Guide, CRISPR-Cas Systems - genetics
Single-Cell Analysis
Transcriptome
Title Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing
URI https://link.springer.com/article/10.1038/s41587-020-0470-y
https://www.ncbi.nlm.nih.gov/pubmed/32231336
https://www.proquest.com/docview/2430516525
https://www.proquest.com/docview/2476739807
https://www.proquest.com/docview/2385279432
https://pubmed.ncbi.nlm.nih.gov/PMC7416462
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJhA8IChfhVEZBEICRUvi-CNPqJ1WNqSVqWOoD5Mix3bGpCktpH3of89d4nZLpU28NFJ9cZu78519d_kdIR9SVsRMOh1ocEfYwiwOtOEmSArDdJ5aqVN8d_h4JA7Pku8TPvEBt8qXVa5sYm2o7dRgjHwvRmyqSPCYf539CbBrFGZXfQuNLbITgadBPVfDb2tLLJpcZRQqLK_kYpXVZGqvAseF38ZY3CjDYNnyS5vW-YZ72iyd3Mif1m5p-IQ89vtJ2m8U4Cm558oOud90mFx2yKMbeIMd8uDYZ9KfkXMwBHAoxiM3aCDFiMGVCzCMT_fHR6cnYwr2BM-4NF_Sxu_Ri8WldXQ86lOjZ5h5oLq0tKkld5b6qmyY6Tk5Gx783D8MfKeFwEgm5oEuLA916mwaOmuFZmFRpDlPpGEst0IluXGJAmducy0TFTPGbOwEd45h3ChhL8h2OS3dK0J5yozQseHKholVsAFFkDQeFakCRgveJeGKz5nxMOTYDeMqq9PhTGWNaDIQTYaiyZZd8nl9y6zB4LiL-CMKL_M9POGjwihHdaEXVZX1BcOO70qJLnlf0yEGRolFNg3B0Y9f_0F0Om4RffJExRSexGj_YgPwA7G1WpS7LUpYyaY9vFK4zFuSKrvW-1uGpZAMeCu75N16GCfG4rnSTRdAwxSPEQgw7pKXjfqu-Qj2nEWMwW_LlmKvCRB-vD1SXv6uYchxL58ImPPLaglc_61bxfP67md8Qx7G9ZrECstdsj3_u3BvYdc3z3tkS05kr17gPbLTHw4GI7gODkYn43-4kFSq
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEF8PCMpXYYBBTEigaKkdO84DQtWgtGwtqNvQHpCCYztj0pQW0gr1n-Jv5C4f3VJpEy976UP9q5vcne98vvMdIa8injIeOu1pMEfYwox52gjjBanhOolsqCO8Ozwcyf5B8PlQHK6Rv_VdGEyrrHVioajtxOAZ-RbD2lQdKZh4P_3lYdcojK7WLTRKsdhxiz_gsuXvBh-Av5uM9T7ub_e9qquAZ0IuZ55OrfB15GzkO2ul5n6aRokIQsN5YqUKEuMCBYbLJjoMFOOcW-akcI7jGUnAYd4r5GoAvh2uItX7tNT8soyNdnyF6ZxC1lFUrrZyMJT4LcNkytD3Fg07uGoNzpjD1VTNlXhtYQZ7d8jtav9Ku6XA3SVrLmuRa2VHy0WL3DpT37BFrg-ryP098h0UDzjh6OKDxFM8oThxHoYN6PZ4sPd1TEF_oU9NkwUt7Sw9mh9bR8ejLjV6ipEOqjNLy9x1Z2mVBQ4z3ScHl8KDB2Q9m2TuEaEi4kZqZoSyfmAVbHixKJvopJECQkvRJn5N59hUZc-x-8ZJXITfuYpL1sTAmhhZEy_a5M3yJ9Oy5sdF4E1kXlz1DIWPHE9V8iM9z_O4Kzl2mFdKtsnLAoc1NzJM6ikBgy_f_gO0N26AXlegdAJvYnR1kQLogbW8GsiNBhI0h2kO1wIXV5orj0_X2TnDoQw50DZskxfLYZwYk_UyN5kDhivBsPAga5OHpfgu6Qj2g3c4h_8OG4K9BGC58-ZIdvyzKHuOvkMgYc639RI4faxz2fP44nd8Tm7094e78e5gtPOE3GTF-sTszg2yPvs9d09hxzlLnhXLnJIfl61X_gHTq44n
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEBM8IBhfhQEGMSGBoqV2_JEHhKqNsjJWpo6hPSAFx3bGpCkdpBXqv8Zfx10-uqXSJl720of6Vze5O9_5fOc7Ql7FPGNceRMYMEfYwowFxgobRJnlJo2dMjHeHd4dyu2D6NOhOFwif5u7MJhW2ejEUlG7scUz8g2Gtam6UjCxkdVpEXtb_fenvwLsIIWR1qadRiUiO372B9y34t1gC3i9zlj_w9fN7aDuMBBYxeUkMJkToYm9i0PvnDQ8zLI4FZGynKdO6ii1PtJgxFxqVKQZ59wxL4X3HM9LIg7zXiPXFVcxphPq_se5FZBVnLQbakztFLKJqHK9UYDRxG8ZJlaqMJi1bOKiZThnGhfTNhdit6VJ7N8ht-u9LO1VwneXLPl8ldyoulvOVsmtc7UOV8nKbh3Fv0e-gxIChxzdfZB-iqcVJz7AEALdHA3290YUdBn61zSd0crm0qPpsfN0NOxRa04x6kFN7miVx-4drTPCYab75OBKePCALOfj3D8iVMTcSsOs0C6MnIbNLxZoE90s1kBoKTokbOic2LoEOnbiOEnKUDzXScWaBFiTIGuSWYe8mf_ktKr_cRl4HZmX1P1D4aPAE5biyEyLIulJjt3mtZYd8rLEYf2NHCW5Agy-fPsP0P6oBXpdg7IxvIk19aUKoAfW9Woh11pI0CK2PdwIXFJrsSI5W3MXDCupONBWdciL-TBOjIl7uR9PAcO1YFiEkHXIw0p853QEW8K7nMN_q5ZgzwFY-rw9kh__LEugox8RSZjzbbMEzh7rQvY8vvwdn5MV0CjJ58Fw5wm5ycrliYmea2R58nvqn8Lmc5I-K1c5JT-uWq38A8-Sklw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combinatorial+single-cell+CRISPR+screens+by+direct+guide+RNA+capture+and+targeted+sequencing&rft.jtitle=Nature+biotechnology&rft.au=Replogle%2C+Joseph+M&rft.au=Norman%2C+Thomas+M&rft.au=Xu%2C+Albert&rft.au=Hussmann%2C+Jeffrey+A&rft.date=2020-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.volume=38&rft.issue=8&rft.spage=954&rft_id=info:doi/10.1038%2Fs41587-020-0470-y&rft.externalDBID=ISR&rft.externalDocID=A631714886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon