Peptide binding predictions for HLA DR, DP and DQ molecules
Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a signific...
Saved in:
| Published in | BMC bioinformatics Vol. 11; no. 1; p. 568 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
22.11.2010
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/1471-2105-11-568 |
Cover
| Abstract | Background
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally.
Results
In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance.
Conclusion
We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. |
|---|---|
| AbstractList | MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally.BACKGROUNDMHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally.In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance.RESULTSIn this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance.We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required.CONCLUSIONWe found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. Abstract Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naieve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. Results In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. Conclusion We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ molecules are presumably equally important, and have only been studied less because they are more difficult to handle experimentally. In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated prediction tools utilizing several machine learning algorithms and evaluated their performance. We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to the larger amounts of training data available. 3) The presence of homologous peptides between training and testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors intended for end-user applications should include all training data for maximum performance. 4) The recently developed NN-align prediction method significantly outperformed all other algorithms, including a naïve consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB prediction method could outperform the NN-align method, but further research into how to best combine MHC class II binding predictions is required. |
| ArticleNumber | 568 |
| Audience | Academic |
| Author | Wang, Peng Sidney, John Kim, Yohan Peters, Bjoern Sette, Alessandro Lund, Ole Nielsen, Morten |
| AuthorAffiliation | 1 La Jolla Institute for Allergy and Immunology, La Jolla, USA 2 Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark, Lyngby, Denmark |
| AuthorAffiliation_xml | – name: 2 Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark, Lyngby, Denmark – name: 1 La Jolla Institute for Allergy and Immunology, La Jolla, USA |
| Author_xml | – sequence: 1 givenname: Peng surname: Wang fullname: Wang, Peng organization: La Jolla Institute for Allergy and Immunology – sequence: 2 givenname: John surname: Sidney fullname: Sidney, John organization: La Jolla Institute for Allergy and Immunology – sequence: 3 givenname: Yohan surname: Kim fullname: Kim, Yohan organization: La Jolla Institute for Allergy and Immunology – sequence: 4 givenname: Alessandro surname: Sette fullname: Sette, Alessandro organization: La Jolla Institute for Allergy and Immunology – sequence: 5 givenname: Ole surname: Lund fullname: Lund, Ole organization: Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark – sequence: 6 givenname: Morten surname: Nielsen fullname: Nielsen, Morten organization: Center for Biological Sequence Analysis, Department for Systems Biology, Technical University of Denmark – sequence: 7 givenname: Bjoern surname: Peters fullname: Peters, Bjoern email: bpeters@liai.org organization: La Jolla Institute for Allergy and Immunology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21092157$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkt2L1DAUxYusuB_67pMUfRDBrkmaNA2CMOyoOzDguupzuE3TmqGTzCatuv-9qR3HncUv-tD29ndObs-9x8mBdVYnyUOMTjEuixeYcpwRjFiGccaK8k5ytCsd3Hg-TI5DWCGEeYnYveQw1gTBjB8lLy_0pje1Titja2PbdON1bVRvnA1p43x6vpyl88vn6fwiBVun8_fp2nVaDZ0O95O7DXRBP9jeT5JPb15_PDvPlu_eLs5my0xxIvqM01poDAQEK6tK0UYJ0pQNBiUKLLAqKDBQXEBD8gryMi-LgiECnOaYCKD5SbKYfGsHK7nxZg3-Wjow8kfB-VaC743qtFQ5pwIAao2AsphIVVNENRPxdKQbHL3w5DXYDVx_ha7bGWIkx1DlmJocU4uvMlpEzatJsxmqta6Vtr2Hbq-R_S_WfJat-yKJECXLx0Ofbg28uxp06OXaBKW7Dqx2Q5CC0QIVmJb_JEtccIE5Hj0f3yJXbvA2zkEKFH8jL4iI0JMJaiGGY2zjYn9qtJQzQnPOCBV5pE5_Q8Wr1muj4sY1Jtb3BM_2BJHp9be-hSEEufhwuc8-uhneLrWfKxiBYgKUdyF43UhlehgXMHZhur-NBd0S_sckt9MPEbWt9r9C-6PmO9YnByI |
| CitedBy_id | crossref_primary_10_1007_s10989_021_10283_z crossref_primary_10_1073_pnas_1505956112 crossref_primary_10_1016_j_genrep_2024_101943 crossref_primary_10_1155_2013_467852 crossref_primary_10_1007_s11030_025_11108_7 crossref_primary_10_1007_s00430_022_00739_4 crossref_primary_10_1186_1471_2105_14_S2_S13 crossref_primary_10_47836_pjst_29_1_32 crossref_primary_10_1080_19396368_2016_1243741 crossref_primary_10_3389_fimmu_2022_806825 crossref_primary_10_1093_nar_gkx276 crossref_primary_10_4049_jimmunol_1200850 crossref_primary_10_1093_nar_gkz452 crossref_primary_10_3389_fgene_2019_01141 crossref_primary_10_1002_rmv_1859 crossref_primary_10_4236_alc_2013_24011 crossref_primary_10_1002_pmic_202000160 crossref_primary_10_3389_fimmu_2017_01309 crossref_primary_10_1111_pim_12318 crossref_primary_10_1038_s41598_021_94488_8 crossref_primary_10_1016_j_jim_2015_03_022 crossref_primary_10_1155_2017_6412353 crossref_primary_10_4049_jimmunol_1200626 crossref_primary_10_4137_CIN_S39071 crossref_primary_10_1128_JVI_02139_13 crossref_primary_10_1126_science_abh1823 crossref_primary_10_1016_j_jaci_2014_05_033 crossref_primary_10_1111_trf_14525 crossref_primary_10_1007_s13721_023_00416_3 crossref_primary_10_3389_fimmu_2019_00621 crossref_primary_10_1016_j_ijbiomac_2019_07_024 crossref_primary_10_1155_2016_2743292 crossref_primary_10_1016_j_imu_2022_100862 crossref_primary_10_1371_journal_pone_0205933 crossref_primary_10_1371_journal_pone_0025055 crossref_primary_10_1007_s12094_012_0980_2 crossref_primary_10_1186_s12879_024_09046_0 crossref_primary_10_1016_j_imlet_2016_02_006 crossref_primary_10_1371_journal_ppat_1008243 crossref_primary_10_1007_s00251_019_01137_6 crossref_primary_10_1371_journal_pone_0203715 crossref_primary_10_3389_fcimb_2021_631019 crossref_primary_10_1007_s10989_022_10431_z crossref_primary_10_1371_journal_pone_0282580 crossref_primary_10_1038_s41598_018_32986_y crossref_primary_10_1186_1471_2164_15_S9_S9 crossref_primary_10_1371_journal_pbio_3000590 crossref_primary_10_1073_pnas_1300512110 crossref_primary_10_2217_fvl_2022_0104 crossref_primary_10_1007_s42485_024_00164_6 crossref_primary_10_1016_j_actatropica_2024_107388 crossref_primary_10_3389_fimmu_2017_01511 crossref_primary_10_1016_j_artmed_2012_05_001 crossref_primary_10_4049_jimmunol_1600663 crossref_primary_10_1016_j_ejps_2020_105279 crossref_primary_10_1038_s41598_021_88291_8 crossref_primary_10_1016_j_jaut_2011_05_010 crossref_primary_10_1016_j_vetvac_2023_100013 crossref_primary_10_3389_fcimb_2021_769446 crossref_primary_10_1111_1567_1364_12099 crossref_primary_10_3390_pathogens12010016 crossref_primary_10_1097_MCP_0000000000000189 crossref_primary_10_1038_s41586_024_07509_7 crossref_primary_10_1016_j_vacun_2021_10_003 crossref_primary_10_1021_acs_jcim_9b00403 crossref_primary_10_1016_j_ijmm_2017_03_004 crossref_primary_10_1172_JCI156083 crossref_primary_10_7717_peerj_13380 crossref_primary_10_3389_fimmu_2021_735373 crossref_primary_10_2217_imt_2017_0163 crossref_primary_10_1016_j_meegid_2021_104875 crossref_primary_10_2139_ssrn_3929220 crossref_primary_10_3389_fimmu_2024_1293706 crossref_primary_10_3389_fimmu_2017_01763 crossref_primary_10_1016_j_virol_2013_11_001 crossref_primary_10_1002_jcb_26719 crossref_primary_10_1084_jem_20200206 crossref_primary_10_3390_ijms23169149 crossref_primary_10_4049_jimmunol_1801099 crossref_primary_10_1007_s13205_024_04022_6 crossref_primary_10_3389_fimmu_2022_862851 crossref_primary_10_1002_ana_24860 crossref_primary_10_1080_08927022_2020_1720916 crossref_primary_10_1038_s41598_024_66858_5 crossref_primary_10_1016_j_compbiomed_2022_105507 crossref_primary_10_1126_science_aaw7479 crossref_primary_10_1139_cjm_2016_0528 crossref_primary_10_1371_journal_pone_0144515 crossref_primary_10_3109_08916934_2015_1027817 crossref_primary_10_1021_acs_bioconjchem_6b00393 crossref_primary_10_1007_s12223_024_01152_5 crossref_primary_10_1186_1472_6807_12_20 crossref_primary_10_1002_jcb_27979 crossref_primary_10_1007_s12026_023_09403_2 crossref_primary_10_1126_sciadv_abq4120 crossref_primary_10_1212_NXI_0000000000200103 crossref_primary_10_1016_j_jim_2014_02_008 crossref_primary_10_1128_IAI_01023_16 crossref_primary_10_1016_j_sjbs_2023_103661 crossref_primary_10_7774_cevr_2016_5_1_75 crossref_primary_10_1007_s12033_023_00867_z crossref_primary_10_1016_j_compbiomed_2022_105856 crossref_primary_10_1177_2050312118800202 crossref_primary_10_5812_ijpr_126559 crossref_primary_10_1016_j_molliq_2020_113612 crossref_primary_10_1039_D0BM01372B crossref_primary_10_1080_07391102_2023_2171138 crossref_primary_10_1007_s00251_013_0684_y crossref_primary_10_1038_s12276_022_00870_5 crossref_primary_10_1080_07391102_2019_1692072 crossref_primary_10_1109_TCBB_2024_3371984 crossref_primary_10_1016_j_imu_2021_100546 crossref_primary_10_4049_jimmunol_1701764 crossref_primary_10_1016_j_meegid_2020_104482 crossref_primary_10_1038_s41587_019_0280_2 crossref_primary_10_1586_erv_11_160 crossref_primary_10_1016_j_theriogenology_2016_05_019 crossref_primary_10_1016_j_meegid_2017_09_023 crossref_primary_10_3389_fimmu_2017_00984 crossref_primary_10_1016_j_vacun_2023_04_001 crossref_primary_10_1111_pim_12699 crossref_primary_10_1002_ijc_32620 crossref_primary_10_1016_j_imu_2020_100478 crossref_primary_10_1016_j_meegid_2021_104795 crossref_primary_10_1155_2020_9475058 crossref_primary_10_1007_s12539_017_0238_3 crossref_primary_10_1039_C8BM01220B crossref_primary_10_1161_CIRCULATIONAHA_119_042863 crossref_primary_10_1002_ijc_28376 crossref_primary_10_1007_s00203_023_03492_1 crossref_primary_10_1016_j_micpath_2020_104398 crossref_primary_10_1186_s43141_023_00593_8 crossref_primary_10_1016_j_meegid_2019_104058 crossref_primary_10_4049_jimmunol_1901079 crossref_primary_10_1126_scitranslmed_adf3309 crossref_primary_10_1016_j_vaccine_2018_09_004 crossref_primary_10_1080_07391102_2024_2316762 crossref_primary_10_1021_acsomega_1c04817 crossref_primary_10_1093_bioinformatics_btab687 crossref_primary_10_4049_jimmunol_1700774 crossref_primary_10_3389_fimmu_2019_01568 crossref_primary_10_1155_2017_9363750 crossref_primary_10_3389_fmolb_2021_636562 crossref_primary_10_1007_s00432_012_1260_9 crossref_primary_10_1016_j_meegid_2020_104189 crossref_primary_10_1093_infdis_jiy549 crossref_primary_10_1038_s41598_024_61025_2 crossref_primary_10_3390_biology10100997 crossref_primary_10_1021_acsinfecdis_4c00697 crossref_primary_10_1080_2162402X_2017_1415687 crossref_primary_10_18632_oncotarget_26247 crossref_primary_10_1002_cti2_1410 crossref_primary_10_3390_vaccines9101098 crossref_primary_10_1016_j_meegid_2020_104199 crossref_primary_10_1016_j_meegid_2020_104197 crossref_primary_10_1016_j_micinf_2018_11_001 crossref_primary_10_1038_s41598_024_55372_3 crossref_primary_10_3390_biom14121620 crossref_primary_10_1128_JVI_00196_14 crossref_primary_10_1007_s13205_020_02544_3 crossref_primary_10_1016_j_imlet_2019_10_017 crossref_primary_10_1016_j_fob_2015_03_007 crossref_primary_10_2217_fvl_2021_0105 crossref_primary_10_2174_0118750362253383230922100803 crossref_primary_10_1016_j_imlet_2017_02_003 crossref_primary_10_1093_bib_bbaa340 crossref_primary_10_1021_acs_molpharmaceut_6b00682 crossref_primary_10_3389_fvets_2021_731200 crossref_primary_10_1186_s12864_023_09796_2 crossref_primary_10_2196_19371 crossref_primary_10_1007_s00894_025_06301_2 crossref_primary_10_1080_07391102_2020_1804460 crossref_primary_10_1182_bloodadvances_2018019323 crossref_primary_10_1007_s10989_020_10020_y crossref_primary_10_1016_j_antiviral_2015_11_011 crossref_primary_10_3390_antib13040104 crossref_primary_10_1126_sciadv_aar4297 crossref_primary_10_1016_j_intimp_2015_09_012 crossref_primary_10_3389_fimmu_2021_631249 crossref_primary_10_1128_JVI_01641_20 crossref_primary_10_1371_journal_pone_0080636 crossref_primary_10_3389_fimmu_2020_01784 crossref_primary_10_1080_07391102_2021_1997819 crossref_primary_10_1016_j_ijbiomac_2018_06_112 crossref_primary_10_3390_vaccines10091389 crossref_primary_10_1016_j_csbj_2023_02_031 crossref_primary_10_1080_07391102_2024_2325109 crossref_primary_10_3389_fimmu_2017_00278 crossref_primary_10_1016_j_synbio_2024_05_008 crossref_primary_10_1128_JVI_00132_21 crossref_primary_10_1016_j_exppara_2023_108475 crossref_primary_10_1016_j_vacune_2023_10_012 crossref_primary_10_1016_j_micpath_2022_105447 crossref_primary_10_1155_2014_272950 crossref_primary_10_4049_jimmunol_1103640 crossref_primary_10_3389_fimmu_2023_1128641 crossref_primary_10_1016_j_drudis_2012_07_003 crossref_primary_10_1016_j_meegid_2015_10_015 crossref_primary_10_1155_2010_218590 crossref_primary_10_1016_j_jneuroim_2016_11_008 crossref_primary_10_1371_journal_pone_0312262 crossref_primary_10_1007_s12094_012_0941_9 crossref_primary_10_1002_eji_201948126 crossref_primary_10_3389_fimmu_2020_01261 crossref_primary_10_1007_s10989_020_10089_5 crossref_primary_10_1080_07391102_2018_1548977 crossref_primary_10_1158_1078_0432_CCR_13_0197 crossref_primary_10_1038_srep34527 crossref_primary_10_1080_07391102_2022_2028676 crossref_primary_10_3389_fimmu_2014_00124 crossref_primary_10_1128_JVI_01631_14 crossref_primary_10_3390_vaccines10111850 crossref_primary_10_1111_joim_12589 crossref_primary_10_1007_s10529_023_03380_0 crossref_primary_10_1111_joim_13434 crossref_primary_10_1038_s41598_020_75410_0 crossref_primary_10_1016_j_ijbiomac_2018_09_071 crossref_primary_10_1038_nature22976 crossref_primary_10_1080_07391102_2017_1343156 crossref_primary_10_3389_fimmu_2019_02966 crossref_primary_10_3389_fimmu_2020_00283 crossref_primary_10_1016_j_jgeb_2024_100377 crossref_primary_10_1371_journal_pntd_0007489 crossref_primary_10_1016_j_jgeb_2025_100474 crossref_primary_10_1186_1471_2164_14_S5_S11 crossref_primary_10_1038_s41598_019_41496_4 crossref_primary_10_1016_j_micpath_2022_105782 crossref_primary_10_1080_07391102_2020_1869092 crossref_primary_10_1007_s00251_011_0579_8 crossref_primary_10_1016_j_vaccine_2020_06_035 crossref_primary_10_1038_s41541_022_00591_w crossref_primary_10_1080_19420862_2015_1007828 crossref_primary_10_1080_21645515_2024_2352908 crossref_primary_10_3389_fimmu_2022_933594 crossref_primary_10_20883_medical_e750 crossref_primary_10_1186_s12974_017_0996_1 crossref_primary_10_1080_07391102_2021_1896387 crossref_primary_10_1111_cea_12014 crossref_primary_10_1016_j_meegid_2017_06_005 crossref_primary_10_1111_cea_13223 crossref_primary_10_1073_pnas_1405153111 crossref_primary_10_1007_s11693_014_9135_9 crossref_primary_10_1016_j_bcab_2023_102706 crossref_primary_10_1093_bioinformatics_bts621 crossref_primary_10_3389_fimmu_2019_00195 crossref_primary_10_1016_j_antiviral_2018_07_007 crossref_primary_10_1080_19420862_2020_1850395 crossref_primary_10_3390_cells12020317 crossref_primary_10_2174_1574893614666190730104348 crossref_primary_10_1002_jmv_26561 crossref_primary_10_1080_07391102_2022_2105400 crossref_primary_10_1016_j_imbio_2019_09_001 crossref_primary_10_1042_BSR20180450 crossref_primary_10_1371_journal_pone_0197407 crossref_primary_10_1016_j_dsx_2020_08_009 crossref_primary_10_3390_molecules23113034 crossref_primary_10_1016_j_chembiol_2015_04_017 crossref_primary_10_1371_journal_pone_0238150 crossref_primary_10_1002_jps_23169 crossref_primary_10_13005_bbra_3318 crossref_primary_10_1208_s12248_020_00553_x crossref_primary_10_3389_fbioe_2022_819583 crossref_primary_10_1016_j_biologicals_2020_07_002 crossref_primary_10_1016_j_vacune_2022_11_004 crossref_primary_10_1038_s41591_024_02944_5 crossref_primary_10_1097_MOT_0000000000000544 crossref_primary_10_3389_fimmu_2022_830497 crossref_primary_10_1080_07391102_2023_2258420 crossref_primary_10_1158_1078_0432_CCR_22_1741 crossref_primary_10_3389_fcimb_2018_00156 crossref_primary_10_1002_iid3_70074 crossref_primary_10_7774_cevr_2021_10_1_59 crossref_primary_10_1186_s43141_023_00623_5 crossref_primary_10_1080_07391102_2023_2175373 crossref_primary_10_1371_journal_ppat_1003001 crossref_primary_10_1016_j_cell_2017_01_014 crossref_primary_10_1126_science_1246886 crossref_primary_10_1186_s40203_015_0011_4 crossref_primary_10_3389_fmicb_2017_01938 crossref_primary_10_1038_s41598_017_03042_y crossref_primary_10_1038_s41598_023_27717_x crossref_primary_10_1016_j_exppara_2023_108497 crossref_primary_10_1016_j_jim_2011_07_007 crossref_primary_10_1016_j_vacun_2024_04_003 crossref_primary_10_2174_2211352517666190717143949 crossref_primary_10_1186_s12865_022_00535_y crossref_primary_10_7774_cevr_2024_13_2_146 crossref_primary_10_4103_ijaai_ijaai_3_22 crossref_primary_10_1002_jcb_27110 crossref_primary_10_1007_s10989_022_10438_6 crossref_primary_10_1016_j_ijbiomac_2020_06_213 crossref_primary_10_1080_07391102_2023_2178511 crossref_primary_10_1093_infdis_jiw309 crossref_primary_10_1021_acsomega_3c01909 crossref_primary_10_1038_tp_2017_89 crossref_primary_10_1038_s41598_024_60680_9 crossref_primary_10_1080_07391102_2020_1792347 crossref_primary_10_1002_jcp_29923 crossref_primary_10_3390_ijms24076477 crossref_primary_10_1371_journal_pone_0275237 crossref_primary_10_1371_journal_pone_0115582 crossref_primary_10_1007_s10930_020_09886_0 crossref_primary_10_1093_database_bay111 crossref_primary_10_3390_molecules26061664 crossref_primary_10_1002_JPER_18_0626 crossref_primary_10_1080_19420862_2024_2324836 crossref_primary_10_1097_PPO_0000000000000762 crossref_primary_10_1002_wsbm_1408 crossref_primary_10_1155_2014_483905 crossref_primary_10_1007_s10620_023_07967_5 crossref_primary_10_1016_j_anai_2012_10_015 crossref_primary_10_1038_psp_2014_31 crossref_primary_10_1038_psp_2014_30 crossref_primary_10_4049_jimmunol_1800683 crossref_primary_10_1007_s13277_014_1643_4 crossref_primary_10_1111_jvh_12196 crossref_primary_10_1038_s41598_023_34863_9 crossref_primary_10_3389_fimmu_2014_00093 crossref_primary_10_1016_j_vaccine_2016_08_081 crossref_primary_10_1016_j_virol_2014_03_012 crossref_primary_10_1080_07391102_2020_1838329 crossref_primary_10_1371_journal_pone_0306254 crossref_primary_10_1007_s40203_021_00080_3 crossref_primary_10_3390_vaccines9111373 crossref_primary_10_1080_07391102_2021_1953599 crossref_primary_10_1007_s40203_017_0022_4 crossref_primary_10_3389_fimmu_2019_02698 crossref_primary_10_7717_peerj_11232 crossref_primary_10_1186_s12967_022_03864_z crossref_primary_10_1371_journal_pone_0273494 crossref_primary_10_1016_j_jaci_2015_02_025 crossref_primary_10_1016_j_micpath_2015_11_025 crossref_primary_10_1371_journal_pone_0057275 crossref_primary_10_1016_j_mehy_2020_110305 crossref_primary_10_1016_j_schres_2016_07_020 crossref_primary_10_1371_journal_pone_0093231 crossref_primary_10_1002_aic_16697 crossref_primary_10_3389_fimmu_2021_764462 crossref_primary_10_1093_bib_bbae154 crossref_primary_10_3390_foods10010163 crossref_primary_10_3390_toxins10020082 crossref_primary_10_1186_s12859_020_03631_1 crossref_primary_10_1016_j_imu_2023_101209 crossref_primary_10_1016_j_compbiomed_2021_104703 crossref_primary_10_3389_fimmu_2022_823652 crossref_primary_10_1186_1471_2105_15_241 crossref_primary_10_1080_20477724_2020_1838190 crossref_primary_10_1038_s41598_019_39299_8 crossref_primary_10_1111_cas_12650 crossref_primary_10_1186_s13104_021_05467_1 crossref_primary_10_1016_j_jneuroim_2017_05_001 crossref_primary_10_1038_s42003_023_04749_7 crossref_primary_10_1128_IAI_00480_15 crossref_primary_10_1038_s41598_022_18152_5 crossref_primary_10_1038_s41598_017_09331_w crossref_primary_10_3390_vaccines12121355 crossref_primary_10_3389_fimmu_2024_1503853 crossref_primary_10_3389_fimmu_2021_666742 crossref_primary_10_1016_j_meegid_2022_105259 crossref_primary_10_1007_s10989_023_10535_0 crossref_primary_10_3390_vetsci10060383 crossref_primary_10_5808_gi_23021 crossref_primary_10_1016_j_celrep_2023_112160 crossref_primary_10_3109_14017431_2015_1023344 crossref_primary_10_3389_fimmu_2022_851096 crossref_primary_10_1038_s41598_020_64268_x crossref_primary_10_1038_s41590_024_02021_6 crossref_primary_10_1128_JVI_02133_16 crossref_primary_10_1016_j_chom_2024_09_011 crossref_primary_10_1016_j_ijbiomac_2023_127567 crossref_primary_10_1186_s43141_021_00148_9 crossref_primary_10_1080_2162402X_2015_1062209 crossref_primary_10_1016_j_jaci_2014_12_1928 crossref_primary_10_1002_mco2_115 crossref_primary_10_1016_j_jneuroim_2016_03_018 crossref_primary_10_1007_s10875_013_9926_x crossref_primary_10_1111_trf_16313 crossref_primary_10_1038_s41598_018_22709_8 crossref_primary_10_1007_s10989_023_10491_9 crossref_primary_10_4049_jimmunol_1200694 crossref_primary_10_1002_0471142735_im1803s100 crossref_primary_10_1186_s12859_023_05197_0 crossref_primary_10_1016_j_vaccine_2014_02_024 crossref_primary_10_1007_s00894_022_05042_w crossref_primary_10_1111_tan_13956 crossref_primary_10_1186_s12950_017_0171_6 crossref_primary_10_1007_s13277_013_0729_8 crossref_primary_10_1093_fqsafe_fyae005 crossref_primary_10_3390_v14112504 crossref_primary_10_1039_D1RA02885E crossref_primary_10_1016_j_micpath_2020_104705 crossref_primary_10_1016_j_procbio_2022_07_007 crossref_primary_10_1016_j_vacune_2024_08_009 crossref_primary_10_1128_CVI_00406_16 crossref_primary_10_1155_2022_1419998 crossref_primary_10_1016_j_cell_2017_07_025 crossref_primary_10_1126_scitranslmed_aat4301 crossref_primary_10_1016_j_ijid_2020_07_016 crossref_primary_10_1371_journal_pone_0201299 crossref_primary_10_1186_s42269_023_01101_1 crossref_primary_10_1016_j_vaccine_2017_12_001 crossref_primary_10_1007_s40203_020_00062_x crossref_primary_10_3389_fimmu_2023_1182504 crossref_primary_10_1186_s12936_017_1704_4 crossref_primary_10_1016_j_jinf_2015_10_012 crossref_primary_10_4049_jimmunol_2000192 crossref_primary_10_1080_07391102_2020_1845799 crossref_primary_10_1093_abt_tbad011 crossref_primary_10_1111_j_1365_2567_2012_03611_x crossref_primary_10_1186_1472_6807_11_32 crossref_primary_10_1016_j_heliyon_2024_e37536 crossref_primary_10_1016_j_biologicals_2024_101782 crossref_primary_10_1182_blood_2015_11_682468 crossref_primary_10_3389_fimmu_2024_1432968 crossref_primary_10_1142_S0217984917400863 crossref_primary_10_1038_gene_2015_12 crossref_primary_10_1080_14760584_2022_2021882 crossref_primary_10_1007_s40203_024_00244_x crossref_primary_10_1371_journal_pone_0135451 crossref_primary_10_1038_s41598_017_05980_z crossref_primary_10_1016_j_vaccine_2011_11_002 crossref_primary_10_2174_1871526520666200810153657 crossref_primary_10_1080_07391102_2021_2014969 crossref_primary_10_1093_infdis_jiu662 crossref_primary_10_7717_peerj_10276 crossref_primary_10_3892_ijmm_2016_2793 crossref_primary_10_1038_srep39876 crossref_primary_10_3390_v12111300 crossref_primary_10_5812_archcid_118243 crossref_primary_10_3892_mmr_2014_2399 crossref_primary_10_1002_iid3_1360 crossref_primary_10_1155_2020_3865707 crossref_primary_10_1182_bloodadvances_2017013482 crossref_primary_10_1038_s41598_018_19456_1 crossref_primary_10_1016_j_heliyon_2024_e35129 crossref_primary_10_1111_j_1365_2567_2012_03579_x crossref_primary_10_1186_s13073_017_0408_2 crossref_primary_10_1080_21645515_2020_1799668 crossref_primary_10_1002_jmv_27603 crossref_primary_10_4161_onci_28100 crossref_primary_10_3390_v13122360 crossref_primary_10_1016_j_ajpath_2018_04_016 crossref_primary_10_1208_s12248_016_9986_y crossref_primary_10_3390_ijms21207561 crossref_primary_10_1165_rcmb_2014_0227OC crossref_primary_10_1172_jci_insight_98575 crossref_primary_10_3389_fgene_2024_1405032 crossref_primary_10_1093_bib_bbr060 crossref_primary_10_1038_s41551_023_01129_8 crossref_primary_10_1093_bioinformatics_btx820 crossref_primary_10_1186_s13568_019_0757_x crossref_primary_10_3390_microorganisms9010034 crossref_primary_10_1016_j_molimm_2020_02_009 crossref_primary_10_1007_s00403_020_02059_0 crossref_primary_10_3389_fnins_2022_1006923 crossref_primary_10_1016_j_omtm_2022_01_005 crossref_primary_10_1186_1471_2172_13_50 crossref_primary_10_1007_s00262_022_03181_w crossref_primary_10_1080_07391102_2021_1894986 crossref_primary_10_1111_hae_12276 crossref_primary_10_1371_journal_pone_0022948 crossref_primary_10_1007_s13205_018_1106_5 crossref_primary_10_3389_fgene_2024_1500684 crossref_primary_10_1016_j_blre_2014_07_004 crossref_primary_10_1016_j_imlet_2016_04_016 crossref_primary_10_1016_j_jim_2015_06_003 crossref_primary_10_1016_j_imu_2020_100500 crossref_primary_10_1007_s10989_021_10159_2 crossref_primary_10_3390_vaccines12080836 crossref_primary_10_3389_fimmu_2024_1369890 crossref_primary_10_1038_s41598_018_26689_7 crossref_primary_10_3390_computation10070117 crossref_primary_10_1371_journal_pone_0100440 crossref_primary_10_3390_cells9112421 crossref_primary_10_1186_s12951_017_0295_0 crossref_primary_10_1128_JVI_02147_16 crossref_primary_10_1182_blood_2014_03_563742 crossref_primary_10_3390_molecules27062027 crossref_primary_10_3390_antib7030026 crossref_primary_10_3390_jcm7100342 crossref_primary_10_1038_s41467_018_03857_x crossref_primary_10_1080_2162402X_2015_1123368 crossref_primary_10_1007_s00253_022_12279_1 crossref_primary_10_1080_25785826_2020_1794165 crossref_primary_10_1111_bjh_13131 crossref_primary_10_1128_JVI_00940_21 crossref_primary_10_3389_fimmu_2019_03037 crossref_primary_10_1007_s10989_019_09985_2 crossref_primary_10_1016_j_humimm_2014_06_022 crossref_primary_10_1080_07391102_2023_2258403 crossref_primary_10_1159_000479513 |
| Cites_doi | 10.1016/j.it.2003.10.006 10.1146/annurev.immunol.021908.132706 10.1038/nri1805 10.1007/s00251-007-0266-y 10.1371/journal.pone.0003268 10.1016/S0264-410X(01)00145-1 10.1146/annurev.iy.12.040194.001355 10.1093/nar/gkn202 10.1186/1745-7580-1-6 10.1111/j.1744-313X.2008.00765.x 10.1038/nri2092 10.1126/science.3287615 10.1111/j.1365-3024.2008.01077.x 10.1186/1745-7580-1-4 10.1093/nar/gkp1004 10.1186/1471-2105-8-238 10.4049/jimmunol.0903655 10.1016/j.ymeth.2004.06.006 10.4049/jimmunol.160.7.3363 10.4049/jimmunol.146.7.2331 10.1186/1471-2172-9-8 10.1093/bioinformatics/bth100 10.1146/annurev.immunol.21.090501.080116 10.1093/nar/gkn254 10.1371/journal.pcbi.1000107 10.4049/jimmunol.1001006 10.1002/pro.5560010313 10.1016/S0959-437X(05)80163-7 10.4049/jimmunol.1000405 10.1371/journal.pone.0009272 10.1093/bioinformatics/btn128 10.1093/bioinformatics/btg055 10.1371/journal.pone.0000796 10.1186/1745-7580-4-2 10.1371/journal.pcbi.1000048 10.1093/nar/gkg070 10.1007/s002510050595 10.1371/journal.pcbi.0020065 10.1093/bib/bbl038 10.1073/pnas.94.17.8976 10.1016/S0198-8859(03)00142-3 10.1007/s00251-008-0341-z 10.1073/pnas.061028898 10.1186/1471-2105-9-S12-S22 10.1093/nar/26.1.368 10.1186/1471-2105-10-296 10.1038/9858 10.1111/j.1365-2567.2010.03268.x 10.1093/bioinformatics/bti623 10.1093/nar/28.1.222 |
| ContentType | Journal Article |
| Copyright | Wang et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2010 BioMed Central Ltd. 2010 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright ©2010 Wang et al; licensee BioMed Central Ltd. 2010 Wang et al; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Wang et al; licensee BioMed Central Ltd. 2010 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2010 BioMed Central Ltd. – notice: 2010 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: Copyright ©2010 Wang et al; licensee BioMed Central Ltd. 2010 Wang et al; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/1471-2105-11-568 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Engineering Research Database Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 568 |
| ExternalDocumentID | oai_doaj_org_article_c3749aaade0a45568bd404e592a90ef1 10.1186/1471-2105-11-568 PMC2998531 2501716161 A243752493 21092157 10_1186_1471_2105_11_568 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: PHS HHS grantid: HHSN26620040006C – fundername: PHS HHS grantid: HHSN272200700048C |
| GroupedDBID | --- 0R~ 23N 2VQ 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR IPNFZ ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c729t-74d9e1a2a958bbc4fc92f8f1ac96191c64a5ac79af23ba383866502a743129a43 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:51:14 EDT 2025 Sun Oct 26 03:32:21 EDT 2025 Tue Sep 30 16:10:16 EDT 2025 Mon Oct 06 18:06:04 EDT 2025 Thu Sep 04 17:53:44 EDT 2025 Tue Oct 07 05:19:05 EDT 2025 Mon Oct 20 22:08:15 EDT 2025 Mon Oct 20 16:37:59 EDT 2025 Thu Oct 16 15:17:51 EDT 2025 Mon Jul 21 05:55:33 EDT 2025 Wed Oct 01 04:15:18 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Homologous Peptide Binding Prediction Prediction Performance Combinatorial Peptide Library Consensus Approach |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c729t-74d9e1a2a958bbc4fc92f8f1ac96191c64a5ac79af23ba383866502a743129a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2105-11-568 |
| PMID | 21092157 |
| PQID | 901863629 |
| PQPubID | 44065 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c3749aaade0a45568bd404e592a90ef1 unpaywall_primary_10_1186_1471_2105_11_568 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2998531 proquest_miscellaneous_954606148 proquest_miscellaneous_816791711 proquest_journals_901863629 gale_infotracmisc_A243752493 gale_infotracacademiconefile_A243752493 gale_incontextgauss_ISR_A243752493 pubmed_primary_21092157 crossref_citationtrail_10_1186_1471_2105_11_568 crossref_primary_10_1186_1471_2105_11_568 springer_journals_10_1186_1471_2105_11_568 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2010-11-22 |
| PublicationDateYYYYMMDD | 2010-11-22 |
| PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2010 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | Y El-Manzalawy (4151_CR32) 2008; 3 A Kumanovics (4151_CR2) 2003; 21 JE Smith-Garvin (4151_CR7) 2009; 27 T Sturniolo (4151_CR16) 1999; 17 C Pinilla (4151_CR41) 1992; 13 M Nielsen (4151_CR8) 2010; 130 CP Toseland (4151_CR9) 2005; 1 C Lundegaard (4151_CR27) 2008; 24 P Wang (4151_CR30) 2008; 4 J Trowsdale (4151_CR4) 1992; 2 J Sidney (4151_CR42) 1998 J Robinson (4151_CR5) 2003; 31 HH Lin (4151_CR31) 2008; 9 U Hobohm (4151_CR51) 1992; 1 H Zhang (4151_CR20) 2010; 5 Team RDC (4151_CR54) 2006 JA Traherne (4151_CR3) 2008; 35 H Rammensee (4151_CR13) 1999; 50 I Hoof (4151_CR17) 2009; 61 T Nazif (4151_CR22) 2001; 98 AS De Groot (4151_CR34) 2001; 19 4151_CR21 V Brusic (4151_CR11) 1998; 26 DR Flower (4151_CR36) 2003; 24 V Brusic (4151_CR35) 2004; 34 RR Mallios (4151_CR40) 2003; 64 4151_CR26 M Nielsen (4151_CR25) 2009; 10 S Uebel (4151_CR23) 1997; 94 EY Jones (4151_CR6) 2006; 6 M Nielsen (4151_CR19) 2008; 4 M Bhasin (4151_CR10) 2003; 19 S Southwood (4151_CR50) 1998; 160 J Sidney (4151_CR45) 2010; 185 M Nielsen (4151_CR47) 2007; 8 T Sing (4151_CR53) 2005; 21 JI Krieger (4151_CR33) 1991; 146 M Nielsen (4151_CR46) 2004; 20 C Schonbach (4151_CR12) 2000; 28 JA Swets (4151_CR52) 1988; 240 4151_CR14 JC Tong (4151_CR37) 2007; 8 O Karpenko (4151_CR39) 2008; 60 J Sidney (4151_CR24) 2008; 4 P Cresswell (4151_CR1) 1994; 12 B Peters (4151_CR15) 2007; 7 B Peters (4151_CR28) 2006; 2 HH Lin (4151_CR29) 2008; 9 4151_CR43 4151_CR44 N Murugan (4151_CR48) 2005; 1 K Vaughan (4151_CR38) 2009; 31 4151_CR49 M Nielsen (4151_CR18) 2007; 2 |
| References_xml | – volume: 24 start-page: 667 issue: 12 year: 2003 ident: 4151_CR36 publication-title: Trends Immunol doi: 10.1016/j.it.2003.10.006 – volume: 27 start-page: 591 year: 2009 ident: 4151_CR7 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132706 – volume: 6 start-page: 271 issue: 4 year: 2006 ident: 4151_CR6 publication-title: Nature reviews doi: 10.1038/nri1805 – volume: 60 start-page: 25 issue: 1 year: 2008 ident: 4151_CR39 publication-title: Immunogenetics doi: 10.1007/s00251-007-0266-y – volume: 3 start-page: e3268 issue: 9 year: 2008 ident: 4151_CR32 publication-title: PLoS One doi: 10.1371/journal.pone.0003268 – volume: 19 start-page: 4385 issue: 31 year: 2001 ident: 4151_CR34 publication-title: Vaccine doi: 10.1016/S0264-410X(01)00145-1 – volume-title: Vienna, Austria year: 2006 ident: 4151_CR54 – volume: 12 start-page: 259 year: 1994 ident: 4151_CR1 publication-title: Annu Rev Immunol doi: 10.1146/annurev.iy.12.040194.001355 – ident: 4151_CR26 doi: 10.1093/nar/gkn202 – volume: 1 start-page: 6 year: 2005 ident: 4151_CR48 publication-title: Immunome Res doi: 10.1186/1745-7580-1-6 – volume: 35 start-page: 179 issue: 3 year: 2008 ident: 4151_CR3 publication-title: Int J Immunogenet doi: 10.1111/j.1744-313X.2008.00765.x – volume: 7 start-page: 485 issue: 6 year: 2007 ident: 4151_CR15 publication-title: Nature reviews doi: 10.1038/nri2092 – volume: 240 start-page: 1285 issue: 4857 year: 1988 ident: 4151_CR52 publication-title: Science (New York), NY doi: 10.1126/science.3287615 – volume: 31 start-page: 78 issue: 2 year: 2009 ident: 4151_CR38 publication-title: Parasite Immunol doi: 10.1111/j.1365-3024.2008.01077.x – volume: 1 start-page: 4 issue: 1 year: 2005 ident: 4151_CR9 publication-title: Immunome Res doi: 10.1186/1745-7580-1-4 – ident: 4151_CR14 doi: 10.1093/nar/gkp1004 – volume: 8 start-page: 238 year: 2007 ident: 4151_CR47 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-238 – start-page: 18.13.11 volume-title: Current protocals in immunology year: 1998 ident: 4151_CR42 – ident: 4151_CR44 doi: 10.4049/jimmunol.0903655 – volume: 34 start-page: 436 issue: 4 year: 2004 ident: 4151_CR35 publication-title: Methods doi: 10.1016/j.ymeth.2004.06.006 – volume: 160 start-page: 3363 issue: 7 year: 1998 ident: 4151_CR50 publication-title: J Immunol doi: 10.4049/jimmunol.160.7.3363 – volume: 146 start-page: 2331 issue: 7 year: 1991 ident: 4151_CR33 publication-title: J Immunol doi: 10.4049/jimmunol.146.7.2331 – volume: 9 start-page: 8 year: 2008 ident: 4151_CR29 publication-title: BMC Immunol doi: 10.1186/1471-2172-9-8 – volume: 20 start-page: 1388 issue: 9 year: 2004 ident: 4151_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth100 – volume: 21 start-page: 629 year: 2003 ident: 4151_CR2 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.21.090501.080116 – ident: 4151_CR21 doi: 10.1093/nar/gkn254 – volume: 4 start-page: e1000107 issue: 7 year: 2008 ident: 4151_CR19 publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1000107 – volume: 185 start-page: 4189 issue: 7 year: 2010 ident: 4151_CR45 publication-title: J Immunol doi: 10.4049/jimmunol.1001006 – ident: 4151_CR49 – volume: 1 start-page: 409 issue: 3 year: 1992 ident: 4151_CR51 publication-title: Protein Sci doi: 10.1002/pro.5560010313 – volume: 2 start-page: 492 issue: 3 year: 1992 ident: 4151_CR4 publication-title: Curr Opin Genet Dev doi: 10.1016/S0959-437X(05)80163-7 – ident: 4151_CR43 doi: 10.4049/jimmunol.1000405 – volume: 5 start-page: e9272 issue: 2 year: 2010 ident: 4151_CR20 publication-title: PLoS One doi: 10.1371/journal.pone.0009272 – volume: 24 start-page: 1397 issue: 11 year: 2008 ident: 4151_CR27 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btn128 – volume: 19 start-page: 665 issue: 5 year: 2003 ident: 4151_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg055 – volume: 2 start-page: e796 issue: 8 year: 2007 ident: 4151_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0000796 – volume: 4 start-page: 2 year: 2008 ident: 4151_CR24 publication-title: Immunome Res doi: 10.1186/1745-7580-4-2 – volume: 4 start-page: e1000048 issue: 4 year: 2008 ident: 4151_CR30 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000048 – volume: 31 start-page: 311 issue: 1 year: 2003 ident: 4151_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg070 – volume: 50 start-page: 213 issue: 3-4 year: 1999 ident: 4151_CR13 publication-title: Immunogenetics doi: 10.1007/s002510050595 – volume: 2 start-page: e65 issue: 6 year: 2006 ident: 4151_CR28 publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.0020065 – volume: 8 start-page: 96 issue: 2 year: 2007 ident: 4151_CR37 publication-title: Brief Bioinform doi: 10.1093/bib/bbl038 – volume: 94 start-page: 8976 issue: 17 year: 1997 ident: 4151_CR23 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.94.17.8976 – volume: 64 start-page: 852 issue: 9 year: 2003 ident: 4151_CR40 publication-title: Hum Immunol doi: 10.1016/S0198-8859(03)00142-3 – volume: 61 start-page: 1 issue: 1 year: 2009 ident: 4151_CR17 publication-title: Immunogenetics doi: 10.1007/s00251-008-0341-z – volume: 98 start-page: 2967 issue: 6 year: 2001 ident: 4151_CR22 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.061028898 – volume: 9 start-page: S22 issue: Suppl 12 year: 2008 ident: 4151_CR31 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-S12-S22 – volume: 26 start-page: 368 issue: 1 year: 1998 ident: 4151_CR11 publication-title: Nucleic Acids Res doi: 10.1093/nar/26.1.368 – volume: 10 start-page: 296 year: 2009 ident: 4151_CR25 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-296 – volume: 13 start-page: 901 issue: 6 year: 1992 ident: 4151_CR41 publication-title: Biotechniques – volume: 17 start-page: 555 issue: 6 year: 1999 ident: 4151_CR16 publication-title: Nature biotechnology doi: 10.1038/9858 – volume: 130 start-page: 319 issue: 3 year: 2010 ident: 4151_CR8 publication-title: Immunology doi: 10.1111/j.1365-2567.2010.03268.x – volume: 21 start-page: 3940 issue: 20 year: 2005 ident: 4151_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti623 – volume: 28 start-page: 222 issue: 1 year: 2000 ident: 4151_CR12 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.222 |
| SSID | ssj0017805 |
| Score | 2.5410795 |
| Snippet | Background
MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast... MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast majority of... Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens. The vast... Abstract Background: MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens.... Abstract Background MHC class II binding predictions are widely used to identify epitope candidates in infectious agents, allergens, cancer and autoantigens.... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 568 |
| SubjectTerms | Algorithms Alleles Analysis Autoimmune diseases Binding Sites Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Epitopes - genetics Epitopes - immunology Experiments Genes, MHC Class II Histocompatibility antigens HLA histocompatibility antigens HLA-DP Antigens - chemistry HLA-DP Antigens - genetics HLA-DP Antigens - immunology HLA-DQ Antigens - chemistry HLA-DQ Antigens - genetics HLA-DQ Antigens - immunology HLA-DR Antigens - chemistry HLA-DR Antigens - genetics HLA-DR Antigens - immunology Humans Libraries Life Sciences Ligands Methods Microarrays Peptides Peptides - chemistry Peptides - immunology Peptides - metabolism Protein binding Protein structure prediction Research Article Structural analysis Studies |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIOqD-G29U4II4mHZfqQfwafV9VhF5Tw9uLcwSRM9WLvLdRe5_96Z9MOtct6Lj9tM2fY3k-Y3zOQXxp7JKoptLiDEpTUJReJMqK3QGMuycDa1pipoN_LHT_n8WLw_yU62jvqinrBWHrgFbmLSQkgAqGwEguSydCUiYTOZgIys84lPVMo-merqB6TU7_cVFXGISU3WFyjLfDJcox1lGUmsbi1IXrf_76_z1vL0Z-vkUD-9wa5t6hWc_4TFYmuJOrjFbnbckk_bd7rNrtj6DrvanjZ5fpe9OqQOlspyfeq3svDVGVVpfOBx5K58_mHKZ0cv-eyQQ13x2Wf-oz081zb32PHB269v5mF3dkJokC6vw0JU0saAIGWl1kY4IxNXuhiMxJQpNuieDEwhwSWpBkxTSfcuSoAIRSJBpPfZTr2s7UPGtdTIbV2lMZcSYBxmaGDLNMfMMoe4cAGb9AAq0wmL0_kWC-UTjDJXBLkiyPGnQsgD9mK4Y9WKavzD9jX5ZLAjOWx_AYNEdUGiLguSgD0ljyoSvKipo-YbbJpGvftypKakyJhhEpoG7Hln5Jb4_Aa6DQqIAmlkjSz3RpY4I81oeLcPHNV9ERqFvKvMkS3IgPFhlG6kJrfaLjeNKqkkFhdxfLEJeiCnHB5hedAG4gAMYiaRvxUBK0YhOkJuPFKffveC4khJkLXh3-73wfz7uS_2y_4Q7pc68dH_cOIuu-5bN3DaJske21mfbexjZIRr_cRP_l9w7lSi priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9NADD-NTgj4gHgNwgY6ISTERNQmuTxOCKGObiqITaUwad9OvsvdmFTS0ofQ_nvsNAkNaONjeo6S2j6fHds_M_ZS5r3AJgJ8PFpDX4TO-NoKjbosU2cja_KUupGPT5Lhqfh0Fp9tseO6F4bKKmubWBrqfGroG3kXz60sQWsr389--jQ0ipKr9QQNqCYr5O9KhLEbbDskYKwO2z44PBmNm7QCAfjXucos6QZomX2ki6m5LCa01Y2zqYTw_9dQb5xUf1dRNqnUO-zWqpjB5S-YTDZOq6N77G7lZvL-Wi_usy1bPGA314MnLx-ytyMqZskt1xdlVwufzSlhU-ogRzeWDz_3-WD8hg9GHIqcD77wH-s5unbxiJ0eHX77MPSrMQq-Qc956acilzaAEGScaW2EMzJ0mQvASIyeAoOSisGkElwYacCIlSDweiGQbxFKENEO6xTTwj5hXEuNbq7LNYZVAozDYA1sFiUYZCYQpM5j3ZqBylQY4zTqYqLKWCNLFLFcEcvxUiHLPfa6uWO2xte4hvaAZNLQETJ2-cN0fq6qjaZMlAoJALntgSB4NZ2LnrCxxP_fsy7w2AuSqCLsi4KKa85htVioj1_Hqk_gjDHGo5HHXlVEborvb6DqVUAuEFxWi3KvRYmb07SWd2vFUZVxWKhGlT3Gm1W6kerdCjtdLVRG2bEgDYKrSVACCYXzyJbHa0VsGIM8k-jKpR5LWyra4lx7pbj4XmKLo3eCDhw-dr9W5j_vfbVc9ht1_68Qn17LkV12uyzPwP0Yhnuss5yv7DP0-pb6ebWXfwOW6lAI priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgCDEeEL8GYQNZCAkxES1OHCcWT2VlKgjQGEzam3V2bDappNXaCu2_5y5NQwMMxGPjc5renePvenefGXumq0R4JSHGrTWNZRpcbL206Mu6CD7zriqoG_nDRzU6lu9O8pP2_w7qhVnP34tS7Ql8ecYYluTU_5Wr8iq7hluUatKyar_LFxAz_yoJ-YdZvU2n4eb__Q28tgX9Wh7Z5UhvshuLegoX32E8XtuGDm6zWy1-5IOlwe-wK76-y64vT5S8uMdeHVKVSuW5PWvaVfj0nDIxjXNxxKd89H7Ah0cv-fCQQ13x4Sf-bXlArp_dZ8cHb77sj-L2fITYISSex4WstBeQgs5La50MTqehDAKcxrBIODRBDq7QENLMAoaixG2XpECgIdUgsy22UU9q_5Bxqy3i11BZjJckuIBRGPgyUxg9KhBFiNjeSoHGteThdIbF2DRBRKkMqdyQyvGjQZVH7EU3Y7okzviL7GuySSdHlNfNBfQE064g47JCagCofAKSeNNsJRPpc42_P_FBROwpWdQQqUVNVTNfYTGbmbefj8yAWBdzDDSziD1vhcIEn99B24SAWiAerJ7kTk8SV53rDW-vHMe0q35mEFuVChGBjhjvRmkiFbLVfrKYmZLSXqIQ4nIRtICiOB3V8mDpiJ1iUGcaMVoRsaLnoj3N9Ufqs9OGNBxhByIz_NrdlTP_fO7L7bLbufs_jfjof-68zTabMgxcnmm6wzbm5wv_GNHd3D5pFvYPds5BZg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IG8hCSIiJtHk4D4tPhTIVBFMZVBqfLNuxR0WXlj6Exl_PXV40g4GQ-Jj4rCTnO_t38d3PhDzmmeebmEkXltbAZYHVrjJMgS3zxJrQ6CzBauR3B_FwzN4cRUdbZFTXwqgTrSazijQUiYq7m2Xo07LKAU9RMIvePLOl06dxz4dJ1oXwJcI6sShOL5DtOAJ03iHb44NR_1NRZFSJ1LuVv-nWWp0KEv9fp-qNtepsHmWzmXqFXFrnc3n6TU6nG-vV_jXytf7SMk3lS3e9Ul39_QwJ5P9UxXVytQK3tF9a4w2yZfKb5GJ53OXpLfJ8hCk0maFqUtTS0PkCt4kKy6fwfDp826eDw2d0MKIyz-jgPT0pT-81y9tkvP_q48uhWx3e4GrA6ys3YRk3vgwkj1KlNLOaBza1vtQcYjZfg31EUidc2iBUEuJkJN7zAomIJuCShXdIJ5_l5h6hiisA1zZTEMwxqS2EiNKkYQyhbSz9xDqkVw-a0BWzOR6wMRVFhJPGAlUiUCVwKUAlDnna9JiXrB5_kH2BdtDIIR93cWO2OBaVewsdJoxLKTPjSYakbipjHjMRh-_3jPUd8gitSCDjRo4pPcdyvVyK1x8ORR8pISOIgkOHPKmE7AzeX8uqQgK0gCRdLcndliRMCbrVvFMbq6impKUA4JfGAFe4Q2jTih0xyy43s_VSpLgn5ye-f74IjECMPxFALXdL428UAzrjACAThyQtt2hprt2STz4XjOaAiQA2wmP3agf6-d7nj8te42J_HcT7_yK8Qy4XOSLgPkGwSzqrxdo8AOi5Ug-r2eQHzsR5Og priority: 102 providerName: Unpaywall |
| Title | Peptide binding predictions for HLA DR, DP and DQ molecules |
| URI | https://link.springer.com/article/10.1186/1471-2105-11-568 https://www.ncbi.nlm.nih.gov/pubmed/21092157 https://www.proquest.com/docview/901863629 https://www.proquest.com/docview/816791711 https://www.proquest.com/docview/954606148 https://pubmed.ncbi.nlm.nih.gov/PMC2998531 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-11-568 https://doaj.org/article/c3749aaade0a45568bd404e592a90ef1 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PMC customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELf2EAI-IN6EjcpCCMS0sDych4UQytqVUrGqdFQqnyzHccakknZ9CPrfc5cm2QLb-NKq8SVNf3cX_65n3xHyiieWrX0mTZhaHZM5qTJjzWKwZR6k2tUqCXA38nHP7wxZd-SNNki5u6QAcH5laIf9pIaz8bvf56uP4PAfcocP_QMbHrAmhC4e7hHz_PD19NzEtlKYfi16bGySbZi6OPZ2OGYXaQYs6F_mLq-4UG2uykv6__vgvjRz_b2qskqt3iW3l9lUrn7J8fjS7NW-T-4VtJNGazt5QDZ09pDcWjeiXD0i7_u4uCXRND7Ld7nQ6QwTOLlNUqC1tPMloq3BPm31qcwS2vpKf6776ur5YzJsH31rdsyirYKpgEkvzIAlXNvSkdwL41ixVHEnDVNbKg7RlK1Ac55UAZep48YSIlgsiWc5ErmGwyVzn5CtbJLpZ4TGPAbamyYxhFlMqhSCN6lD14eg05d2kBrkoARQqKLmOLa-GIs89gh9gZALhBw-CoDcIG-rM6brehs3yB6iTio5rJSdH5jMTkXheEK5AeNSykRbkmG5tThhFtMeh99v6dQ2yEvUqMBaGBkutjmVy_lcfD4ZiAiLNXoQn7oGeVMIpRO4fyWLvQuAApbPqknu1iTBWVVteKc0HFHaugBKFvpAJLhBaDWKJ-L6t0xPlnMRYrbMDmz7ehHQgI_hPcDydG2IFTCAGQdqFxgkqJloDbn6SHb2I681DmwFCB187V5pzBf3fb1e9ipz_68Sn9-IyA65ky_XAH90nF2ytZgt9QtggYu4QTaDUQCvYftTg2xHUfekC--HR73-AI42_WYj_3-lkXs8jAx7_ej7H0K7XC8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIlR4QNyYFlghEKLCitdeHyuEUCBUCU2r0kPK27Jer0ul4IQ4UZUfxX9kxhcxqOWpj4nHyfqb2zs7Q8hLkTjMBFzZ4Fpdm7uptmPDY5BlEabGMzoJ8TTy3n7QP-FfRv5ojfyqz8JgWWVtEwtDnUw0viPvgN-KArC24sP0p41Do3BztZ6gUUrFrlmeQ8aWvx_0gL2vXHfn8_Gnvl0NFbA1xJFzO-SJMEy5SvhRHGueauGmUcqUFpBLMA3r9pUOhUpdL1aQv2FDOMdV6GldobgHv3uNXOcemBJQn3DU5HcMxwPUO6FR0GFg923IqHw8uuZjL9cVz1cMCPjXDaz4wb9rNJuN2ltkY5FN1fJcjccrvnDnDrldBbG0W0rdXbJmsnvkRjnWcnmfvDvAUpnE0PisODNDpzPcDioknEKQTPvDLu0dvqW9A6qyhPa-0h_llF6TPyAnV4LnQ7KeTTLzmNBYxBBEp0kMSRtXOoVUUJnICyCFDRQLU4t0agClrjqY4yCNsSwymSiQCLlEyOGjBMgt8qa5Y1p277iE9iPypKHDvtvFF5PZqazUWGov5EIplRhHcWzeFifc4cYX8PyOSZlFXiBHJXbWyLB051Qt8lwOjg5lF1s_-pDtehZ5XRGlE1i_VtVJCEABm3G1KLdalKD6unV5sxYcWZmeXDaKYhHaXMUbsZouM5NFLiPce2MhYxeTAAcCfFkAsDwqBbEBBjATECiGFglbItpCrn0lO_tedC6H2AfCQ_jb7VqY_6z7Yr5sN-L-XyY-uRSR52Sjf7w3lMPB_u4muVkUgoBuuu4WWZ_PFuYpxJfz-Fmh1ZR8u2oz8hvYf4XR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9MwELdgiNcHxJuwARZCQkxEzcNxYvGptFQdjKkMJu2bZTv2mFTSqmmF9t9zlxcLMBAfW5_b9O5s_6539zMhL0QehJYz5cPRGvkscsbXlmnwZZE6G1uTp9iN_PGAT4_Y--PkuPnDrWyr3duUZN3TgCxNxXqwzF29xDM-CGFL9SFYSbArLOHZZXKFwdmGNxiM-KjLIiBff5ua_MOs3lFUMfb_vi-fO5h-LZrsMqc3yfVNsVRn39V8fu5wmtwmtxpUSYe1G9whl2xxl1yt75k8u0fezLB2JbdUn1ZNLHS5wvxM5XIUUCud7g_p-PA1Hc-oKnI6_kS_1dfm2vI-OZq8-zKa-s2tCb4BoLz2U5YLG6pIiSTT2jBnROQyFyojIFgKDRgmUSYVykWxVhCgIuNdECmEEpFQLH5AtopFYR8RqoUGVOtyDVEUU8ZBbKZsFnOIKbkKU-eRQatAaRpKcbzZYi6r0CLjElUuUeXwUoLKPfKqm7Gs6TT-IvsWbdLJIRF29cZidSKbdSVNnDKhlMptoBiyqemcBcwmAn5_YF3okedoUYlUFwXW0pyoTVnKvc-HcohcjAmEn7FHXjZCbgHPb1TTmgBaQHasnuROTxLWoukNb7eOI5u9oJSAuDIOOEF4hHajOBHL2wq72JQyw2RYmIbhxSJgAY7RO6jlYe2InWJAZwKQW-qRtOeiPc31R4rTrxWVOIARwGvwtbutM_987ovtstu5-z-N-Ph_PvkZuTYbT-T-3sGHbXKjqtOAlRpFO2RrvdrYJwD_1vpptcZ_AGCdTJw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0IG8hCSIiJtHk4D4tPhTIVBFMZVBqfLNuxR0WXlj6Exl_PXV40g4GQ-Jj4rCTnO_t38d3PhDzmmeebmEkXltbAZYHVrjJMgS3zxJrQ6CzBauR3B_FwzN4cRUdbZFTXwqgTrSazijQUiYq7m2Xo07LKAU9RMIvePLOl06dxz4dJ1oXwJcI6sShOL5DtOAJ03iHb44NR_1NRZFSJ1LuVv-nWWp0KEv9fp-qNtepsHmWzmXqFXFrnc3n6TU6nG-vV_jXytf7SMk3lS3e9Ul39_QwJ5P9UxXVytQK3tF9a4w2yZfKb5GJ53OXpLfJ8hCk0maFqUtTS0PkCt4kKy6fwfDp826eDw2d0MKIyz-jgPT0pT-81y9tkvP_q48uhWx3e4GrA6ys3YRk3vgwkj1KlNLOaBza1vtQcYjZfg31EUidc2iBUEuJkJN7zAomIJuCShXdIJ5_l5h6hiisA1zZTEMwxqS2EiNKkYQyhbSz9xDqkVw-a0BWzOR6wMRVFhJPGAlUiUCVwKUAlDnna9JiXrB5_kH2BdtDIIR93cWO2OBaVewsdJoxLKTPjSYakbipjHjMRh-_3jPUd8gitSCDjRo4pPcdyvVyK1x8ORR8pISOIgkOHPKmE7AzeX8uqQgK0gCRdLcndliRMCbrVvFMbq6impKUA4JfGAFe4Q2jTih0xyy43s_VSpLgn5ye-f74IjECMPxFALXdL428UAzrjACAThyQtt2hprt2STz4XjOaAiQA2wmP3agf6-d7nj8te42J_HcT7_yK8Qy4XOSLgPkGwSzqrxdo8AOi5Ug-r2eQHzsR5Og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptide+binding+predictions+for+HLA+DR%2C+DP+and+DQ+molecules&rft.jtitle=BMC+bioinformatics&rft.au=Wang%2C+Peng&rft.au=Sidney%2C+John&rft.au=Kim%2C+Yohan&rft.au=Sette%2C+Alessandro&rft.date=2010-11-22&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=11&rft.spage=568&rft_id=info:doi/10.1186%2F1471-2105-11-568&rft.externalDocID=2501716161 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |