GAN-SAE based fault diagnosis method for electrically driven feed pumps
The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process...
Saved in:
| Published in | PloS one Vol. 15; no. 10; p. e0239070 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
San Francisco
Public Library of Science
22.10.2020
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0239070 |
Cover
| Abstract | The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%. |
|---|---|
| AbstractList | The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%. The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%. |
| Audience | Academic |
| Author | Xu, He Han, Hui Hao, Lina Cheng, Dequan |
| AuthorAffiliation | 1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China 2 School of Mechanical Engineering, Shenyang Ligong University, Shenyang, China National Huaqiao University, CHINA |
| AuthorAffiliation_xml | – name: National Huaqiao University, CHINA – name: 1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China – name: 2 School of Mechanical Engineering, Shenyang Ligong University, Shenyang, China |
| Author_xml | – sequence: 1 givenname: Hui surname: Han fullname: Han, Hui – sequence: 2 givenname: Lina orcidid: 0000-0001-8791-2253 surname: Hao fullname: Hao, Lina – sequence: 3 givenname: Dequan surname: Cheng fullname: Cheng, Dequan – sequence: 4 givenname: He surname: Xu fullname: Xu, He |
| BookMark | eNqNkV-L1DAUxYusuH_0GwgWBNGHjknTtKkPwrCs48Digqu-hjS9ncmQNjVJV-fbm-5U2S4LLnlIuPmdk3tzTqOjznQQRS8xWmBS4Pc7M9hO6EUfyguUkhIV6El0gkuSJnmKyNGd83F06twOIUpYnj-LjglBJUYoO4lWq-WX5Hp5EVfCQR03YtA-rpXYdMYpF7fgtyaUjY1Bg_RWSaH1Pq6tuoEubiBo-qHt3fPoaSO0gxfTfhZ9_3Tx7fxzcnm1Wp8vLxNZEOoThnNgqJJI5qIqoEQZFghVqKSEQlFRwEXD0gIRyBnUQNJKlFUpUCorlJWAyFn06uDba-P49AeOpxkleUFRXgZifSBqI3a8t6oVds-NUPy2YOyGC-uV1MBZQ-uyqQmTTZHlkjJaM8JYkzIAXLHxNXrwGrpe7H-F0f8ZYsTHGP62wMcY-BRD0H2cuhyqFmoJnbdCz5qZ33RqyzfmhheUYYRHg7eTgTU_B3Cet8pJ0Fp0YIbbeTOcMoZpQF_fQx_-lYnaiDC46hoT3pWjKV_mpMRZyvLRa_EAFVYNrZJhwkaF-kzwbiYIjIfffiMG5_j6-uvj2asfc_bNHXYLQvutM3rwynRuDn44gNIa5yw0XCovRix0rvT_YsruiR-V7h94sxer |
| CitedBy_id | crossref_primary_10_1007_s10409_024_24076_x crossref_primary_10_3390_electronics12194172 crossref_primary_10_1371_journal_pone_0271225 crossref_primary_10_20965_jaciii_2021_p0346 crossref_primary_10_1088_1742_6596_2417_1_012031 crossref_primary_10_1088_1361_6501_ad8fa4 crossref_primary_10_1016_j_engappai_2023_106542 crossref_primary_10_1109_TIM_2023_3246470 crossref_primary_10_1371_journal_pone_0291656 crossref_primary_10_3390_en15082796 crossref_primary_10_3233_JIFS_231948 crossref_primary_10_1109_ACCESS_2021_3110947 |
| Cites_doi | 10.1109/COASE.2018.8560528 10.1016/j.ymssp.2018.03.025 10.3901/JME.2015.21.049 10.1016/j.ymssp.2005.09.012 10.1016/j.eswa.2016.07.039 10.1016/j.ymssp.2016.06.024 10.1016/j.jmsy.2018.04.005 10.1109/TKDE.2008.239 10.1109/TAC.2019.2938302 10.1155/2016/6127479 10.1016/j.knosys.2016.09.032 10.1016/j.neucom.2018.05.024 10.1016/j.engappai.2015.10.009 10.1016/j.neucom.2017.07.032 10.1109/TCYB.2019.2930945 10.1613/jair.953 10.1155/2016/4632562 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Public Library of Science 2020 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Han et al 2020 Han et al |
| Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Han et al 2020 Han et al |
| DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0239070 |
| DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database (Proquest) Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitleAlternate | GAN - SAE based fault diagnosis method for electrically driven feed pumps |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2453675069 oai_doaj_org_article_8f5d9fd38cf746c585d8388f28ee1b80 10.1371/journal.pone.0239070 PMC7581010 A639142865 10_1371_journal_pone_0239070 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: ; grantid: U1613205 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ALIPV BBORY 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM ADRAZ ADTOC IPNFZ RIG UNPAY AAPBV ABPTK N95 |
| ID | FETCH-LOGICAL-c735t-816e80bc0c6ab7e9041a00b09535e7b5e17f82703e68ede32ba9b9a02cb049e03 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Aug 06 00:16:01 EDT 2023 Fri Oct 03 12:41:38 EDT 2025 Sun Oct 26 03:10:56 EDT 2025 Tue Sep 30 16:48:24 EDT 2025 Mon Sep 08 05:14:01 EDT 2025 Tue Oct 07 07:44:50 EDT 2025 Mon Oct 20 21:54:02 EDT 2025 Mon Oct 20 16:33:53 EDT 2025 Thu Oct 16 14:23:10 EDT 2025 Thu Oct 16 14:49:10 EDT 2025 Thu May 22 21:22:03 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Wed Oct 01 04:49:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c735t-816e80bc0c6ab7e9041a00b09535e7b5e17f82703e68ede32ba9b9a02cb049e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-8791-2253 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0239070 |
| PMID | 33091004 |
| PQID | 2453675069 |
| PQPubID | 1436336 |
| PageCount | e0239070 |
| ParticipantIDs | plos_journals_2453675069 doaj_primary_oai_doaj_org_article_8f5d9fd38cf746c585d8388f28ee1b80 unpaywall_primary_10_1371_journal_pone_0239070 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7581010 proquest_miscellaneous_2454128815 proquest_journals_2453675069 gale_infotracmisc_A639142865 gale_infotracacademiconefile_A639142865 gale_incontextgauss_ISR_A639142865 gale_incontextgauss_IOV_A639142865 gale_healthsolutions_A639142865 crossref_citationtrail_10_1371_journal_pone_0239070 crossref_primary_10_1371_journal_pone_0239070 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-22 |
| PublicationDateYYYYMMDD | 2020-10-22 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationYear | 2020 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | Garcia EA H He (pone.0239070.ref003) 2009; 21 Z Wang (pone.0239070.ref016) 2018; 310 WT Mao (pone.0239070.ref007) 2017; 83 XM Tao (pone.0239070.ref008) 2010; 29 Q Fan (pone.0239070.ref011) 2017; 115 Diego Cabrera (pone.0239070.ref017) 2019; 7 DE Rumelhart (pone.0239070.ref026) 1988; 323 H Liu (pone.0239070.ref023) 2016 F Jia (pone.0239070.ref021) 2018; 272 PS Ambika (pone.0239070.ref029) 2019 HW Xu (pone.0239070.ref001) 2018 E Ramentol (pone.0239070.ref009) 2016; 48 pone.0239070.ref019 L Guo (pone.0239070.ref022) 2016 YG Lei (pone.0239070.ref002) 2015; 52 HX Guo (pone.0239070.ref012) 2016; 49 LX Duan (pone.0239070.ref010) 2016; 64 CL Li (pone.0239070.ref020) 2017 NV Chawla (pone.0239070.ref006) 2002; 16 Y Zhang (pone.0239070.ref014) 2018; 48 P Vincent (pone.0239070.ref027) 2010; 11 pone.0239070.ref004 pone.0239070.ref005 AKS Jardine (pone.0239070.ref028) 2006; 20 pone.0239070.ref024 F Jia (pone.0239070.ref013) 2018; 110 Yuan Xie (pone.0239070.ref018) 2018 pone.0239070.ref025 I Goodfellow (pone.0239070.ref015) 2014; 2014 |
| References_xml | – ident: pone.0239070.ref024 doi: 10.1109/COASE.2018.8560528 – volume: 110 start-page: 349 year: 2018 ident: pone.0239070.ref013 article-title: Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.03.025 – start-page: 1 volume-title: Vibration signal based condition monitoring of mechanical equipment with scattering transform. year: 2019 ident: pone.0239070.ref029 – volume: 52 start-page: 49 issue: 21 year: 2015 ident: pone.0239070.ref002 article-title: Big data Health Monitoring method of Mechanical equipment based on depth Theory publication-title: Journal of Mechanical Engineering doi: 10.3901/JME.2015.21.049 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: pone.0239070.ref028 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2005.09.012 – volume: 64 start-page: 239 year: 2016 ident: pone.0239070.ref010 article-title: A new support vector data description method for machinery fault diagnosis with unbalanced datasets publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.07.039 – volume: 83 start-page: 450 year: 2017 ident: pone.0239070.ref007 article-title: Online sequential prediction of bearings imbalanced fault diagnosis by extreme learning machine publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2016.06.024 – volume: 2014 start-page: 2672 year: 2014 ident: pone.0239070.ref015 article-title: Generative adversarial nets publication-title: In Proceedings of the Advances in Neural Information Processing Systems – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: pone.0239070.ref027 article-title: Stacked Denoising Autoencoders Learning Useful Representations in a Deep Network with a Local Denoising Criterion publication-title: Journal of Machine Learning Research – volume: 48 start-page: 34 year: 2018 ident: pone.0239070.ref014 article-title: Imbalanced data fault diagnosis of rotating machinery using synthetic oversampling and feature learning publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2018.04.005 – volume: 49 start-page: 176 issue: C year: 2016 ident: pone.0239070.ref012 article-title: BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification publication-title: Engineering Applications of Artificial Intelligence – volume: 323 start-page: 399 issue: 6088 year: 1988 ident: pone.0239070.ref026 article-title: Learning representations by back-progating errors publication-title: Nature – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: pone.0239070.ref003 article-title: Learning from Imbalanced Data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2008.239 – ident: pone.0239070.ref005 doi: 10.1109/TAC.2019.2938302 – start-page: 1 year: 2016 ident: pone.0239070.ref023 article-title: Rolling bearing fault diagnosis based on STFT-deep learning and sound signals publication-title: Shock and Vibration doi: 10.1155/2016/6127479 – ident: pone.0239070.ref025 – volume: 115 start-page: 87 year: 2017 ident: pone.0239070.ref011 article-title: Entropy-based fuzzy support vector machine for imbalanced datasets. publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.09.032 – start-page: 6017 year: 2018 ident: pone.0239070.ref018 article-title: Imbalanced Learning for Fault Diagnosis Problem of Rotating Machinery Based on Generative Adversarial Networks. publication-title: IEEE – volume: 310 start-page: 213 issue: 2018 year: 2018 ident: pone.0239070.ref016 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition. publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – volume: 29 issue: 12 year: 2010 ident: pone.0239070.ref008 article-title: Novel fault detection method based on SVM with unbalanced datasets publication-title: Journal of Vibration and Shock – volume: 7 year: 2019 ident: pone.0239070.ref017 article-title: Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery. publication-title: IEEE – volume: 48 start-page: 134 issue: C year: 2016 ident: pone.0239070.ref009 article-title: Fuzzy-rough imbalanced learning for the diagnosis of High Voltage Circuit Breaker maintenance: The SMOTE-FRST-2T algorithm. publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2015.10.009 – volume: 272 start-page: 619 year: 2018 ident: pone.0239070.ref021 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.032 – ident: pone.0239070.ref004 doi: 10.1109/TCYB.2019.2930945 – volume-title: Research and Application on Condition Assessment and Maintenance Optimization of the Turbine Driven Boiler Feed Water Pump Set year: 2018 ident: pone.0239070.ref001 – ident: pone.0239070.ref019 – start-page: 2203 year: 2017 ident: pone.0239070.ref020 article-title: Mmd gan:Towards deeper understanding of moment matching network.Advances in Neural Information Proceeing Systems. – volume: 16 start-page: 321 issue: 1 year: 2002 ident: pone.0239070.ref006 article-title: SMOTE: Synthetic Minority Over-sampling Technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – start-page: 1 year: 2016 ident: pone.0239070.ref022 article-title: Multifeatures fusion and nonlinear dimension reduction for intelligent bearing condition monitoring publication-title: Shock and Vibration doi: 10.1155/2016/4632562 |
| SSID | ssj0053866 |
| Score | 2.418793 |
| Snippet | The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the... |
| SourceID | plos doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | e0239070 |
| SubjectTerms | Accuracy Algorithms Automation Back propagation networks Biology and Life Sciences Classification Coders Computer and Information Sciences Condition monitoring Datasets Deep learning Engineering and Technology Fault diagnosis Fault location (Engineering) Feature extraction Feeds Feedwater pumps Game theory Generative adversarial networks Impact analysis Learning theory Mechanical engineering Mechanical properties Medical diagnosis Medicine and Health Sciences Methods Neural networks Physical Sciences Power plants Propagation Research and Analysis Methods Sample size Teaching methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQXuCCKA91oYBBSMAhW-dp-7igPkACJKCoN8uvQKUou2o2Qv33zMTeaIOQ2gPXeBwl8_JMMvMNIa9cUWsJyU-C2FFJkXmRaIg7khxhKAvjjHXYO_zpc3V6Vnw8L893Rn1hTViABw6MOxR16WTtcmFrXlQWolsnciHqTHifGjFk60zIbTIVfDBYcVXFRrmcp4dRLov1qvULbOdkOJx45yAa8PpHrzxbN6tuEnL-XTB5u2_X-uq3bpqd0-j4Hrkbw0i6DI-_R2759j7Zi4ba0TcRTfrtA3JysgSnuTyieF45Wuu-2VAXCuwuOhomSFMIXWmYiINCa66ou0Q3SGs43OgaRN49JGfHR9_fnyZxekJieV5uEpFWXjBjma204V6yItWMGcSXKz03pU95LTIweF8J73yeGS2N1CyzBrIGz_JHZNYCv_YJlY4zba0puISEqqi09ppbK6V3zDmezUm-ZaWyEVocJ1w0avhfxiHFCGxRKAAVBTAnybhrHaA1rqF_h1IaaREYe7gA6qKiuqjr1GVOnqOMVegyHc1bLSFSQ_C5qpyTlwMFgmO0WH3zU_ddpz58-XEDom9fJ0SvI1G9AnZYHTse4J0QdGtCeTChBBO3k-V91MgtVzqVFWUOmR6rJOzcaum_l1-My3hTrKhr_aofaAqITUQKd-cT7Z4weLrSXvwaEMghyQTbBmYuRju4kQgf_w8RPiF3MvzoAQFElh2Q2eay908hMtyYZ4MT-APZyWI5 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAXRHmoCwUMQgIO2TpPOweEtmjbgsSCCkW9RX6lVIqSsNkV6r9nJnFCgxD0Gk-sZF6eSWa-IeSFiXKZQvLjIXaUFwVWeBLiDi9EGMpIGaUN9g5_XCbHp9GHs_hsiyz7Xhgsq-x9YuuoTaXxG_l-EMUhBLcsSd_WPzycGoV_V_sRGtKNVjBvWoixG2Q7QGSsCdk-WCw_n_S-Gaw7SVwDXcj9fSevWV2VdoZtngyHFl85oFoc_8FbT-qiakah6J-FlDc3ZS0vf8qiuHJKHd4ht114SeedPuyQLVveJTvOgBv6yqFMv75Hjo7m4EznC4rnmKG53BRrarrCu4uGdpOlKYS0tJuUg8IsLqlZoXukORx6tAZVaO6T08PF13fHnpuq4GkexmtP-IkVTGmmE6m4TVnkS8YU4s7FlqvY-jwXATgCmwhrbBgomapUskAryCYsCx-QSQn82iU0NZwB51XEU0i0okRKK7nWaWoNM4YHUxL2rMy0gxzHyRdF1v5H45B6dGzJUACZE8CUeMNddQe58R_6A5TSQIuA2e2FanWeOfvLRB6bNDeh0DmPEg1JkhGhEHkgrPWVgE2eooyzrvt0MPtsDhEcgtIl8ZQ8bykQNKPEqpxzuWma7P2nb9cg-nIyInrpiPIK2KGl64SAd0IwrhHl3ogSTF-PlndRI3uuNNlvI4E7ey39-_KzYRk3xUq70labliaCmEX4sDsfafeIweOV8uJ7i0wOySfYPDBzNtjBtUT48N9P-4jcCvAzB4QMQbBHJuvVxj6GWHCtnjgD_wWf2F_g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbK6wEuQFnUBwUMQiyHpImz2Dk-UBeQKAgoKgcUeQtURHlPTSJUDvx2ZhInIhWIcuAWxeNRPB6PZ-KZz4Q8NHEhMwh-PMSO8mJmhSfB7_AihKGMlVHaYO3wq4N0_zB-eZQcrZFPQy2MkyDEiOWy7k7y8WFZ2W0nyW3EK-pPT_0w4uHQw18BkY-lmqDEjzrEIfwz1mAB0gWynibgqs_I-uHBm8XH_qSZeSkLIldO9ydOk-2qQ_UfbfcMv2zimJ5Nq7zYVit5-k2W5S971u4V8mMYbZ-q8tVvG-Xr72eAIP-bOK6Sy87bpYueywZZs9U1suHsSU2fONDrp9fJ3t4CbPtih-K2amgh27Khps8DPK5pf9E1BQ-b9hf3oG6Vp9ScoLWmBezBdAWaWd8gh7s775_ve-6SB0_zKGk8EaZWBEoHOpWK2yyIQxkECmHwEstVYkNeCAZ2yabCGhsxJTOVyYBpBcGNDaKbZFbBWDcJzQwPpNYq5hnEfXEqpZVc6yyzJjCGszmJhrnMtUNAx4s4yrw71uMQCfViyVF4uRPenHhjr1WPAPIX-meoJiMt4nd3L2D2cjdruSgSkxUmErrgcaohZjMiEqJgwtpQCWByD5Us74thRyuUL8ChRIy8NJmTBx0FYnhUmCT0WbZ1nb94_eEcRO_eTogeO6JiCeLQ0hVmwJhQuSaUWxNKsER60ryJ2jlIpc5ZnEQQkAZpBj2HZfL75vtjMzLFxL_KLtuOJgYXSoTAnU-W10TA05bq-EsHlA6xMJggEKY_LsRzTeGtf-1wm1xi-B8GfBrGtsisOWntHXBWG3XXmZyfbMCZAQ priority: 102 providerName: Unpaywall |
| Title | GAN-SAE based fault diagnosis method for electrically driven feed pumps |
| URI | https://www.proquest.com/docview/2453675069 https://www.proquest.com/docview/2454128815 https://pubmed.ncbi.nlm.nih.gov/PMC7581010 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239070&type=printable https://doaj.org/article/8f5d9fd38cf746c585d8388f28ee1b80 http://dx.doi.org/10.1371/journal.pone.0239070 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (Open Access) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database (subscription) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF616QEuiPJQ05awICTg4MjvXR8QSqskBamhKgSFk7Uvl0qWk8aJIP-eGXtjYdSKXnzwzq7keezMrHe-IeSNDjORQPLjIHaUE_qGOwLiDidAGMpQaqk01g6fT-Kzafh5Fs12yLZnq2VgeWtqh_2kpsu8__tm8xEM_kPVtYF520n9xbwwfSzWBDXeJXvgqxJs5nAeNv8VwLrj2BbQ3TWz5aAqHP9mt-4s8nnZCkX_vUj5YF0sxOaXyPO_vNToMXlkw0s6qPVhn-yY4gnZtwZc0ncWZfr9UzIeD2AzHQwp-jFNM7HOV1TXF--uS1p3lqYQ0tK6Uw4KM99QvcTtkWbg9OgCVKF8Rqaj4bfTM8d2VXAUC6KVw73YcFcqV8VCMpO4oSdcVyLuXGSYjIzHMu7DRmBibrQJfCkSmQjXVxKyCeMGz0mnAH4dEJpo5gqlZMgSSLTCWAgjmFJJYrSrNfO7JNiyMlUWchw7X-Rp9R-NQepRsyVFAaRWAF3iNLMWNeTGf-hPUEoNLQJmVy_my6vU2l_Ks0gnmQ64ylgYK0iSNA84z3xujCc5LPISZZzW1aeN2acDiOAQlC6OuuR1RYGgGQXeyrkS67JMP335fg-ir5ctoreWKJsDO5SwlRDwTQjG1aI8blGC6avW8AFq5JYrZeqHUQAZoBsnMHOrpbcPv2qGcVG8aVeY-bqiCSFm4R6szlra3WJwe6S4_lkhk0PyCTYPzOw3dnAvER7e_SFH5KGPRxwQLvj-MemslmvzAuLAleyRXTZj8OSnHj5H4x7ZOxlOLi571clKrzJ9eDedXAx-_AGQ1GQy |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcCgXRHmogUIXBAIOTv3e9QGhAG0T-kCCFuVm9uVSybJNnKjKn-I3MuMXNULQS6_ZySqZx7cz9s43hDzXfiIiKH4s5I6yfNdwS0DeYXlIQ-lLLZXG3uGj43By6n-cBbM18rPthcFrlS0mVkCtc4XPyHdcP_AgubXD6G3xw8KpUfh2tR2hUbvFgVldQMlWvpl-APu-cN293ZP3E6uZKmAp5gULizuh4bZUtgqFZCayfUfYtkTetcAwGRiHJdyFQDAhN9p4rhSRjITtKgnZtLE92PcGuel7gCUQP2zWFXiAHWHYtOd5zNlpvGFU5JkZYROpjSORLx1_1ZSA7iwYFGle9hLdP69pri-zQqwuRJpeOgP37pDbTfJKx7W3bZA1k90lGw08lPRVw2H9-h7Z3x8DVI93KZ6SmiZimS6orq_1nZe0nltNIWGm9RwedJV0RfUcwZcmcKTSAhytvE9Or0W7D8ggA31tEhppZgulpM8iKOP8UAgjmFJRZLStNXOHxGtVGauG0BznaqRx9ZaOQWFTqyVGA8SNAYbE6r5V1IQe_5F_h1bqZJGOu_ogn5_FTXTHPAl0lGiPq4T5oYISTHOP88TlxjiSwybbaOO47m3tQCUeQ36IlHdhMCTPKgmk5Mjwzs-ZWJZlPP309QpCXz73hF42QkkO6lCi6bOA_4RUXz3JrZ4kAIvqLW-iR7ZaKePfIQjfbL3078tPu2XcFO_xZSZfVjI-ZETcgd1Zz7t7Cu6vZOffK95zKG0BUUCZoy4OrmTCh__-tdtkfXJydBgfTo8PHpFbLj5QgeTEdbfIYDFfmseQdS7kkyrUKfl23djyC7g7ldM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIAEXRHmogUIXBAIOTuz1Y9cHhAJ9hUJBlKLczHp3XSpZtokTVflr_Dpm_KJGCHrpNTtZJTOz387YM98Q8lR7iQwh-bGQO8rymBGWhLjDcpGG0ot1rDT2Dn84DPaPvXczf7ZGfra9MFhW2WJiBdQ6V_iMfMw834Xg1g7CcdKURXza3n1d_LBwghS-aW3HadQucmBWZ5C-la-m22DrZ4zt7nx5u281EwYsxV1_YQknMMKOla0CGXMT2p4jbTtGDjbf8Ng3Dk8Eg0NhAmG0cVkswziUNlMxRNbGdmHfK-Qqd90Qywn5rEv2AEeCoGnVc7kzbjxjVOSZGWFDqY3jkc9dhdXEgO5eGBRpXvaC3j9LNq8vs0KuzmSanrsPd2-Rm00gSye1562TNZPdJusNVJT0RcNn_fIO2dubAGxPdijemJomcpkuqK5L_E5LWs-wphA803omD7pNuqJ6jkBME7heaQFOV94lx5ei3XtkkIG-NggNNbelUrHHQ0jpvEBKI7lSYWi0rTVnQ-K2qoxUQ26OMzbSqHpjxyHJqdUSoQGixgBDYnXfKmpyj__Iv0ErdbJIzV19kM9PouakRyLxdZhoV6iEe4GCdEwLV4iECWOcWMAmW2jjqO5z7QAmmkCsiPR3gT8kTyoJpOfI0NFP5LIso-nHrxcQOvrcE3reCCU5qEPJpucC_hPSfvUkN3uSADKqt7yBHtlqpYx-H0f4Zuulf19-3C3jpljTl5l8Wcl4EB0JB3bnPe_uKbi_kp1-rzjQIc0FdAFljrpzcCET3v_3r90i1wBVovfTw4MH5AbDZysQpzC2SQaL-dI8hAB0ET-qTjol3y4bWn4B8tyaFg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbK6wEuQFnUBwUMQiyHpImz2Dk-UBeQKAgoKgcUeQtURHlPTSJUDvx2ZhInIhWIcuAWxeNRPB6PZ-KZz4Q8NHEhMwh-PMSO8mJmhSfB7_AihKGMlVHaYO3wq4N0_zB-eZQcrZFPQy2MkyDEiOWy7k7y8WFZ2W0nyW3EK-pPT_0w4uHQw18BkY-lmqDEjzrEIfwz1mAB0gWynibgqs_I-uHBm8XH_qSZeSkLIldO9ydOk-2qQ_UfbfcMv2zimJ5Nq7zYVit5-k2W5S971u4V8mMYbZ-q8tVvG-Xr72eAIP-bOK6Sy87bpYueywZZs9U1suHsSU2fONDrp9fJ3t4CbPtih-K2amgh27Khps8DPK5pf9E1BQ-b9hf3oG6Vp9ScoLWmBezBdAWaWd8gh7s775_ve-6SB0_zKGk8EaZWBEoHOpWK2yyIQxkECmHwEstVYkNeCAZ2yabCGhsxJTOVyYBpBcGNDaKbZFbBWDcJzQwPpNYq5hnEfXEqpZVc6yyzJjCGszmJhrnMtUNAx4s4yrw71uMQCfViyVF4uRPenHhjr1WPAPIX-meoJiMt4nd3L2D2cjdruSgSkxUmErrgcaohZjMiEqJgwtpQCWByD5Us74thRyuUL8ChRIy8NJmTBx0FYnhUmCT0WbZ1nb94_eEcRO_eTogeO6JiCeLQ0hVmwJhQuSaUWxNKsER60ryJ2jlIpc5ZnEQQkAZpBj2HZfL75vtjMzLFxL_KLtuOJgYXSoTAnU-W10TA05bq-EsHlA6xMJggEKY_LsRzTeGtf-1wm1xi-B8GfBrGtsisOWntHXBWG3XXmZyfbMCZAQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GAN-SAE+based+fault+diagnosis+method+for+electrically+driven+feed+pumps&rft.jtitle=PloS+one&rft.au=Han%2C+Hui&rft.au=Hao%2C+Lina&rft.au=Cheng%2C+Dequan&rft.au=Xu%2C+He&rft.date=2020-10-22&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=15&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pone.0239070&rft.externalDocID=2453675069 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |