Peptide binding predictions for HLA DR, DP and DQ molecules

Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a signific...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 11; no. 1; p. 568
Main Authors Wang, Peng, Sidney, John, Kim, Yohan, Sette, Alessandro, Lund, Ole, Nielsen, Morten, Peters, Bjoern
Format Journal Article
LanguageEnglish
Published London BioMed Central 22.11.2010
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-11-568

Cover

Abstract Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
AbstractList MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally.BACKGROUNDMHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally.In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance.RESULTSIn this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance.We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.CONCLUSIONWe found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
Abstract Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naieve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.
ArticleNumber 568
Audience Academic
Author Wang, Peng
Sidney, John
Kim, Yohan
Peters, Bjoern
Sette, Alessandro
Lund, Ole
Nielsen, Morten
AuthorAffiliation 1 La Jolla Institute for Allergy and Immunology, La Jolla, USA
2 Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark, Lyngby, Denmark
AuthorAffiliation_xml – name: 2 Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark, Lyngby, Denmark
– name: 1 La Jolla Institute for Allergy and Immunology, La Jolla, USA
Author_xml – sequence: 1
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: La Jolla Institute for Allergy and Immunology
– sequence: 2
  givenname: John
  surname: Sidney
  fullname: Sidney, John
  organization: La Jolla Institute for Allergy and Immunology
– sequence: 3
  givenname: Yohan
  surname: Kim
  fullname: Kim, Yohan
  organization: La Jolla Institute for Allergy and Immunology
– sequence: 4
  givenname: Alessandro
  surname: Sette
  fullname: Sette, Alessandro
  organization: La Jolla Institute for Allergy and Immunology
– sequence: 5
  givenname: Ole
  surname: Lund
  fullname: Lund, Ole
  organization: Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark
– sequence: 6
  givenname: Morten
  surname: Nielsen
  fullname: Nielsen, Morten
  organization: Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark
– sequence: 7
  givenname: Bjoern
  surname: Peters
  fullname: Peters, Bjoern
  email: bpeters@liai.org
  organization: La Jolla Institute for Allergy and Immunology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21092157$$D View this record in MEDLINE/PubMed
BookMark eNqNkt2L1DAUxYusuB_67pMUfRDBrkmaNA2CMOyoOzDguupzuE3TmqGTzCatuv-9qR3HncUv-tD29ndObs-9x8mBdVYnyUOMTjEuixeYcpwRjFiGccaK8k5ytCsd3Hg-TI5DWCGEeYnYveQw1gTBjB8lLy_0pje1Titja2PbdON1bVRvnA1p43x6vpyl88vn6fwiBVun8_fp2nVaDZ0O95O7DXRBP9jeT5JPb15_PDvPlu_eLs5my0xxIvqM01poDAQEK6tK0UYJ0pQNBiUKLLAqKDBQXEBD8gryMi-LgiECnOaYCKD5SbKYfGsHK7nxZg3-Wjow8kfB-VaC743qtFQ5pwIAao2AsphIVVNENRPxdKQbHL3w5DXYDVx_ha7bGWIkx1DlmJocU4uvMlpEzatJsxmqta6Vtr2Hbq-R_S_WfJat-yKJECXLx0Ofbg28uxp06OXaBKW7Dqx2Q5CC0QIVmJb_JEtccIE5Hj0f3yJXbvA2zkEKFH8jL4iI0JMJaiGGY2zjYn9qtJQzQnPOCBV5pE5_Q8Wr1muj4sY1Jtb3BM_2BJHp9be-hSEEufhwuc8-uhneLrWfKxiBYgKUdyF43UhlehgXMHZhur-NBd0S_sckt9MPEbWt9r9C-6PmO9YnByI
CitedBy_id crossref_primary_10_1007_s10989_021_10283_z
crossref_primary_10_1073_pnas_1505956112
crossref_primary_10_1016_j_genrep_2024_101943
crossref_primary_10_1155_2013_467852
crossref_primary_10_1007_s11030_025_11108_7
crossref_primary_10_1007_s00430_022_00739_4
crossref_primary_10_1186_1471_2105_14_S2_S13
crossref_primary_10_47836_pjst_29_1_32
crossref_primary_10_1080_19396368_2016_1243741
crossref_primary_10_3389_fimmu_2022_806825
crossref_primary_10_1093_nar_gkx276
crossref_primary_10_4049_jimmunol_1200850
crossref_primary_10_1093_nar_gkz452
crossref_primary_10_3389_fgene_2019_01141
crossref_primary_10_1002_rmv_1859
crossref_primary_10_4236_alc_2013_24011
crossref_primary_10_1002_pmic_202000160
crossref_primary_10_3389_fimmu_2017_01309
crossref_primary_10_1111_pim_12318
crossref_primary_10_1038_s41598_021_94488_8
crossref_primary_10_1016_j_jim_2015_03_022
crossref_primary_10_1155_2017_6412353
crossref_primary_10_4049_jimmunol_1200626
crossref_primary_10_4137_CIN_S39071
crossref_primary_10_1128_JVI_02139_13
crossref_primary_10_1126_science_abh1823
crossref_primary_10_1016_j_jaci_2014_05_033
crossref_primary_10_1111_trf_14525
crossref_primary_10_1007_s13721_023_00416_3
crossref_primary_10_3389_fimmu_2019_00621
crossref_primary_10_1016_j_ijbiomac_2019_07_024
crossref_primary_10_1155_2016_2743292
crossref_primary_10_1016_j_imu_2022_100862
crossref_primary_10_1371_journal_pone_0205933
crossref_primary_10_1371_journal_pone_0025055
crossref_primary_10_1007_s12094_012_0980_2
crossref_primary_10_1186_s12879_024_09046_0
crossref_primary_10_1016_j_imlet_2016_02_006
crossref_primary_10_1371_journal_ppat_1008243
crossref_primary_10_1007_s00251_019_01137_6
crossref_primary_10_1371_journal_pone_0203715
crossref_primary_10_3389_fcimb_2021_631019
crossref_primary_10_1007_s10989_022_10431_z
crossref_primary_10_1371_journal_pone_0282580
crossref_primary_10_1038_s41598_018_32986_y
crossref_primary_10_1186_1471_2164_15_S9_S9
crossref_primary_10_1371_journal_pbio_3000590
crossref_primary_10_1073_pnas_1300512110
crossref_primary_10_2217_fvl_2022_0104
crossref_primary_10_1007_s42485_024_00164_6
crossref_primary_10_1016_j_actatropica_2024_107388
crossref_primary_10_3389_fimmu_2017_01511
crossref_primary_10_1016_j_artmed_2012_05_001
crossref_primary_10_4049_jimmunol_1600663
crossref_primary_10_1016_j_ejps_2020_105279
crossref_primary_10_1038_s41598_021_88291_8
crossref_primary_10_1016_j_jaut_2011_05_010
crossref_primary_10_1016_j_vetvac_2023_100013
crossref_primary_10_3389_fcimb_2021_769446
crossref_primary_10_1111_1567_1364_12099
crossref_primary_10_3390_pathogens12010016
crossref_primary_10_1097_MCP_0000000000000189
crossref_primary_10_1038_s41586_024_07509_7
crossref_primary_10_1016_j_vacun_2021_10_003
crossref_primary_10_1021_acs_jcim_9b00403
crossref_primary_10_1016_j_ijmm_2017_03_004
crossref_primary_10_1172_JCI156083
crossref_primary_10_7717_peerj_13380
crossref_primary_10_3389_fimmu_2021_735373
crossref_primary_10_2217_imt_2017_0163
crossref_primary_10_1016_j_meegid_2021_104875
crossref_primary_10_2139_ssrn_3929220
crossref_primary_10_3389_fimmu_2024_1293706
crossref_primary_10_3389_fimmu_2017_01763
crossref_primary_10_1016_j_virol_2013_11_001
crossref_primary_10_1002_jcb_26719
crossref_primary_10_1084_jem_20200206
crossref_primary_10_3390_ijms23169149
crossref_primary_10_4049_jimmunol_1801099
crossref_primary_10_1007_s13205_024_04022_6
crossref_primary_10_3389_fimmu_2022_862851
crossref_primary_10_1002_ana_24860
crossref_primary_10_1080_08927022_2020_1720916
crossref_primary_10_1038_s41598_024_66858_5
crossref_primary_10_1016_j_compbiomed_2022_105507
crossref_primary_10_1126_science_aaw7479
crossref_primary_10_1139_cjm_2016_0528
crossref_primary_10_1371_journal_pone_0144515
crossref_primary_10_3109_08916934_2015_1027817
crossref_primary_10_1021_acs_bioconjchem_6b00393
crossref_primary_10_1007_s12223_024_01152_5
crossref_primary_10_1186_1472_6807_12_20
crossref_primary_10_1002_jcb_27979
crossref_primary_10_1007_s12026_023_09403_2
crossref_primary_10_1126_sciadv_abq4120
crossref_primary_10_1212_NXI_0000000000200103
crossref_primary_10_1016_j_jim_2014_02_008
crossref_primary_10_1128_IAI_01023_16
crossref_primary_10_1016_j_sjbs_2023_103661
crossref_primary_10_7774_cevr_2016_5_1_75
crossref_primary_10_1007_s12033_023_00867_z
crossref_primary_10_1016_j_compbiomed_2022_105856
crossref_primary_10_1177_2050312118800202
crossref_primary_10_5812_ijpr_126559
crossref_primary_10_1016_j_molliq_2020_113612
crossref_primary_10_1039_D0BM01372B
crossref_primary_10_1080_07391102_2023_2171138
crossref_primary_10_1007_s00251_013_0684_y
crossref_primary_10_1038_s12276_022_00870_5
crossref_primary_10_1080_07391102_2019_1692072
crossref_primary_10_1109_TCBB_2024_3371984
crossref_primary_10_1016_j_imu_2021_100546
crossref_primary_10_4049_jimmunol_1701764
crossref_primary_10_1016_j_meegid_2020_104482
crossref_primary_10_1038_s41587_019_0280_2
crossref_primary_10_1586_erv_11_160
crossref_primary_10_1016_j_theriogenology_2016_05_019
crossref_primary_10_1016_j_meegid_2017_09_023
crossref_primary_10_3389_fimmu_2017_00984
crossref_primary_10_1016_j_vacun_2023_04_001
crossref_primary_10_1111_pim_12699
crossref_primary_10_1002_ijc_32620
crossref_primary_10_1016_j_imu_2020_100478
crossref_primary_10_1016_j_meegid_2021_104795
crossref_primary_10_1155_2020_9475058
crossref_primary_10_1007_s12539_017_0238_3
crossref_primary_10_1039_C8BM01220B
crossref_primary_10_1161_CIRCULATIONAHA_119_042863
crossref_primary_10_1002_ijc_28376
crossref_primary_10_1007_s00203_023_03492_1
crossref_primary_10_1016_j_micpath_2020_104398
crossref_primary_10_1186_s43141_023_00593_8
crossref_primary_10_1016_j_meegid_2019_104058
crossref_primary_10_4049_jimmunol_1901079
crossref_primary_10_1126_scitranslmed_adf3309
crossref_primary_10_1016_j_vaccine_2018_09_004
crossref_primary_10_1080_07391102_2024_2316762
crossref_primary_10_1021_acsomega_1c04817
crossref_primary_10_1093_bioinformatics_btab687
crossref_primary_10_4049_jimmunol_1700774
crossref_primary_10_3389_fimmu_2019_01568
crossref_primary_10_1155_2017_9363750
crossref_primary_10_3389_fmolb_2021_636562
crossref_primary_10_1007_s00432_012_1260_9
crossref_primary_10_1016_j_meegid_2020_104189
crossref_primary_10_1093_infdis_jiy549
crossref_primary_10_1038_s41598_024_61025_2
crossref_primary_10_3390_biology10100997
crossref_primary_10_1021_acsinfecdis_4c00697
crossref_primary_10_1080_2162402X_2017_1415687
crossref_primary_10_18632_oncotarget_26247
crossref_primary_10_1002_cti2_1410
crossref_primary_10_3390_vaccines9101098
crossref_primary_10_1016_j_meegid_2020_104199
crossref_primary_10_1016_j_meegid_2020_104197
crossref_primary_10_1016_j_micinf_2018_11_001
crossref_primary_10_1038_s41598_024_55372_3
crossref_primary_10_3390_biom14121620
crossref_primary_10_1128_JVI_00196_14
crossref_primary_10_1007_s13205_020_02544_3
crossref_primary_10_1016_j_imlet_2019_10_017
crossref_primary_10_1016_j_fob_2015_03_007
crossref_primary_10_2217_fvl_2021_0105
crossref_primary_10_2174_0118750362253383230922100803
crossref_primary_10_1016_j_imlet_2017_02_003
crossref_primary_10_1093_bib_bbaa340
crossref_primary_10_1021_acs_molpharmaceut_6b00682
crossref_primary_10_3389_fvets_2021_731200
crossref_primary_10_1186_s12864_023_09796_2
crossref_primary_10_2196_19371
crossref_primary_10_1007_s00894_025_06301_2
crossref_primary_10_1080_07391102_2020_1804460
crossref_primary_10_1182_bloodadvances_2018019323
crossref_primary_10_1007_s10989_020_10020_y
crossref_primary_10_1016_j_antiviral_2015_11_011
crossref_primary_10_3390_antib13040104
crossref_primary_10_1126_sciadv_aar4297
crossref_primary_10_1016_j_intimp_2015_09_012
crossref_primary_10_3389_fimmu_2021_631249
crossref_primary_10_1128_JVI_01641_20
crossref_primary_10_1371_journal_pone_0080636
crossref_primary_10_3389_fimmu_2020_01784
crossref_primary_10_1080_07391102_2021_1997819
crossref_primary_10_1016_j_ijbiomac_2018_06_112
crossref_primary_10_3390_vaccines10091389
crossref_primary_10_1016_j_csbj_2023_02_031
crossref_primary_10_1080_07391102_2024_2325109
crossref_primary_10_3389_fimmu_2017_00278
crossref_primary_10_1016_j_synbio_2024_05_008
crossref_primary_10_1128_JVI_00132_21
crossref_primary_10_1016_j_exppara_2023_108475
crossref_primary_10_1016_j_vacune_2023_10_012
crossref_primary_10_1016_j_micpath_2022_105447
crossref_primary_10_1155_2014_272950
crossref_primary_10_4049_jimmunol_1103640
crossref_primary_10_3389_fimmu_2023_1128641
crossref_primary_10_1016_j_drudis_2012_07_003
crossref_primary_10_1016_j_meegid_2015_10_015
crossref_primary_10_1155_2010_218590
crossref_primary_10_1016_j_jneuroim_2016_11_008
crossref_primary_10_1371_journal_pone_0312262
crossref_primary_10_1007_s12094_012_0941_9
crossref_primary_10_1002_eji_201948126
crossref_primary_10_3389_fimmu_2020_01261
crossref_primary_10_1007_s10989_020_10089_5
crossref_primary_10_1080_07391102_2018_1548977
crossref_primary_10_1158_1078_0432_CCR_13_0197
crossref_primary_10_1038_srep34527
crossref_primary_10_1080_07391102_2022_2028676
crossref_primary_10_3389_fimmu_2014_00124
crossref_primary_10_1128_JVI_01631_14
crossref_primary_10_3390_vaccines10111850
crossref_primary_10_1111_joim_12589
crossref_primary_10_1007_s10529_023_03380_0
crossref_primary_10_1111_joim_13434
crossref_primary_10_1038_s41598_020_75410_0
crossref_primary_10_1016_j_ijbiomac_2018_09_071
crossref_primary_10_1038_nature22976
crossref_primary_10_1080_07391102_2017_1343156
crossref_primary_10_3389_fimmu_2019_02966
crossref_primary_10_3389_fimmu_2020_00283
crossref_primary_10_1016_j_jgeb_2024_100377
crossref_primary_10_1371_journal_pntd_0007489
crossref_primary_10_1016_j_jgeb_2025_100474
crossref_primary_10_1186_1471_2164_14_S5_S11
crossref_primary_10_1038_s41598_019_41496_4
crossref_primary_10_1016_j_micpath_2022_105782
crossref_primary_10_1080_07391102_2020_1869092
crossref_primary_10_1007_s00251_011_0579_8
crossref_primary_10_1016_j_vaccine_2020_06_035
crossref_primary_10_1038_s41541_022_00591_w
crossref_primary_10_1080_19420862_2015_1007828
crossref_primary_10_1080_21645515_2024_2352908
crossref_primary_10_3389_fimmu_2022_933594
crossref_primary_10_20883_medical_e750
crossref_primary_10_1186_s12974_017_0996_1
crossref_primary_10_1080_07391102_2021_1896387
crossref_primary_10_1111_cea_12014
crossref_primary_10_1016_j_meegid_2017_06_005
crossref_primary_10_1111_cea_13223
crossref_primary_10_1073_pnas_1405153111
crossref_primary_10_1007_s11693_014_9135_9
crossref_primary_10_1016_j_bcab_2023_102706
crossref_primary_10_1093_bioinformatics_bts621
crossref_primary_10_3389_fimmu_2019_00195
crossref_primary_10_1016_j_antiviral_2018_07_007
crossref_primary_10_1080_19420862_2020_1850395
crossref_primary_10_3390_cells12020317
crossref_primary_10_2174_1574893614666190730104348
crossref_primary_10_1002_jmv_26561
crossref_primary_10_1080_07391102_2022_2105400
crossref_primary_10_1016_j_imbio_2019_09_001
crossref_primary_10_1042_BSR20180450
crossref_primary_10_1371_journal_pone_0197407
crossref_primary_10_1016_j_dsx_2020_08_009
crossref_primary_10_3390_molecules23113034
crossref_primary_10_1016_j_chembiol_2015_04_017
crossref_primary_10_1371_journal_pone_0238150
crossref_primary_10_1002_jps_23169
crossref_primary_10_13005_bbra_3318
crossref_primary_10_1208_s12248_020_00553_x
crossref_primary_10_3389_fbioe_2022_819583
crossref_primary_10_1016_j_biologicals_2020_07_002
crossref_primary_10_1016_j_vacune_2022_11_004
crossref_primary_10_1038_s41591_024_02944_5
crossref_primary_10_1097_MOT_0000000000000544
crossref_primary_10_3389_fimmu_2022_830497
crossref_primary_10_1080_07391102_2023_2258420
crossref_primary_10_1158_1078_0432_CCR_22_1741
crossref_primary_10_3389_fcimb_2018_00156
crossref_primary_10_1002_iid3_70074
crossref_primary_10_7774_cevr_2021_10_1_59
crossref_primary_10_1186_s43141_023_00623_5
crossref_primary_10_1080_07391102_2023_2175373
crossref_primary_10_1371_journal_ppat_1003001
crossref_primary_10_1016_j_cell_2017_01_014
crossref_primary_10_1126_science_1246886
crossref_primary_10_1186_s40203_015_0011_4
crossref_primary_10_3389_fmicb_2017_01938
crossref_primary_10_1038_s41598_017_03042_y
crossref_primary_10_1038_s41598_023_27717_x
crossref_primary_10_1016_j_exppara_2023_108497
crossref_primary_10_1016_j_jim_2011_07_007
crossref_primary_10_1016_j_vacun_2024_04_003
crossref_primary_10_2174_2211352517666190717143949
crossref_primary_10_1186_s12865_022_00535_y
crossref_primary_10_7774_cevr_2024_13_2_146
crossref_primary_10_4103_ijaai_ijaai_3_22
crossref_primary_10_1002_jcb_27110
crossref_primary_10_1007_s10989_022_10438_6
crossref_primary_10_1016_j_ijbiomac_2020_06_213
crossref_primary_10_1080_07391102_2023_2178511
crossref_primary_10_1093_infdis_jiw309
crossref_primary_10_1021_acsomega_3c01909
crossref_primary_10_1038_tp_2017_89
crossref_primary_10_1038_s41598_024_60680_9
crossref_primary_10_1080_07391102_2020_1792347
crossref_primary_10_1002_jcp_29923
crossref_primary_10_3390_ijms24076477
crossref_primary_10_1371_journal_pone_0275237
crossref_primary_10_1371_journal_pone_0115582
crossref_primary_10_1007_s10930_020_09886_0
crossref_primary_10_1093_database_bay111
crossref_primary_10_3390_molecules26061664
crossref_primary_10_1002_JPER_18_0626
crossref_primary_10_1080_19420862_2024_2324836
crossref_primary_10_1097_PPO_0000000000000762
crossref_primary_10_1002_wsbm_1408
crossref_primary_10_1155_2014_483905
crossref_primary_10_1007_s10620_023_07967_5
crossref_primary_10_1016_j_anai_2012_10_015
crossref_primary_10_1038_psp_2014_31
crossref_primary_10_1038_psp_2014_30
crossref_primary_10_4049_jimmunol_1800683
crossref_primary_10_1007_s13277_014_1643_4
crossref_primary_10_1111_jvh_12196
crossref_primary_10_1038_s41598_023_34863_9
crossref_primary_10_3389_fimmu_2014_00093
crossref_primary_10_1016_j_vaccine_2016_08_081
crossref_primary_10_1016_j_virol_2014_03_012
crossref_primary_10_1080_07391102_2020_1838329
crossref_primary_10_1371_journal_pone_0306254
crossref_primary_10_1007_s40203_021_00080_3
crossref_primary_10_3390_vaccines9111373
crossref_primary_10_1080_07391102_2021_1953599
crossref_primary_10_1007_s40203_017_0022_4
crossref_primary_10_3389_fimmu_2019_02698
crossref_primary_10_7717_peerj_11232
crossref_primary_10_1186_s12967_022_03864_z
crossref_primary_10_1371_journal_pone_0273494
crossref_primary_10_1016_j_jaci_2015_02_025
crossref_primary_10_1016_j_micpath_2015_11_025
crossref_primary_10_1371_journal_pone_0057275
crossref_primary_10_1016_j_mehy_2020_110305
crossref_primary_10_1016_j_schres_2016_07_020
crossref_primary_10_1371_journal_pone_0093231
crossref_primary_10_1002_aic_16697
crossref_primary_10_3389_fimmu_2021_764462
crossref_primary_10_1093_bib_bbae154
crossref_primary_10_3390_foods10010163
crossref_primary_10_3390_toxins10020082
crossref_primary_10_1186_s12859_020_03631_1
crossref_primary_10_1016_j_imu_2023_101209
crossref_primary_10_1016_j_compbiomed_2021_104703
crossref_primary_10_3389_fimmu_2022_823652
crossref_primary_10_1186_1471_2105_15_241
crossref_primary_10_1080_20477724_2020_1838190
crossref_primary_10_1038_s41598_019_39299_8
crossref_primary_10_1111_cas_12650
crossref_primary_10_1186_s13104_021_05467_1
crossref_primary_10_1016_j_jneuroim_2017_05_001
crossref_primary_10_1038_s42003_023_04749_7
crossref_primary_10_1128_IAI_00480_15
crossref_primary_10_1038_s41598_022_18152_5
crossref_primary_10_1038_s41598_017_09331_w
crossref_primary_10_3390_vaccines12121355
crossref_primary_10_3389_fimmu_2024_1503853
crossref_primary_10_3389_fimmu_2021_666742
crossref_primary_10_1016_j_meegid_2022_105259
crossref_primary_10_1007_s10989_023_10535_0
crossref_primary_10_3390_vetsci10060383
crossref_primary_10_5808_gi_23021
crossref_primary_10_1016_j_celrep_2023_112160
crossref_primary_10_3109_14017431_2015_1023344
crossref_primary_10_3389_fimmu_2022_851096
crossref_primary_10_1038_s41598_020_64268_x
crossref_primary_10_1038_s41590_024_02021_6
crossref_primary_10_1128_JVI_02133_16
crossref_primary_10_1016_j_chom_2024_09_011
crossref_primary_10_1016_j_ijbiomac_2023_127567
crossref_primary_10_1186_s43141_021_00148_9
crossref_primary_10_1080_2162402X_2015_1062209
crossref_primary_10_1016_j_jaci_2014_12_1928
crossref_primary_10_1002_mco2_115
crossref_primary_10_1016_j_jneuroim_2016_03_018
crossref_primary_10_1007_s10875_013_9926_x
crossref_primary_10_1111_trf_16313
crossref_primary_10_1038_s41598_018_22709_8
crossref_primary_10_1007_s10989_023_10491_9
crossref_primary_10_4049_jimmunol_1200694
crossref_primary_10_1002_0471142735_im1803s100
crossref_primary_10_1186_s12859_023_05197_0
crossref_primary_10_1016_j_vaccine_2014_02_024
crossref_primary_10_1007_s00894_022_05042_w
crossref_primary_10_1111_tan_13956
crossref_primary_10_1186_s12950_017_0171_6
crossref_primary_10_1007_s13277_013_0729_8
crossref_primary_10_1093_fqsafe_fyae005
crossref_primary_10_3390_v14112504
crossref_primary_10_1039_D1RA02885E
crossref_primary_10_1016_j_micpath_2020_104705
crossref_primary_10_1016_j_procbio_2022_07_007
crossref_primary_10_1016_j_vacune_2024_08_009
crossref_primary_10_1128_CVI_00406_16
crossref_primary_10_1155_2022_1419998
crossref_primary_10_1016_j_cell_2017_07_025
crossref_primary_10_1126_scitranslmed_aat4301
crossref_primary_10_1016_j_ijid_2020_07_016
crossref_primary_10_1371_journal_pone_0201299
crossref_primary_10_1186_s42269_023_01101_1
crossref_primary_10_1016_j_vaccine_2017_12_001
crossref_primary_10_1007_s40203_020_00062_x
crossref_primary_10_3389_fimmu_2023_1182504
crossref_primary_10_1186_s12936_017_1704_4
crossref_primary_10_1016_j_jinf_2015_10_012
crossref_primary_10_4049_jimmunol_2000192
crossref_primary_10_1080_07391102_2020_1845799
crossref_primary_10_1093_abt_tbad011
crossref_primary_10_1111_j_1365_2567_2012_03611_x
crossref_primary_10_1186_1472_6807_11_32
crossref_primary_10_1016_j_heliyon_2024_e37536
crossref_primary_10_1016_j_biologicals_2024_101782
crossref_primary_10_1182_blood_2015_11_682468
crossref_primary_10_3389_fimmu_2024_1432968
crossref_primary_10_1142_S0217984917400863
crossref_primary_10_1038_gene_2015_12
crossref_primary_10_1080_14760584_2022_2021882
crossref_primary_10_1007_s40203_024_00244_x
crossref_primary_10_1371_journal_pone_0135451
crossref_primary_10_1038_s41598_017_05980_z
crossref_primary_10_1016_j_vaccine_2011_11_002
crossref_primary_10_2174_1871526520666200810153657
crossref_primary_10_1080_07391102_2021_2014969
crossref_primary_10_1093_infdis_jiu662
crossref_primary_10_7717_peerj_10276
crossref_primary_10_3892_ijmm_2016_2793
crossref_primary_10_1038_srep39876
crossref_primary_10_3390_v12111300
crossref_primary_10_5812_archcid_118243
crossref_primary_10_3892_mmr_2014_2399
crossref_primary_10_1002_iid3_1360
crossref_primary_10_1155_2020_3865707
crossref_primary_10_1182_bloodadvances_2017013482
crossref_primary_10_1038_s41598_018_19456_1
crossref_primary_10_1016_j_heliyon_2024_e35129
crossref_primary_10_1111_j_1365_2567_2012_03579_x
crossref_primary_10_1186_s13073_017_0408_2
crossref_primary_10_1080_21645515_2020_1799668
crossref_primary_10_1002_jmv_27603
crossref_primary_10_4161_onci_28100
crossref_primary_10_3390_v13122360
crossref_primary_10_1016_j_ajpath_2018_04_016
crossref_primary_10_1208_s12248_016_9986_y
crossref_primary_10_3390_ijms21207561
crossref_primary_10_1165_rcmb_2014_0227OC
crossref_primary_10_1172_jci_insight_98575
crossref_primary_10_3389_fgene_2024_1405032
crossref_primary_10_1093_bib_bbr060
crossref_primary_10_1038_s41551_023_01129_8
crossref_primary_10_1093_bioinformatics_btx820
crossref_primary_10_1186_s13568_019_0757_x
crossref_primary_10_3390_microorganisms9010034
crossref_primary_10_1016_j_molimm_2020_02_009
crossref_primary_10_1007_s00403_020_02059_0
crossref_primary_10_3389_fnins_2022_1006923
crossref_primary_10_1016_j_omtm_2022_01_005
crossref_primary_10_1186_1471_2172_13_50
crossref_primary_10_1007_s00262_022_03181_w
crossref_primary_10_1080_07391102_2021_1894986
crossref_primary_10_1111_hae_12276
crossref_primary_10_1371_journal_pone_0022948
crossref_primary_10_1007_s13205_018_1106_5
crossref_primary_10_3389_fgene_2024_1500684
crossref_primary_10_1016_j_blre_2014_07_004
crossref_primary_10_1016_j_imlet_2016_04_016
crossref_primary_10_1016_j_jim_2015_06_003
crossref_primary_10_1016_j_imu_2020_100500
crossref_primary_10_1007_s10989_021_10159_2
crossref_primary_10_3390_vaccines12080836
crossref_primary_10_3389_fimmu_2024_1369890
crossref_primary_10_1038_s41598_018_26689_7
crossref_primary_10_3390_computation10070117
crossref_primary_10_1371_journal_pone_0100440
crossref_primary_10_3390_cells9112421
crossref_primary_10_1186_s12951_017_0295_0
crossref_primary_10_1128_JVI_02147_16
crossref_primary_10_1182_blood_2014_03_563742
crossref_primary_10_3390_molecules27062027
crossref_primary_10_3390_antib7030026
crossref_primary_10_3390_jcm7100342
crossref_primary_10_1038_s41467_018_03857_x
crossref_primary_10_1080_2162402X_2015_1123368
crossref_primary_10_1007_s00253_022_12279_1
crossref_primary_10_1080_25785826_2020_1794165
crossref_primary_10_1111_bjh_13131
crossref_primary_10_1128_JVI_00940_21
crossref_primary_10_3389_fimmu_2019_03037
crossref_primary_10_1007_s10989_019_09985_2
crossref_primary_10_1016_j_humimm_2014_06_022
crossref_primary_10_1080_07391102_2023_2258403
crossref_primary_10_1159_000479513
Cites_doi 10.1016/j.it.2003.10.006
10.1146/annurev.immunol.021908.132706
10.1038/nri1805
10.1007/s00251-007-0266-y
10.1371/journal.pone.0003268
10.1016/S0264-410X(01)00145-1
10.1146/annurev.iy.12.040194.001355
10.1093/nar/gkn202
10.1186/1745-7580-1-6
10.1111/j.1744-313X.2008.00765.x
10.1038/nri2092
10.1126/science.3287615
10.1111/j.1365-3024.2008.01077.x
10.1186/1745-7580-1-4
10.1093/nar/gkp1004
10.1186/1471-2105-8-238
10.4049/jimmunol.0903655
10.1016/j.ymeth.2004.06.006
10.4049/jimmunol.160.7.3363
10.4049/jimmunol.146.7.2331
10.1186/1471-2172-9-8
10.1093/bioinformatics/bth100
10.1146/annurev.immunol.21.090501.080116
10.1093/nar/gkn254
10.1371/journal.pcbi.1000107
10.4049/jimmunol.1001006
10.1002/pro.5560010313
10.1016/S0959-437X(05)80163-7
10.4049/jimmunol.1000405
10.1371/journal.pone.0009272
10.1093/bioinformatics/btn128
10.1093/bioinformatics/btg055
10.1371/journal.pone.0000796
10.1186/1745-7580-4-2
10.1371/journal.pcbi.1000048
10.1093/nar/gkg070
10.1007/s002510050595
10.1371/journal.pcbi.0020065
10.1093/bib/bbl038
10.1073/pnas.94.17.8976
10.1016/S0198-8859(03)00142-3
10.1007/s00251-008-0341-z
10.1073/pnas.061028898
10.1186/1471-2105-9-S12-S22
10.1093/nar/26.1.368
10.1186/1471-2105-10-296
10.1038/9858
10.1111/j.1365-2567.2010.03268.x
10.1093/bioinformatics/bti623
10.1093/nar/28.1.222
ContentType Journal Article
Copyright Wang et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2010 BioMed Central Ltd.
2010 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright ©2010 Wang et al; licensee BioMed Central Ltd. 2010 Wang et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Wang et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2010 BioMed Central Ltd.
– notice: 2010 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: Copyright ©2010 Wang et al; licensee BioMed Central Ltd. 2010 Wang et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-11-568
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Engineering Research Database

Publicly Available Content Database


MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 568
ExternalDocumentID oai_doaj_org_article_c3749aaade0a45568bd404e592a90ef1
10.1186/1471-2105-11-568
PMC2998531
2501716161
A243752493
21092157
10_1186_1471_2105_11_568
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PHS HHS
  grantid: HHSN26620040006C
– fundername: PHS HHS
  grantid: HHSN272200700048C
GroupedDBID ---
0R~
23N
2VQ
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
ADTOC
UNPAY
ID FETCH-LOGICAL-c729t-74d9e1a2a958bbc4fc92f8f1ac96191c64a5ac79af23ba383866502a743129a43
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:51:14 EDT 2025
Sun Oct 26 03:32:21 EDT 2025
Tue Sep 30 16:10:16 EDT 2025
Mon Oct 06 18:06:04 EDT 2025
Thu Sep 04 17:53:44 EDT 2025
Tue Oct 07 05:19:05 EDT 2025
Mon Oct 20 22:08:15 EDT 2025
Mon Oct 20 16:37:59 EDT 2025
Thu Oct 16 15:17:51 EDT 2025
Mon Jul 21 05:55:33 EDT 2025
Wed Oct 01 04:15:18 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Homologous Peptide
Binding Prediction
Prediction Performance
Combinatorial Peptide Library
Consensus Approach
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c729t-74d9e1a2a958bbc4fc92f8f1ac96191c64a5ac79af23ba383866502a743129a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-11-568
PMID 21092157
PQID 901863629
PQPubID 44065
ParticipantIDs doaj_primary_oai_doaj_org_article_c3749aaade0a45568bd404e592a90ef1
unpaywall_primary_10_1186_1471_2105_11_568
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998531
proquest_miscellaneous_954606148
proquest_miscellaneous_816791711
proquest_journals_901863629
gale_infotracmisc_A243752493
gale_infotracacademiconefile_A243752493
gale_incontextgauss_ISR_A243752493
pubmed_primary_21092157
crossref_citationtrail_10_1186_1471_2105_11_568
crossref_primary_10_1186_1471_2105_11_568
springer_journals_10_1186_1471_2105_11_568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-22
PublicationDateYYYYMMDD 2010-11-22
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-22
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2010
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Y El-Manzalawy (4151_CR32) 2008; 3
A Kumanovics (4151_CR2) 2003; 21
JE Smith-Garvin (4151_CR7) 2009; 27
T Sturniolo (4151_CR16) 1999; 17
C Pinilla (4151_CR41) 1992; 13
M Nielsen (4151_CR8) 2010; 130
CP Toseland (4151_CR9) 2005; 1
C Lundegaard (4151_CR27) 2008; 24
P Wang (4151_CR30) 2008; 4
J Trowsdale (4151_CR4) 1992; 2
J Sidney (4151_CR42) 1998
J Robinson (4151_CR5) 2003; 31
HH Lin (4151_CR31) 2008; 9
U Hobohm (4151_CR51) 1992; 1
H Zhang (4151_CR20) 2010; 5
Team RDC (4151_CR54) 2006
JA Traherne (4151_CR3) 2008; 35
H Rammensee (4151_CR13) 1999; 50
I Hoof (4151_CR17) 2009; 61
T Nazif (4151_CR22) 2001; 98
AS De Groot (4151_CR34) 2001; 19
4151_CR21
V Brusic (4151_CR11) 1998; 26
DR Flower (4151_CR36) 2003; 24
V Brusic (4151_CR35) 2004; 34
RR Mallios (4151_CR40) 2003; 64
4151_CR26
M Nielsen (4151_CR25) 2009; 10
S Uebel (4151_CR23) 1997; 94
EY Jones (4151_CR6) 2006; 6
M Nielsen (4151_CR19) 2008; 4
M Bhasin (4151_CR10) 2003; 19
S Southwood (4151_CR50) 1998; 160
J Sidney (4151_CR45) 2010; 185
M Nielsen (4151_CR47) 2007; 8
T Sing (4151_CR53) 2005; 21
JI Krieger (4151_CR33) 1991; 146
M Nielsen (4151_CR46) 2004; 20
C Schonbach (4151_CR12) 2000; 28
JA Swets (4151_CR52) 1988; 240
4151_CR14
JC Tong (4151_CR37) 2007; 8
O Karpenko (4151_CR39) 2008; 60
J Sidney (4151_CR24) 2008; 4
P Cresswell (4151_CR1) 1994; 12
B Peters (4151_CR15) 2007; 7
B Peters (4151_CR28) 2006; 2
HH Lin (4151_CR29) 2008; 9
4151_CR43
4151_CR44
N Murugan (4151_CR48) 2005; 1
K Vaughan (4151_CR38) 2009; 31
4151_CR49
M Nielsen (4151_CR18) 2007; 2
References_xml – volume: 24
  start-page: 667
  issue: 12
  year: 2003
  ident: 4151_CR36
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2003.10.006
– volume: 27
  start-page: 591
  year: 2009
  ident: 4151_CR7
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.021908.132706
– volume: 6
  start-page: 271
  issue: 4
  year: 2006
  ident: 4151_CR6
  publication-title: Nature reviews
  doi: 10.1038/nri1805
– volume: 60
  start-page: 25
  issue: 1
  year: 2008
  ident: 4151_CR39
  publication-title: Immunogenetics
  doi: 10.1007/s00251-007-0266-y
– volume: 3
  start-page: e3268
  issue: 9
  year: 2008
  ident: 4151_CR32
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003268
– volume: 19
  start-page: 4385
  issue: 31
  year: 2001
  ident: 4151_CR34
  publication-title: Vaccine
  doi: 10.1016/S0264-410X(01)00145-1
– volume-title: Vienna, Austria
  year: 2006
  ident: 4151_CR54
– volume: 12
  start-page: 259
  year: 1994
  ident: 4151_CR1
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.iy.12.040194.001355
– ident: 4151_CR26
  doi: 10.1093/nar/gkn202
– volume: 1
  start-page: 6
  year: 2005
  ident: 4151_CR48
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-1-6
– volume: 35
  start-page: 179
  issue: 3
  year: 2008
  ident: 4151_CR3
  publication-title: Int J Immunogenet
  doi: 10.1111/j.1744-313X.2008.00765.x
– volume: 7
  start-page: 485
  issue: 6
  year: 2007
  ident: 4151_CR15
  publication-title: Nature reviews
  doi: 10.1038/nri2092
– volume: 240
  start-page: 1285
  issue: 4857
  year: 1988
  ident: 4151_CR52
  publication-title: Science (New York), NY
  doi: 10.1126/science.3287615
– volume: 31
  start-page: 78
  issue: 2
  year: 2009
  ident: 4151_CR38
  publication-title: Parasite Immunol
  doi: 10.1111/j.1365-3024.2008.01077.x
– volume: 1
  start-page: 4
  issue: 1
  year: 2005
  ident: 4151_CR9
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-1-4
– ident: 4151_CR14
  doi: 10.1093/nar/gkp1004
– volume: 8
  start-page: 238
  year: 2007
  ident: 4151_CR47
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-238
– start-page: 18.13.11
  volume-title: Current protocals in immunology
  year: 1998
  ident: 4151_CR42
– ident: 4151_CR44
  doi: 10.4049/jimmunol.0903655
– volume: 34
  start-page: 436
  issue: 4
  year: 2004
  ident: 4151_CR35
  publication-title: Methods
  doi: 10.1016/j.ymeth.2004.06.006
– volume: 160
  start-page: 3363
  issue: 7
  year: 1998
  ident: 4151_CR50
  publication-title: J Immunol
  doi: 10.4049/jimmunol.160.7.3363
– volume: 146
  start-page: 2331
  issue: 7
  year: 1991
  ident: 4151_CR33
  publication-title: J Immunol
  doi: 10.4049/jimmunol.146.7.2331
– volume: 9
  start-page: 8
  year: 2008
  ident: 4151_CR29
  publication-title: BMC Immunol
  doi: 10.1186/1471-2172-9-8
– volume: 20
  start-page: 1388
  issue: 9
  year: 2004
  ident: 4151_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth100
– volume: 21
  start-page: 629
  year: 2003
  ident: 4151_CR2
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.21.090501.080116
– ident: 4151_CR21
  doi: 10.1093/nar/gkn254
– volume: 4
  start-page: e1000107
  issue: 7
  year: 2008
  ident: 4151_CR19
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1000107
– volume: 185
  start-page: 4189
  issue: 7
  year: 2010
  ident: 4151_CR45
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1001006
– ident: 4151_CR49
– volume: 1
  start-page: 409
  issue: 3
  year: 1992
  ident: 4151_CR51
  publication-title: Protein Sci
  doi: 10.1002/pro.5560010313
– volume: 2
  start-page: 492
  issue: 3
  year: 1992
  ident: 4151_CR4
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/S0959-437X(05)80163-7
– ident: 4151_CR43
  doi: 10.4049/jimmunol.1000405
– volume: 5
  start-page: e9272
  issue: 2
  year: 2010
  ident: 4151_CR20
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009272
– volume: 24
  start-page: 1397
  issue: 11
  year: 2008
  ident: 4151_CR27
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btn128
– volume: 19
  start-page: 665
  issue: 5
  year: 2003
  ident: 4151_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg055
– volume: 2
  start-page: e796
  issue: 8
  year: 2007
  ident: 4151_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000796
– volume: 4
  start-page: 2
  year: 2008
  ident: 4151_CR24
  publication-title: Immunome Res
  doi: 10.1186/1745-7580-4-2
– volume: 4
  start-page: e1000048
  issue: 4
  year: 2008
  ident: 4151_CR30
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000048
– volume: 31
  start-page: 311
  issue: 1
  year: 2003
  ident: 4151_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg070
– volume: 50
  start-page: 213
  issue: 3-4
  year: 1999
  ident: 4151_CR13
  publication-title: Immunogenetics
  doi: 10.1007/s002510050595
– volume: 2
  start-page: e65
  issue: 6
  year: 2006
  ident: 4151_CR28
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.0020065
– volume: 8
  start-page: 96
  issue: 2
  year: 2007
  ident: 4151_CR37
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbl038
– volume: 94
  start-page: 8976
  issue: 17
  year: 1997
  ident: 4151_CR23
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.94.17.8976
– volume: 64
  start-page: 852
  issue: 9
  year: 2003
  ident: 4151_CR40
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(03)00142-3
– volume: 61
  start-page: 1
  issue: 1
  year: 2009
  ident: 4151_CR17
  publication-title: Immunogenetics
  doi: 10.1007/s00251-008-0341-z
– volume: 98
  start-page: 2967
  issue: 6
  year: 2001
  ident: 4151_CR22
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.061028898
– volume: 9
  start-page: S22
  issue: Suppl 12
  year: 2008
  ident: 4151_CR31
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-S12-S22
– volume: 26
  start-page: 368
  issue: 1
  year: 1998
  ident: 4151_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/26.1.368
– volume: 10
  start-page: 296
  year: 2009
  ident: 4151_CR25
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-296
– volume: 13
  start-page: 901
  issue: 6
  year: 1992
  ident: 4151_CR41
  publication-title: Biotechniques
– volume: 17
  start-page: 555
  issue: 6
  year: 1999
  ident: 4151_CR16
  publication-title: Nature biotechnology
  doi: 10.1038/9858
– volume: 130
  start-page: 319
  issue: 3
  year: 2010
  ident: 4151_CR8
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2010.03268.x
– volume: 21
  start-page: 3940
  issue: 20
  year: 2005
  ident: 4151_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 28
  start-page: 222
  issue: 1
  year: 2000
  ident: 4151_CR12
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.222
SSID ssj0017805
Score 2.5410795
Snippet Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast...
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of...
Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast...
Abstract Background: MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens....
Abstract Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens....
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 568
SubjectTerms Algorithms
Alleles
Analysis
Autoimmune diseases
Binding Sites
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Epitopes - genetics
Epitopes - immunology
Experiments
Genes, MHC Class II
Histocompatibility antigens
HLA histocompatibility antigens
HLA-DP Antigens - chemistry
HLA-DP Antigens - genetics
HLA-DP Antigens - immunology
HLA-DQ Antigens - chemistry
HLA-DQ Antigens - genetics
HLA-DQ Antigens - immunology
HLA-DR Antigens - chemistry
HLA-DR Antigens - genetics
HLA-DR Antigens - immunology
Humans
Libraries
Life Sciences
Ligands
Methods
Microarrays
Peptides
Peptides - chemistry
Peptides - immunology
Peptides - metabolism
Protein binding
Protein structure prediction
Research Article
Structural analysis
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIOqD-G29U4II4mHZfqQfwafV9VhF5Tw9uLcwSRM9WLvLdRe5_96Z9MOtct6Lj9tM2fY3k-Y3zOQXxp7JKoptLiDEpTUJReJMqK3QGMuycDa1pipoN_LHT_n8WLw_yU62jvqinrBWHrgFbmLSQkgAqGwEguSydCUiYTOZgIys84lPVMo-merqB6TU7_cVFXGISU3WFyjLfDJcox1lGUmsbi1IXrf_76_z1vL0Z-vkUD-9wa5t6hWc_4TFYmuJOrjFbnbckk_bd7rNrtj6DrvanjZ5fpe9OqQOlspyfeq3svDVGVVpfOBx5K58_mHKZ0cv-eyQQ13x2Wf-oz081zb32PHB269v5mF3dkJokC6vw0JU0saAIGWl1kY4IxNXuhiMxJQpNuieDEwhwSWpBkxTSfcuSoAIRSJBpPfZTr2s7UPGtdTIbV2lMZcSYBxmaGDLNMfMMoe4cAGb9AAq0wmL0_kWC-UTjDJXBLkiyPGnQsgD9mK4Y9WKavzD9jX5ZLAjOWx_AYNEdUGiLguSgD0ljyoSvKipo-YbbJpGvftypKakyJhhEpoG7Hln5Jb4_Aa6DQqIAmlkjSz3RpY4I81oeLcPHNV9ERqFvKvMkS3IgPFhlG6kJrfaLjeNKqkkFhdxfLEJeiCnHB5hedAG4gAMYiaRvxUBK0YhOkJuPFKffveC4khJkLXh3-73wfz7uS_2y_4Q7pc68dH_cOIuu-5bN3DaJske21mfbexjZIRr_cRP_l9w7lSi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9NADD-NTgj4gHgNwgY6ISTERNQmuTxOCKGObiqITaUwad9OvsvdmFTS0ofQ_nvsNAkNaONjeo6S2j6fHds_M_ZS5r3AJgJ8PFpDX4TO-NoKjbosU2cja_KUupGPT5Lhqfh0Fp9tseO6F4bKKmubWBrqfGroG3kXz60sQWsr389--jQ0ipKr9QQNqCYr5O9KhLEbbDskYKwO2z44PBmNm7QCAfjXucos6QZomX2ki6m5LCa01Y2zqYTw_9dQb5xUf1dRNqnUO-zWqpjB5S-YTDZOq6N77G7lZvL-Wi_usy1bPGA314MnLx-ytyMqZskt1xdlVwufzSlhU-ogRzeWDz_3-WD8hg9GHIqcD77wH-s5unbxiJ0eHX77MPSrMQq-Qc956acilzaAEGScaW2EMzJ0mQvASIyeAoOSisGkElwYacCIlSDweiGQbxFKENEO6xTTwj5hXEuNbq7LNYZVAozDYA1sFiUYZCYQpM5j3ZqBylQY4zTqYqLKWCNLFLFcEcvxUiHLPfa6uWO2xte4hvaAZNLQETJ2-cN0fq6qjaZMlAoJALntgSB4NZ2LnrCxxP_fsy7w2AuSqCLsi4KKa85htVioj1_Hqk_gjDHGo5HHXlVEborvb6DqVUAuEFxWi3KvRYmb07SWd2vFUZVxWKhGlT3Gm1W6kerdCjtdLVRG2bEgDYKrSVACCYXzyJbHa0VsGIM8k-jKpR5LWyra4lx7pbj4XmKLo3eCDhw-dr9W5j_vfbVc9ht1_68Qn17LkV12uyzPwP0Yhnuss5yv7DP0-pb6ebWXfwOW6lAI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgCDEeEL8GYQNZCAkxES1OHCcWT2VlKgjQGEzam3V2bDappNXaCu2_5y5NQwMMxGPjc5renePvenefGXumq0R4JSHGrTWNZRpcbL206Mu6CD7zriqoG_nDRzU6lu9O8pP2_w7qhVnP34tS7Ql8ecYYluTU_5Wr8iq7hluUatKyar_LFxAz_yoJ-YdZvU2n4eb__Q28tgX9Wh7Z5UhvshuLegoX32E8XtuGDm6zWy1-5IOlwe-wK76-y64vT5S8uMdeHVKVSuW5PWvaVfj0nDIxjXNxxKd89H7Ah0cv-fCQQ13x4Sf-bXlArp_dZ8cHb77sj-L2fITYISSex4WstBeQgs5La50MTqehDAKcxrBIODRBDq7QENLMAoaixG2XpECgIdUgsy22UU9q_5Bxqy3i11BZjJckuIBRGPgyUxg9KhBFiNjeSoHGteThdIbF2DRBRKkMqdyQyvGjQZVH7EU3Y7okzviL7GuySSdHlNfNBfQE064g47JCagCofAKSeNNsJRPpc42_P_FBROwpWdQQqUVNVTNfYTGbmbefj8yAWBdzDDSziD1vhcIEn99B24SAWiAerJ7kTk8SV53rDW-vHMe0q35mEFuVChGBjhjvRmkiFbLVfrKYmZLSXqIQ4nIRtICiOB3V8mDpiJ1iUGcaMVoRsaLnoj3N9Ufqs9OGNBxhByIz_NrdlTP_fO7L7bLbufs_jfjof-68zTabMgxcnmm6wzbm5wv_GNHd3D5pFvYPds5BZg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IG8hCSIiJtHk4D4tPhTIVBFMZVBqfLNuxR0WXlj6Exl_PXV40g4GQ-Jj4rCTnO_t38d3PhDzmmeebmEkXltbAZYHVrjJMgS3zxJrQ6CzBauR3B_FwzN4cRUdbZFTXwqgTrSazijQUiYq7m2Xo07LKAU9RMIvePLOl06dxz4dJ1oXwJcI6sShOL5DtOAJ03iHb44NR_1NRZFSJ1LuVv-nWWp0KEv9fp-qNtepsHmWzmXqFXFrnc3n6TU6nG-vV_jXytf7SMk3lS3e9Ul39_QwJ5P9UxXVytQK3tF9a4w2yZfKb5GJ53OXpLfJ8hCk0maFqUtTS0PkCt4kKy6fwfDp826eDw2d0MKIyz-jgPT0pT-81y9tkvP_q48uhWx3e4GrA6ys3YRk3vgwkj1KlNLOaBza1vtQcYjZfg31EUidc2iBUEuJkJN7zAomIJuCShXdIJ5_l5h6hiisA1zZTEMwxqS2EiNKkYQyhbSz9xDqkVw-a0BWzOR6wMRVFhJPGAlUiUCVwKUAlDnna9JiXrB5_kH2BdtDIIR93cWO2OBaVewsdJoxLKTPjSYakbipjHjMRh-_3jPUd8gitSCDjRo4pPcdyvVyK1x8ORR8pISOIgkOHPKmE7AzeX8uqQgK0gCRdLcndliRMCbrVvFMbq6impKUA4JfGAFe4Q2jTih0xyy43s_VSpLgn5ye-f74IjECMPxFALXdL428UAzrjACAThyQtt2hprt2STz4XjOaAiQA2wmP3agf6-d7nj8te42J_HcT7_yK8Qy4XOSLgPkGwSzqrxdo8AOi5Ug-r2eQHzsR5Og
  priority: 102
  providerName: Unpaywall
Title Peptide binding predictions for HLA DR, DP and DQ molecules
URI https://link.springer.com/article/10.1186/1471-2105-11-568
https://www.ncbi.nlm.nih.gov/pubmed/21092157
https://www.proquest.com/docview/901863629
https://www.proquest.com/docview/816791711
https://www.proquest.com/docview/954606148
https://pubmed.ncbi.nlm.nih.gov/PMC2998531
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-568
https://doaj.org/article/c3749aaade0a45568bd404e592a90ef1
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PMC
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELf2EAI-IN6EjcpCCMS0sDych4UQytqVUrGqdFQqnyzHccakknZ9CPrfc5cm2QLb-NKq8SVNf3cX_65n3xHyiieWrX0mTZhaHZM5qTJjzWKwZR6k2tUqCXA38nHP7wxZd-SNNki5u6QAcH5laIf9pIaz8bvf56uP4PAfcocP_QMbHrAmhC4e7hHz_PD19NzEtlKYfi16bGySbZi6OPZ2OGYXaQYs6F_mLq-4UG2uykv6__vgvjRz_b2qskqt3iW3l9lUrn7J8fjS7NW-T-4VtJNGazt5QDZ09pDcWjeiXD0i7_u4uCXRND7Ld7nQ6QwTOLlNUqC1tPMloq3BPm31qcwS2vpKf6776ur5YzJsH31rdsyirYKpgEkvzIAlXNvSkdwL41ixVHEnDVNbKg7RlK1Ac55UAZep48YSIlgsiWc5ErmGwyVzn5CtbJLpZ4TGPAbamyYxhFlMqhSCN6lD14eg05d2kBrkoARQqKLmOLa-GIs89gh9gZALhBw-CoDcIG-rM6brehs3yB6iTio5rJSdH5jMTkXheEK5AeNSykRbkmG5tThhFtMeh99v6dQ2yEvUqMBaGBkutjmVy_lcfD4ZiAiLNXoQn7oGeVMIpRO4fyWLvQuAApbPqknu1iTBWVVteKc0HFHaugBKFvpAJLhBaDWKJ-L6t0xPlnMRYrbMDmz7ehHQgI_hPcDydG2IFTCAGQdqFxgkqJloDbn6SHb2I681DmwFCB187V5pzBf3fb1e9ipz_68Sn9-IyA65ky_XAH90nF2ytZgt9QtggYu4QTaDUQCvYftTg2xHUfekC--HR73-AI42_WYj_3-lkXs8jAx7_ej7H0K7XC8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIlR4QNyYFlghEKLCitdeHyuEUCBUCU2r0kPK27Jer0ul4IQ4UZUfxX9kxhcxqOWpj4nHyfqb2zs7Q8hLkTjMBFzZ4Fpdm7uptmPDY5BlEabGMzoJ8TTy3n7QP-FfRv5ojfyqz8JgWWVtEwtDnUw0viPvgN-KArC24sP0p41Do3BztZ6gUUrFrlmeQ8aWvx_0gL2vXHfn8_Gnvl0NFbA1xJFzO-SJMEy5SvhRHGueauGmUcqUFpBLMA3r9pUOhUpdL1aQv2FDOMdV6GldobgHv3uNXOcemBJQn3DU5HcMxwPUO6FR0GFg923IqHw8uuZjL9cVz1cMCPjXDaz4wb9rNJuN2ltkY5FN1fJcjccrvnDnDrldBbG0W0rdXbJmsnvkRjnWcnmfvDvAUpnE0PisODNDpzPcDioknEKQTPvDLu0dvqW9A6qyhPa-0h_llF6TPyAnV4LnQ7KeTTLzmNBYxBBEp0kMSRtXOoVUUJnICyCFDRQLU4t0agClrjqY4yCNsSwymSiQCLlEyOGjBMgt8qa5Y1p277iE9iPypKHDvtvFF5PZqazUWGov5EIplRhHcWzeFifc4cYX8PyOSZlFXiBHJXbWyLB051Qt8lwOjg5lF1s_-pDtehZ5XRGlE1i_VtVJCEABm3G1KLdalKD6unV5sxYcWZmeXDaKYhHaXMUbsZouM5NFLiPce2MhYxeTAAcCfFkAsDwqBbEBBjATECiGFglbItpCrn0lO_tedC6H2AfCQ_jb7VqY_6z7Yr5sN-L-XyY-uRSR52Sjf7w3lMPB_u4muVkUgoBuuu4WWZ_PFuYpxJfz-Fmh1ZR8u2oz8hvYf4XR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxJuwARZCQkxEzcNxYvGptFQdjKkMJu2bZTv2mFTSqmmF9t9zlxcLMBAfW5_b9O5s_6539zMhL0QehJYz5cPRGvkscsbXlmnwZZE6G1uTp9iN_PGAT4_Y--PkuPnDrWyr3duUZN3TgCxNxXqwzF29xDM-CGFL9SFYSbArLOHZZXKFwdmGNxiM-KjLIiBff5ua_MOs3lFUMfb_vi-fO5h-LZrsMqc3yfVNsVRn39V8fu5wmtwmtxpUSYe1G9whl2xxl1yt75k8u0fezLB2JbdUn1ZNLHS5wvxM5XIUUCud7g_p-PA1Hc-oKnI6_kS_1dfm2vI-OZq8-zKa-s2tCb4BoLz2U5YLG6pIiSTT2jBnROQyFyojIFgKDRgmUSYVykWxVhCgIuNdECmEEpFQLH5AtopFYR8RqoUGVOtyDVEUU8ZBbKZsFnOIKbkKU-eRQatAaRpKcbzZYi6r0CLjElUuUeXwUoLKPfKqm7Gs6TT-IvsWbdLJIRF29cZidSKbdSVNnDKhlMptoBiyqemcBcwmAn5_YF3okedoUYlUFwXW0pyoTVnKvc-HcohcjAmEn7FHXjZCbgHPb1TTmgBaQHasnuROTxLWoukNb7eOI5u9oJSAuDIOOEF4hHajOBHL2wq72JQyw2RYmIbhxSJgAY7RO6jlYe2InWJAZwKQW-qRtOeiPc31R4rTrxWVOIARwGvwtbutM_987ovtstu5-z-N-Ph_PvkZuTYbT-T-3sGHbXKjqtOAlRpFO2RrvdrYJwD_1vpptcZ_AGCdTJw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IG8hCSIiJtHk4D4tPhTIVBFMZVBqfLNuxR0WXlj6Exl_PXV40g4GQ-Jj4rCTnO_t38d3PhDzmmeebmEkXltbAZYHVrjJMgS3zxJrQ6CzBauR3B_FwzN4cRUdbZFTXwqgTrSazijQUiYq7m2Xo07LKAU9RMIvePLOl06dxz4dJ1oXwJcI6sShOL5DtOAJ03iHb44NR_1NRZFSJ1LuVv-nWWp0KEv9fp-qNtepsHmWzmXqFXFrnc3n6TU6nG-vV_jXytf7SMk3lS3e9Ul39_QwJ5P9UxXVytQK3tF9a4w2yZfKb5GJ53OXpLfJ8hCk0maFqUtTS0PkCt4kKy6fwfDp826eDw2d0MKIyz-jgPT0pT-81y9tkvP_q48uhWx3e4GrA6ys3YRk3vgwkj1KlNLOaBza1vtQcYjZfg31EUidc2iBUEuJkJN7zAomIJuCShXdIJ5_l5h6hiisA1zZTEMwxqS2EiNKkYQyhbSz9xDqkVw-a0BWzOR6wMRVFhJPGAlUiUCVwKUAlDnna9JiXrB5_kH2BdtDIIR93cWO2OBaVewsdJoxLKTPjSYakbipjHjMRh-_3jPUd8gitSCDjRo4pPcdyvVyK1x8ORR8pISOIgkOHPKmE7AzeX8uqQgK0gCRdLcndliRMCbrVvFMbq6impKUA4JfGAFe4Q2jTih0xyy43s_VSpLgn5ye-f74IjECMPxFALXdL428UAzrjACAThyQtt2hprt2STz4XjOaAiQA2wmP3agf6-d7nj8te42J_HcT7_yK8Qy4XOSLgPkGwSzqrxdo8AOi5Ug-r2eQHzsR5Og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+binding+predictions+for+HLA+DR%2C+DP+and+DQ+molecules&rft.jtitle=BMC+bioinformatics&rft.au=Wang%2C+Peng&rft.au=Sidney%2C+John&rft.au=Kim%2C+Yohan&rft.au=Sette%2C+Alessandro&rft.date=2010-11-22&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=11&rft.spage=568&rft_id=info:doi/10.1186%2F1471-2105-11-568&rft.externalDocID=2501716161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon