Biofilm Matrix Regulation by Candida albicans Zap1

A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans,...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 7; no. 6; p. e1000133
Main Authors Nobile, Clarissa J., Nett, Jeniel E., Hernday, Aaron D., Homann, Oliver R., Deneault, Jean-Sebastien, Nantel, Andre, Andes, David R., Johnson, Alexander D., Mitchell, Aaron P.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 16.06.2009
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1545-7885
1544-9173
1545-7885
DOI10.1371/journal.pbio.1000133

Cover

Abstract A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.
AbstractList A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble [beta]-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble [beta]-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.
  A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble β-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble β-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.
A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.
The zinc-responsive transcription factor Zap1 has a striking role in fungal biofilm formation and is reported to regulate matrix formation. A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans , the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble β-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble β-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. A biofilm is a surface-associated population of microbes that is embedded in a cement of extracellular compounds. This cement is known as matrix. The two main functions of matrix are to protect cells from their surrounding environment, preventing drugs and other stresses from penetrating the biofilm, and to maintain the architectural stability of the biofilm, acting as a glue to hold the cells together. The presence of matrix is a contributing factor to the high degree of resistance to antimicrobial drugs observed in biofilms. Because biofilms have a major impact on human health, and because matrix is such a pivotal component of biofilms, it is important to understand how the production of matrix is regulated. We have begun to address this question in the major human fungal pathogen Candida albicans. We found that the zinc-responsive regulatory protein Zap1 controls the expression of several genes important for matrix formation in C. albicans . These target genes encode glucoamylases and alcohol dehydrogenases, enzymes that probably govern the synthesis of distinct matrix constituents. The findings here offer insight into the metabolic processes that contribute to biofilm formation and indicate that Zap1 functions broadly as a negative regulator of biofilm maturation.
Audience Academic
Author Homann, Oliver R.
Nobile, Clarissa J.
Johnson, Alexander D.
Deneault, Jean-Sebastien
Hernday, Aaron D.
Mitchell, Aaron P.
Nantel, Andre
Nett, Jeniel E.
Andes, David R.
AuthorAffiliation 5 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
University of Aberdeen, United Kingdom
4 Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
2 Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
1 Department of Microbiology, Columbia University, New York, New York, United States of America
3 Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
AuthorAffiliation_xml – name: 5 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
– name: 2 Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
– name: 3 Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
– name: 1 Department of Microbiology, Columbia University, New York, New York, United States of America
– name: University of Aberdeen, United Kingdom
– name: 4 Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
Author_xml – sequence: 1
  givenname: Clarissa J.
  surname: Nobile
  fullname: Nobile, Clarissa J.
– sequence: 2
  givenname: Jeniel E.
  surname: Nett
  fullname: Nett, Jeniel E.
– sequence: 3
  givenname: Aaron D.
  surname: Hernday
  fullname: Hernday, Aaron D.
– sequence: 4
  givenname: Oliver R.
  surname: Homann
  fullname: Homann, Oliver R.
– sequence: 5
  givenname: Jean-Sebastien
  surname: Deneault
  fullname: Deneault, Jean-Sebastien
– sequence: 6
  givenname: Andre
  surname: Nantel
  fullname: Nantel, Andre
– sequence: 7
  givenname: David R.
  surname: Andes
  fullname: Andes, David R.
– sequence: 8
  givenname: Alexander D.
  surname: Johnson
  fullname: Johnson, Alexander D.
– sequence: 9
  givenname: Aaron P.
  surname: Mitchell
  fullname: Mitchell, Aaron P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19529758$$D View this record in MEDLINE/PubMed
BookMark eNqVkltr1EAYhgep2Hb1H4gGBMGLXeeYTHoh1MXDQrVQDxfeDN8css4ym1kzibT_3kl3W7oiouQiYfK873yH9xgdtLF1CD0meEZYRV6u4tC1EGYb7eOMYIwJY_fQERFcTCspxcGd70N0nNIKY0prKh-gQ1ILWldCHiH62sfGh3XxAfrOXxYXbjkE6H1sC31VzKG13kIBQXsDbSq-wYY8RPcbCMk92r0n6MvbN5_n76dn5-8W89OzqakY7qfakIYIY7gEQ0BwYrFzgrtchKlLAaJmuKkEq7gVjkIlSk25Js5CySzWNZugp1vfTYhJ7dpNioyVUyJJlYnFlrARVmrT-TV0VyqCV9cHsVsq6HpvglNgCSttSTWnJZey1sKABSobYpg2eXYT9Gp326DXzhrX9h2EPdP9P63_rpbxp6KllJKN5T7fGXTxx-BSr9Y-GRcCtC4OSZUVk4JTnsFnW3AJuTDfNjH7mRFWpyWTBJeYjb3N_kDlx7q1NzkKeWtuX_BiT5CZ3l32SxhSUotPF__Bfvx39vzrPvvk7hBvp3eTtwycbAHTxZQ61yjj--u45e58UASrMdw321ZjuNUu3FnMfxPf-v9N9gtdRPwE
CitedBy_id crossref_primary_10_1128_EC_05055_11
crossref_primary_10_1371_journal_pbio_1001117
crossref_primary_10_1371_journal_pgen_1003118
crossref_primary_10_1128_EC_00290_12
crossref_primary_10_1016_j_cell_2011_10_048
crossref_primary_10_1038_s41598_019_45624_y
crossref_primary_10_1371_journal_ppat_1002956
crossref_primary_10_1093_mmy_myaa063
crossref_primary_10_3390_md17080442
crossref_primary_10_1038_srep10104
crossref_primary_10_1128_mBio_01179_19
crossref_primary_10_3390_pathogens8020053
crossref_primary_10_1016_j_fbr_2021_01_002
crossref_primary_10_3389_fmicb_2017_02238
crossref_primary_10_1128_AAC_02749_16
crossref_primary_10_1128_EC_00031_12
crossref_primary_10_1128_mBio_01333_14
crossref_primary_10_1371_journal_pone_0039805
crossref_primary_10_1007_s11046_009_9264_y
crossref_primary_10_1093_mmy_myw120
crossref_primary_10_1371_journal_pbio_3001762
crossref_primary_10_1371_journal_pone_0258108
crossref_primary_10_36953_ECJ_30601324
crossref_primary_10_1128_mBio_00237_10
crossref_primary_10_1002_jbm_a_36984
crossref_primary_10_1371_journal_ppat_1004211
crossref_primary_10_1016_j_ajog_2015_02_002
crossref_primary_10_1016_j_fbr_2021_12_002
crossref_primary_10_1371_journal_pone_0035339
crossref_primary_10_1128_microbiolspec_MB_0007_2014
crossref_primary_10_1128_mBio_01338_18
crossref_primary_10_1007_s12033_023_00796_x
crossref_primary_10_1007_s12281_012_0108_8
crossref_primary_10_1371_journal_ppat_1003910
crossref_primary_10_3390_jof6040305
crossref_primary_10_1016_j_meegid_2013_07_013
crossref_primary_10_1093_femsyr_fov087
crossref_primary_10_1002_cpmc_60
crossref_primary_10_1186_s13068_023_02323_1
crossref_primary_10_1590_0001_3765201920180045
crossref_primary_10_1186_1741_7007_8_49
crossref_primary_10_1038_nature09560
crossref_primary_10_1128_AAC_04650_14
crossref_primary_10_3389_fmicb_2024_1358752
crossref_primary_10_2217_fmb_14_18
crossref_primary_10_1098_rsob_220077
crossref_primary_10_1371_journal_ppat_1008478
crossref_primary_10_1128_IAI_00779_17
crossref_primary_10_1371_journal_pbio_3000331
crossref_primary_10_3390_ijms21176131
crossref_primary_10_1186_gb_2010_11_7_r71
crossref_primary_10_1016_j_ijbiomac_2017_11_003
crossref_primary_10_1371_journal_ppat_1002257
crossref_primary_10_1007_s12038_023_00398_4
crossref_primary_10_1016_j_chom_2011_02_003
crossref_primary_10_1007_s40588_015_0015_1
crossref_primary_10_1016_j_funbio_2017_12_002
crossref_primary_10_1128_mbio_01872_24
crossref_primary_10_1016_j_ijmm_2011_04_001
crossref_primary_10_3390_jof6010014
crossref_primary_10_1021_acsinfecdis_9b00033
crossref_primary_10_1371_journal_pbio_1000363
crossref_primary_10_1007_s00438_014_0846_0
crossref_primary_10_1038_s41598_020_70650_6
crossref_primary_10_1016_j_phrs_2024_107441
crossref_primary_10_1093_g3journal_jkab216
crossref_primary_10_1016_j_cell_2010_11_051
crossref_primary_10_2217_fmb_13_101
crossref_primary_10_1007_s11046_020_00445_w
crossref_primary_10_1093_femsyr_fow032
crossref_primary_10_1016_j_tim_2016_09_004
crossref_primary_10_1093_femsyr_foab068
crossref_primary_10_1128_microbiolspec_MB_0005_2014
crossref_primary_10_1128_spectrum_00171_22
crossref_primary_10_1371_journal_ppat_1004542
crossref_primary_10_1111_1348_0421_12596
crossref_primary_10_1128_mBio_00451_18
crossref_primary_10_1038_nrmicro2475
crossref_primary_10_1111_mmi_12329
crossref_primary_10_1016_j_mib_2019_04_008
crossref_primary_10_1007_s12275_011_1064_7
crossref_primary_10_1016_j_tcsw_2018_03_002
crossref_primary_10_1038_s44259_024_00040_9
crossref_primary_10_1016_j_heliyon_2021_e07805
crossref_primary_10_3390_stresses4040041
crossref_primary_10_1080_20002297_2017_1385372
crossref_primary_10_5402_2012_538694
crossref_primary_10_1371_journal_ppat_1000601
crossref_primary_10_1371_journal_ppat_1012031
crossref_primary_10_1111_jam_14949
crossref_primary_10_5812_jjm_38031
crossref_primary_10_1146_annurev_micro_091014_104330
crossref_primary_10_1074_jbc_M113_528802
crossref_primary_10_1371_journal_ppat_1002476
crossref_primary_10_3390_pathogens12010126
crossref_primary_10_1128_EC_00078_15
crossref_primary_10_1038_s41579_025_01147_0
crossref_primary_10_1039_C4MT00331D
crossref_primary_10_2217_fmb_12_48
crossref_primary_10_1016_j_mib_2013_03_007
crossref_primary_10_1007_s00430_023_00777_6
crossref_primary_10_1002_pmic_201200228
crossref_primary_10_1007_s00294_023_01263_5
crossref_primary_10_3389_fcimb_2023_1136698
crossref_primary_10_1016_j_cell_2012_08_018
crossref_primary_10_1111_j_1462_5822_2010_01474_x
crossref_primary_10_1111_j_1439_0507_2010_01970_x
crossref_primary_10_1371_journal_pbio_3002693
crossref_primary_10_3389_fmicb_2019_00034
crossref_primary_10_1371_journal_pone_0039624
crossref_primary_10_1128_mBio_00637_12
crossref_primary_10_1534_genetics_111_134080
crossref_primary_10_1016_j_micinf_2016_01_002
crossref_primary_10_1093_jacamr_dlad155
crossref_primary_10_5941_MYCO_2015_43_3_179
crossref_primary_10_1128_mBio_01565_15
crossref_primary_10_1155_2012_528521
crossref_primary_10_1007_s12281_014_0180_3
crossref_primary_10_3390_jof9010098
crossref_primary_10_1002_jobm_200900442
crossref_primary_10_1016_j_celrep_2021_110293
crossref_primary_10_1038_aps_2010_33
crossref_primary_10_3390_jof3010008
crossref_primary_10_1128_mBio_01201_14
crossref_primary_10_3390_antibiotics13050434
crossref_primary_10_1038_s41522_022_00341_9
crossref_primary_10_1016_j_micres_2013_02_008
crossref_primary_10_1111_mmi_12653
crossref_primary_10_1371_journal_ppat_1004630
crossref_primary_10_1093_femsyr_fow029
crossref_primary_10_1111_cmi_12593
crossref_primary_10_3389_fmicb_2015_00160
crossref_primary_10_3724_SP_J_1008_2010_00599
crossref_primary_10_1016_j_ecoenv_2023_115389
crossref_primary_10_1038_s41598_017_03082_4
crossref_primary_10_1534_genetics_116_195024
crossref_primary_10_1080_10409238_2020_1742092
crossref_primary_10_1128_mmbr_00081_22
crossref_primary_10_3390_ph14010024
crossref_primary_10_1016_j_mam_2024_101290
crossref_primary_10_1371_journal_ppat_1005828
crossref_primary_10_1371_journal_pgen_1006350
crossref_primary_10_1002_yea_1627
crossref_primary_10_1186_1471_2164_14_168
crossref_primary_10_1128_EC_05196_11
crossref_primary_10_1371_journal_ppat_1002683
crossref_primary_10_1371_journal_pone_0029707
crossref_primary_10_3389_fcimb_2021_765942
crossref_primary_10_1186_s43088_024_00504_x
crossref_primary_10_1128_MMBR_00068_15
crossref_primary_10_1155_2017_4614183
crossref_primary_10_1016_j_chom_2011_07_005
crossref_primary_10_1128_spectrum_02536_22
crossref_primary_10_1038_nrmicro_2017_107
crossref_primary_10_5812_jjm_37385
crossref_primary_10_1038_ncb2097
crossref_primary_10_1128_mBio_01365_16
crossref_primary_10_1080_21505594_2023_2175914
crossref_primary_10_1111_mmi_12913
crossref_primary_10_1139_cjm_2022_0195
crossref_primary_10_3389_fcimb_2016_00131
crossref_primary_10_1128_EC_00292_13
crossref_primary_10_3390_genes9070318
crossref_primary_10_1080_1040841X_2020_1843400
crossref_primary_10_1016_j_mib_2016_05_013
crossref_primary_10_1016_j_ijpharm_2021_120768
crossref_primary_10_1111_mmi_12345
crossref_primary_10_1093_infdis_jiae631
crossref_primary_10_1093_femsre_fux050
crossref_primary_10_1111_j_1365_2958_2011_07626_x
crossref_primary_10_3390_jof7090739
crossref_primary_10_3389_fcimb_2020_605711
crossref_primary_10_3390_antibiotics11111474
crossref_primary_10_7883_yoken_JJID_2016_369
crossref_primary_10_1111_j_1365_2958_2010_07504_x
crossref_primary_10_1007_s12281_010_0035_5
crossref_primary_10_1128_mbio_01807_23
crossref_primary_10_1128_EC_00142_15
crossref_primary_10_1534_g3_120_401340
crossref_primary_10_1371_journal_pgen_1005590
crossref_primary_10_1016_j_coph_2013_08_008
crossref_primary_10_1128_mSphere_00646_20
crossref_primary_10_1002_pmic_201000129
crossref_primary_10_1080_1040841X_2024_2418125
crossref_primary_10_1371_journal_ppat_1002777
crossref_primary_10_3389_fmed_2018_00028
crossref_primary_10_1007_s12088_014_0460_1
crossref_primary_10_1007_s00294_020_01138_z
crossref_primary_10_1371_journal_pone_0097864
crossref_primary_10_1128_spectrum_02195_24
crossref_primary_10_1146_annurev_micro_041222_023745
crossref_primary_10_1038_srep31124
crossref_primary_10_4161_trns_22281
crossref_primary_10_3390_jof6010021
crossref_primary_10_1038_nrmicro2190
crossref_primary_10_1371_journal_ppat_1002525
crossref_primary_10_1128_spectrum_01201_24
crossref_primary_10_1016_j_colsurfb_2018_11_011
crossref_primary_10_1007_s12088_018_0714_4
crossref_primary_10_1021_acsinfecdis_0c00849
crossref_primary_10_1016_j_micpath_2017_10_057
crossref_primary_10_1007_s10096_020_03912_w
crossref_primary_10_1186_1471_2180_14_182
crossref_primary_10_12688_f1000research_2_106_v1
crossref_primary_10_3389_fmicb_2021_680382
crossref_primary_10_1371_journal_pone_0167470
crossref_primary_10_1111_mmi_13247
crossref_primary_10_1111_mmi_13002
crossref_primary_10_1074_jbc_R116_720995
crossref_primary_10_1016_j_resmic_2022_103955
crossref_primary_10_1093_femsyr_fov111
crossref_primary_10_1097_01_j_pain_0000460320_95267_5d
crossref_primary_10_1111_mec_14053
crossref_primary_10_1111_cmi_13140
crossref_primary_10_1093_femsyr_foaa005
crossref_primary_10_1002_yea_3855
crossref_primary_10_1128_EC_00112_13
crossref_primary_10_3389_fmicb_2020_01455
crossref_primary_10_1128_IAI_00087_14
crossref_primary_10_1128_microbiolspec_FUNK_0024_2016
crossref_primary_10_4161_viru_22913
crossref_primary_10_1038_s41598_020_70169_w
crossref_primary_10_1111_cmi_12767
crossref_primary_10_31083_j_fbe1502013
crossref_primary_10_2174_1570163816666190227231437
crossref_primary_10_1371_journal_ppat_1003034
crossref_primary_10_1371_journal_pbio_1002076
crossref_primary_10_1093_mmy_myaa080
crossref_primary_10_1097_MRM_0000000000000015
crossref_primary_10_1586_14787210_2014_885838
crossref_primary_10_7554_eLife_86075
crossref_primary_10_2147_IDR_S247944
crossref_primary_10_1007_s10266_009_0118_3
crossref_primary_10_1016_j_ijmm_2020_151414
crossref_primary_10_3389_fmicb_2022_920574
crossref_primary_10_3389_fmicb_2019_01528
crossref_primary_10_3390_jof4040140
crossref_primary_10_3389_fmicb_2022_818165
crossref_primary_10_1080_13880209_2016_1237977
Cites_doi 10.1128/AAC.49.2.584-589.2005
10.1073/pnas.97.14.7957
10.1046/j.1365-280X.1999.00244.x
10.1016/S0966-842X(02)00002-1
10.1128/AAC.01056-06
10.1128/EC.00219-06
10.1038/nature02800
10.1046/j.1365-2958.2002.02827.x
10.1073/pnas.0401416101
10.1093/jac/46.3.397
10.1016/j.cub.2007.02.035
10.1016/j.cub.2005.05.047
10.1016/j.gene.2004.06.021
10.1186/1471-2164-9-370
10.1016/j.tim.2004.11.006
10.1128/EC.3.2.536-545.2004
10.1371/journal.pbio.0050256
10.1146/annurev.micro.59.030804.121034
10.1006/jmbi.1998.1947
10.1128/EC.00107-06
10.1128/EC.4.7.1191-1202.2005
10.1086/322972
10.1021/bi0263199
10.1128/CMR.15.2.167-193.2002
10.1128/AEM.02625-07
10.1128/AEM.68.11.5459-5463.2002
10.1126/science.7992058
10.1371/journal.pbio.0060038
10.1371/journal.ppat.0020063
10.1126/science.1150021
10.1038/nrmicro1838
10.1074/jbc.273.44.28713
10.1128/IAI.67.5.2377-2382.1999
10.1099/jmm.0.46569-0
10.1128/EC.00252-07
10.1128/IAI.00161-06
10.1128/IAI.68.10.5953-5959.2000
10.1128/MCB.17.9.5044
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1086/517522
10.1016/S0966-842X(01)02012-1
10.1073/pnas.071404698
10.1128/IAI.72.10.6023-6031.2004
10.1128/JB.181.6.1868-1874.1999
10.1128/AEM.67.7.2982-2992.2001
10.1016/j.mib.2006.10.003
10.1128/EC.2.4.746-755.2003
10.1038/sj.emboj.7600122
ContentType Journal Article
Copyright COPYRIGHT 2009 Public Library of Science
Nobile et al. 2009
2009 Nobile et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault J-S, et al. (2009) Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biol 7(6): e1000133. doi:10.1371/journal.pbio.1000133
Copyright_xml – notice: COPYRIGHT 2009 Public Library of Science
– notice: Nobile et al. 2009
– notice: 2009 Nobile et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault J-S, et al. (2009) Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biol 7(6): e1000133. doi:10.1371/journal.pbio.1000133
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
CZG
DOI 10.1371/journal.pbio.1000133
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
PLoS Biology
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Matrix Mediators in Candida albicans Biofilms
EISSN 1545-7885
ExternalDocumentID 1297521817
oai_doaj_org_article_ad136d62b4264889b5cada28f1c3bc01
PMC2688839
A638106037
19529758
10_1371_journal_pbio_1000133
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007899
– fundername: NIAID NIH HHS
  grantid: R01 AI067703
– fundername: NIAID NIH HHS
  grantid: R01 AI073289
– fundername: NIAID NIH HHS
  grantid: K08 AI01767
– fundername: NIAID NIH HHS
  grantid: R01 AI49187
– fundername: NIAID NIH HHS
  grantid: R01 AI049187
– fundername: NIAID NIH HHS
  grantid: K08 AI001767
GroupedDBID ---
123
29O
2WC
36B
53G
5VS
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AFXKF
AHMBA
AKRSQ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IGS
IHR
IOV
IPNFZ
ISE
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PYCSY
QN7
RIG
RNS
RPM
SJN
SV3
TR2
TUS
UKHRP
WOW
XSB
YZZ
~8M
.GJ
CGR
CUY
CVF
ECM
EIF
NPM
PV9
QF4
RZL
WOQ
PMFND
7X8
PJZUB
PPXIY
PQGLB
PUEGO
5PM
3V.
AAPBV
ABPTK
AGJBV
CZG
M~E
ZA5
ID FETCH-LOGICAL-c730t-bc1f15cc48ac1a541d0ee54e022c965a5930f75374d5e2a756b24b1eda63d0b93
IEDL.DBID M48
ISSN 1545-7885
1544-9173
IngestDate Sun Oct 01 00:20:32 EDT 2023
Wed Aug 27 01:31:31 EDT 2025
Thu Aug 21 14:30:49 EDT 2025
Fri Sep 05 04:50:57 EDT 2025
Tue Jun 17 22:01:51 EDT 2025
Tue Jun 10 21:02:14 EDT 2025
Fri Jun 27 05:31:44 EDT 2025
Fri Jun 27 05:31:01 EDT 2025
Fri Jun 27 05:30:15 EDT 2025
Mon Mar 03 15:01:03 EST 2025
Thu Apr 24 22:58:10 EDT 2025
Tue Jul 01 01:24:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Candida albicans
Gene Expression Regulation, Fungal
Regulon
Microscopy, Confocal
Microscopy, Electron, Scanning
Biofilms
Chromatin Immunoprecipitation
Fungal Proteins
Genes, Fungal
Binding Sites
Saccharomyces cerevisiae
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c730t-bc1f15cc48ac1a541d0ee54e022c965a5930f75374d5e2a756b24b1eda63d0b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CJN JEN ADH ORH AN DRA ADJ APM. Performed the experiments: CJN JEN JSD. Analyzed the data: CJN JEN ADH ORH AN DRA APM. Wrote the paper: CJN JEN ADH DRA ADJ APM.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1000133
PMID 19529758
PQID 67385424
PQPubID 23479
ParticipantIDs plos_journals_1297521817
doaj_primary_oai_doaj_org_article_ad136d62b4264889b5cada28f1c3bc01
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2688839
proquest_miscellaneous_67385424
gale_infotracmisc_A638106037
gale_infotracacademiconefile_A638106037
gale_incontextgauss_ISR_A638106037
gale_incontextgauss_ISN_A638106037
gale_incontextgauss_IOV_A638106037
pubmed_primary_19529758
crossref_citationtrail_10_1371_journal_pbio_1000133
crossref_primary_10_1371_journal_pbio_1000133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20090616
PublicationDateYYYYMMDD 2009-06-16
PublicationDate_xml – month: 6
  year: 2009
  text: 20090616
  day: 16
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS biology
PublicationTitleAlternate PLoS Biol
PublicationYear 2009
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Nett (ref10) 2007; 195
S Garcia-Sanchez (ref24) 2004; 3
GS Baillie (ref17) 2000; 46
PS Stewart (ref27) 2008; 6
CY Wu (ref19) 2008; 9
TJ Lyons (ref18) 2000; 97
MA Alem (ref32) 2006; 5
CJ Nobile (ref5) 2007; 17
H Chen (ref33) 2004; 101
D Davis (ref42) 2000; 68
LJ Douglas (ref7) 2003; 11
CT Harbison (ref22) 2004; 431
M Segurado (ref20) 1999; 67
PK Mukherjee (ref30) 2006; 74
LC Lai (ref28) 2006; 5
JM Hornby (ref35) 2001; 67
MA Al-Fattani (ref8) 2006; 55
RE Zordan (ref50) 2007; 5
J Nett (ref9) 2007; 51
O Reuss (ref40) 2004; 341
RM Donlan (ref2) 2002; 15
IW Sutherland (ref3) 2001; 9
SW Martin (ref39) 2005; 4
F Gotz (ref13) 2002; 43
E Spreghini (ref44) 2003; 2
J van Helden (ref52) 1998; 281
AJ Bird (ref16) 2004; 23
RM Donlan (ref1) 2001; 33
H Zhao (ref15) 1997; 17
H Liu (ref41) 1994; 266
MV Evans-Galea (ref23) 2003; 42
YY Cao (ref38) 2005; 49
CA Kumamoto (ref25) 2005; 59
CJ Nobile (ref45) 2008
A Nantel (ref48) 2006
JR Blankenship (ref4) 2006; 9
J Sturtevant (ref29) 1999; 37
SS Branda (ref6) 2005; 13
LA Hazelwood (ref31) 2008; 74
MS Longtine (ref47) 1998; 14
TL Bailey (ref51) 1994; 2
KB Oh (ref36) 2001; 98
MJ Kim (ref11) 2008; 18
ME Hillenmeyer (ref26) 2008; 320
CJ Nobile (ref46) 2006; 2
CJ Nobile (ref12) 2005; 15
G Ramage (ref37) 2002; 68
M Martins (ref34) 2007; 6
BB Tuch (ref49) 2008; 6
H Zhao (ref21) 1998; 273
RB Wilson (ref43) 1999; 181
D Andes (ref14) 2004; 72
20076744 - PLoS Biol. 2009;7(6):e1000117
References_xml – volume: 49
  start-page: 584
  year: 2005
  ident: ref38
  article-title: cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol.
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.2.584-589.2005
– volume: 97
  start-page: 7957
  year: 2000
  ident: ref18
  article-title: Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.14.7957
– volume: 37
  start-page: 357
  year: 1999
  ident: ref29
  article-title: Identification and cloning of GCA1, a gene that encodes a cell surface glucoamylase from Candida albicans.
  publication-title: Med Mycol
  doi: 10.1046/j.1365-280X.1999.00244.x
– volume: 11
  start-page: 30
  year: 2003
  ident: ref7
  article-title: Candida biofilms and their role in infection.
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(02)00002-1
– volume: 51
  start-page: 510
  year: 2007
  ident: ref9
  article-title: Putative role of beta-1,3 glucans in Candida albicans biofilm resistance.
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01056-06
– volume: 5
  start-page: 1770
  year: 2006
  ident: ref32
  article-title: Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00219-06
– volume: 431
  start-page: 99
  year: 2004
  ident: ref22
  article-title: Transcriptional regulatory code of a eukaryotic genome.
  publication-title: Nature
  doi: 10.1038/nature02800
– volume: 43
  start-page: 1367
  year: 2002
  ident: ref13
  article-title: Staphylococcus and biofilms.
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2002.02827.x
– volume: 101
  start-page: 5048
  year: 2004
  ident: ref33
  article-title: Tyrosol is a quorum-sensing molecule in Candida albicans.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0401416101
– volume: 46
  start-page: 397
  year: 2000
  ident: ref17
  article-title: Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents.
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/46.3.397
– volume: 17
  start-page: R349
  year: 2007
  ident: ref5
  article-title: Microbial biofilms: e pluribus unum.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2007.02.035
– volume: 18
  start-page: 242
  year: 2008
  ident: ref11
  article-title: Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
  publication-title: J Microbiol Biotechnol
– volume: 15
  start-page: 1150
  year: 2005
  ident: ref12
  article-title: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.05.047
– volume: 341
  start-page: 119
  year: 2004
  ident: ref40
  article-title: The SAT1 flipper, an optimized tool for gene disruption in Candida albicans.
  publication-title: Gene
  doi: 10.1016/j.gene.2004.06.021
– volume: 9
  start-page: 370
  year: 2008
  ident: ref19
  article-title: Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-370
– volume: 13
  start-page: 20
  year: 2005
  ident: ref6
  article-title: Biofilms: the matrix revisited.
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2004.11.006
– volume: 3
  start-page: 536
  year: 2004
  ident: ref24
  article-title: Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.3.2.536-545.2004
– volume: 5
  start-page: e256
  year: 2007
  ident: ref50
  article-title: Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050256
– volume: 59
  start-page: 113
  year: 2005
  ident: ref25
  article-title: Alternative Candida albicans lifestyles: growth on surfaces.
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.59.030804.121034
– volume: 281
  start-page: 827
  year: 1998
  ident: ref52
  article-title: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1998.1947
– year: 2008
  ident: ref45
  article-title: Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions.
  publication-title: Cell Microbiol
– volume: 5
  start-page: 1468
  year: 2006
  ident: ref28
  article-title: Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00107-06
– volume: 4
  start-page: 1191
  year: 2005
  ident: ref39
  article-title: Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.4.7.1191-1202.2005
– start-page: 181
  year: 2006
  ident: ref48
  article-title: Microarrays for studying pathogenicity in Candida albicans.
– volume: 33
  start-page: 1387
  year: 2001
  ident: ref1
  article-title: Biofilm formation: a clinically relevant microbiological process.
  publication-title: Clin Infect Dis
  doi: 10.1086/322972
– volume: 42
  start-page: 1053
  year: 2003
  ident: ref23
  article-title: Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding.
  publication-title: Biochemistry
  doi: 10.1021/bi0263199
– volume: 15
  start-page: 167
  year: 2002
  ident: ref2
  article-title: Biofilms: survival mechanisms of clinically relevant microorganisms.
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.15.2.167-193.2002
– volume: 74
  start-page: 2259
  year: 2008
  ident: ref31
  article-title: The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02625-07
– volume: 68
  start-page: 5459
  year: 2002
  ident: ref37
  article-title: Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.11.5459-5463.2002
– volume: 266
  start-page: 1723
  year: 1994
  ident: ref41
  article-title: Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.
  publication-title: Science
  doi: 10.1126/science.7992058
– volume: 6
  start-page: e38
  year: 2008
  ident: ref49
  article-title: The evolution of combinatorial gene regulation in fungi.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0060038
– volume: 2
  start-page: e63
  year: 2006
  ident: ref46
  article-title: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0020063
– volume: 2
  start-page: 28
  year: 1994
  ident: ref51
  article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers.
  publication-title: Proc Int Conf Intell Syst Mol Biol
– volume: 320
  start-page: 362
  year: 2008
  ident: ref26
  article-title: The chemical genomic portrait of yeast: uncovering a phenotype for all genes.
  publication-title: Science
  doi: 10.1126/science.1150021
– volume: 6
  start-page: 199
  year: 2008
  ident: ref27
  article-title: Physiological heterogeneity in biofilms.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1838
– volume: 273
  start-page: 28713
  year: 1998
  ident: ref21
  article-title: Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.44.28713
– volume: 67
  start-page: 2377
  year: 1999
  ident: ref20
  article-title: Zinc-regulated biosynthesis of immunodominant antigens from Aspergillus spp.
  publication-title: Infect Immun
  doi: 10.1128/IAI.67.5.2377-2382.1999
– volume: 55
  start-page: 999
  year: 2006
  ident: ref8
  article-title: Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance.
  publication-title: J Med Microbiol
  doi: 10.1099/jmm.0.46569-0
– volume: 6
  start-page: 2429
  year: 2007
  ident: ref34
  article-title: Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00252-07
– volume: 74
  start-page: 3804
  year: 2006
  ident: ref30
  article-title: Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism.
  publication-title: Infect Immun
  doi: 10.1128/IAI.00161-06
– volume: 68
  start-page: 5953
  year: 2000
  ident: ref42
  article-title: Candida albicans RIM101 pH response pathway is required for host-pathogen interactions.
  publication-title: Infect Immun
  doi: 10.1128/IAI.68.10.5953-5959.2000
– volume: 17
  start-page: 5044
  year: 1997
  ident: ref15
  article-title: Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.17.9.5044
– volume: 14
  start-page: 953
  year: 1998
  ident: ref47
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae.
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– volume: 195
  start-page: 1705
  year: 2007
  ident: ref10
  article-title: Beta-1,3 glucan as a test for central venous catheter biofilm infection.
  publication-title: J Infect Dis
  doi: 10.1086/517522
– volume: 9
  start-page: 222
  year: 2001
  ident: ref3
  article-title: The biofilm matrix–an immobilized but dynamic microbial environment.
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(01)02012-1
– volume: 98
  start-page: 4664
  year: 2001
  ident: ref36
  article-title: Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.071404698
– volume: 72
  start-page: 6023
  year: 2004
  ident: ref14
  article-title: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model.
  publication-title: Infect Immun
  doi: 10.1128/IAI.72.10.6023-6031.2004
– volume: 181
  start-page: 1868
  year: 1999
  ident: ref43
  article-title: Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions.
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.6.1868-1874.1999
– volume: 67
  start-page: 2982
  year: 2001
  ident: ref35
  article-title: Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol.
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.7.2982-2992.2001
– volume: 9
  start-page: 588
  year: 2006
  ident: ref4
  article-title: How to build a biofilm: a fungal perspective.
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2006.10.003
– volume: 2
  start-page: 746
  year: 2003
  ident: ref44
  article-title: Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation.
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.2.4.746-755.2003
– volume: 23
  start-page: 1123
  year: 2004
  ident: ref16
  article-title: The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2.
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600122
– reference: 20076744 - PLoS Biol. 2009;7(6):e1000117
SSID ssj0022928
Score 2.4476645
Snippet A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth...
The zinc-responsive transcription factor Zap1 has a striking role in fungal biofilm formation and is reported to regulate matrix formation. A biofilm is a...
  A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000133
SubjectTerms Bacteriology
Binding Sites
Biofilms
Biofilms - growth & development
Candida albicans
Candida albicans - genetics
Candida albicans - physiology
Chromatin Immunoprecipitation
Control
Extracellular matrix
Fungal Proteins - metabolism
Gene Expression Regulation, Fungal
Genes, Fungal
Genetic aspects
Genetics and Genomics/Gene Function
Infections
Infectious Diseases/Fungal Infections
Influence
Microbial mats
Microbiology
Microbiology/Microbial Growth and Development
Microscopy, Confocal
Microscopy, Electron, Scanning
Regulon - genetics
Saccharomyces cerevisiae - genetics
Structure
Transcription factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G60ahDBp9js9-axFksVrKBWii_LfqUeXJOjuQP737uT3TsbUeqDbyE7m5DfzGZn2JnfIPQyRj1EGBmqlgURAxQoVo6eQSWccKwVxIuxQu7DsTg6Ye9P-emVVl-QE5bogRNwe8ZjKrwgFrZupRrLnfGGqBY7al2q3Ipv2ARTOdQizdhVFahm4nKWNBfNUYn3so5eL-28hxyB6APRyaY0cvdv_9Cz5aIf_uR-_p5FeWVbOryDbmd_stxP33EX3QjdPXQzdZi8vI9IvGrni_PyHKj4f5QXqfV8VEZpL8sDqGnxpjQLC3_DofxmlvgBOjl8--XgqMptEioXl-eqsg63mDvHlHHYcIZ9HQJnIaLgGsENb2jdxqhEMs8DMZILS5jFwRtBfW0b-hDNur4LO6hsWuOUUa2pgQXfB6WEkkqElsj4SEILRDc4aZc5xKGVxUKPB2MyxhLpszWgqzO6Baq2s5aJQ-Ma-Teggq0sMGCPN6Jd6GwX-jq7KNALUKAGjosOkmjOzHoY9LuPX_W-AFozUVP5N6HPx_8i9Gki9CoLtX1ExJlc3RBxBYKtieTuRDIuZzcZ3gGL2wAzaAy1z-CIxaHnGyvUMAvS47rQrwdIzlOcEVagR8kmf-HccJivCiQn1joBdzrSzb-PNONEKBXd58f_QxtP0K10DCcqLHbRbHWxDk-jN7eyz8aF-xMxHESF
  priority: 102
  providerName: Directory of Open Access Journals
Title Biofilm Matrix Regulation by Candida albicans Zap1
URI https://www.ncbi.nlm.nih.gov/pubmed/19529758
https://www.proquest.com/docview/67385424
https://pubmed.ncbi.nlm.nih.gov/PMC2688839
https://doaj.org/article/ad136d62b4264889b5cada28f1c3bc01
http://dx.doi.org/10.1371/journal.pbio.1000133
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL4XGCVCSDxlih1_5QGhbdo0QC1QKKp4sWzHGZVKUppWWv97fElaCFoFL1VU30XNz3fxXe37HUIvfdZDuBYuyqnjPkGBYmUfGUTccktzTjJeV8gNhvxyTN9N2GQPbXq2tgBWN6Z20E9qvJgdX_9cv_EO_7ru2iDwRul4bqYl7Pr7qCbZRwd-beKQjg3odl-BkJTItoBul2Zngap5_Ldv6958VlY3haJ_n6j8Y4m6uIvutLFleNIYwz2054r76FbTbXL9ABF_lU9nP8IB0PJfh6OmDb2fmNCswzOob8l0qGcG3oxV-E3P8UM0vjj_cnYZtS0TIutddRkZi3PMrKVSW6wZxVnsHKPOP7lNOdMsTeLcZyiCZswRLRg3hBrsMs2TLDZp8gj1irJwhyhMc22llrmOgRE_c1JyKSR3ORH-liQJULLBSdmWTxzaWsxUvUkmfF7RPLYCdFWLboCirda84dP4h_wpTMFWFtiw6y_KxZVqnUvpDCc848RAeCdlapjVmSYyxzYxNsYBegETqIDvooADNVd6VVXq7Yev6oQDxRmPE7FL6PPwf4RGHaFXrVBeekSsbisdPK5AttWRPOpIete2neFDsLgNMJXCUAcNQZkfer6xQgVacFSucOWqgoN6klFCA_S4scnfOKcM9GWARMdaO-B2R4rp95pynHApfSj9ZPcPeopuNxttPML8CPWWi5V75uO1pemjfTERfXRwej78OOrX_3r4z_efZL92zl_R-kHw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofilm+Matrix+Regulation+by+Candida+albicans+Zap1&rft.jtitle=PLoS+biology&rft.au=Nobile%2C+Clarissa&rft.au=Nett%2C+Jeniel&rft.au=Hernday%2C+Aaron&rft.au=Homann%2C+Oliver&rft.date=2009-06-16&rft.pub=Public+Library+of+Science&rft.eissn=1545-7885&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1000133&rft.externalDocID=1297521817
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon