Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses
Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric recept...
Saved in:
Published in | PLoS pathogens Vol. 11; no. 3; p. e1004809 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7374 1553-7366 1553-7374 |
DOI | 10.1371/journal.ppat.1004809 |
Cover
Abstract | Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. |
---|---|
AbstractList | Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. Plants possess multi-layered immune recognition systems. Early in the infection process, plants use receptor proteins to recognize pathogen molecules. Some of these receptors are present in only in a subset of plant species. Transfer of these taxonomically restricted immune receptors between plant species by genetic engineering is a promising approach for boosting the plant immune system. Here we show the successful transfer of an immune receptor from a species in the mustard family, called EFR, to rice. Rice plants expressing EFR are able to sense the bacterial ligand of EFR and elicit an immune response. We show that the EFR receptor is able to use components of the rice immune signaling pathway for its function. Under laboratory conditions, this leads to an enhanced resistance response to two weakly virulent isolates of an economically important bacterial disease of rice. Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components. |
Audience | Academic |
Author | Bahar, Ofir Singan, Vasanth R. Ronald, Pamela C. Chovatia, Mansi Canlas, Patrick E. Daum, Christopher Thomas, Nicolas Zipfel, Cyril Petzold, Christopher J. Daudi, Arsalan Holton, Nicolas Ruan, Deling Kuo, Rita Nekrasov, Vladimir Heazlewood, Joshua L. Schwessinger, Benjamin |
AuthorAffiliation | University of California Riverside, UNITED STATES 2 Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America 1 Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America 3 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom 4 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America |
AuthorAffiliation_xml | – name: 2 Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America – name: 4 Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America – name: 1 Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, California, United States of America – name: 3 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom – name: University of California Riverside, UNITED STATES |
Author_xml | – sequence: 1 givenname: Benjamin surname: Schwessinger fullname: Schwessinger, Benjamin – sequence: 2 givenname: Ofir surname: Bahar fullname: Bahar, Ofir – sequence: 3 givenname: Nicolas surname: Thomas fullname: Thomas, Nicolas – sequence: 4 givenname: Nicolas surname: Holton fullname: Holton, Nicolas – sequence: 5 givenname: Vladimir surname: Nekrasov fullname: Nekrasov, Vladimir – sequence: 6 givenname: Deling surname: Ruan fullname: Ruan, Deling – sequence: 7 givenname: Patrick E. surname: Canlas fullname: Canlas, Patrick E. – sequence: 8 givenname: Arsalan surname: Daudi fullname: Daudi, Arsalan – sequence: 9 givenname: Christopher J. surname: Petzold fullname: Petzold, Christopher J. – sequence: 10 givenname: Vasanth R. surname: Singan fullname: Singan, Vasanth R. – sequence: 11 givenname: Rita surname: Kuo fullname: Kuo, Rita – sequence: 12 givenname: Mansi surname: Chovatia fullname: Chovatia, Mansi – sequence: 13 givenname: Christopher surname: Daum fullname: Daum, Christopher – sequence: 14 givenname: Joshua L. surname: Heazlewood fullname: Heazlewood, Joshua L. – sequence: 15 givenname: Cyril surname: Zipfel fullname: Zipfel, Cyril – sequence: 16 givenname: Pamela C. surname: Ronald fullname: Ronald, Pamela C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25821973$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1191186$$D View this record in Osti.gov |
BookMark | eNqVkttu1DAQhiNURA_wBggiuIGLXez1IQkXSFUPUGkFqJRra2JPUldZO429pX0Jnhmnu626CAlILjJ2vvln_I93sy3nHWbZc0qmlBX03YVfDg66ad9DnFJCeEmqR9kOFYJNClbwrQfxdrYbwkViKKPySbY9E-WMVgXbyX6eDeBCi87q_Oi6HzAE613umzyeY35otY83HRrv_DLkXyFGHFx-itq3zsaRTDH20Q_50fFpbtPaasznCCbk0edz24Izk0Ps0Rl0Md_X0V5BXNc4xAZdwCQSep-C8DR73EAX8Nn6u5d9Pz46O_g0mX_5eHKwP5_oYibjxBAKEk1Vm5pAU5mmRgKsQcEgHQwEEGEIF0SzFMsamSSaSsNrTXnVUMr2spcr3b7zQa2tDIrKUjDJeckTcbIijIcL1Q92AcON8mDV7YYfWgVDtLpDJQkBEGXZ8Ap4UzPQoiiENKIukHEtk5ZYaS1dDzc_oOvuBSlR4zTvWlDjNNV6minvw7rLZb1Ao5OBA3QbzWz-cfZctf5KcVZUpBoFXq0EfIhWBW0j6nPtnUOdqtCK0nLs7s26yuAvlxiiWtigsevAYZp6MkWWMybTk9DXK7SFdG7rGp_K6hFX-5yWXApWjlWnf6DSa3CRLpTDxqb9jYS3GwmJiXgdW1iGoE6-nf4H-3mTffHQv3vj7q5_At6vAD34EAZsVLLo9namjm33t-nw35L_aai_AJLOMJU |
CitedBy_id | crossref_primary_10_5423_PPJ_OA_01_2022_0008 crossref_primary_10_1007_s13258_019_00801_1 crossref_primary_10_1094_MPMI_06_20_0161_CR crossref_primary_10_1146_annurev_phyto_080614_120106 crossref_primary_10_1111_mpp_70005 crossref_primary_10_1111_tpj_13808 crossref_primary_10_3389_fpls_2016_00906 crossref_primary_10_1016_j_cj_2022_02_005 crossref_primary_10_12688_f1000research_20179_1 crossref_primary_10_1111_mpp_12368 crossref_primary_10_3389_fpls_2018_01066 crossref_primary_10_1016_j_molp_2020_09_018 crossref_primary_10_3389_fpls_2017_00002 crossref_primary_10_1007_s13580_021_00415_1 crossref_primary_10_1094_MPMI_34_6 crossref_primary_10_1111_nph_15247 crossref_primary_10_1111_nph_15967 crossref_primary_10_1094_PHYTO_04_17_0130_RVW crossref_primary_10_1111_nph_19111 crossref_primary_10_1016_j_tplants_2015_06_006 crossref_primary_10_1111_pbi_13995 crossref_primary_10_1111_pbi_12782 crossref_primary_10_1094_MPMI_07_20_0173_CR crossref_primary_10_1007_s11248_021_00262_x crossref_primary_10_1038_nplants_2016_128 crossref_primary_10_1126_sciadv_1500245 crossref_primary_10_1002_fes3_101 crossref_primary_10_1007_s11427_017_9064_5 crossref_primary_10_1038_nplants_2015_140 crossref_primary_10_1002_advs_202412223 crossref_primary_10_1038_s41467_020_17573_y crossref_primary_10_1094_MPMI_09_18_0263_R crossref_primary_10_1016_j_pbi_2017_04_010 crossref_primary_10_1111_ppa_12802 crossref_primary_10_1016_j_pbi_2017_04_011 crossref_primary_10_3390_plants13081129 crossref_primary_10_1038_nature22372 crossref_primary_10_7717_peerj_2446 crossref_primary_10_1111_nph_16273 crossref_primary_10_1111_tpj_15692 crossref_primary_10_1111_tpj_17035 crossref_primary_10_3389_fpls_2016_01813 crossref_primary_10_3389_fpls_2022_1016822 crossref_primary_10_1371_journal_pone_0290884 crossref_primary_10_1111_mpp_12789 crossref_primary_10_1111_pce_13834 crossref_primary_10_1111_pbi_12999 crossref_primary_10_34133_2022_9820540 crossref_primary_10_1038_nature22009 crossref_primary_10_1038_s41467_021_25580_w crossref_primary_10_1111_mpp_70077 crossref_primary_10_3389_fpls_2018_00867 crossref_primary_10_7717_peerj_6074 crossref_primary_10_1094_PHYTO_10_20_0449_R crossref_primary_10_7717_peerj_4456 crossref_primary_10_1146_annurev_phyto_021621_121806 crossref_primary_10_1038_s41438_021_00639_3 crossref_primary_10_1016_j_semcdb_2016_05_015 crossref_primary_10_1094_PHYTO_12_17_0424_R crossref_primary_10_1007_s11103_021_01133_z crossref_primary_10_1186_s12864_019_6262_4 crossref_primary_10_1093_plcell_koac041 crossref_primary_10_1111_mpp_13445 crossref_primary_10_1007_s11105_024_01491_0 crossref_primary_10_1111_pbi_12804 crossref_primary_10_1111_nph_15095 crossref_primary_10_1094_PHYTO_03_17_0086_RVW crossref_primary_10_3389_fpls_2017_01642 crossref_primary_10_1007_s00425_022_03951_x crossref_primary_10_1111_febs_16549 crossref_primary_10_3389_fpls_2022_836269 crossref_primary_10_3934_molsci_2017_3_370 crossref_primary_10_1371_journal_pone_0142255 crossref_primary_10_1146_annurev_arplant_010720_022215 crossref_primary_10_1016_j_pmpp_2016_01_002 crossref_primary_10_1094_PHYTOFR_06_24_0071_SC |
Cites_doi | 10.1016/j.tplants.2012.08.008 10.1146/annurev-arplant-042811-105518 10.1038/msb4100024 10.1105/tpc.106.046730 10.1016/j.plantsci.2013.05.003 10.1371/journal.ppat.1004602 10.1016/j.jprot.2012.07.019 10.1073/pnas.0909705107 10.1093/nar/gki206 10.1186/1939-8433-6-4 10.1146/annurev.arplant.57.032905.105346 10.1105/tpc.9.8.1279 10.1038/ni.2083 10.1016/j.cell.2006.03.037 10.1073/pnas.0912311107 10.1038/nature08794 10.1007/978-0-387-98141-3 10.1074/jbc.M109.096842 10.1094/MPMI-18-0511 10.1073/pnas.0905532106 10.1016/j.mib.2010.12.005 10.1016/j.plantsci.2010.07.008 10.1111/nph.12592 10.1126/science.270.5243.1804 10.1093/nar/gks042 10.1105/tpc.104.026765 10.1007/s11240-010-9825-2 10.1046/j.1365-313X.1999.00265.x 10.1007/s00122-006-0388-x 10.1016/j.pbi.2013.02.008 10.1038/emboj.2009.263 10.1105/tpc.111.093039 10.1038/nature05999 10.7717/peerj.242 10.1046/j.1365-313X.1994.6020271.x 10.1371/journal.pgen.1002020 10.1126/science.1248849 10.1186/gb-2013-14-4-r36 10.1021/pr4001543 10.1105/tpc.105.036574 10.1038/nbt.1613 10.1007/s10709-012-9645-x 10.1016/j.pbi.2013.07.004 10.1105/tpc.111.084301 10.1093/mp/sss147 10.1016/j.cell.2006.02.008 10.1093/mp/ssn024 10.1016/j.chom.2010.03.007 10.1186/1471-2164-9-204 10.1263/jbb.104.34 10.1038/nature05286 10.1016/j.molcel.2014.03.028 10.1016/j.molcel.2014.02.021 10.1111/tpj.12710 10.1371/journal.pone.0009262 10.1104/pp.111.180067 10.1016/j.pbi.2012.05.006 10.6090/jarq.39.275 10.1371/journal.pbio.0060231 10.1016/j.tig.2012.10.011 10.1111/j.1365-3059.2009.02148.x 10.1016/j.cub.2007.12.020 10.1111/j.1365-313X.2010.04328.x 10.1111/j.1462-5822.2010.01472.x 10.1007/BF00279649 10.1016/j.tplants.2011.01.001 10.1371/journal.ppat.1002130 10.1016/j.ejcb.2009.11.015 10.1093/jxb/err291 10.1371/journal.pgen.1002046 10.1094/MPMI-21-12-1635 10.1111/j.1462-5822.2010.01489.x 10.1016/j.tplants.2009.08.002 10.1038/nri3141 10.1016/j.tplants.2011.04.003 10.1111/j.1365-313X.2006.02739.x 10.1074/jbc.M109.063073 10.1038/emboj.2009.262 10.1111/tpj.12076 10.1074/jbc.M111.254029 10.1093/bioinformatics/btp616 10.1073/pnas.0705306104 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 Public Library of Science 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, et al. (2015) Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses. PLoS Pathog 11(3): e1004809. doi:10.1371/journal.ppat.1004809 |
Copyright_xml | – notice: COPYRIGHT 2015 Public Library of Science – notice: 2015 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schwessinger B, Bahar O, Thomas N, Holton N, Nekrasov V, Ruan D, et al. (2015) Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses. PLoS Pathog 11(3): e1004809. doi:10.1371/journal.ppat.1004809 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) Joint BioEnergy Institute (JBEI), Emeryville, CA (United States) |
CorporateAuthor_xml | – name: Joint BioEnergy Institute (JBEI), Emeryville, CA (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISN ISR 7X8 OIOZB OTOTI 5PM ADTOC UNPAY DOA |
DOI | 10.1371/journal.ppat.1004809 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Canada Gale In Context: Science MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Functionality of EFR in Rice |
EISSN | 1553-7374 |
ExternalDocumentID | 1685364484 oai_doaj_org_article_600aa588f49a4fb3ac57756d5b7e34c6 oai:escholarship.org:ark:/13030/qt6xp46342 PMC4379099 1191186 A418465389 25821973 10_1371_journal_ppat_1004809 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM59962 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G024936/1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 7X8 3V. AAPBV ABPTK M~E OIOZB OTOTI PQEST PQUKI 5PM ADTOC UNPAY - ADACO BBAFP PRINS |
ID | FETCH-LOGICAL-c726t-d01a6ed9bdb0af9dfbe0a3fe53a821a5a05d0450c3a5a6be360c16d4bc149f113 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Fri Nov 26 17:14:11 EST 2021 Wed Aug 27 01:06:13 EDT 2025 Wed Oct 01 16:32:04 EDT 2025 Tue Sep 30 16:46:30 EDT 2025 Mon Jul 03 03:59:17 EDT 2023 Fri Sep 05 08:33:40 EDT 2025 Tue Jun 17 20:43:28 EDT 2025 Tue Jun 10 20:39:51 EDT 2025 Fri Jun 27 04:51:58 EDT 2025 Fri Jun 27 03:56:19 EDT 2025 Mon Jul 21 05:57:12 EDT 2025 Wed Oct 01 03:23:35 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. public-domain Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c726t-d01a6ed9bdb0af9dfbe0a3fe53a821a5a05d0450c3a5a6be360c16d4bc149f113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Biological and Environmental Research (BER) Current address: Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel Performed the experiments: BS OB NT NH VN DR PEC AD CJP VRS RK MC CD JLH. Wrote the paper: BS OB NT PCR. Designed Experiments and Analyzed Data: BS OB NT NH CJP VRS JLH PCR. Provided Material: VN CZ. The authors have declared that no competing interests exist. Current address: bio-protocol, Palo Alto, California, United States of America |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.ppat.1004809 |
PMID | 25821973 |
PQID | 1668236666 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1685364484 doaj_primary_oai_doaj_org_article_600aa588f49a4fb3ac57756d5b7e34c6 unpaywall_primary_10_1371_journal_ppat_1004809 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4379099 osti_scitechconnect_1191186 proquest_miscellaneous_1668236666 gale_infotracmisc_A418465389 gale_infotracacademiconefile_A418465389 gale_incontextgauss_ISR_A418465389 gale_incontextgauss_ISN_A418465389 pubmed_primary_25821973 crossref_citationtrail_10_1371_journal_ppat_1004809 crossref_primary_10_1371_journal_ppat_1004809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | X Chen (ref53) 2010; 107 G Kunze (ref27) 2004; 16 Y Peng (ref58) 2008; 1 C-J Park (ref89) 2010; 179 X Chen (ref75) 2006; 46 MD Robinson (ref96) 2010; 26 J Zhang (ref45) 2010; 7 H Ochiai (ref67) 2005; 39 A Heese (ref37) 2007; 104 Y Saijo (ref33) 2010; 12 G Qian (ref69) 2013; 12 SW Lee (ref76) 2013; 342 D Kim (ref91) 2013; 14 L Trdá (ref24) 2014; 201 A Keller (ref97) 2005; 1 R De Jonge (ref31) 2012 SL Salzberg (ref65) 2008; 9 T Furukawa (ref85) 2013 R Takai (ref20) 2008; 21 E Fradin (ref14) 2011; 156 D Chinchilla (ref19) 2006; 18 Y Jiang (ref57) 2013; 73 A Daudi (ref48) 2012; 24 CJ Park (ref52) 2010; 5 T Boller (ref3) 2009; 60 M Boudsocq (ref46) 2010; 464 BM Lee (ref66) 2005; 33 C Segonzac (ref16) 2011; 14 F Lu (ref61) 2015 T Xiang (ref81) 2008; 18 SH Spoel (ref4) 2012; 12 C-J Park (ref51) 2013; 210 X Chen (ref83) 2011; 16 YS Wang (ref56) 2006; 18 R Cai (ref22) 2011; 7 PC Ronald (ref29) 1992; 236 K Kishimoto (ref84) 2010; 64 H Hirai (ref21) 2011; 286 CJ Park (ref82) 2010; 12 T Maekawa (ref8) 2011; 12 J Li (ref36) 2009; 106 X Chen (ref54) 2014; ssu003 H Schoonbeek (ref86) 2015 S Zuo (ref79) 2014 WY Song (ref28) 1995; 270 Y Xiang (ref74) 2006; 113 M Boudsocq (ref47) 2013; 18 V Nekrasov (ref35) 2009; 28 G Felix (ref17) 1999; 18 B Schulze (ref38) 2010; 285 S Lacombe (ref10) 2010; 28 Y Kawahara (ref92) 2013; 6 N Holton (ref80) 2015; 11 MS Chern (ref88) 2005; 18 AP Macho (ref2) 2014; 54 DJ McCarthy (ref95) 2012; 40 AP Macho (ref43) 2014; 343 ref93 B Schwessinger (ref41) 2011; 7 H Zhang (ref72) 2013; 16 J Monaghan (ref15) 2012; 15 JD Jones (ref6) 2006; 444 M Lopez-Gomez (ref25) 2012; 63 S Wang (ref62) Y Hiei (ref87) 1994; 6 CJ Park (ref59) 2008; 6 Y Kadota (ref49) 2014; 54 D Lu (ref44) 2010; 107 S Tan (ref60) 2011; 139 W Liu (ref71) 2014; 52 H Wickham (ref94) 2009 Y Katsuragi (ref63) 2015 T Nakagawa (ref90) 2007; 104 C Zipfel (ref26) 2006; 125 BMJ Mendes (ref11) 2010; 59 LA Boyd (ref9) 2013; 29 D Chinchilla (ref39) 2009; 14 D Chinchilla (ref40) 2007; 448 CR Clarke (ref23) 2013 P Schulze-Lefert (ref5) 2011; 16 WY Song (ref30) 1997; 9 Y Ao (ref64) 2014; 80 H Haweker (ref34) 2010; 285 A Afroz (ref12) 2011; 104 O Bahar (ref77) 2014; 2 M Roux (ref42) 2011; 23 B Schwessinger (ref1) 2012; 63 R Sharma (ref70) 2013; 6 R Lozano-Durán (ref50) 2013 ST Chisholm (ref7) 2006; 124 Y Kawano (ref73) 2013; 16 M Albert (ref18) 2010; 89 Y Saijo (ref32) 2009; 28 J Li (ref78) 2010 JF González (ref68) 2012; 75 YS Seo (ref55) 2011; 7 JN Tripathi (ref13) 2014 25906371 - PLoS Pathog. 2015 Apr 23;11(4):e1004872. doi: 10.1371/journal.ppat.1004872. |
References_xml | – year: 2015 ident: ref63 article-title: CD2–1, the C-terminal region of flagellin, modulates the induction of immune responses in rice publication-title: MPMI – volume: 18 start-page: 30 year: 2013 ident: ref47 article-title: CDPKs in immune and stress signaling publication-title: Trends in plant science doi: 10.1016/j.tplants.2012.08.008 – volume: 63 start-page: 451 year: 2012 ident: ref1 article-title: Plant innate immunity: perception of conserved microbial signatures publication-title: Annual review of plant biology doi: 10.1146/annurev-arplant-042811-105518 – volume: 1 year: 2005 ident: ref97 article-title: A uniform proteomics MS/MS analysis platform utilizing open XML file formats publication-title: Molecular systems biology doi: 10.1038/msb4100024 – volume: 18 start-page: 3635 year: 2006 ident: ref56 article-title: Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance publication-title: Plant Cell doi: 10.1105/tpc.106.046730 – volume: 210 start-page: 53 year: 2013 ident: ref51 article-title: The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice publication-title: Plant Science doi: 10.1016/j.plantsci.2013.05.003 – ident: ref62 article-title: Rice OsFLS2-mediated perception of bacterial flagellins is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola publication-title: Molecular Plant – volume: 11 start-page: e1004602 year: 2015 ident: ref80 article-title: The Phylogenetically-Related Pattern Recognition Receptors EFR and XA21 Recruit Similar Immune Signaling Components in Monocots and Dicots publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004602 – volume: 75 start-page: 5911 year: 2012 ident: ref68 article-title: A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap publication-title: Journal of Proteomics doi: 10.1016/j.jprot.2012.07.019 – year: 2013 ident: ref85 article-title: Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis publication-title: Molecular Plant-Microbe Interactions – volume: 107 start-page: 496 year: 2010 ident: ref44 article-title: A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0909705107 – volume: 33 start-page: 577 year: 2005 ident: ref66 article-title: The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice publication-title: Nucleic Acids Res doi: 10.1093/nar/gki206 – volume: 6 start-page: 1 year: 2013 ident: ref92 article-title: Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data publication-title: Rice doi: 10.1186/1939-8433-6-4 – volume: 60 start-page: 379 year: 2009 ident: ref3 article-title: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.57.032905.105346 – volume: 9 start-page: 1279 year: 1997 ident: ref30 article-title: Evolution of the rice Xa21 disease resistance gene family publication-title: Plant Cell doi: 10.1105/tpc.9.8.1279 – volume: 12 start-page: 817 year: 2011 ident: ref8 article-title: NLR functions in plant and animal immune systems: so far and yet so close publication-title: Nat Immunol doi: 10.1038/ni.2083 – volume: 125 start-page: 749 year: 2006 ident: ref26 article-title: Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation publication-title: Cell doi: 10.1016/j.cell.2006.03.037 – year: 2012 ident: ref31 article-title: Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing publication-title: Proceedings of the National Academy of Sciences – volume: 342 start-page: 191 year: 2013 ident: ref76 article-title: Retraction. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity publication-title: Science – volume: 107 start-page: 8029 year: 2010 ident: ref53 article-title: An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0912311107 – start-page: n/a year: 2014 ident: ref13 article-title: Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum publication-title: Plant Biotechnology Journal – volume: 464 start-page: 418 year: 2010 ident: ref46 article-title: Differential innate immune signalling via Ca(2+) sensor protein kinases publication-title: Nature doi: 10.1038/nature08794 – year: 2009 ident: ref94 article-title: ggplot2: elegant graphics for data analysis doi: 10.1007/978-0-387-98141-3 – volume: 285 start-page: 9444 year: 2010 ident: ref38 article-title: Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 publication-title: J Biol Chem doi: 10.1074/jbc.M109.096842 – volume: 18 start-page: 511 year: 2005 ident: ref88 article-title: Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-18-0511 – volume: 106 start-page: 15973 year: 2009 ident: ref36 article-title: Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0905532106 – volume: 14 start-page: 54 year: 2011 ident: ref16 article-title: Activation of plant pattern-recognition receptors by bacteria publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2010.12.005 – volume: 179 start-page: 466 year: 2010 ident: ref89 article-title: Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae publication-title: Plant Science doi: 10.1016/j.plantsci.2010.07.008 – volume: 201 start-page: 1371 year: 2014 ident: ref24 article-title: The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria publication-title: New Phytol doi: 10.1111/nph.12592 – volume: 270 start-page: 1804 year: 1995 ident: ref28 article-title: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 publication-title: Science doi: 10.1126/science.270.5243.1804 – volume: 40 start-page: 4288 year: 2012 ident: ref95 article-title: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation publication-title: Nucleic acids research doi: 10.1093/nar/gks042 – volume: 16 start-page: 3496 year: 2004 ident: ref27 article-title: The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants publication-title: Plant Cell doi: 10.1105/tpc.104.026765 – start-page: 2 year: 2013 ident: ref50 article-title: The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth publication-title: eLife – volume: 104 start-page: 227 year: 2011 ident: ref12 article-title: Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene publication-title: Plant Cell Tiss Organ Cult doi: 10.1007/s11240-010-9825-2 – volume: 18 start-page: 265 year: 1999 ident: ref17 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00265.x – volume: 113 start-page: 1347 year: 2006 ident: ref74 article-title: Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26 publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0388-x – volume: 16 start-page: 188 year: 2013 ident: ref72 article-title: Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.02.008 – volume: 28 start-page: 3439 year: 2009 ident: ref32 article-title: Receptor quality control in the endoplasmic reticulum for plant innate immunity publication-title: Embo J doi: 10.1038/emboj.2009.263 – volume: 24 start-page: 275 year: 2012 ident: ref48 article-title: The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity publication-title: The Plant Cell Online doi: 10.1105/tpc.111.093039 – volume: 448 start-page: 497 year: 2007 ident: ref40 article-title: A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature doi: 10.1038/nature05999 – volume: 2 start-page: e242 year: 2014 ident: ref77 article-title: The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles publication-title: PeerJ doi: 10.7717/peerj.242 – volume: ssu003 year: 2014 ident: ref54 article-title: An XA21-Associated Kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors publication-title: Mol Plant – volume: 6 start-page: 271 year: 1994 ident: ref87 article-title: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA publication-title: Plant J doi: 10.1046/j.1365-313X.1994.6020271.x – volume: 7 start-page: e1002020 year: 2011 ident: ref55 article-title: Towards establishment of a rice stress response interactome publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002020 – volume: 343 start-page: 1509 year: 2014 ident: ref43 article-title: A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation publication-title: Science doi: 10.1126/science.1248849 – volume: 14 start-page: R36 year: 2013 ident: ref91 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – volume: 52 year: 2014 ident: ref71 article-title: Novel Insights into Rice Innate Immunity against Bacterial and Fungal Pathogens publication-title: Annual Review of Phytopathology – volume: 12 start-page: 3327 year: 2013 ident: ref69 article-title: Proteomic Analysis Reveals Novel Extracellular Virulence-Associated Proteins and Functions Regulated by the Diffusible Signal Factor (DSF) in Xanthomonas oryzae pv. oryzicola publication-title: Journal of proteome research doi: 10.1021/pr4001543 – start-page: n/a year: 2015 ident: ref86 article-title: Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat publication-title: New Phytol – volume: 18 start-page: 465 year: 2006 ident: ref19 article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception publication-title: Plant Cell doi: 10.1105/tpc.105.036574 – volume: 28 start-page: 365 year: 2010 ident: ref10 article-title: Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance publication-title: Nat Biotechnol doi: 10.1038/nbt.1613 – volume: 139 start-page: 1465 year: 2011 ident: ref60 article-title: Adaptive evolution of Xa21 homologs in Gramineae publication-title: Genetica doi: 10.1007/s10709-012-9645-x – volume: 16 start-page: 496 year: 2013 ident: ref73 article-title: Early signaling network in rice PRR-mediated and R-mediated immunity publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.07.004 – volume: 23 start-page: 2440 year: 2011 ident: ref42 article-title: The Arabidopsis Leucine-Rich Repeat Receptor-Like Kinases BAK1/SERK3 and BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic Pathogens publication-title: Plant Cell doi: 10.1105/tpc.111.084301 – volume: 6 start-page: 250 year: 2013 ident: ref70 article-title: Recent advances in dissecting stress-regulatory crosstalk in rice publication-title: Mol Plant doi: 10.1093/mp/sss147 – volume: 124 start-page: 803 year: 2006 ident: ref7 article-title: Host-microbe interactions: shaping the evolution of the plant immune response publication-title: Cell doi: 10.1016/j.cell.2006.02.008 – volume: 1 start-page: 446 year: 2008 ident: ref58 article-title: OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice publication-title: Mol Plant doi: 10.1093/mp/ssn024 – volume: 7 start-page: 290 year: 2010 ident: ref45 article-title: Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2010.03.007 – volume: 9 start-page: 204 year: 2008 ident: ref65 article-title: Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A publication-title: BMC Genomics doi: 10.1186/1471-2164-9-204 – volume: 104 start-page: 34 year: 2007 ident: ref90 article-title: Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation publication-title: J Biosci Bioeng doi: 10.1263/jbb.104.34 – volume: 444 start-page: 323 year: 2006 ident: ref6 article-title: The plant immune system publication-title: Nature doi: 10.1038/nature05286 – volume: 54 start-page: 263 year: 2014 ident: ref2 article-title: Plant PRRs and the Activation of Innate Immune Signaling publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.03.028 – volume: 54 start-page: 43 year: 2014 ident: ref49 article-title: Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity publication-title: Mol Cell doi: 10.1016/j.molcel.2014.02.021 – volume: 80 start-page: 1072 year: 2014 ident: ref64 article-title: OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity publication-title: Plant J doi: 10.1111/tpj.12710 – volume: 5 start-page: e9262 year: 2010 ident: ref52 article-title: Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice publication-title: PLoS One doi: 10.1371/journal.pone.0009262 – start-page: n/a year: 2015 ident: ref61 article-title: Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR publication-title: J Integr Plant Biol – volume: 156 start-page: 2255 year: 2011 ident: ref14 article-title: Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.111.180067 – volume: 15 start-page: 349 year: 2012 ident: ref15 article-title: Plant pattern recognition receptor complexes at the plasma membrane publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2012.05.006 – volume: 39 start-page: 275 year: 2005 ident: ref67 article-title: Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity publication-title: Japan Agricultural Research Quarterly doi: 10.6090/jarq.39.275 – volume: 6 start-page: e231 year: 2008 ident: ref59 article-title: Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060231 – volume: 29 start-page: 233 year: 2013 ident: ref9 article-title: Plant-pathogen interactions: disease resistance in modern agriculture. Trends in genetics publication-title: TIG doi: 10.1016/j.tig.2012.10.011 – volume: 59 start-page: 68 year: 2010 ident: ref11 article-title: Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene publication-title: Plant Pathology doi: 10.1111/j.1365-3059.2009.02148.x – volume: 18 start-page: 74 year: 2008 ident: ref81 article-title: Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases publication-title: Curr Biol doi: 10.1016/j.cub.2007.12.020 – ident: ref93 – year: 2010 ident: ref78 article-title: Multi-tasking of somatic embryogenesis receptor-like protein kinases publication-title: Curr Opin Plant Biol – volume: 64 start-page: 343 year: 2010 ident: ref84 article-title: Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2010.04328.x – volume: 12 start-page: 716 year: 2010 ident: ref33 article-title: ER quality control of immune receptors and regulators in plants publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2010.01472.x – year: 2014 ident: ref79 article-title: OsSERK1 regulates rice development but not immunity to Xanthomonas oryzae pv. oryzae or Magnaporthe oryzae publication-title: J Integr Plant Biol – volume: 236 start-page: 113 year: 1992 ident: ref29 article-title: Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21 publication-title: Mol Gen Genet doi: 10.1007/BF00279649 – volume: 16 start-page: 117 year: 2011 ident: ref5 article-title: A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2011.01.001 – volume: 7 start-page: e1002130 year: 2011 ident: ref22 article-title: The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002130 – volume: 89 start-page: 200 year: 2010 ident: ref18 article-title: Regulation of cell behaviour by plant receptor kinases: Pattern recognition receptors as prototypical models publication-title: Eur J Cell Biol doi: 10.1016/j.ejcb.2009.11.015 – start-page: n/a year: 2013 ident: ref23 article-title: Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility publication-title: New Phytologist – volume: 63 start-page: 393 year: 2012 ident: ref25 article-title: Interplay of flg22-induced defence responses and nodulation in Lotus japonicus publication-title: J Exp Bot doi: 10.1093/jxb/err291 – volume: 7 start-page: e1002046 year: 2011 ident: ref41 article-title: Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002046 – volume: 21 start-page: 1635 year: 2008 ident: ref20 article-title: Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-21-12-1635 – volume: 12 start-page: 1017 year: 2010 ident: ref82 article-title: Elucidation of XA21-mediated innate immunity publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2010.01489.x – volume: 14 start-page: 535 year: 2009 ident: ref39 article-title: One for all: the receptor-associated kinase BAK1 publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2009.08.002 – volume: 12 start-page: 89 year: 2012 ident: ref4 article-title: How do plants achieve immunity? Defence without specialized immune cells publication-title: Nat Rev Immunol doi: 10.1038/nri3141 – volume: 16 start-page: 451 year: 2011 ident: ref83 article-title: Innate immunity in rice publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2011.04.003 – volume: 46 start-page: 794 year: 2006 ident: ref75 article-title: A B-lectin receptor kinase gene conferring rice blast resistance publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2006.02739.x – volume: 285 start-page: 4629 year: 2010 ident: ref34 article-title: Pattern recognition receptors require N-glycosylation to mediate plant immunity publication-title: J Biol Chem doi: 10.1074/jbc.M109.063073 – volume: 28 start-page: 3428 year: 2009 ident: ref35 article-title: Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity publication-title: Embo J doi: 10.1038/emboj.2009.262 – volume: 73 start-page: 814 year: 2013 ident: ref57 article-title: The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance publication-title: Plant J doi: 10.1111/tpj.12076 – volume: 286 start-page: 25519 year: 2011 ident: ref21 article-title: Glycosylation Regulates Specific Induction of Rice Immune Responses by Acidovorax avenae Flagellin publication-title: J Biol Chem doi: 10.1074/jbc.M111.254029 – volume: 26 start-page: 139 year: 2010 ident: ref96 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 104 start-page: 12217 year: 2007 ident: ref37 article-title: The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0705306104 – reference: 25906371 - PLoS Pathog. 2015 Apr 23;11(4):e1004872. doi: 10.1371/journal.ppat.1004872. |
SSID | ssj0041316 |
Score | 2.4740326 |
Snippet | Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice... Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and... |
SourceID | plos doaj unpaywall pubmedcentral osti proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1004809 |
SubjectTerms | Arabidopsis Proteins - biosynthesis Arabidopsis Proteins - genetics BASIC BIOLOGICAL SCIENCES Cell membranes Defense Experiments Flowers & plants Gene expression Genetic aspects Genetic engineering Health aspects Identification and classification Kinases Leaves Ligands Ligands (Biochemistry) Oryza - genetics Oryza - metabolism Pattern recognition Plant defenses Plant Proteins - biosynthesis Plant Proteins - genetics Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Protein Serine-Threonine Kinases - biosynthesis Protein Serine-Threonine Kinases - genetics Proteins Receptors, Pattern Recognition - biosynthesis Receptors, Pattern Recognition - genetics Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - genetics Rice Rodents Signal Transduction Statistical analysis Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQPRF_G5slVUEn9Imt8lu8lilRxXsQ7XQt2U_60FIQpND75_wb3ZmkwsNKvXBt-Qyyd3OzM5HbuY3hLxl1uoS_GDMtbdxhkU5pSiXMTeZ9mnuYUfhq4HPZ_z0Ivt0mV_eGPWFNWEDPPDAuCNwyErlReGzUmVeM2VyIXJucy0cy0wA2wY3tkumBhsMljkMPcWhOLFgnI9Nc0ykR6OMDttWIXw09lSXM6cUsPsnC71oYKsh8mnVdH-KQn8vpry3qVu1_a6q6oanWj0kD8YQkx4PS3tE7rj6Mbk7DJ3cPiE_g3sCvVkb6n6MdbA1bTyFWJBa0Ix-WznbIHYrbQP8Zk2nOqMmHLsWUnV6sjqnazgHW0Mr0JWO9g2t1leqtvFuuG5PsXNieO-L32Gdh8TZwUNCba7rnpKL1cnXD6fxOJUhNmLJ-9gmqeLOltrqRPnSeu0SxbzLmSqWqcpVkluIExPD4Jhrx3hiUm4zbSAZ82nKnpFF3dRuj9BUCKNMyRhYucyVRWEK5XXuDJwlLs0iwnZikWaELMfJGZUM_8MJSF0GlkoUphyFGZF4uqsdIDtuoX-PEp9oEXA7fABqKEc1lLepYUTeoL5IhNSosWbnSm26Tn78ciaPM8iiOTiW8q9E5zOidyORb2CxwKChTwJYhlBdM8qDGSUYBjO7vI-6KyGUQjxgg4VTBlYNGXpawA_eQ5XecaSTKYfIDbN1YPvrnZpLfCaW4dUOlA5oeLGE7cTh9ueD2k9sW2LLdSlYRMRsQ8z4Or9Sr78FQHPExIRMJSKH09b5J8m9-B-S2yf3IQjOh7rCA7LorzfuJQSavX4VbMovX6t_CQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwQvfMPKBjIIiad0Se3YyWNhrQaCaipMGk-R7dhbRZVEJBUbfwR_M3eJWxE-xHhzknMan-_Od_X5d4S8YHmuU1gHA6FdHnBMykllOg6E4dpFsQONwr8G3s_F0Ql_exqferBoPAtjNzHd-bJqN_LXXU2yA3FRccE4WNsdgXtJA7JzMj-efGrxUGMWSNbuS_q25P6YHJPRgZ-VUVUpBIzGU9Rpbxlq0fq3NnlQgnIh1umqrP_kd_6ePnljXVTq8qtarX5am2a3u6yuuoU0xJSUz6N1o0fm2y-Aj1ca9h1yy3uodNKJ1F1yzRb3yPWuZuXlffK9Xd1A7JaGTi98Gm1BS0fBlaSHIFjN5crmJUK_0uMWvbOgi02aUtm2bQWRPp3OFnQJ12CqKFb6rGlT0nfLM1XkwaGvzdvQidkUYMPfOLQO4m4LL2lTe239gJzMph9fHwW-qENg5Fg0QR5GStg81bkOlUtzp22omLMxU8k4UrEK4xzczNAwaAttmQhNJHKuDcRyLorYQzIoysLuEhpJaZRJGQMjyW2aJCZRTsfWwFVoIz4kbDPHmfGI51h4Y5W123gSIp-OpRlKRuYlY0iCba-qQ_z4B_0rFJ8tLeJ1tzdgGjOv_hlIrFJxkjieKu40UyaWMhZ5rKVl3IgheY7ClyEiR4EpP2dqXdfZmw_zbMIhCBewLqV_JVr0iF56IlfCYIFB3TELYBkiffUo93uUYFdM7_EeKkIGnhjCCRvMuzIwagjwowQ-eBf1Y8OROosEOH4Y7APbn210JsN3YhZfYUHogEYkY9BTAd0fdTq0ZdsYT2ynkg2J7GlXj6_9J8XyvMVDR0hNCHSGZLTVwyvN3OP_7bBHboK_HHcpiPtk0HxZ2yfgkzb6qbdGPwDgI4-M priority: 102 providerName: Unpaywall |
Title | Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25821973 https://www.proquest.com/docview/1668236666 https://www.osti.gov/servlets/purl/1191186 https://pubmed.ncbi.nlm.nih.gov/PMC4379099 https://escholarship.org/uc/item/6xp46342 https://doaj.org/article/600aa588f49a4fb3ac57756d5b7e34c6 http://dx.doi.org/10.1371/journal.ppat.1004809 |
UnpaywallVersion | submittedVersion |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: KQ8 dateStart: 20050901 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: ABDBF dateStart: 20050901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: 7X7 dateStart: 20050901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7374 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: BENPR dateStart: 20050901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7374 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0041316 issn: 1553-7366 databaseCode: M48 dateStart: 20050901 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TgheEJ9b2agMQuIpUxIndvKAUIdaDaRVU6FSeYocf5RKUVKaVqz_BH8zd0kaEbEBb_k4u_X5znfnnH9HyBumdRqDHXR4arUTYFJOLGLf4SpIrRda0CjcGria8MtZ8Gkezg_IvmZrw8Dy1tAO60nN1tn5zffde1D4d1XVBuHtG52vVhIBofGUdHxIjsA2-SjnV0H7XQFW7KoYKhbLcQQTQXOY7q5eOsaqwvRvV-5eASqIiKhZUd7mnf6ZZHl_m6_k7ofMst8s2PgRedi4nnRYy8pjcmDyJ-ReXYxy95T8rMwWyNNSUXPT5MfmtLAUfESqQWI2u8zoAjFd6aqC5cxpm39UVNdmBSE8HY2ndAn3sAbRDGSopJuCZsuFzLWzL7q7oXiiot4Pxt_QxkJAbaCTKmfXlM_IbDz68uHSaao1OEr4fONo15Pc6DjVqSttrG1qXMmsCZmMfE-G0g01-I-uYnDNU8O4qzyug1RBkGY9jz0nvbzIzQmhnhBKqpgxWP0CE0eRiqRNQ6PgzjVe0CdsPy2JaqDMsaJGllTf5wSENDVLE5zMpJnMPnHaVqsayuMf9Bc44y0tAnFXD4r1Imn0OgF_UcowimwQy8CmTKpQiJDrMBWGBYr3yWuUlwShNnLM5VnIbVkmHz9PkmEA0TUHgxPfSTTtEL1tiGwBgwUG1ecngGUI4dWhPOtQwoKhOq9PUXYTcLEQJ1hhQpWCUUPk7kXwh09QpPccKROPg0eHUTyw_dVezBPsE9PzcgNCBzQ88hlEwtD8uBb7lm0-HsWOBesT0VGIDl-7b_LltwroHLEyIYLpk_NWdf5r5l78dYSn5AF4vWGdSHhGepv11rwEz3KTDsihmIsBOboYTa6ng2p_ZlAtIPBsNrkefv0FwICBWQ |
linkProvider | Scholars Portal |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwQvfMPKBjIIiad0Se3YyWNhrQaCaipMGk-R7dhbRZVEJBUbfwR_M3eJWxE-xHhzknMan-_Od_X5d4S8YHmuU1gHA6FdHnBMykllOg6E4dpFsQONwr8G3s_F0Ql_exqferBoPAtjNzHd-bJqN_LXXU2yA3FRccE4WNsdgXtJA7JzMj-efGrxUGMWSNbuS_q25P6YHJPRgZ-VUVUpBIzGU9Rpbxlq0fq3NnlQgnIh1umqrP_kd_6ePnljXVTq8qtarX5am2a3u6yuuoU0xJSUz6N1o0fm2y-Aj1ca9h1yy3uodNKJ1F1yzRb3yPWuZuXlffK9Xd1A7JaGTi98Gm1BS0fBlaSHIFjN5crmJUK_0uMWvbOgi02aUtm2bQWRPp3OFnQJ12CqKFb6rGlT0nfLM1XkwaGvzdvQidkUYMPfOLQO4m4LL2lTe239gJzMph9fHwW-qENg5Fg0QR5GStg81bkOlUtzp22omLMxU8k4UrEK4xzczNAwaAttmQhNJHKuDcRyLorYQzIoysLuEhpJaZRJGQMjyW2aJCZRTsfWwFVoIz4kbDPHmfGI51h4Y5W123gSIp-OpRlKRuYlY0iCba-qQ_z4B_0rFJ8tLeJ1tzdgGjOv_hlIrFJxkjieKu40UyaWMhZ5rKVl3IgheY7ClyEiR4EpP2dqXdfZmw_zbMIhCBewLqV_JVr0iF56IlfCYIFB3TELYBkiffUo93uUYFdM7_EeKkIGnhjCCRvMuzIwagjwowQ-eBf1Y8OROosEOH4Y7APbn210JsN3YhZfYUHogEYkY9BTAd0fdTq0ZdsYT2ynkg2J7GlXj6_9J8XyvMVDR0hNCHSGZLTVwyvN3OP_7bBHboK_HHcpiPtk0HxZ2yfgkzb6qbdGPwDgI4-M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+expression+of+the+dicotyledonous+pattern+recognition+receptor+EFR+in+rice+leads+to+ligand-dependent+activation+of+defense+responses&rft.jtitle=PLoS+pathogens&rft.au=Schwessinger%2C+Benjamin&rft.au=Bahar%2C+Ofir&rft.au=Thomas%2C+Nicolas&rft.au=Holton%2C+Nicolas&rft.date=2015-03-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=11&rft.issue=3&rft_id=info:doi/10.1371%2Fjournal.ppat.1004809&rft.externalDocID=1191186 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |