Biofilm Matrix Regulation by Candida albicans Zap1
A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans,...
Saved in:
Published in | PLoS biology Vol. 7; no. 6; p. e1000133 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
16.06.2009
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1545-7885 1544-9173 1545-7885 |
DOI | 10.1371/journal.pbio.1000133 |
Cover
Abstract | A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. |
---|---|
AbstractList | A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble [beta]-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble [beta]-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble β-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble β-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection.A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans, the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble beta-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble beta-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. The zinc-responsive transcription factor Zap1 has a striking role in fungal biofilm formation and is reported to regulate matrix formation. A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth form of microorganisms and the cause of pervasive device-associated infection. This report focuses on the biofilm matrix of Candida albicans , the major fungal pathogen of humans. We report here that the C. albicans zinc-response transcription factor Zap1 is a negative regulator of a major matrix component, soluble β-1,3 glucan, in both in vitro and in vivo biofilm models. To understand the mechanistic relationship between Zap1 and matrix, we identified Zap1 target genes through expression profiling and full genome chromatin immunoprecipitation. On the basis of these results, we designed additional experiments showing that two glucoamylases, Gca1 and Gca2, have positive roles in matrix production and may function through hydrolysis of insoluble β-1,3 glucan chains. We also show that a group of alcohol dehydrogenases Adh5, Csh1, and Ifd6 have roles in matrix production: Adh5 acts positively, and Csh1 and Ifd6, negatively. We propose that these alcohol dehydrogenases generate quorum-sensing aryl and acyl alcohols that in turn govern multiple events in biofilm maturation. Our findings define a novel regulatory circuit and its mechanism of control of a process central to infection. A biofilm is a surface-associated population of microbes that is embedded in a cement of extracellular compounds. This cement is known as matrix. The two main functions of matrix are to protect cells from their surrounding environment, preventing drugs and other stresses from penetrating the biofilm, and to maintain the architectural stability of the biofilm, acting as a glue to hold the cells together. The presence of matrix is a contributing factor to the high degree of resistance to antimicrobial drugs observed in biofilms. Because biofilms have a major impact on human health, and because matrix is such a pivotal component of biofilms, it is important to understand how the production of matrix is regulated. We have begun to address this question in the major human fungal pathogen Candida albicans. We found that the zinc-responsive regulatory protein Zap1 controls the expression of several genes important for matrix formation in C. albicans . These target genes encode glucoamylases and alcohol dehydrogenases, enzymes that probably govern the synthesis of distinct matrix constituents. The findings here offer insight into the metabolic processes that contribute to biofilm formation and indicate that Zap1 functions broadly as a negative regulator of biofilm maturation. |
Audience | Academic |
Author | Homann, Oliver R. Nobile, Clarissa J. Johnson, Alexander D. Deneault, Jean-Sebastien Hernday, Aaron D. Mitchell, Aaron P. Nantel, Andre Nett, Jeniel E. Andes, David R. |
AuthorAffiliation | 5 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America University of Aberdeen, United Kingdom 4 Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada 2 Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America 1 Department of Microbiology, Columbia University, New York, New York, United States of America 3 Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America |
AuthorAffiliation_xml | – name: 5 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America – name: 2 Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America – name: 3 Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America – name: 1 Department of Microbiology, Columbia University, New York, New York, United States of America – name: University of Aberdeen, United Kingdom – name: 4 Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada |
Author_xml | – sequence: 1 givenname: Clarissa J. surname: Nobile fullname: Nobile, Clarissa J. – sequence: 2 givenname: Jeniel E. surname: Nett fullname: Nett, Jeniel E. – sequence: 3 givenname: Aaron D. surname: Hernday fullname: Hernday, Aaron D. – sequence: 4 givenname: Oliver R. surname: Homann fullname: Homann, Oliver R. – sequence: 5 givenname: Jean-Sebastien surname: Deneault fullname: Deneault, Jean-Sebastien – sequence: 6 givenname: Andre surname: Nantel fullname: Nantel, Andre – sequence: 7 givenname: David R. surname: Andes fullname: Andes, David R. – sequence: 8 givenname: Alexander D. surname: Johnson fullname: Johnson, Alexander D. – sequence: 9 givenname: Aaron P. surname: Mitchell fullname: Mitchell, Aaron P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19529758$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkltr1EAYhgep2Hb1H4gGBMGLXeeYTHoh1MXDQrVQDxfeDN8css4ym1kzibT_3kl3W7oiouQiYfK873yH9xgdtLF1CD0meEZYRV6u4tC1EGYb7eOMYIwJY_fQERFcTCspxcGd70N0nNIKY0prKh-gQ1ILWldCHiH62sfGh3XxAfrOXxYXbjkE6H1sC31VzKG13kIBQXsDbSq-wYY8RPcbCMk92r0n6MvbN5_n76dn5-8W89OzqakY7qfakIYIY7gEQ0BwYrFzgrtchKlLAaJmuKkEq7gVjkIlSk25Js5CySzWNZugp1vfTYhJ7dpNioyVUyJJlYnFlrARVmrT-TV0VyqCV9cHsVsq6HpvglNgCSttSTWnJZey1sKABSobYpg2eXYT9Gp326DXzhrX9h2EPdP9P63_rpbxp6KllJKN5T7fGXTxx-BSr9Y-GRcCtC4OSZUVk4JTnsFnW3AJuTDfNjH7mRFWpyWTBJeYjb3N_kDlx7q1NzkKeWtuX_BiT5CZ3l32SxhSUotPF__Bfvx39vzrPvvk7hBvp3eTtwycbAHTxZQ61yjj--u45e58UASrMdw321ZjuNUu3FnMfxPf-v9N9gtdRPwE |
CitedBy_id | crossref_primary_10_1128_EC_05055_11 crossref_primary_10_1371_journal_pbio_1001117 crossref_primary_10_1371_journal_pgen_1003118 crossref_primary_10_1128_EC_00290_12 crossref_primary_10_1016_j_cell_2011_10_048 crossref_primary_10_1038_s41598_019_45624_y crossref_primary_10_1371_journal_ppat_1002956 crossref_primary_10_1093_mmy_myaa063 crossref_primary_10_3390_md17080442 crossref_primary_10_1038_srep10104 crossref_primary_10_1128_mBio_01179_19 crossref_primary_10_3390_pathogens8020053 crossref_primary_10_1016_j_fbr_2021_01_002 crossref_primary_10_3389_fmicb_2017_02238 crossref_primary_10_1128_AAC_02749_16 crossref_primary_10_1128_EC_00031_12 crossref_primary_10_1128_mBio_01333_14 crossref_primary_10_1371_journal_pone_0039805 crossref_primary_10_1007_s11046_009_9264_y crossref_primary_10_1093_mmy_myw120 crossref_primary_10_1371_journal_pbio_3001762 crossref_primary_10_1371_journal_pone_0258108 crossref_primary_10_36953_ECJ_30601324 crossref_primary_10_1128_mBio_00237_10 crossref_primary_10_1002_jbm_a_36984 crossref_primary_10_1371_journal_ppat_1004211 crossref_primary_10_1016_j_ajog_2015_02_002 crossref_primary_10_1016_j_fbr_2021_12_002 crossref_primary_10_1371_journal_pone_0035339 crossref_primary_10_1128_microbiolspec_MB_0007_2014 crossref_primary_10_1128_mBio_01338_18 crossref_primary_10_1007_s12033_023_00796_x crossref_primary_10_1007_s12281_012_0108_8 crossref_primary_10_1371_journal_ppat_1003910 crossref_primary_10_3390_jof6040305 crossref_primary_10_1016_j_meegid_2013_07_013 crossref_primary_10_1093_femsyr_fov087 crossref_primary_10_1002_cpmc_60 crossref_primary_10_1186_s13068_023_02323_1 crossref_primary_10_1590_0001_3765201920180045 crossref_primary_10_1186_1741_7007_8_49 crossref_primary_10_1038_nature09560 crossref_primary_10_1128_AAC_04650_14 crossref_primary_10_3389_fmicb_2024_1358752 crossref_primary_10_2217_fmb_14_18 crossref_primary_10_1098_rsob_220077 crossref_primary_10_1371_journal_ppat_1008478 crossref_primary_10_1128_IAI_00779_17 crossref_primary_10_1371_journal_pbio_3000331 crossref_primary_10_3390_ijms21176131 crossref_primary_10_1186_gb_2010_11_7_r71 crossref_primary_10_1016_j_ijbiomac_2017_11_003 crossref_primary_10_1371_journal_ppat_1002257 crossref_primary_10_1007_s12038_023_00398_4 crossref_primary_10_1016_j_chom_2011_02_003 crossref_primary_10_1007_s40588_015_0015_1 crossref_primary_10_1016_j_funbio_2017_12_002 crossref_primary_10_1128_mbio_01872_24 crossref_primary_10_1016_j_ijmm_2011_04_001 crossref_primary_10_3390_jof6010014 crossref_primary_10_1021_acsinfecdis_9b00033 crossref_primary_10_1371_journal_pbio_1000363 crossref_primary_10_1007_s00438_014_0846_0 crossref_primary_10_1038_s41598_020_70650_6 crossref_primary_10_1016_j_phrs_2024_107441 crossref_primary_10_1093_g3journal_jkab216 crossref_primary_10_1016_j_cell_2010_11_051 crossref_primary_10_2217_fmb_13_101 crossref_primary_10_1007_s11046_020_00445_w crossref_primary_10_1093_femsyr_fow032 crossref_primary_10_1016_j_tim_2016_09_004 crossref_primary_10_1093_femsyr_foab068 crossref_primary_10_1128_microbiolspec_MB_0005_2014 crossref_primary_10_1128_spectrum_00171_22 crossref_primary_10_1371_journal_ppat_1004542 crossref_primary_10_1111_1348_0421_12596 crossref_primary_10_1128_mBio_00451_18 crossref_primary_10_1038_nrmicro2475 crossref_primary_10_1111_mmi_12329 crossref_primary_10_1016_j_mib_2019_04_008 crossref_primary_10_1007_s12275_011_1064_7 crossref_primary_10_1016_j_tcsw_2018_03_002 crossref_primary_10_1038_s44259_024_00040_9 crossref_primary_10_1016_j_heliyon_2021_e07805 crossref_primary_10_3390_stresses4040041 crossref_primary_10_1080_20002297_2017_1385372 crossref_primary_10_5402_2012_538694 crossref_primary_10_1371_journal_ppat_1000601 crossref_primary_10_1371_journal_ppat_1012031 crossref_primary_10_1111_jam_14949 crossref_primary_10_5812_jjm_38031 crossref_primary_10_1146_annurev_micro_091014_104330 crossref_primary_10_1074_jbc_M113_528802 crossref_primary_10_1371_journal_ppat_1002476 crossref_primary_10_3390_pathogens12010126 crossref_primary_10_1128_EC_00078_15 crossref_primary_10_1038_s41579_025_01147_0 crossref_primary_10_1039_C4MT00331D crossref_primary_10_2217_fmb_12_48 crossref_primary_10_1016_j_mib_2013_03_007 crossref_primary_10_1007_s00430_023_00777_6 crossref_primary_10_1002_pmic_201200228 crossref_primary_10_1007_s00294_023_01263_5 crossref_primary_10_3389_fcimb_2023_1136698 crossref_primary_10_1016_j_cell_2012_08_018 crossref_primary_10_1111_j_1462_5822_2010_01474_x crossref_primary_10_1111_j_1439_0507_2010_01970_x crossref_primary_10_1371_journal_pbio_3002693 crossref_primary_10_3389_fmicb_2019_00034 crossref_primary_10_1371_journal_pone_0039624 crossref_primary_10_1128_mBio_00637_12 crossref_primary_10_1534_genetics_111_134080 crossref_primary_10_1016_j_micinf_2016_01_002 crossref_primary_10_1093_jacamr_dlad155 crossref_primary_10_5941_MYCO_2015_43_3_179 crossref_primary_10_1128_mBio_01565_15 crossref_primary_10_1155_2012_528521 crossref_primary_10_1007_s12281_014_0180_3 crossref_primary_10_3390_jof9010098 crossref_primary_10_1002_jobm_200900442 crossref_primary_10_1016_j_celrep_2021_110293 crossref_primary_10_1038_aps_2010_33 crossref_primary_10_3390_jof3010008 crossref_primary_10_1128_mBio_01201_14 crossref_primary_10_3390_antibiotics13050434 crossref_primary_10_1038_s41522_022_00341_9 crossref_primary_10_1016_j_micres_2013_02_008 crossref_primary_10_1111_mmi_12653 crossref_primary_10_1371_journal_ppat_1004630 crossref_primary_10_1093_femsyr_fow029 crossref_primary_10_1111_cmi_12593 crossref_primary_10_3389_fmicb_2015_00160 crossref_primary_10_3724_SP_J_1008_2010_00599 crossref_primary_10_1016_j_ecoenv_2023_115389 crossref_primary_10_1038_s41598_017_03082_4 crossref_primary_10_1534_genetics_116_195024 crossref_primary_10_1080_10409238_2020_1742092 crossref_primary_10_1128_mmbr_00081_22 crossref_primary_10_3390_ph14010024 crossref_primary_10_1016_j_mam_2024_101290 crossref_primary_10_1371_journal_ppat_1005828 crossref_primary_10_1371_journal_pgen_1006350 crossref_primary_10_1002_yea_1627 crossref_primary_10_1186_1471_2164_14_168 crossref_primary_10_1128_EC_05196_11 crossref_primary_10_1371_journal_ppat_1002683 crossref_primary_10_1371_journal_pone_0029707 crossref_primary_10_3389_fcimb_2021_765942 crossref_primary_10_1186_s43088_024_00504_x crossref_primary_10_1128_MMBR_00068_15 crossref_primary_10_1155_2017_4614183 crossref_primary_10_1016_j_chom_2011_07_005 crossref_primary_10_1128_spectrum_02536_22 crossref_primary_10_1038_nrmicro_2017_107 crossref_primary_10_5812_jjm_37385 crossref_primary_10_1038_ncb2097 crossref_primary_10_1128_mBio_01365_16 crossref_primary_10_1080_21505594_2023_2175914 crossref_primary_10_1111_mmi_12913 crossref_primary_10_1139_cjm_2022_0195 crossref_primary_10_3389_fcimb_2016_00131 crossref_primary_10_1128_EC_00292_13 crossref_primary_10_3390_genes9070318 crossref_primary_10_1080_1040841X_2020_1843400 crossref_primary_10_1016_j_mib_2016_05_013 crossref_primary_10_1016_j_ijpharm_2021_120768 crossref_primary_10_1111_mmi_12345 crossref_primary_10_1093_infdis_jiae631 crossref_primary_10_1093_femsre_fux050 crossref_primary_10_1111_j_1365_2958_2011_07626_x crossref_primary_10_3390_jof7090739 crossref_primary_10_3389_fcimb_2020_605711 crossref_primary_10_3390_antibiotics11111474 crossref_primary_10_7883_yoken_JJID_2016_369 crossref_primary_10_1111_j_1365_2958_2010_07504_x crossref_primary_10_1007_s12281_010_0035_5 crossref_primary_10_1128_mbio_01807_23 crossref_primary_10_1128_EC_00142_15 crossref_primary_10_1534_g3_120_401340 crossref_primary_10_1371_journal_pgen_1005590 crossref_primary_10_1016_j_coph_2013_08_008 crossref_primary_10_1128_mSphere_00646_20 crossref_primary_10_1002_pmic_201000129 crossref_primary_10_1080_1040841X_2024_2418125 crossref_primary_10_1371_journal_ppat_1002777 crossref_primary_10_3389_fmed_2018_00028 crossref_primary_10_1007_s12088_014_0460_1 crossref_primary_10_1007_s00294_020_01138_z crossref_primary_10_1371_journal_pone_0097864 crossref_primary_10_1128_spectrum_02195_24 crossref_primary_10_1146_annurev_micro_041222_023745 crossref_primary_10_1038_srep31124 crossref_primary_10_4161_trns_22281 crossref_primary_10_3390_jof6010021 crossref_primary_10_1038_nrmicro2190 crossref_primary_10_1371_journal_ppat_1002525 crossref_primary_10_1128_spectrum_01201_24 crossref_primary_10_1016_j_colsurfb_2018_11_011 crossref_primary_10_1007_s12088_018_0714_4 crossref_primary_10_1021_acsinfecdis_0c00849 crossref_primary_10_1016_j_micpath_2017_10_057 crossref_primary_10_1007_s10096_020_03912_w crossref_primary_10_1186_1471_2180_14_182 crossref_primary_10_12688_f1000research_2_106_v1 crossref_primary_10_3389_fmicb_2021_680382 crossref_primary_10_1371_journal_pone_0167470 crossref_primary_10_1111_mmi_13247 crossref_primary_10_1111_mmi_13002 crossref_primary_10_1074_jbc_R116_720995 crossref_primary_10_1016_j_resmic_2022_103955 crossref_primary_10_1093_femsyr_fov111 crossref_primary_10_1097_01_j_pain_0000460320_95267_5d crossref_primary_10_1111_mec_14053 crossref_primary_10_1111_cmi_13140 crossref_primary_10_1093_femsyr_foaa005 crossref_primary_10_1002_yea_3855 crossref_primary_10_1128_EC_00112_13 crossref_primary_10_3389_fmicb_2020_01455 crossref_primary_10_1128_IAI_00087_14 crossref_primary_10_1128_microbiolspec_FUNK_0024_2016 crossref_primary_10_4161_viru_22913 crossref_primary_10_1038_s41598_020_70169_w crossref_primary_10_1111_cmi_12767 crossref_primary_10_31083_j_fbe1502013 crossref_primary_10_2174_1570163816666190227231437 crossref_primary_10_1371_journal_ppat_1003034 crossref_primary_10_1371_journal_pbio_1002076 crossref_primary_10_1093_mmy_myaa080 crossref_primary_10_1097_MRM_0000000000000015 crossref_primary_10_1586_14787210_2014_885838 crossref_primary_10_7554_eLife_86075 crossref_primary_10_2147_IDR_S247944 crossref_primary_10_1007_s10266_009_0118_3 crossref_primary_10_1016_j_ijmm_2020_151414 crossref_primary_10_3389_fmicb_2022_920574 crossref_primary_10_3389_fmicb_2019_01528 crossref_primary_10_3390_jof4040140 crossref_primary_10_3389_fmicb_2022_818165 crossref_primary_10_1080_13880209_2016_1237977 |
Cites_doi | 10.1128/AAC.49.2.584-589.2005 10.1073/pnas.97.14.7957 10.1046/j.1365-280X.1999.00244.x 10.1016/S0966-842X(02)00002-1 10.1128/AAC.01056-06 10.1128/EC.00219-06 10.1038/nature02800 10.1046/j.1365-2958.2002.02827.x 10.1073/pnas.0401416101 10.1093/jac/46.3.397 10.1016/j.cub.2007.02.035 10.1016/j.cub.2005.05.047 10.1016/j.gene.2004.06.021 10.1186/1471-2164-9-370 10.1016/j.tim.2004.11.006 10.1128/EC.3.2.536-545.2004 10.1371/journal.pbio.0050256 10.1146/annurev.micro.59.030804.121034 10.1006/jmbi.1998.1947 10.1128/EC.00107-06 10.1128/EC.4.7.1191-1202.2005 10.1086/322972 10.1021/bi0263199 10.1128/CMR.15.2.167-193.2002 10.1128/AEM.02625-07 10.1128/AEM.68.11.5459-5463.2002 10.1126/science.7992058 10.1371/journal.pbio.0060038 10.1371/journal.ppat.0020063 10.1126/science.1150021 10.1038/nrmicro1838 10.1074/jbc.273.44.28713 10.1128/IAI.67.5.2377-2382.1999 10.1099/jmm.0.46569-0 10.1128/EC.00252-07 10.1128/IAI.00161-06 10.1128/IAI.68.10.5953-5959.2000 10.1128/MCB.17.9.5044 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 10.1086/517522 10.1016/S0966-842X(01)02012-1 10.1073/pnas.071404698 10.1128/IAI.72.10.6023-6031.2004 10.1128/JB.181.6.1868-1874.1999 10.1128/AEM.67.7.2982-2992.2001 10.1016/j.mib.2006.10.003 10.1128/EC.2.4.746-755.2003 10.1038/sj.emboj.7600122 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2009 Public Library of Science Nobile et al. 2009 2009 Nobile et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault J-S, et al. (2009) Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biol 7(6): e1000133. doi:10.1371/journal.pbio.1000133 |
Copyright_xml | – notice: COPYRIGHT 2009 Public Library of Science – notice: Nobile et al. 2009 – notice: 2009 Nobile et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault J-S, et al. (2009) Biofilm Matrix Regulation by Candida albicans Zap1. PLoS Biol 7(6): e1000133. doi:10.1371/journal.pbio.1000133 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA CZG |
DOI | 10.1371/journal.pbio.1000133 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals PLoS Biology |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Matrix Mediators in Candida albicans Biofilms |
EISSN | 1545-7885 |
ExternalDocumentID | 1297521817 oai_doaj_org_article_ad136d62b4264889b5cada28f1c3bc01 PMC2688839 A638106037 19529758 10_1371_journal_pbio_1000133 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL007899 – fundername: NIAID NIH HHS grantid: R01 AI067703 – fundername: NIAID NIH HHS grantid: R01 AI073289 – fundername: NIAID NIH HHS grantid: K08 AI01767 – fundername: NIAID NIH HHS grantid: R01 AI49187 – fundername: NIAID NIH HHS grantid: R01 AI049187 – fundername: NIAID NIH HHS grantid: K08 AI001767 |
GroupedDBID | --- 123 29O 2WC 36B 53G 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AFXKF AHMBA AKRSQ ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBS EJD EMB EMK EMOBN EPL ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IGS IHR IOV IPNFZ ISE ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PATMY PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PYCSY QN7 RIG RNS RPM SJN SV3 TR2 TUS UKHRP WOW XSB YZZ ~8M .GJ CGR CUY CVF ECM EIF NPM PV9 QF4 RZL WOQ PMFND 7X8 PJZUB PPXIY PQGLB PUEGO 5PM 3V. AAPBV ABPTK AGJBV CZG M~E ZA5 |
ID | FETCH-LOGICAL-c730t-bc1f15cc48ac1a541d0ee54e022c965a5930f75374d5e2a756b24b1eda63d0b93 |
IEDL.DBID | M48 |
ISSN | 1545-7885 1544-9173 |
IngestDate | Sun Oct 01 00:20:32 EDT 2023 Wed Aug 27 01:31:31 EDT 2025 Thu Aug 21 14:30:49 EDT 2025 Fri Sep 05 04:50:57 EDT 2025 Tue Jun 17 22:01:51 EDT 2025 Tue Jun 10 21:02:14 EDT 2025 Fri Jun 27 05:31:44 EDT 2025 Fri Jun 27 05:31:01 EDT 2025 Fri Jun 27 05:30:15 EDT 2025 Mon Mar 03 15:01:03 EST 2025 Thu Apr 24 22:58:10 EDT 2025 Tue Jul 01 01:24:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Candida albicans Gene Expression Regulation, Fungal Regulon Microscopy, Confocal Microscopy, Electron, Scanning Biofilms Chromatin Immunoprecipitation Fungal Proteins Genes, Fungal Binding Sites Saccharomyces cerevisiae |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c730t-bc1f15cc48ac1a541d0ee54e022c965a5930f75374d5e2a756b24b1eda63d0b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: CJN JEN ADH ORH AN DRA ADJ APM. Performed the experiments: CJN JEN JSD. Analyzed the data: CJN JEN ADH ORH AN DRA APM. Wrote the paper: CJN JEN ADH DRA ADJ APM. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pbio.1000133 |
PMID | 19529758 |
PQID | 67385424 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1297521817 doaj_primary_oai_doaj_org_article_ad136d62b4264889b5cada28f1c3bc01 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2688839 proquest_miscellaneous_67385424 gale_infotracmisc_A638106037 gale_infotracacademiconefile_A638106037 gale_incontextgauss_ISR_A638106037 gale_incontextgauss_ISN_A638106037 gale_incontextgauss_IOV_A638106037 pubmed_primary_19529758 crossref_citationtrail_10_1371_journal_pbio_1000133 crossref_primary_10_1371_journal_pbio_1000133 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20090616 |
PublicationDateYYYYMMDD | 2009-06-16 |
PublicationDate_xml | – month: 6 year: 2009 text: 20090616 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS biology |
PublicationTitleAlternate | PLoS Biol |
PublicationYear | 2009 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Nett (ref10) 2007; 195 S Garcia-Sanchez (ref24) 2004; 3 GS Baillie (ref17) 2000; 46 PS Stewart (ref27) 2008; 6 CY Wu (ref19) 2008; 9 TJ Lyons (ref18) 2000; 97 MA Alem (ref32) 2006; 5 CJ Nobile (ref5) 2007; 17 H Chen (ref33) 2004; 101 D Davis (ref42) 2000; 68 LJ Douglas (ref7) 2003; 11 CT Harbison (ref22) 2004; 431 M Segurado (ref20) 1999; 67 PK Mukherjee (ref30) 2006; 74 LC Lai (ref28) 2006; 5 JM Hornby (ref35) 2001; 67 MA Al-Fattani (ref8) 2006; 55 RE Zordan (ref50) 2007; 5 J Nett (ref9) 2007; 51 O Reuss (ref40) 2004; 341 RM Donlan (ref2) 2002; 15 IW Sutherland (ref3) 2001; 9 SW Martin (ref39) 2005; 4 F Gotz (ref13) 2002; 43 E Spreghini (ref44) 2003; 2 J van Helden (ref52) 1998; 281 AJ Bird (ref16) 2004; 23 RM Donlan (ref1) 2001; 33 H Zhao (ref15) 1997; 17 H Liu (ref41) 1994; 266 MV Evans-Galea (ref23) 2003; 42 YY Cao (ref38) 2005; 49 CA Kumamoto (ref25) 2005; 59 CJ Nobile (ref45) 2008 A Nantel (ref48) 2006 JR Blankenship (ref4) 2006; 9 J Sturtevant (ref29) 1999; 37 SS Branda (ref6) 2005; 13 LA Hazelwood (ref31) 2008; 74 MS Longtine (ref47) 1998; 14 TL Bailey (ref51) 1994; 2 KB Oh (ref36) 2001; 98 MJ Kim (ref11) 2008; 18 ME Hillenmeyer (ref26) 2008; 320 CJ Nobile (ref46) 2006; 2 CJ Nobile (ref12) 2005; 15 G Ramage (ref37) 2002; 68 M Martins (ref34) 2007; 6 BB Tuch (ref49) 2008; 6 H Zhao (ref21) 1998; 273 RB Wilson (ref43) 1999; 181 D Andes (ref14) 2004; 72 20076744 - PLoS Biol. 2009;7(6):e1000117 |
References_xml | – volume: 49 start-page: 584 year: 2005 ident: ref38 article-title: cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.2.584-589.2005 – volume: 97 start-page: 7957 year: 2000 ident: ref18 article-title: Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.14.7957 – volume: 37 start-page: 357 year: 1999 ident: ref29 article-title: Identification and cloning of GCA1, a gene that encodes a cell surface glucoamylase from Candida albicans. publication-title: Med Mycol doi: 10.1046/j.1365-280X.1999.00244.x – volume: 11 start-page: 30 year: 2003 ident: ref7 article-title: Candida biofilms and their role in infection. publication-title: Trends Microbiol doi: 10.1016/S0966-842X(02)00002-1 – volume: 51 start-page: 510 year: 2007 ident: ref9 article-title: Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01056-06 – volume: 5 start-page: 1770 year: 2006 ident: ref32 article-title: Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. publication-title: Eukaryot Cell doi: 10.1128/EC.00219-06 – volume: 431 start-page: 99 year: 2004 ident: ref22 article-title: Transcriptional regulatory code of a eukaryotic genome. publication-title: Nature doi: 10.1038/nature02800 – volume: 43 start-page: 1367 year: 2002 ident: ref13 article-title: Staphylococcus and biofilms. publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2002.02827.x – volume: 101 start-page: 5048 year: 2004 ident: ref33 article-title: Tyrosol is a quorum-sensing molecule in Candida albicans. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0401416101 – volume: 46 start-page: 397 year: 2000 ident: ref17 article-title: Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. publication-title: J Antimicrob Chemother doi: 10.1093/jac/46.3.397 – volume: 17 start-page: R349 year: 2007 ident: ref5 article-title: Microbial biofilms: e pluribus unum. publication-title: Curr Biol doi: 10.1016/j.cub.2007.02.035 – volume: 18 start-page: 242 year: 2008 ident: ref11 article-title: Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans. publication-title: J Microbiol Biotechnol – volume: 15 start-page: 1150 year: 2005 ident: ref12 article-title: Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. publication-title: Curr Biol doi: 10.1016/j.cub.2005.05.047 – volume: 341 start-page: 119 year: 2004 ident: ref40 article-title: The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. publication-title: Gene doi: 10.1016/j.gene.2004.06.021 – volume: 9 start-page: 370 year: 2008 ident: ref19 article-title: Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae. publication-title: BMC Genomics doi: 10.1186/1471-2164-9-370 – volume: 13 start-page: 20 year: 2005 ident: ref6 article-title: Biofilms: the matrix revisited. publication-title: Trends Microbiol doi: 10.1016/j.tim.2004.11.006 – volume: 3 start-page: 536 year: 2004 ident: ref24 article-title: Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. publication-title: Eukaryot Cell doi: 10.1128/EC.3.2.536-545.2004 – volume: 5 start-page: e256 year: 2007 ident: ref50 article-title: Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0050256 – volume: 59 start-page: 113 year: 2005 ident: ref25 article-title: Alternative Candida albicans lifestyles: growth on surfaces. publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.59.030804.121034 – volume: 281 start-page: 827 year: 1998 ident: ref52 article-title: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. publication-title: J Mol Biol doi: 10.1006/jmbi.1998.1947 – year: 2008 ident: ref45 article-title: Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. publication-title: Cell Microbiol – volume: 5 start-page: 1468 year: 2006 ident: ref28 article-title: Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. publication-title: Eukaryot Cell doi: 10.1128/EC.00107-06 – volume: 4 start-page: 1191 year: 2005 ident: ref39 article-title: Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. publication-title: Eukaryot Cell doi: 10.1128/EC.4.7.1191-1202.2005 – start-page: 181 year: 2006 ident: ref48 article-title: Microarrays for studying pathogenicity in Candida albicans. – volume: 33 start-page: 1387 year: 2001 ident: ref1 article-title: Biofilm formation: a clinically relevant microbiological process. publication-title: Clin Infect Dis doi: 10.1086/322972 – volume: 42 start-page: 1053 year: 2003 ident: ref23 article-title: Two of the five zinc fingers in the Zap1 transcription factor DNA binding domain dominate site-specific DNA binding. publication-title: Biochemistry doi: 10.1021/bi0263199 – volume: 15 start-page: 167 year: 2002 ident: ref2 article-title: Biofilms: survival mechanisms of clinically relevant microorganisms. publication-title: Clin Microbiol Rev doi: 10.1128/CMR.15.2.167-193.2002 – volume: 74 start-page: 2259 year: 2008 ident: ref31 article-title: The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02625-07 – volume: 68 start-page: 5459 year: 2002 ident: ref37 article-title: Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.11.5459-5463.2002 – volume: 266 start-page: 1723 year: 1994 ident: ref41 article-title: Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. publication-title: Science doi: 10.1126/science.7992058 – volume: 6 start-page: e38 year: 2008 ident: ref49 article-title: The evolution of combinatorial gene regulation in fungi. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060038 – volume: 2 start-page: e63 year: 2006 ident: ref46 article-title: Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0020063 – volume: 2 start-page: 28 year: 1994 ident: ref51 article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. publication-title: Proc Int Conf Intell Syst Mol Biol – volume: 320 start-page: 362 year: 2008 ident: ref26 article-title: The chemical genomic portrait of yeast: uncovering a phenotype for all genes. publication-title: Science doi: 10.1126/science.1150021 – volume: 6 start-page: 199 year: 2008 ident: ref27 article-title: Physiological heterogeneity in biofilms. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1838 – volume: 273 start-page: 28713 year: 1998 ident: ref21 article-title: Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. publication-title: J Biol Chem doi: 10.1074/jbc.273.44.28713 – volume: 67 start-page: 2377 year: 1999 ident: ref20 article-title: Zinc-regulated biosynthesis of immunodominant antigens from Aspergillus spp. publication-title: Infect Immun doi: 10.1128/IAI.67.5.2377-2382.1999 – volume: 55 start-page: 999 year: 2006 ident: ref8 article-title: Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. publication-title: J Med Microbiol doi: 10.1099/jmm.0.46569-0 – volume: 6 start-page: 2429 year: 2007 ident: ref34 article-title: Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. publication-title: Eukaryot Cell doi: 10.1128/EC.00252-07 – volume: 74 start-page: 3804 year: 2006 ident: ref30 article-title: Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. publication-title: Infect Immun doi: 10.1128/IAI.00161-06 – volume: 68 start-page: 5953 year: 2000 ident: ref42 article-title: Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. publication-title: Infect Immun doi: 10.1128/IAI.68.10.5953-5959.2000 – volume: 17 start-page: 5044 year: 1997 ident: ref15 article-title: Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. publication-title: Mol Cell Biol doi: 10.1128/MCB.17.9.5044 – volume: 14 start-page: 953 year: 1998 ident: ref47 article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – volume: 195 start-page: 1705 year: 2007 ident: ref10 article-title: Beta-1,3 glucan as a test for central venous catheter biofilm infection. publication-title: J Infect Dis doi: 10.1086/517522 – volume: 9 start-page: 222 year: 2001 ident: ref3 article-title: The biofilm matrix–an immobilized but dynamic microbial environment. publication-title: Trends Microbiol doi: 10.1016/S0966-842X(01)02012-1 – volume: 98 start-page: 4664 year: 2001 ident: ref36 article-title: Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.071404698 – volume: 72 start-page: 6023 year: 2004 ident: ref14 article-title: Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. publication-title: Infect Immun doi: 10.1128/IAI.72.10.6023-6031.2004 – volume: 181 start-page: 1868 year: 1999 ident: ref43 article-title: Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. publication-title: J Bacteriol doi: 10.1128/JB.181.6.1868-1874.1999 – volume: 67 start-page: 2982 year: 2001 ident: ref35 article-title: Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.7.2982-2992.2001 – volume: 9 start-page: 588 year: 2006 ident: ref4 article-title: How to build a biofilm: a fungal perspective. publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2006.10.003 – volume: 2 start-page: 746 year: 2003 ident: ref44 article-title: Roles of Candida albicans Dfg5p and Dcw1p cell surface proteins in growth and hypha formation. publication-title: Eukaryot Cell doi: 10.1128/EC.2.4.746-755.2003 – volume: 23 start-page: 1123 year: 2004 ident: ref16 article-title: The Zap1 transcriptional activator also acts as a repressor by binding downstream of the TATA box in ZRT2. publication-title: EMBO J doi: 10.1038/sj.emboj.7600122 – reference: 20076744 - PLoS Biol. 2009;7(6):e1000117 |
SSID | ssj0022928 |
Score | 2.4476645 |
Snippet | A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural growth... The zinc-responsive transcription factor Zap1 has a striking role in fungal biofilm formation and is reported to regulate matrix formation. A biofilm is a... A biofilm is a surface-associated population of microorganisms embedded in a matrix of extracellular polymeric substances. Biofilms are a major natural... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1000133 |
SubjectTerms | Bacteriology Binding Sites Biofilms Biofilms - growth & development Candida albicans Candida albicans - genetics Candida albicans - physiology Chromatin Immunoprecipitation Control Extracellular matrix Fungal Proteins - metabolism Gene Expression Regulation, Fungal Genes, Fungal Genetic aspects Genetics and Genomics/Gene Function Infections Infectious Diseases/Fungal Infections Influence Microbial mats Microbiology Microbiology/Microbial Growth and Development Microscopy, Confocal Microscopy, Electron, Scanning Regulon - genetics Saccharomyces cerevisiae - genetics Structure Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPBF_G60ahDBp9js9-axFksVrKBWii_LfqUeXJOjuQP737uT3TsbUeqDbyE7m5DfzGZn2JnfIPQyRj1EGBmqlgURAxQoVo6eQSWccKwVxIuxQu7DsTg6Ye9P-emVVl-QE5bogRNwe8ZjKrwgFrZupRrLnfGGqBY7al2q3Ipv2ARTOdQizdhVFahm4nKWNBfNUYn3so5eL-28hxyB6APRyaY0cvdv_9Cz5aIf_uR-_p5FeWVbOryDbmd_stxP33EX3QjdPXQzdZi8vI9IvGrni_PyHKj4f5QXqfV8VEZpL8sDqGnxpjQLC3_DofxmlvgBOjl8--XgqMptEioXl-eqsg63mDvHlHHYcIZ9HQJnIaLgGsENb2jdxqhEMs8DMZILS5jFwRtBfW0b-hDNur4LO6hsWuOUUa2pgQXfB6WEkkqElsj4SEILRDc4aZc5xKGVxUKPB2MyxhLpszWgqzO6Baq2s5aJQ-Ma-Teggq0sMGCPN6Jd6GwX-jq7KNALUKAGjosOkmjOzHoY9LuPX_W-AFozUVP5N6HPx_8i9Gki9CoLtX1ExJlc3RBxBYKtieTuRDIuZzcZ3gGL2wAzaAy1z-CIxaHnGyvUMAvS47rQrwdIzlOcEVagR8kmf-HccJivCiQn1joBdzrSzb-PNONEKBXd58f_QxtP0K10DCcqLHbRbHWxDk-jN7eyz8aF-xMxHESF priority: 102 providerName: Directory of Open Access Journals |
Title | Biofilm Matrix Regulation by Candida albicans Zap1 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19529758 https://www.proquest.com/docview/67385424 https://pubmed.ncbi.nlm.nih.gov/PMC2688839 https://doaj.org/article/ad136d62b4264889b5cada28f1c3bc01 http://dx.doi.org/10.1371/journal.pbio.1000133 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL4XGCVCSDxlih1_5QGhbdo0QC1QKKp4sWzHGZVKUppWWv97fElaCFoFL1VU30XNz3fxXe37HUIvfdZDuBYuyqnjPkGBYmUfGUTccktzTjJeV8gNhvxyTN9N2GQPbXq2tgBWN6Z20E9qvJgdX_9cv_EO_7ru2iDwRul4bqYl7Pr7qCbZRwd-beKQjg3odl-BkJTItoBul2Zngap5_Ldv6958VlY3haJ_n6j8Y4m6uIvutLFleNIYwz2054r76FbTbXL9ABF_lU9nP8IB0PJfh6OmDb2fmNCswzOob8l0qGcG3oxV-E3P8UM0vjj_cnYZtS0TIutddRkZi3PMrKVSW6wZxVnsHKPOP7lNOdMsTeLcZyiCZswRLRg3hBrsMs2TLDZp8gj1irJwhyhMc22llrmOgRE_c1JyKSR3ORH-liQJULLBSdmWTxzaWsxUvUkmfF7RPLYCdFWLboCirda84dP4h_wpTMFWFtiw6y_KxZVqnUvpDCc848RAeCdlapjVmSYyxzYxNsYBegETqIDvooADNVd6VVXq7Yev6oQDxRmPE7FL6PPwf4RGHaFXrVBeekSsbisdPK5AttWRPOpIete2neFDsLgNMJXCUAcNQZkfer6xQgVacFSucOWqgoN6klFCA_S4scnfOKcM9GWARMdaO-B2R4rp95pynHApfSj9ZPcPeopuNxttPML8CPWWi5V75uO1pemjfTERfXRwej78OOrX_3r4z_efZL92zl_R-kHw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biofilm+Matrix+Regulation+by+Candida+albicans+Zap1&rft.jtitle=PLoS+biology&rft.au=Nobile%2C+Clarissa&rft.au=Nett%2C+Jeniel&rft.au=Hernday%2C+Aaron&rft.au=Homann%2C+Oliver&rft.date=2009-06-16&rft.pub=Public+Library+of+Science&rft.eissn=1545-7885&rft.volume=7&rft.issue=6&rft_id=info:doi/10.1371%2Fjournal.pbio.1000133&rft.externalDocID=1297521817 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-7885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-7885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-7885&client=summon |