Solvability of Boundary Value Problems for a Class of Third-Order Functional Difference Equations

Consider the boundary value problems consisting of the functional difference equation$$\Delta^3x(n)=f(n,x(n+2),x(n-\tau_1(n)),\dots,x(n-\tau_m(n))),\;\;n\in[0,T] $$ and the following boundary value conditions\[\begin{cases}x(0)=x(T+3)=x(1)=0,\\x(n)=\psi(n), \;n\in [-\tau,-1],\\x(n)=\phi(n),\;n\in [T...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 3; no. 2; pp. 185 - 192
Main Author Liu, Yuji
Format Journal Article
LanguageEnglish
Published 12.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
2233-1964
DOI10.5644/SJM.03.2.05

Cover

More Information
Summary:Consider the boundary value problems consisting of the functional difference equation$$\Delta^3x(n)=f(n,x(n+2),x(n-\tau_1(n)),\dots,x(n-\tau_m(n))),\;\;n\in[0,T] $$ and the following boundary value conditions\[\begin{cases}x(0)=x(T+3)=x(1)=0,\\x(n)=\psi(n), \;n\in [-\tau,-1],\\x(n)=\phi(n),\;n\in [T+4,T+\delta].\end{cases}\]Sufficient conditions for the existence of at least one solution of this problem are established. We allow $f$ to be at most linear, superlinear or sublinear in the obtained results.   2000 Mathematics Subject Classification. 34B10, 34B15, 39A10
ISSN:1840-0655
2233-1964
2233-1964
DOI:10.5644/SJM.03.2.05