GAN-SAE based fault diagnosis method for electrically driven feed pumps

The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 10; p. e0239070
Main Authors Han, Hui, Hao, Lina, Cheng, Dequan, Xu, He
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 22.10.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0239070

Cover

Abstract The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.
AbstractList The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.
The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.
Audience Academic
Author Xu, He
Han, Hui
Hao, Lina
Cheng, Dequan
AuthorAffiliation 1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
2 School of Mechanical Engineering, Shenyang Ligong University, Shenyang, China
National Huaqiao University, CHINA
AuthorAffiliation_xml – name: National Huaqiao University, CHINA
– name: 1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
– name: 2 School of Mechanical Engineering, Shenyang Ligong University, Shenyang, China
Author_xml – sequence: 1
  givenname: Hui
  surname: Han
  fullname: Han, Hui
– sequence: 2
  givenname: Lina
  orcidid: 0000-0001-8791-2253
  surname: Hao
  fullname: Hao, Lina
– sequence: 3
  givenname: Dequan
  surname: Cheng
  fullname: Cheng, Dequan
– sequence: 4
  givenname: He
  surname: Xu
  fullname: Xu, He
BookMark eNqNkV-L1DAUxYusuH_0GwgWBNGHjknTtKkPwrCs48Digqu-hjS9ncmQNjVJV-fbm-5U2S4LLnlIuPmdk3tzTqOjznQQRS8xWmBS4Pc7M9hO6EUfyguUkhIV6El0gkuSJnmKyNGd83F06twOIUpYnj-LjglBJUYoO4lWq-WX5Hp5EVfCQR03YtA-rpXYdMYpF7fgtyaUjY1Bg_RWSaH1Pq6tuoEubiBo-qHt3fPoaSO0gxfTfhZ9_3Tx7fxzcnm1Wp8vLxNZEOoThnNgqJJI5qIqoEQZFghVqKSEQlFRwEXD0gIRyBnUQNJKlFUpUCorlJWAyFn06uDba-P49AeOpxkleUFRXgZifSBqI3a8t6oVds-NUPy2YOyGC-uV1MBZQ-uyqQmTTZHlkjJaM8JYkzIAXLHxNXrwGrpe7H-F0f8ZYsTHGP62wMcY-BRD0H2cuhyqFmoJnbdCz5qZ33RqyzfmhheUYYRHg7eTgTU_B3Cet8pJ0Fp0YIbbeTOcMoZpQF_fQx_-lYnaiDC46hoT3pWjKV_mpMRZyvLRa_EAFVYNrZJhwkaF-kzwbiYIjIfffiMG5_j6-uvj2asfc_bNHXYLQvutM3rwynRuDn44gNIa5yw0XCovRix0rvT_YsruiR-V7h94sxer
CitedBy_id crossref_primary_10_1007_s10409_024_24076_x
crossref_primary_10_3390_electronics12194172
crossref_primary_10_1371_journal_pone_0271225
crossref_primary_10_20965_jaciii_2021_p0346
crossref_primary_10_1088_1742_6596_2417_1_012031
crossref_primary_10_1088_1361_6501_ad8fa4
crossref_primary_10_1016_j_engappai_2023_106542
crossref_primary_10_1109_TIM_2023_3246470
crossref_primary_10_1371_journal_pone_0291656
crossref_primary_10_3390_en15082796
crossref_primary_10_3233_JIFS_231948
crossref_primary_10_1109_ACCESS_2021_3110947
Cites_doi 10.1109/COASE.2018.8560528
10.1016/j.ymssp.2018.03.025
10.3901/JME.2015.21.049
10.1016/j.ymssp.2005.09.012
10.1016/j.eswa.2016.07.039
10.1016/j.ymssp.2016.06.024
10.1016/j.jmsy.2018.04.005
10.1109/TKDE.2008.239
10.1109/TAC.2019.2938302
10.1155/2016/6127479
10.1016/j.knosys.2016.09.032
10.1016/j.neucom.2018.05.024
10.1016/j.engappai.2015.10.009
10.1016/j.neucom.2017.07.032
10.1109/TCYB.2019.2930945
10.1613/jair.953
10.1155/2016/4632562
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Han et al 2020 Han et al
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Han et al 2020 Han et al
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0239070
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database (Proquest)
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic


Agricultural Science Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate GAN - SAE based fault diagnosis method for electrically driven feed pumps
EISSN 1932-6203
ExternalDocumentID 2453675069
oai_doaj_org_article_8f5d9fd38cf746c585d8388f28ee1b80
10.1371/journal.pone.0239070
PMC7581010
A639142865
10_1371_journal_pone_0239070
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: U1613205
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c735t-816e80bc0c6ab7e9041a00b09535e7b5e17f82703e68ede32ba9b9a02cb049e03
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:01 EDT 2023
Fri Oct 03 12:41:38 EDT 2025
Sun Oct 26 03:10:56 EDT 2025
Tue Sep 30 16:48:24 EDT 2025
Mon Sep 08 05:14:01 EDT 2025
Tue Oct 07 07:44:50 EDT 2025
Mon Oct 20 21:54:02 EDT 2025
Mon Oct 20 16:33:53 EDT 2025
Thu Oct 16 14:23:10 EDT 2025
Thu Oct 16 14:49:10 EDT 2025
Thu May 22 21:22:03 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Wed Oct 01 04:49:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c735t-816e80bc0c6ab7e9041a00b09535e7b5e17f82703e68ede32ba9b9a02cb049e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-8791-2253
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0239070
PMID 33091004
PQID 2453675069
PQPubID 1436336
PageCount e0239070
ParticipantIDs plos_journals_2453675069
doaj_primary_oai_doaj_org_article_8f5d9fd38cf746c585d8388f28ee1b80
unpaywall_primary_10_1371_journal_pone_0239070
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7581010
proquest_miscellaneous_2454128815
proquest_journals_2453675069
gale_infotracmisc_A639142865
gale_infotracacademiconefile_A639142865
gale_incontextgauss_ISR_A639142865
gale_incontextgauss_IOV_A639142865
gale_healthsolutions_A639142865
crossref_citationtrail_10_1371_journal_pone_0239070
crossref_primary_10_1371_journal_pone_0239070
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-22
PublicationDateYYYYMMDD 2020-10-22
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-22
  day: 22
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References Garcia EA H He (pone.0239070.ref003) 2009; 21
Z Wang (pone.0239070.ref016) 2018; 310
WT Mao (pone.0239070.ref007) 2017; 83
XM Tao (pone.0239070.ref008) 2010; 29
Q Fan (pone.0239070.ref011) 2017; 115
Diego Cabrera (pone.0239070.ref017) 2019; 7
DE Rumelhart (pone.0239070.ref026) 1988; 323
H Liu (pone.0239070.ref023) 2016
F Jia (pone.0239070.ref021) 2018; 272
PS Ambika (pone.0239070.ref029) 2019
HW Xu (pone.0239070.ref001) 2018
E Ramentol (pone.0239070.ref009) 2016; 48
pone.0239070.ref019
L Guo (pone.0239070.ref022) 2016
YG Lei (pone.0239070.ref002) 2015; 52
HX Guo (pone.0239070.ref012) 2016; 49
LX Duan (pone.0239070.ref010) 2016; 64
CL Li (pone.0239070.ref020) 2017
NV Chawla (pone.0239070.ref006) 2002; 16
Y Zhang (pone.0239070.ref014) 2018; 48
P Vincent (pone.0239070.ref027) 2010; 11
pone.0239070.ref004
pone.0239070.ref005
AKS Jardine (pone.0239070.ref028) 2006; 20
pone.0239070.ref024
F Jia (pone.0239070.ref013) 2018; 110
Yuan Xie (pone.0239070.ref018) 2018
pone.0239070.ref025
I Goodfellow (pone.0239070.ref015) 2014; 2014
References_xml – ident: pone.0239070.ref024
  doi: 10.1109/COASE.2018.8560528
– volume: 110
  start-page: 349
  year: 2018
  ident: pone.0239070.ref013
  article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.03.025
– start-page: 1
  volume-title: Vibration signal based condition monitoring of mechanical equipment with scattering transform.
  year: 2019
  ident: pone.0239070.ref029
– volume: 52
  start-page: 49
  issue: 21
  year: 2015
  ident: pone.0239070.ref002
  article-title: Big data Health Monitoring method of Mechanical equipment based on depth Theory
  publication-title: Journal of Mechanical Engineering
  doi: 10.3901/JME.2015.21.049
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: pone.0239070.ref028
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 64
  start-page: 239
  year: 2016
  ident: pone.0239070.ref010
  article-title: A new support vector data description method for machinery fault diagnosis with unbalanced datasets
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.07.039
– volume: 83
  start-page: 450
  year: 2017
  ident: pone.0239070.ref007
  article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2016.06.024
– volume: 2014
  start-page: 2672
  year: 2014
  ident: pone.0239070.ref015
  article-title: Generative adversarial nets
  publication-title: In Proceedings of the Advances in Neural Information Processing Systems
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: pone.0239070.ref027
  article-title: Stacked Denoising Autoencoders Learning Useful Representations in a Deep Network with a Local Denoising Criterion
  publication-title: Journal of Machine Learning Research
– volume: 48
  start-page: 34
  year: 2018
  ident: pone.0239070.ref014
  article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2018.04.005
– volume: 49
  start-page: 176
  issue: C
  year: 2016
  ident: pone.0239070.ref012
  article-title: BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 323
  start-page: 399
  issue: 6088
  year: 1988
  ident: pone.0239070.ref026
  article-title: Learning representations by back-progating errors
  publication-title: Nature
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: pone.0239070.ref003
  article-title: Learning from Imbalanced Data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2008.239
– ident: pone.0239070.ref005
  doi: 10.1109/TAC.2019.2938302
– start-page: 1
  year: 2016
  ident: pone.0239070.ref023
  article-title: Rolling bearing fault diagnosis based on STFT-deep learning and sound signals
  publication-title: Shock and Vibration
  doi: 10.1155/2016/6127479
– ident: pone.0239070.ref025
– volume: 115
  start-page: 87
  year: 2017
  ident: pone.0239070.ref011
  article-title: Entropy-based fuzzy support vector machine for imbalanced datasets.
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.09.032
– start-page: 6017
  year: 2018
  ident: pone.0239070.ref018
  article-title: Imbalanced Learning for Fault Diagnosis Problem of Rotating Machinery Based on Generative Adversarial Networks.
  publication-title: IEEE
– volume: 310
  start-page: 213
  issue: 2018
  year: 2018
  ident: pone.0239070.ref016
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– volume: 29
  issue: 12
  year: 2010
  ident: pone.0239070.ref008
  article-title: Novel fault detection method based on SVM with unbalanced datasets
  publication-title: Journal of Vibration and Shock
– volume: 7
  year: 2019
  ident: pone.0239070.ref017
  article-title: Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery.
  publication-title: IEEE
– volume: 48
  start-page: 134
  issue: C
  year: 2016
  ident: pone.0239070.ref009
  article-title: Fuzzy-rough imbalanced learning for the diagnosis of High Voltage Circuit Breaker maintenance: The SMOTE-FRST-2T algorithm.
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2015.10.009
– volume: 272
  start-page: 619
  year: 2018
  ident: pone.0239070.ref021
  article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.032
– ident: pone.0239070.ref004
  doi: 10.1109/TCYB.2019.2930945
– volume-title: Research and Application on Condition Assessment and Maintenance Optimization of the Turbine Driven Boiler Feed Water Pump Set
  year: 2018
  ident: pone.0239070.ref001
– ident: pone.0239070.ref019
– start-page: 2203
  year: 2017
  ident: pone.0239070.ref020
  article-title: Mmd gan:Towards deeper understanding of moment matching network.Advances in Neural Information Proceeing Systems.
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  ident: pone.0239070.ref006
  article-title: SMOTE: Synthetic Minority Over-sampling Technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– start-page: 1
  year: 2016
  ident: pone.0239070.ref022
  article-title: Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring
  publication-title: Shock and Vibration
  doi: 10.1155/2016/4632562
SSID ssj0053866
Score 2.418793
Snippet The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0239070
SubjectTerms Accuracy
Algorithms
Automation
Back propagation networks
Biology and Life Sciences
Classification
Coders
Computer and Information Sciences
Condition monitoring
Datasets
Deep learning
Engineering and Technology
Fault diagnosis
Fault location (Engineering)
Feature extraction
Feeds
Feedwater pumps
Game theory
Generative adversarial networks
Impact analysis
Learning theory
Mechanical engineering
Mechanical properties
Medical diagnosis
Medicine and Health Sciences
Methods
Neural networks
Physical Sciences
Power plants
Propagation
Research and Analysis Methods
Sample size
Teaching methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKA91oYBBSMAhW-dp-7igPkACJKCoN8uvQKUou2o2Qv33zMTeaIOQ2gPXeBwl8_JMMvMNIa9cUWsJyU-C2FFJkXmRaIg7khxhKAvjjHXYO_zpc3V6Vnw8L893Rn1hTViABw6MOxR16WTtcmFrXlQWolsnciHqTHifGjFk60zIbTIVfDBYcVXFRrmcp4dRLov1qvULbOdkOJx45yAa8PpHrzxbN6tuEnL-XTB5u2_X-uq3bpqd0-j4Hrkbw0i6DI-_R2759j7Zi4ba0TcRTfrtA3JysgSnuTyieF45Wuu-2VAXCuwuOhomSFMIXWmYiINCa66ou0Q3SGs43OgaRN49JGfHR9_fnyZxekJieV5uEpFWXjBjma204V6yItWMGcSXKz03pU95LTIweF8J73yeGS2N1CyzBrIGz_JHZNYCv_YJlY4zba0puISEqqi09ppbK6V3zDmezUm-ZaWyEVocJ1w0avhfxiHFCGxRKAAVBTAnybhrHaA1rqF_h1IaaREYe7gA6qKiuqjr1GVOnqOMVegyHc1bLSFSQ_C5qpyTlwMFgmO0WH3zU_ddpz58-XEDom9fJ0SvI1G9AnZYHTse4J0QdGtCeTChBBO3k-V91MgtVzqVFWUOmR6rJOzcaum_l1-My3hTrKhr_aofaAqITUQKd-cT7Z4weLrSXvwaEMghyQTbBmYuRju4kQgf_w8RPiF3MvzoAQFElh2Q2eay908hMtyYZ4MT-APZyWI5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHmoCwUMQgIO2TpPOweEtmjbgsSCCkW9RX6lVIqSsNkV6r9nJnFCgxD0Gk-sZF6eSWa-IeSFiXKZQvLjIXaUFwVWeBLiDi9EGMpIGaUN9g5_XCbHp9GHs_hsiyz7Xhgsq-x9YuuoTaXxG_l-EMUhBLcsSd_WPzycGoV_V_sRGtKNVjBvWoixG2Q7QGSsCdk-WCw_n_S-Gaw7SVwDXcj9fSevWV2VdoZtngyHFl85oFoc_8FbT-qiakah6J-FlDc3ZS0vf8qiuHJKHd4ht114SeedPuyQLVveJTvOgBv6yqFMv75Hjo7m4EznC4rnmKG53BRrarrCu4uGdpOlKYS0tJuUg8IsLqlZoXukORx6tAZVaO6T08PF13fHnpuq4GkexmtP-IkVTGmmE6m4TVnkS8YU4s7FlqvY-jwXATgCmwhrbBgomapUskAryCYsCx-QSQn82iU0NZwB51XEU0i0okRKK7nWaWoNM4YHUxL2rMy0gxzHyRdF1v5H45B6dGzJUACZE8CUeMNddQe58R_6A5TSQIuA2e2FanWeOfvLRB6bNDeh0DmPEg1JkhGhEHkgrPWVgE2eooyzrvt0MPtsDhEcgtIl8ZQ8bykQNKPEqpxzuWma7P2nb9cg-nIyInrpiPIK2KGl64SAd0IwrhHl3ogSTF-PlndRI3uuNNlvI4E7ey39-_KzYRk3xUq70labliaCmEX4sDsfafeIweOV8uJ7i0wOySfYPDBzNtjBtUT48N9P-4jcCvAzB4QMQbBHJuvVxj6GWHCtnjgD_wWf2F_g
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbK6wEuQFnUBwUMQiyHpImz2Dk-UBeQKAgoKgcUeQtURHlPTSJUDvx2ZhInIhWIcuAWxeNRPB6PZ-KZz4Q8NHEhMwh-PMSO8mJmhSfB7_AihKGMlVHaYO3wq4N0_zB-eZQcrZFPQy2MkyDEiOWy7k7y8WFZ2W0nyW3EK-pPT_0w4uHQw18BkY-lmqDEjzrEIfwz1mAB0gWynibgqs_I-uHBm8XH_qSZeSkLIldO9ydOk-2qQ_UfbfcMv2zimJ5Nq7zYVit5-k2W5S971u4V8mMYbZ-q8tVvG-Xr72eAIP-bOK6Sy87bpYueywZZs9U1suHsSU2fONDrp9fJ3t4CbPtih-K2amgh27Khps8DPK5pf9E1BQ-b9hf3oG6Vp9ScoLWmBezBdAWaWd8gh7s775_ve-6SB0_zKGk8EaZWBEoHOpWK2yyIQxkECmHwEstVYkNeCAZ2yabCGhsxJTOVyYBpBcGNDaKbZFbBWDcJzQwPpNYq5hnEfXEqpZVc6yyzJjCGszmJhrnMtUNAx4s4yrw71uMQCfViyVF4uRPenHhjr1WPAPIX-meoJiMt4nd3L2D2cjdruSgSkxUmErrgcaohZjMiEqJgwtpQCWByD5Us74thRyuUL8ChRIy8NJmTBx0FYnhUmCT0WbZ1nb94_eEcRO_eTogeO6JiCeLQ0hVmwJhQuSaUWxNKsER60ryJ2jlIpc5ZnEQQkAZpBj2HZfL75vtjMzLFxL_KLtuOJgYXSoTAnU-W10TA05bq-EsHlA6xMJggEKY_LsRzTeGtf-1wm1xi-B8GfBrGtsisOWntHXBWG3XXmZyfbMCZAQ
  priority: 102
  providerName: Unpaywall
Title GAN-SAE based fault diagnosis method for electrically driven feed pumps
URI https://www.proquest.com/docview/2453675069
https://www.proquest.com/docview/2454128815
https://pubmed.ncbi.nlm.nih.gov/PMC7581010
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239070&type=printable
https://doaj.org/article/8f5d9fd38cf746c585d8388f28ee1b80
http://dx.doi.org/10.1371/journal.pone.0239070
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (subscription)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF616QEuiPJQ05awICTg4MjvXR8QSqskBamhKgSFk7Uvl0qWk8aJIP-eGXtjYdSKXnzwzq7keezMrHe-IeSNDjORQPLjIHaUE_qGOwLiDidAGMpQaqk01g6fT-Kzafh5Fs12yLZnq2VgeWtqh_2kpsu8__tm8xEM_kPVtYF520n9xbwwfSzWBDXeJXvgqxJs5nAeNv8VwLrj2BbQ3TWz5aAqHP9mt-4s8nnZCkX_vUj5YF0sxOaXyPO_vNToMXlkw0s6qPVhn-yY4gnZtwZc0ncWZfr9UzIeD2AzHQwp-jFNM7HOV1TXF--uS1p3lqYQ0tK6Uw4KM99QvcTtkWbg9OgCVKF8Rqaj4bfTM8d2VXAUC6KVw73YcFcqV8VCMpO4oSdcVyLuXGSYjIzHMu7DRmBibrQJfCkSmQjXVxKyCeMGz0mnAH4dEJpo5gqlZMgSSLTCWAgjmFJJYrSrNfO7JNiyMlUWchw7X-Rp9R-NQepRsyVFAaRWAF3iNLMWNeTGf-hPUEoNLQJmVy_my6vU2l_Ks0gnmQ64ylgYK0iSNA84z3xujCc5LPISZZzW1aeN2acDiOAQlC6OuuR1RYGgGQXeyrkS67JMP335fg-ir5ctoreWKJsDO5SwlRDwTQjG1aI8blGC6avW8AFq5JYrZeqHUQAZoBsnMHOrpbcPv2qGcVG8aVeY-bqiCSFm4R6szlra3WJwe6S4_lkhk0PyCTYPzOw3dnAvER7e_SFH5KGPRxwQLvj-MemslmvzAuLAleyRXTZj8OSnHj5H4x7ZOxlOLi571clKrzJ9eDedXAx-_AGQ1GQy
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHmogUIXBAIOTv3e9QGhAG0T-kCCFuVm9uVSybJNnKjKn-I3MuMXNULQS6_ZySqZx7cz9s43hDzXfiIiKH4s5I6yfNdwS0DeYXlIQ-lLLZXG3uGj43By6n-cBbM18rPthcFrlS0mVkCtc4XPyHdcP_AgubXD6G3xw8KpUfh2tR2hUbvFgVldQMlWvpl-APu-cN293ZP3E6uZKmAp5gULizuh4bZUtgqFZCayfUfYtkTetcAwGRiHJdyFQDAhN9p4rhSRjITtKgnZtLE92PcGuel7gCUQP2zWFXiAHWHYtOd5zNlpvGFU5JkZYROpjSORLx1_1ZSA7iwYFGle9hLdP69pri-zQqwuRJpeOgP37pDbTfJKx7W3bZA1k90lGw08lPRVw2H9-h7Z3x8DVI93KZ6SmiZimS6orq_1nZe0nltNIWGm9RwedJV0RfUcwZcmcKTSAhytvE9Or0W7D8ggA31tEhppZgulpM8iKOP8UAgjmFJRZLStNXOHxGtVGauG0BznaqRx9ZaOQWFTqyVGA8SNAYbE6r5V1IQe_5F_h1bqZJGOu_ogn5_FTXTHPAl0lGiPq4T5oYISTHOP88TlxjiSwybbaOO47m3tQCUeQ36IlHdhMCTPKgmk5Mjwzs-ZWJZlPP309QpCXz73hF42QkkO6lCi6bOA_4RUXz3JrZ4kAIvqLW-iR7ZaKePfIQjfbL3078tPu2XcFO_xZSZfVjI-ZETcgd1Zz7t7Cu6vZOffK95zKG0BUUCZoy4OrmTCh__-tdtkfXJydBgfTo8PHpFbLj5QgeTEdbfIYDFfmseQdS7kkyrUKfl23djyC7g7ldM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAEXRHmogUIXBAIOTuz1Y9cHhAJ9hUJBlKLczHp3XSpZtokTVflr_Dpm_KJGCHrpNTtZJTOz387YM98Q8lR7iQwh-bGQO8rymBGWhLjDcpGG0ot1rDT2Dn84DPaPvXczf7ZGfra9MFhW2WJiBdQ6V_iMfMw834Xg1g7CcdKURXza3n1d_LBwghS-aW3HadQucmBWZ5C-la-m22DrZ4zt7nx5u281EwYsxV1_YQknMMKOla0CGXMT2p4jbTtGDjbf8Ng3Dk8Eg0NhAmG0cVkswziUNlMxRNbGdmHfK-Qqd90Qywn5rEv2AEeCoGnVc7kzbjxjVOSZGWFDqY3jkc9dhdXEgO5eGBRpXvaC3j9LNq8vs0KuzmSanrsPd2-Rm00gSye1562TNZPdJusNVJT0RcNn_fIO2dubAGxPdijemJomcpkuqK5L_E5LWs-wphA803omD7pNuqJ6jkBME7heaQFOV94lx5ei3XtkkIG-NggNNbelUrHHQ0jpvEBKI7lSYWi0rTVnQ-K2qoxUQ26OMzbSqHpjxyHJqdUSoQGixgBDYnXfKmpyj__Iv0ErdbJIzV19kM9PouakRyLxdZhoV6iEe4GCdEwLV4iECWOcWMAmW2jjqO5z7QAmmkCsiPR3gT8kTyoJpOfI0NFP5LIso-nHrxcQOvrcE3reCCU5qEPJpucC_hPSfvUkN3uSADKqt7yBHtlqpYx-H0f4Zuulf19-3C3jpljTl5l8Wcl4EB0JB3bnPe_uKbi_kp1-rzjQIc0FdAFljrpzcCET3v_3r90i1wBVovfTw4MH5AbDZysQpzC2SQaL-dI8hAB0ET-qTjol3y4bWn4B8tyaFg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbK6wEuQFnUBwUMQiyHpImz2Dk-UBeQKAgoKgcUeQtURHlPTSJUDvx2ZhInIhWIcuAWxeNRPB6PZ-KZz4Q8NHEhMwh-PMSO8mJmhSfB7_AihKGMlVHaYO3wq4N0_zB-eZQcrZFPQy2MkyDEiOWy7k7y8WFZ2W0nyW3EK-pPT_0w4uHQw18BkY-lmqDEjzrEIfwz1mAB0gWynibgqs_I-uHBm8XH_qSZeSkLIldO9ydOk-2qQ_UfbfcMv2zimJ5Nq7zYVit5-k2W5S971u4V8mMYbZ-q8tVvG-Xr72eAIP-bOK6Sy87bpYueywZZs9U1suHsSU2fONDrp9fJ3t4CbPtih-K2amgh27Khps8DPK5pf9E1BQ-b9hf3oG6Vp9ScoLWmBezBdAWaWd8gh7s775_ve-6SB0_zKGk8EaZWBEoHOpWK2yyIQxkECmHwEstVYkNeCAZ2yabCGhsxJTOVyYBpBcGNDaKbZFbBWDcJzQwPpNYq5hnEfXEqpZVc6yyzJjCGszmJhrnMtUNAx4s4yrw71uMQCfViyVF4uRPenHhjr1WPAPIX-meoJiMt4nd3L2D2cjdruSgSkxUmErrgcaohZjMiEqJgwtpQCWByD5Us74thRyuUL8ChRIy8NJmTBx0FYnhUmCT0WbZ1nb94_eEcRO_eTogeO6JiCeLQ0hVmwJhQuSaUWxNKsER60ryJ2jlIpc5ZnEQQkAZpBj2HZfL75vtjMzLFxL_KLtuOJgYXSoTAnU-W10TA05bq-EsHlA6xMJggEKY_LsRzTeGtf-1wm1xi-B8GfBrGtsisOWntHXBWG3XXmZyfbMCZAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN-SAE+based+fault+diagnosis+method+for+electrically+driven+feed+pumps&rft.jtitle=PloS+one&rft.au=Han%2C+Hui&rft.au=Hao%2C+Lina&rft.au=Cheng%2C+Dequan&rft.au=Xu%2C+He&rft.date=2020-10-22&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pone.0239070&rft.externalDocID=2453675069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon