GAN-SAE based fault diagnosis method for electrically driven feed pumps

The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 10; p. e0239070
Main Authors Han, Hui, Hao, Lina, Cheng, Dequan, Xu, He
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 22.10.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0239070

Cover

More Information
Summary:The running of high-speed electrically driven feed pump has a direct impact on the safety of personnel equipment and economic benefits of power plant, as the result, intelligent condition monitoring and fault diagnosis of electrically driven feed pump becomes an urgent need. In the practical process of electrically driven feed pump fault diagnosis, the running of the equipment is in normal state for a long time, occasionally, with faults, which makes the fault data very rare in a large number of monitoring data, and makes it difficult to extract the internal fault features behind the original time series data, When the deep learning theory is used in practice, the imbalance between the fault data and the normal data occurs in the operation data set. In order to solve the problem of data imbalance, this paper proposes a fault diagnosis method of GAN-SAE. This method first makes compensation for the imbalance of sample data based on the Generative Adversarial Network (GAN), and then uses the Stacked Auto Encoder (SAE) method to extract the signal features. By designing the fault diagnosis program, compared with only using SAE, back propagation neural networks (BP) and multi-hidden layer neural networks(MNN) method, the GAN-SAE method can offer better capability of extracting features, and the accuracy of fault diagnosis of electrically driven feed pump could be improved to 98.89%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0239070