Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB
In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between...
Saved in:
Published in | PLoS genetics Vol. 13; no. 5; p. e1006783 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
10.05.2017
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7404 1553-7390 1553-7404 |
DOI | 10.1371/journal.pgen.1006783 |
Cover
Abstract | In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400-2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair-the attenuation of DNA-end processing and the initiation of homology search by RecA-thereby helping to ensure that genomic integrity is maintained during DSB repair. |
---|---|
AbstractList | In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400-2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair-the attenuation of DNA-end processing and the initiation of homology search by RecA-thereby helping to ensure that genomic integrity is maintained during DSB repair. In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400-2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair-the attenuation of DNA-end processing and the initiation of homology search by RecA-thereby helping to ensure that genomic integrity is maintained during DSB repair.In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400-2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair-the attenuation of DNA-end processing and the initiation of homology search by RecA-thereby helping to ensure that genomic integrity is maintained during DSB repair. In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro , with translocation speeds between 400–2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus . Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair–the attenuation of DNA-end processing and the initiation of homology search by RecA–thereby helping to ensure that genomic integrity is maintained during DSB repair. Double-strand breaks (DSBs) are a threat to genome integrity and are faithfully repaired via homologous recombination. The initial processing of DSB ends that prepares them for recombination has been well-studied in vitro , but is less well characterized in vivo . We describe a deep sequencing-based assay for assessing the early steps of DSB processing in bacterial cells by the helicase-nuclease complex AddAB. We find that a combination of chi site recognition and RecA loading is required to attenuate AddAB activity. In the absence of RecA, the chromosome is excessively degraded with a concomitant loss in transcription. Our results, along with prior studies, support a model for how chi recognition and RecA together regulate AddAB to maintain genome integrity and facilitate recombination. |
Audience | Academic |
Author | Laub, Michael T. Badrinarayanan, Anjana Spille, Jan-Hendrik Le, Tung B. K. Cisse, Ibrahim I. |
AuthorAffiliation | 4 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States of America 5 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States of America 3 Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom 2 National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, India 1 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America National Cancer Institute, UNITED STATES |
AuthorAffiliation_xml | – name: 1 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States of America – name: 4 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, United States of America – name: 3 Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom – name: 5 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, United States of America – name: 2 National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore, India – name: National Cancer Institute, UNITED STATES |
Author_xml | – sequence: 1 givenname: Anjana surname: Badrinarayanan fullname: Badrinarayanan, Anjana – sequence: 2 givenname: Tung B. K. orcidid: 0000-0003-4764-8851 surname: Le fullname: Le, Tung B. K. – sequence: 3 givenname: Jan-Hendrik orcidid: 0000-0001-8493-4721 surname: Spille fullname: Spille, Jan-Hendrik – sequence: 4 givenname: Ibrahim I. surname: Cisse fullname: Cisse, Ibrahim I. – sequence: 5 givenname: Michael T. orcidid: 0000-0002-8288-7607 surname: Laub fullname: Laub, Michael T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28489851$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk11v0zAUhiM0xD7gHyCIhITgosWOk9jZBVKZYFSamMTXreU4x62La4c4qbZ_z-naTe00IVAuYvk873t8jn2OkwMfPCTJc0rGlHH6bhGGzis3bmfgx5SQkgv2KDmiRcFGPCf5wc76MDmOcUEIK0TFnySHmchFJQp6lMRzF2rlUoVW19HGNJi0CUPtYBT7TvkmrTtQv9K2CxpitH6WdrAC5WJqfbqyq7AOtdD1Fm7E_RzSOTirVYSRH7QDXKQ6LFsHV-mkaSYfniaPDRrAs-3_JPnx6eP3s8-ji8vz6dnkYqR5VvYjkTPVlEXOK1HVteZKNxUpTUkySjGiS1OwEnhFjVHaEJYLgm3gDa254MQYdpK83Pi2LkS57VeUtKIkL1lJCiSmG6IJaiHbzi5Vdy2DsvJmI3QzqbAyLELWwoiirIqsVlkuNKszASajXFGWGVEq9Hq_zTbUS2g0eOyf2zPdj3g7l7OwkkWeM6wEDd5sDbrwe4DYy6WNGpxTHsKA58a7E6TIqjX66h76cHVbaqawAOtNwLx6bSonecU4Y0xUSI0foPBrYGk1vjljcX9P8HZPgEwPV_1MDTHK6bev_8F--Xf28uc--3qHneN77OcxuKG3wcd98MXurdxdx-0EIJBvAN2FGDswdwglcj1ot62V60GT20FD2ek9mba9WqfH7ln3d_Efsa0t2Q |
CitedBy_id | crossref_primary_10_1371_journal_pbio_3002540 crossref_primary_10_1093_nar_gkad1198 crossref_primary_10_1093_nar_gky1132 crossref_primary_10_1002_2211_5463_13292 crossref_primary_10_1016_j_dnarep_2022_103389 crossref_primary_10_1091_mbc_E20_08_0547 crossref_primary_10_1007_s00253_020_10589_w crossref_primary_10_1128_jb_00571_21 crossref_primary_10_1073_pnas_2209304119 crossref_primary_10_1093_nar_gkx1290 |
Cites_doi | 10.1016/S0092-8674(00)80315-3 10.1111/j.1365-2958.2006.05346.x 10.1371/journal.pgen.1002244 10.1128/JB.100.1.231-239.1969 10.1093/nar/gku188 10.1016/j.molcel.2013.10.014 10.1006/jmbi.2000.3556 10.1128/jb.179.3.880-888.1997 10.1073/pnas.1424269112 10.1128/JB.00330-06 10.1093/bioinformatics/btq033 10.1016/j.dnarep.2014.02.002 10.1128/MMBR.58.3.401-465.1994 10.1128/JB.01877-07 10.4161/15384101.2014.950892 10.1016/j.molcel.2011.04.012 10.1073/pnas.81.24.7850 10.1093/genetics/115.1.11 10.1128/jb.175.17.5505-5509.1993 10.1016/j.molcel.2006.04.027 10.1038/nrmicro2917 10.1101/gad.2038911 10.1128/jb.176.16.5093-5100.1994 10.1016/S0021-9258(19)69000-9 10.1128/MMBR.05026-11 10.1038/nature13037 10.1128/MMBR.00020-08 10.1111/j.1574-6976.2007.00082.x 10.1016/j.dnarep.2009.12.016 10.1093/nar/gkv1543 10.1099/00221287-147-4-949 10.1111/j.1365-2958.1993.tb01182.x 10.1016/0022-2836(85)90414-0 10.1111/j.1365-2958.2003.03970.x 10.1186/gb-2009-10-3-r25 10.1046/j.1365-2958.1997.1991570.x 10.1371/journal.pgen.1002622 10.1074/jbc.270.27.16360 10.1016/j.cell.2006.05.038 10.1038/nature10782 10.1002/j.1460-2075.1994.tb06570.x 10.1111/j.1432-1033.1980.tb04480.x 10.1038/emboj.2012.9 10.1016/S0092-8674(03)00681-0 10.1128/JB.01052-07 10.1016/0092-8674(81)90333-0 10.1046/j.1365-2958.1998.01018.x 10.1093/nar/18.6.1407 10.1073/pnas.89.24.12073 10.1016/S0923-2508(99)00132-1 10.1016/j.molcel.2015.09.009 10.1128/jb.179.4.1219-1229.1997 10.1073/pnas.1415025111 10.1016/j.dnarep.2012.12.005 10.1186/1471-2180-7-17 10.1111/j.1365-2958.2008.06130.x 10.1080/10409230390242489 10.1016/j.cell.2007.09.023 10.1016/j.jmb.2014.07.017 10.1073/pnas.92.14.6249 10.1073/pnas.1303035110 10.1093/nar/gkq1124 10.1016/j.molcel.2006.01.007 10.1093/nar/gkm818 10.1093/nar/16.14.6883 10.1083/jcb.201505019 10.1128/JB.181.19.6220-6221.1999 10.1073/pnas.95.10.5752 10.1038/nature12868 10.1101/cshperspect.a016436 10.1371/journal.pbio.1001977 10.7554/eLife.08942 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Public Library of Science 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: properties of the helicase-nuclease complex AddAB. PLoS Genet 13(5): e1006783. https://doi.org/10.1371/journal.pgen.1006783 2017 Badrinarayanan et al 2017 Badrinarayanan et al 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: properties of the helicase-nuclease complex AddAB. PLoS Genet 13(5): e1006783. https://doi.org/10.1371/journal.pgen.1006783 |
Copyright_xml | – notice: COPYRIGHT 2017 Public Library of Science – notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: properties of the helicase-nuclease complex AddAB. PLoS Genet 13(5): e1006783. https://doi.org/10.1371/journal.pgen.1006783 – notice: 2017 Badrinarayanan et al 2017 Badrinarayanan et al – notice: 2017 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: properties of the helicase-nuclease complex AddAB. PLoS Genet 13(5): e1006783. https://doi.org/10.1371/journal.pgen.1006783 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1006783 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Global analysis of double-strand break processing in vivo |
EISSN | 1553-7404 |
ExternalDocumentID | 1910463605 oai_doaj_org_article_b8f856952ba248c3b28ef217a132f86a PMC5443536 A493733389 28489851 10_1371_journal_pgen_1006783 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM082899 – fundername: ; – fundername: ; grantid: 5R01GM082899 – fundername: ; grantid: 2654055 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM PJZUB PPXIY PQGLB RIG WOQ PMFND 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 5PM AAPBV ABPTK M~E UMP |
ID | FETCH-LOGICAL-c726t-843ad6547989bbc7acd906f602113adc6f536e791ffacf034801007d1b7870ff3 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun May 07 16:29:04 EDT 2023 Wed Aug 27 01:27:09 EDT 2025 Thu Aug 21 14:36:15 EDT 2025 Fri Sep 05 00:07:44 EDT 2025 Fri Jul 25 12:21:52 EDT 2025 Tue Jun 17 21:46:59 EDT 2025 Tue Jun 10 20:36:46 EDT 2025 Fri Jun 27 04:10:11 EDT 2025 Fri Jun 27 04:17:00 EDT 2025 Fri Jun 27 03:32:16 EDT 2025 Thu May 22 21:19:23 EDT 2025 Mon Jul 21 06:05:06 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Tue Jul 01 03:55:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c726t-843ad6547989bbc7acd906f602113adc6f536e791ffacf034801007d1b7870ff3 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization: AB MTL.Data curation: AB TBKL JHS.Formal analysis: AB TBKL JHS MTL.Funding acquisition: AB TBKL IIC MTL.Investigation: AB TBKL JHS.Methodology: AB TBKL JHS IIC MTL.Project administration: MTL.Resources: AB TBKL JHS.Software: JHS.Supervision: MTL.Validation: AB TBKL JHS IIC MTL.Visualization: AB TBKL MTL.Writing – original draft: AB MTL.Writing – review & editing: AB TBKL MTL. The authors have declared that no competing interests exist. |
ORCID | 0000-0003-4764-8851 0000-0002-8288-7607 0000-0001-8493-4721 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1006783 |
PMID | 28489851 |
PQID | 1910463605 |
PQPubID | 1436339 |
ParticipantIDs | plos_journals_1910463605 doaj_primary_oai_doaj_org_article_b8f856952ba248c3b28ef217a132f86a pubmedcentral_primary_oai_pubmedcentral_nih_gov_5443536 proquest_miscellaneous_1897805296 proquest_journals_1910463605 gale_infotracmisc_A493733389 gale_infotracacademiconefile_A493733389 gale_incontextgauss_ISR_A493733389 gale_incontextgauss_ISN_A493733389 gale_incontextgauss_IOV_A493733389 gale_healthsolutions_A493733389 pubmed_primary_28489851 crossref_primary_10_1371_journal_pgen_1006783 crossref_citationtrail_10_1371_journal_pgen_1006783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170510 |
PublicationDateYYYYMMDD | 2017-05-10 |
PublicationDate_xml | – month: 5 year: 2017 text: 20170510 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2017 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | A Kuzminov (ref26) 1997; 179 A Köppen (ref58) 1995; 92 J Kooistra (ref28) 1993; 7 M Martins-Pinheiro (ref38) 2007; 7 CA Cockram (ref36) 2015; 112 DA McGrew (ref50) 2003; 38 AL Forget (ref55) 2012; 482 JTP Yeeles (ref23) 2011; 39 JW Modell (ref45) 2011; 25 F Chédin (ref18) 2000; 298 TR Meddows (ref32) 2004; 52 HJ Nielsen (ref53) 2006; 62 JC Alonso (ref1) 2013; 12 C Carrasco (ref15) 2014; 20 DA Dixon (ref10) 1995; 270 M Seigneur (ref66) 1999; 181 F Chédin (ref29) 1998; 29 WW Krajewski (ref14) 2014; 508 M Thanbichler (ref52) 2006; 126 JW Modell (ref46) 2014; 12 AF Taylor (ref9) 2014; 426 P Dabert (ref56) 1992; 89 JG Williams (ref60) 1981; 256 K Zahradka (ref61) 2009; 191 A Badrinarayanan (ref37) 2015; 210 B Thoms (ref63) 2008; 190 M Rajendram (ref67) 2015; 60 DG Ennis (ref57) 1987; 115 JTP Yeeles (ref24) 2011; 42 M Spies (ref20) 2006; 21 LS Symington (ref3) 2014; 6 M Wilkinson (ref5) 2014; 13 MS Dillingham (ref8) 2008; 72 N Renzette (ref49) 2008; 67 A Prell (ref64) 1980; 105 KE McGinness (ref68) 2006; 22 SC Kowalczykowski (ref2) 1994; 58 RB Jensen (ref43) 2006; 188 DB Wigley (ref4) 2013; 11 NS Gilhooly (ref16) 2014; 42 G Karimova (ref47) 1998; 95 B Langmead (ref71) 2009; 10 BM Wendel (ref35) 2014; 111 J Kooistra (ref30) 1997; 23 M Thanbichler (ref40) 2007; 35 KD Vernick (ref70) 1988; 16 C Monteilhet (ref34) 1990; 18 M Spies (ref13) 2003; 114 GR Smith (ref11) 1981; 24 I Erill (ref44) 2007; 31 M Spies (ref7) 2007; 131 AM Chaudhury (ref12) 1984; 81 ALD Septenville (ref33) 2012; 8 K Saikrishnan (ref19) 2012; 31 SE Jones (ref41) 2001; 147 DG Anderson (ref21) 1997; 90 NS Gilhooly (ref39) 2016; 44 M El Karoui (ref42) 1999; 150 GR Smith (ref6) 2012; 76 C Carrasco (ref22) 2013; 110 R Meima (ref27) 1997; 179 MM Zaman (ref62) 1994; 176 AR Quinlan (ref72) 2010; 26 K Skarstad (ref59) 1993; 175 JTP Yeeles (ref17) 2010; 9 NS Willetts (ref31) 1969; 100 AK Adikesavan (ref51) 2011; 7 CD Aakre (ref69) 2013; 52 N Manfrini (ref54) 2015; 4 A Kuzminov (ref25) 1994; 13 C Lesterlin (ref48) 2014; 506 AF Taylor (ref65) 1985; 185 16885470 - J Bacteriol. 2006 Aug;188(16):6016-9 21700225 - Mol Cell. 2011 Jun 24;42(6):806-16 17965170 - J Bacteriol. 2008 Jan;190(1):179-92 9230304 - Cell. 1997 Jul 11;90(1):77-86 9781875 - Mol Microbiol. 1998 Sep;29(6):1369-77 7541534 - Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6249-53 7608206 - J Biol Chem. 1995 Jul 7;270(27):16360-70 17959646 - Nucleic Acids Res. 2007;35(20):e137 9576956 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6 26231041 - Elife. 2015 Jul 31;4:null 10672998 - Res Microbiol. 1999 Nov-Dec;150(9-10):579-87 22688812 - Microbiol Mol Biol Rev. 2012 Jun;76(2):217-28 13678587 - Cell. 2003 Sep 5;114(5):647-54 21685367 - Genes Dev. 2011 Jun 15;25(12):1328-43 20116346 - DNA Repair (Amst). 2010 Mar 2;9(3):276-85 2951295 - Genetics. 1987 Jan;115(1):11-24 25486468 - Cell Cycle. 2014;13(18):2812-20 15049815 - Mol Microbiol. 2004 Apr;52(1):119-32 8026461 - EMBO J. 1994 Jun 15;13(12):2764-76 26481664 - Mol Cell. 2015 Nov 5;60(3):374-84 22318518 - Nature. 2012 Feb 08;482(7385):423-7 17883408 - FEMS Microbiol Rev. 2007 Nov;31(6):637-56 24670664 - Nature. 2014 Apr 17;508(7496):416-9 25350732 - PLoS Biol. 2014 Oct 28;12(10):e1001977 6245875 - Eur J Biochem. 1980 Mar;105(1):109-16 19074388 - J Bacteriol. 2009 Mar;191(5):1677-87 6265452 - J Biol Chem. 1981 Jul 25;256(14):7573-82 24239291 - Mol Cell. 2013 Dec 12;52(5):617-28 7968921 - Microbiol Rev. 1994 Sep;58(3):401-65 4898990 - J Bacteriol. 1969 Oct;100(1):231-9 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 25073102 - J Mol Biol. 2014 Oct 23;426(21):3479-99 16839883 - Cell. 2006 Jul 14;126(1):147-62 2841646 - Nucleic Acids Res. 1988 Jul 25;16(14B):6883-96 26762979 - Nucleic Acids Res. 2016 Apr 7;44(6):2727-41 9004227 - Mol Microbiol. 1997 Jan;23(1):137-49 9023205 - J Bacteriol. 1997 Feb;179(4):1219-29 2997450 - J Mol Biol. 1985 Sep 20;185(2):431-43 10498743 - J Bacteriol. 1999 Oct;181(19):6220-1 9006046 - J Bacteriol. 1997 Feb;179(3):880-8 1465442 - Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12073-7 8366035 - J Bacteriol. 1993 Sep;175(17):5505-9 8387145 - Mol Microbiol. 1993 Mar;7(6):915-23 16762842 - Mol Cell. 2006 Jun 9;22(5):701-7 17352799 - BMC Microbiol. 2007 Mar 12;7:17 8051022 - J Bacteriol. 1994 Aug;176(16):5093-100 10756102 - J Mol Biol. 2000 Apr 21;298(1):7-20 26261330 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4735-42 14693725 - Crit Rev Biochem Mol Biol. 2003;38(5):385-432 24362571 - Nature. 2014 Feb 13;506(7487):249-53 21071401 - Nucleic Acids Res. 2011 Mar;39(6):2271-85 23380520 - DNA Repair (Amst). 2013 Mar 1;12(3):162-76 6453653 - Cell. 1981 May;24(2):429-36 6393130 - Proc Natl Acad Sci U S A. 1984 Dec;81(24):7850-4 24569169 - DNA Repair (Amst). 2014 Aug;20:119-29 22307084 - EMBO J. 2012 Mar 21;31(6):1568-78 17020576 - Mol Microbiol. 2006 Oct;62(2):331-8 23202527 - Nat Rev Microbiol. 2013 Jan;11(1):9-13 19052323 - Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents 19261174 - Genome Biol. 2009;10(3):R25 23798400 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2562-71 25085909 - Cold Spring Harb Perspect Biol. 2014 Aug 01;6(8):null 24682829 - Nucleic Acids Res. 2014 May;42(9):5633-43 25368150 - Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16454-9 11283290 - Microbiology. 2001 Apr;147(Pt 4):949-58 18022364 - Cell. 2007 Nov 16;131(4):694-705 16483938 - Mol Cell. 2006 Feb 17;21(4):573-80 2183191 - Nucleic Acids Res. 1990 Mar 25;18(6):1407-13 18298444 - Mol Microbiol. 2008 Mar;67(6):1347-59 22496668 - PLoS Genet. 2012;8(4):e1002622 21912525 - PLoS Genet. 2011 Sep;7(9):e1002244 26240183 - J Cell Biol. 2015 Aug 3;210(3):385-400 |
References_xml | – volume: 90 start-page: 77 year: 1997 ident: ref21 article-title: The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a χ-regulated manner publication-title: Cell doi: 10.1016/S0092-8674(00)80315-3 – volume: 62 start-page: 331 year: 2006 ident: ref53 article-title: The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05346.x – volume: 7 start-page: e1002244 year: 2011 ident: ref51 article-title: Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites publication-title: PLOS Genet doi: 10.1371/journal.pgen.1002244 – volume: 100 start-page: 231 year: 1969 ident: ref31 article-title: Characteristics of some multiply recombination-deficient strains of Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.100.1.231-239.1969 – volume: 42 start-page: 5633 year: 2014 ident: ref16 article-title: Recombination hotspots attenuate the coupled ATPase and translocase activities of an AddAB-type helicase-nuclease publication-title: Nucleic Acids Res doi: 10.1093/nar/gku188 – volume: 52 start-page: 617 year: 2013 ident: ref69 article-title: A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp publication-title: Mol Cell doi: 10.1016/j.molcel.2013.10.014 – volume: 298 start-page: 7 year: 2000 ident: ref18 article-title: The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro1 publication-title: J Mol Biol doi: 10.1006/jmbi.2000.3556 – volume: 179 start-page: 880 year: 1997 ident: ref26 article-title: Stability of linear DNA in recA mutant Escherichia coli cells reflects ongoing chromosomal DNA degradation publication-title: J Bacteriol doi: 10.1128/jb.179.3.880-888.1997 – volume: 112 start-page: E4735 year: 2015 ident: ref36 article-title: Quantitative genomic analysis of RecA protein binding during DNA double-strand break repair reveals RecBCD action in vivo publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1424269112 – volume: 188 start-page: 6016 year: 2006 ident: ref43 article-title: Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site publication-title: J Bacteriol doi: 10.1128/JB.00330-06 – volume: 26 start-page: 841 year: 2010 ident: ref72 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinforma Oxf Engl doi: 10.1093/bioinformatics/btq033 – volume: 20 start-page: 119 year: 2014 ident: ref15 article-title: Single molecule approaches to monitor the recognition and resection of double-stranded DNA breaks during homologous recombination publication-title: DNA Repair doi: 10.1016/j.dnarep.2014.02.002 – volume: 58 start-page: 401 year: 1994 ident: ref2 article-title: Biochemistry of homologous recombination in Escherichia coli publication-title: Microbiol Rev doi: 10.1128/MMBR.58.3.401-465.1994 – volume: 191 start-page: 1677 year: 2009 ident: ref61 article-title: Roles of ExoI and SbcCD nucleases in “reckless” DNA degradation in recA mutants of Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.01877-07 – volume: 13 start-page: 2812 year: 2014 ident: ref5 article-title: Structural features of Chi recognition in AddAB with implications for RecBCD publication-title: Cell Cycle doi: 10.4161/15384101.2014.950892 – volume: 42 start-page: 806 year: 2011 ident: ref24 article-title: van Aelst K, Dillingham MS, Moreno-Herrero F. Recombination hotspots and single-stranded DNA binding proteins couple DNA translocation to DNA unwinding by the AddAB helicase-nuclease publication-title: Mol Cell doi: 10.1016/j.molcel.2011.04.012 – volume: 81 start-page: 7850 year: 1984 ident: ref12 article-title: A new class of Escherichia coli recBC mutants: implications for the role of RecBC enzyme in homologous recombination publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.81.24.7850 – volume: 115 start-page: 11 year: 1987 ident: ref57 article-title: Genetic functions promoting homologous recombination in Escherichia coli: A study of inversions in Phage Λ publication-title: Genetics doi: 10.1093/genetics/115.1.11 – volume: 175 start-page: 5505 year: 1993 ident: ref59 article-title: Degradation of individual chromosomes in recA mutants of Escherichia coli publication-title: J Bacteriol doi: 10.1128/jb.175.17.5505-5509.1993 – volume: 22 start-page: 701 year: 2006 ident: ref68 article-title: Engineering controllable protein degradation publication-title: Mol Cell doi: 10.1016/j.molcel.2006.04.027 – volume: 11 start-page: 9 year: 2013 ident: ref4 article-title: Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2917 – volume: 25 start-page: 1328 year: 2011 ident: ref45 article-title: A DNA damage checkpoint in Caulobacter crescentus inhibits cell division through a direct interaction with FtsW publication-title: Genes Dev doi: 10.1101/gad.2038911 – volume: 176 start-page: 5093 year: 1994 ident: ref62 article-title: Chi-dependent formation of linear plasmid DNA in exonuclease-deficient recBCD+ strains of Escherichia coli publication-title: J Bacteriol doi: 10.1128/jb.176.16.5093-5100.1994 – volume: 256 start-page: 7573 year: 1981 ident: ref60 article-title: Escherichia coli recA protein protects single-stranded DNA or gapped duplex DNA from degradation by RecBC DNase publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)69000-9 – volume: 76 start-page: 217 year: 2012 ident: ref6 article-title: How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist’s view publication-title: Microbiol Mol Biol Rev MMBR doi: 10.1128/MMBR.05026-11 – volume: 508 start-page: 416 year: 2014 ident: ref14 article-title: Structural basis for translocation by AddAB helicase-nuclease and its arrest at χ sites publication-title: Nature doi: 10.1038/nature13037 – volume: 72 start-page: 642 year: 2008 ident: ref8 article-title: RecBCD enzyme and the repair of double-stranded DNA breaks publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00020-08 – volume: 31 start-page: 637 year: 2007 ident: ref44 article-title: Aeons of distress: an evolutionary perspective on the bacterial SOS response publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2007.00082.x – volume: 9 start-page: 276 year: 2010 ident: ref17 article-title: The processing of double-stranded DNA breaks for recombinational repair by helicase–nuclease complexes publication-title: DNA Repair doi: 10.1016/j.dnarep.2009.12.016 – volume: 44 start-page: 2727 year: 2016 ident: ref39 article-title: Chi hotspots trigger a conformational change in the helicase-like domain of AddAB to activate homologous recombination publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1543 – volume: 147 start-page: 949 year: 2001 ident: ref41 article-title: New members of the ctrA regulon: the major chemotaxis operon in Caulobacter is CtrA dependent publication-title: Microbiol Read Engl doi: 10.1099/00221287-147-4-949 – volume: 7 start-page: 915 year: 1993 ident: ref28 article-title: The Bacillus subtilis addAB genes are fully functional in Escherichia coli publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1993.tb01182.x – volume: 185 start-page: 431 year: 1985 ident: ref65 article-title: Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli publication-title: J Mol Biol doi: 10.1016/0022-2836(85)90414-0 – volume: 52 start-page: 119 year: 2004 ident: ref32 article-title: RecG helicase promotes DNA double-strand break repair publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2003.03970.x – volume: 10 start-page: R25 year: 2009 ident: ref71 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol doi: 10.1186/gb-2009-10-3-r25 – volume: 23 start-page: 137 year: 1997 ident: ref30 article-title: A conserved helicase motif of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) is essential for DNA repair and recombination publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1997.1991570.x – volume: 8 start-page: e1002622 year: 2012 ident: ref33 article-title: Replication fork reversal after replication–transcription collision publication-title: PLOS Genet doi: 10.1371/journal.pgen.1002622 – volume: 270 start-page: 16360 year: 1995 ident: ref10 article-title: Role of the Escherichia coli recombination hotspot, chi, in RecABCD-dependent homologous pairing publication-title: J Biol Chem doi: 10.1074/jbc.270.27.16360 – volume: 126 start-page: 147 year: 2006 ident: ref52 article-title: MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter publication-title: Cell doi: 10.1016/j.cell.2006.05.038 – volume: 482 start-page: 423 year: 2012 ident: ref55 article-title: Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search publication-title: Nature doi: 10.1038/nature10782 – volume: 13 start-page: 2764 year: 1994 ident: ref25 article-title: Chi sites in combination with RecA protein increase the survival of linear DNA in Escherichia coli by inactivating exoV activity of RecBCD nuclease publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06570.x – volume: 105 start-page: 109 year: 1980 ident: ref64 article-title: Degradation of linear and circular DNA with gaps by the recBC enzyme of Escherichia coli publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1980.tb04480.x – volume: 31 start-page: 1568 year: 2012 ident: ref19 article-title: Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex publication-title: EMBO J doi: 10.1038/emboj.2012.9 – volume: 114 start-page: 647 year: 2003 ident: ref13 article-title: A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase publication-title: Cell doi: 10.1016/S0092-8674(03)00681-0 – volume: 190 start-page: 179 year: 2008 ident: ref63 article-title: Effects of single-strand DNases ExoI, RecJ, ExoVII, and SbcCD on homologous recombination of recBCD+ strains of Escherichia coli and roles of SbcB15 and XonA2 ExoI mutant enzymes publication-title: J Bacteriol doi: 10.1128/JB.01052-07 – volume: 24 start-page: 429 year: 1981 ident: ref11 article-title: Structure of chi hotspots of generalized recombination publication-title: Cell doi: 10.1016/0092-8674(81)90333-0 – volume: 29 start-page: 1369 year: 1998 ident: ref29 article-title: A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1998.01018.x – volume: 18 start-page: 1407 year: 1990 ident: ref34 article-title: Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron publication-title: Nucleic Acids Res doi: 10.1093/nar/18.6.1407 – volume: 89 start-page: 12073 year: 1992 ident: ref56 article-title: Chi sequence protects against RecBCD degradation of DNA in vivo publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.24.12073 – volume: 150 start-page: 579 year: 1999 ident: ref42 article-title: Characteristics of Chi distribution on different bacterial genomes publication-title: Res Microbiol doi: 10.1016/S0923-2508(99)00132-1 – volume: 60 start-page: 374 year: 2015 ident: ref67 article-title: Anionic phospholipids stabilize RecA filament bundles in Escherichia coli publication-title: Mol Cell doi: 10.1016/j.molcel.2015.09.009 – volume: 179 start-page: 1219 year: 1997 ident: ref27 article-title: Role of enzymes of homologous recombination in illegitimate plasmid recombination in Bacillus subtilis publication-title: J Bacteriol doi: 10.1128/jb.179.4.1219-1229.1997 – volume: 111 start-page: 16454 year: 2014 ident: ref35 article-title: Completion of DNA replication in Escherichia coli publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1415025111 – volume: 12 start-page: 162 year: 2013 ident: ref1 article-title: Early steps of double-strand break repair in Bacillus subtilis publication-title: DNA Repair doi: 10.1016/j.dnarep.2012.12.005 – volume: 7 start-page: 17 year: 2007 ident: ref38 article-title: Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus publication-title: BMC Microbiol doi: 10.1186/1471-2180-7-17 – volume: 67 start-page: 1347 year: 2008 ident: ref49 article-title: Requirements for ATP binding and hydrolysis in RecA function in Escherichia coli publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06130.x – volume: 38 start-page: 385 year: 2003 ident: ref50 article-title: Molecular design and functional organization of the RecA protein publication-title: Crit Rev Biochem Mol Biol doi: 10.1080/10409230390242489 – volume: 131 start-page: 694 year: 2007 ident: ref7 article-title: RecBCD enzyme switches lead motor subunits in response to chi recognition publication-title: Cell doi: 10.1016/j.cell.2007.09.023 – volume: 426 start-page: 3479 year: 2014 ident: ref9 article-title: Control of RecBCD enzyme activity by DNA binding- and Chi hotspot-dependent conformational changes publication-title: J Mol Biol doi: 10.1016/j.jmb.2014.07.017 – volume: 92 start-page: 6249 year: 1995 ident: ref58 article-title: Interaction with the recombination hot spot chi in vivo converts the RecBCD enzyme of Escherichia coli into a chi-independent recombinase by inactivation of the RecD subunit publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.14.6249 – volume: 110 start-page: E2562 year: 2013 ident: ref22 article-title: On the mechanism of recombination hotspot scanning during double-stranded DNA break resection publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1303035110 – volume: 39 start-page: 2271 year: 2011 ident: ref23 article-title: The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq1124 – volume: 21 start-page: 573 year: 2006 ident: ref20 article-title: The RecA binding locus of RecBCD is a general domain for recruitment of DNA strand exchange proteins publication-title: Mol Cell doi: 10.1016/j.molcel.2006.01.007 – volume: 35 start-page: e137 year: 2007 ident: ref40 article-title: A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm818 – volume: 16 start-page: 6883 year: 1988 ident: ref70 article-title: Mung bean nuclease exhibits a generalized gene-excision activity upon purified Plasmodium falciparum genomic DNA publication-title: Nucleic Acids Res doi: 10.1093/nar/16.14.6883 – volume: 210 start-page: 385 year: 2015 ident: ref37 article-title: Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria publication-title: J Cell Biol doi: 10.1083/jcb.201505019 – volume: 181 start-page: 6220 year: 1999 ident: ref66 article-title: recD sbcB sbcD mutants are deficient in recombinational repair of UV lesions by RecBC publication-title: J Bacteriol doi: 10.1128/JB.181.19.6220-6221.1999 – volume: 95 start-page: 5752 year: 1998 ident: ref47 article-title: A bacterial two-hybrid system based on a reconstituted signal transduction pathway publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.10.5752 – volume: 506 start-page: 249 year: 2014 ident: ref48 article-title: RecA bundles mediate homology pairing between distant sisters during DNA break repair publication-title: Nature doi: 10.1038/nature12868 – volume: 6 start-page: a016436 year: 2014 ident: ref3 article-title: End resection at double-strand breaks: mechanism and regulation publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a016436 – volume: 12 start-page: e1001977 year: 2014 ident: ref46 article-title: A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001977 – volume: 4 year: 2015 ident: ref54 article-title: Resection is responsible for loss of transcription around a double-strand break in Saccharomyces cerevisiae publication-title: eLife doi: 10.7554/eLife.08942 – reference: 2841646 - Nucleic Acids Res. 1988 Jul 25;16(14B):6883-96 – reference: 24670664 - Nature. 2014 Apr 17;508(7496):416-9 – reference: 9230304 - Cell. 1997 Jul 11;90(1):77-86 – reference: 23798400 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):E2562-71 – reference: 20116346 - DNA Repair (Amst). 2010 Mar 2;9(3):276-85 – reference: 26231041 - Elife. 2015 Jul 31;4:null – reference: 23380520 - DNA Repair (Amst). 2013 Mar 1;12(3):162-76 – reference: 25486468 - Cell Cycle. 2014;13(18):2812-20 – reference: 16762842 - Mol Cell. 2006 Jun 9;22(5):701-7 – reference: 22318518 - Nature. 2012 Feb 08;482(7385):423-7 – reference: 22307084 - EMBO J. 2012 Mar 21;31(6):1568-78 – reference: 10756102 - J Mol Biol. 2000 Apr 21;298(1):7-20 – reference: 25073102 - J Mol Biol. 2014 Oct 23;426(21):3479-99 – reference: 21071401 - Nucleic Acids Res. 2011 Mar;39(6):2271-85 – reference: 9006046 - J Bacteriol. 1997 Feb;179(3):880-8 – reference: 17959646 - Nucleic Acids Res. 2007;35(20):e137 – reference: 18022364 - Cell. 2007 Nov 16;131(4):694-705 – reference: 7541534 - Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6249-53 – reference: 6245875 - Eur J Biochem. 1980 Mar;105(1):109-16 – reference: 24569169 - DNA Repair (Amst). 2014 Aug;20:119-29 – reference: 1465442 - Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12073-7 – reference: 26261330 - Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4735-42 – reference: 2997450 - J Mol Biol. 1985 Sep 20;185(2):431-43 – reference: 8366035 - J Bacteriol. 1993 Sep;175(17):5505-9 – reference: 2951295 - Genetics. 1987 Jan;115(1):11-24 – reference: 22688812 - Microbiol Mol Biol Rev. 2012 Jun;76(2):217-28 – reference: 18298444 - Mol Microbiol. 2008 Mar;67(6):1347-59 – reference: 6393130 - Proc Natl Acad Sci U S A. 1984 Dec;81(24):7850-4 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 17883408 - FEMS Microbiol Rev. 2007 Nov;31(6):637-56 – reference: 11283290 - Microbiology. 2001 Apr;147(Pt 4):949-58 – reference: 26762979 - Nucleic Acids Res. 2016 Apr 7;44(6):2727-41 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 17965170 - J Bacteriol. 2008 Jan;190(1):179-92 – reference: 26481664 - Mol Cell. 2015 Nov 5;60(3):374-84 – reference: 17352799 - BMC Microbiol. 2007 Mar 12;7:17 – reference: 8387145 - Mol Microbiol. 1993 Mar;7(6):915-23 – reference: 7968921 - Microbiol Rev. 1994 Sep;58(3):401-65 – reference: 19074388 - J Bacteriol. 2009 Mar;191(5):1677-87 – reference: 6265452 - J Biol Chem. 1981 Jul 25;256(14):7573-82 – reference: 16483938 - Mol Cell. 2006 Feb 17;21(4):573-80 – reference: 9004227 - Mol Microbiol. 1997 Jan;23(1):137-49 – reference: 17020576 - Mol Microbiol. 2006 Oct;62(2):331-8 – reference: 22496668 - PLoS Genet. 2012;8(4):e1002622 – reference: 25350732 - PLoS Biol. 2014 Oct 28;12(10):e1001977 – reference: 8051022 - J Bacteriol. 1994 Aug;176(16):5093-100 – reference: 6453653 - Cell. 1981 May;24(2):429-36 – reference: 9576956 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6 – reference: 24362571 - Nature. 2014 Feb 13;506(7487):249-53 – reference: 19052323 - Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents – reference: 13678587 - Cell. 2003 Sep 5;114(5):647-54 – reference: 25085909 - Cold Spring Harb Perspect Biol. 2014 Aug 01;6(8):null – reference: 10672998 - Res Microbiol. 1999 Nov-Dec;150(9-10):579-87 – reference: 2183191 - Nucleic Acids Res. 1990 Mar 25;18(6):1407-13 – reference: 21912525 - PLoS Genet. 2011 Sep;7(9):e1002244 – reference: 9781875 - Mol Microbiol. 1998 Sep;29(6):1369-77 – reference: 8026461 - EMBO J. 1994 Jun 15;13(12):2764-76 – reference: 21685367 - Genes Dev. 2011 Jun 15;25(12):1328-43 – reference: 16885470 - J Bacteriol. 2006 Aug;188(16):6016-9 – reference: 10498743 - J Bacteriol. 1999 Oct;181(19):6220-1 – reference: 14693725 - Crit Rev Biochem Mol Biol. 2003;38(5):385-432 – reference: 4898990 - J Bacteriol. 1969 Oct;100(1):231-9 – reference: 24682829 - Nucleic Acids Res. 2014 May;42(9):5633-43 – reference: 15049815 - Mol Microbiol. 2004 Apr;52(1):119-32 – reference: 26240183 - J Cell Biol. 2015 Aug 3;210(3):385-400 – reference: 24239291 - Mol Cell. 2013 Dec 12;52(5):617-28 – reference: 7608206 - J Biol Chem. 1995 Jul 7;270(27):16360-70 – reference: 16839883 - Cell. 2006 Jul 14;126(1):147-62 – reference: 21700225 - Mol Cell. 2011 Jun 24;42(6):806-16 – reference: 25368150 - Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16454-9 – reference: 23202527 - Nat Rev Microbiol. 2013 Jan;11(1):9-13 – reference: 9023205 - J Bacteriol. 1997 Feb;179(4):1219-29 |
SSID | ssj0035897 |
Score | 2.294887 |
Snippet | In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1006783 |
SubjectTerms | Assaying Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Biodegradation Biology Biology and life sciences Bismuth Caulobacter Caulobacter crescentus - genetics Chromosomes Couples Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA damage DNA helicase DNA repair DNA sequencing Double-strand break repair E coli Enzymes Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Genetic aspects Genome, Bacterial Genomes Genomic Instability Helicases Homologous recombination Homology Medicine and Health Sciences Nuclease Rec A Recombinases - genetics Rec A Recombinases - metabolism RecA protein Research and analysis methods Studies Transcription |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPgi_r7qqVEEn-K1TdMmj3vicfpwgnpybyVJE29xaYvdPfS_dybplqsc3D34tmwmCzszmfmmnXxDyJvUeqtlKpnLuGCFqDwz3FimC8jOuZZeuNDle1IenxafzsTZpVFf2BMW6YGj4g6M9FKUSuRG54W03OTSecDRGsooL8sAjVKV7oqpGIO5kHGsihCcVVDWj5fmeJUdjDZ614OBsEcAojWfJaXA3T9F6EW_7oar4Oe_XZSX0tLRPXJ3xJN0Gf_HfXLLtQ_I7Thh8s9DMkROf6pH7hHaedp0W7N2DJ9xtA2Fklj_pH28LwB5jCKnE_gkXbX0YnXR4VKPzdcubAa8SM8dPukbHGuRDBk-0NCY7n7TZdMsDx-R06MP394fs3HOArNVXm6YLLhucAixksoYW2nbqLT0JaT_DFZs6QUvXaUy77X1KUfGGYAWTWbwtHvPH5NF27Vuj1CHZDh5nhnAXZAevc5kUyipjXfKClclhO8UXduRhBxnYazr8GatgmIk6q1G89SjeRLCpl19JOG4Rv4QbTjJIoV2-AIcqx4dq77OsRLyEj2gjvdRp0BQLwtAdBwqe5WQ10ECaTRa7NP5obfDUH_8_P0GQl9PbiL0ZSb0dhTyHejM6vECBWgeObxmkvszSYgYdra8h069U91QQ80eieME7Nw5-tXLr6Zl_FFs0GtdtwUZGadjqDIhT-K5mNQPCEgqQPYJqWYnZmaf-Uq7Og9U58jOCM739H8Y9Bm5kyMmC9S7-2Sx-bV1zwFRbsyLEDz-Agbzco4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELagCIkXxO8VBhiExJNZE8eJ84Q6xDR4GBIw1LfIduytWpWEpZ3gv-fOdgNBE-yt6l2q6u58_s45f0fIq5lxRsmZZDbhgmWicExzbZjKYHdOlXTC-i7fo_zwOPu4EIt44NbHtsptTvSJum4NnpHvQV0RyK3E2-47w6lR-HY1jtC4Tm4kgERwdEOxGAouLmQYriIEZwUU9_HqHC-SveipNx24CTsFIGfz0dbkGfyHPD3pVm1_GQj9u5fyj83p4A65HVElnYcwuEuu2eYeuRnmTP68T_rA7E9VZCChraN1u9Ery_Cko6kpFMbqjHbh1gDsZhSZnSAy6bKhF8uLFkUdtmBb_zCgRnpq8byvt6xBSmT4QH17uv1B53U9339Ajg_ef313yOK0BWaKNF8zmXFV4yjiUpZam0KZupzlLgcQkIDE5E7w3BZl4pwybsaRdwYARp1oXPPO8Ydk0rSN3SHUIiVOmiYa0Bdskk4lss5KqbSzpRG2mBK-NXRlIhU5TsRYVf79WgElSbBbhe6ponumhA1PdYGK4z_6--jDQReJtP0X7flJFddlpaWTIi9FqlWaScN1Kq2DMk1Ble5krqbkOUZAFW6lDumgmmeA6zjU9-WUvPQaSKbRYLfOidr0ffXh07crKH05uorS55HS66jkWrCZUfEaBVgembxGmrsjTcgbZiTewaDemq6vfq8weHIb6JeLXwxi_FFs02tsuwEdGWZklPmUPArrYjA_4CBZAr6fkmK0Ykb-GUua5aknPEeORgi-x__-W0_IrRQxl6fW3SWT9fnGPgXEuNbPfFr4BTdJajg priority: 102 providerName: ProQuest |
Title | Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28489851 https://www.proquest.com/docview/1910463605 https://www.proquest.com/docview/1897805296 https://pubmed.ncbi.nlm.nih.gov/PMC5443536 https://doaj.org/article/b8f856952ba248c3b28ef217a132f86a http://dx.doi.org/10.1371/journal.pgen.1006783 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2Tki8IL4XGMUgJJ4yNXESOw8ItbBq8FDQoKhvke3YW7UqKU07bf89d04aEdSJPTXqnaPozh-_s8-_I-TdQFstxUD4JmCxH8Xc-oop7csIVudQChsbl-U7SU6n0ddZPNsj25qtjQGrnaEd1pOarhbH179vPsKA_-CqNvBg2-h4CSbHU3-Yf9k-OXAnRpjMF7XnCiwWKW8u0N3WsrNAOR7_drbuLRdltQuK_ptR-dcSNX5IHjTYkg7rzvCI7JniMblXV5u8eUKqmt-fyoaHhJaW5uVGLYyP-x1FTiE8lpd0Wd8dgDWNIr8T2InOC3o1vypRtMREbOMaA3akFwZ3_SrjF0iMDA_UJambazrM8-HoKZmOT35-OvWbmgu-5mGy9kXEZI4FiVORKqW51Hk6SGwCUCAAiU5szBLD08Baqe2AIfsMwIw8UDjyrWXPSK8oC3NIqEFinDAMFGAwcIWVgcijVEhlTapjwz3CtobOdENIjnUxFpk7ZeMQmNR2y9A9WeMej_htq2VNyPEf_RH6sNVFOm33R7k6z5rRmSlhRZykcahkGAnNVCiMhWBNQqxuRSI98hp7QFbfTW0nhWwYAbpjEOWnHnnrNJBSo8CcnXO5qarsy7dfd1D6MbmL0llH6X2jZEuwmZbNZQqwPPJ5dTSPOpowe-iO-BA79dZ0VQbxe00iF0PLbUffLX7TivGlmKxXmHIDOqKulJEmHnlej4vW_ICGRAoo3yO8M2I6_ulKivmFoz1HpkbofC9u_-KX5H6IqMuR6x6R3nq1Ma8AM65Vn-zzGe-Tg-Ho82gMv6OTyfezvtuB6bsp4g8kvnFO |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviO8FBjMIxFNYE8eJ8zChFjZ1bBQ0tmlvwXHsraJKwtIO9s_xt3GXOIWgCfaytyo-R9Xd-T6cu98R8qKvjJKiL1ztMe4GPDJuylLlygC8sy-F4bqu8h2Ho4Pg_RE_WiI_214YLKtsbWJtqLNC4R35OuQVDbgVf1N-c3FqFH5dbUdoSDtaIduoIcZsY8eOPv8OKVy1sf0O5P3S97c299-OXDtlwFWRH85cETCZ4QjeWMRpqiKpsrgfmhCcnwcrKjSchTqKPWOkMn2GeCvgWDMvRV03hsF7r5HlAC9QemR5uDn-tNf6AsZFM96Fc-ZGLO7b5j0WeetWV16XoChYqwBeg3WcYz1DYOEpeuW0qC4Kg_-u5vzDPW7dJrdsXEsHjSLeIUs6v0uuN5Muz--RqpktQKXFQKGFoVkxT6faxbuWPKOQmsuvtGz6FsCfUsSWgrNBJzk9m5wVuFRiEbiuN0PcSk803jhW2s0RlBl-0LpAXv-ggywbDO-TgyuRxAPSy4tcrxCqEZTH970U4j9w00Z6IgtiIVOjY8V15BDWMjpRFgwdZ3JMk_oLXwRJUcO3BMWTWPE4xF3sKhswkP_QD1GGC1qE8q4fFKfHibUMSSqM4GHM_VT6gVAs9YU2kChKj_lGhNIha6gBSdMXuzBIySCAyJIxCDgd8rymQDiPHOuFjuW8qpLtj4eXIPo8vgzRXofolSUyBfBMSdvIAZxHLLEO5WqHEiyX6iyvoFK3rKuS32ccdraKfvHys8UyvhQLBXNdzIFGNFM64tAhD5tzsWA_RGIihgzDIVHnxHTk013JJyc15DqiRILyPfr331ojN0b7H3aT3e3xzmNy08cIsAb6XSW92elcP4H4dZY-tUaCki9XbZd-AZbTrSo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviO8FBjMIxFNoE-fDeZhQy1atDJVpMLS3YDv2NlElYWkH-xf5q7hLnELQBHvZWxWfo-rufB_O3e8IeTFQRgk-4K72WOgGYWxcyaRyRQDe2RfchLqu8p1GOwfBu8PwcIX8bHthsKyytYm1oc4KhXfkfcgrGnCrsG9sWcTe1vhN-c3FCVL4pbUdpyHsmIVss4Ybs00eu_r8O6Rz1eZkC2T_0vfH25_e7rh24oCrYj-auzxgIsNxvAlPpFSxUFkyiEwEjtCDFRWZkEU6TjxjhDIDhtgr4GQzT6LeG8PgvdfIagxeHxLB1dH2dG-_9Qss5M2olzBkLlAMbCMfi72-1ZvXJSgN1i2AB2EdR1nPE1h6jV45K6qLQuK_Kzv_cJXj2-SWjXHpsFHKO2RF53fJ9Wbq5fk9UjVzBqiweCi0MDQrFnKmXbx3yTMKabr4SsumhwF8K0WcKTgn9CSnZydnBS6VWBCu680Qw9JjjbePlXZzBGiGH7Qultc_6DDLhqP75OBKJPGA9PIi12uEagTo8X1PQiwILtsIj2dBwoU0OlGhjh3CWkanygKj43yOWVp_7YshQWr4lqJ4Uiseh7jLXWUDDPIf-hHKcEmLsN71g-L0KLVWIpXc8DBKQl8KP-CKSZ9rA0mj8JhveCQcsoEakDY9skvjlA4DiDIZg-DTIc9rCoT2yPGQHIlFVaWTD58vQfRxehmi_Q7RK0tkCuCZErapAziPuGIdyvUOJVgx1VleQ6VuWVelv8877GwV_eLlZ8tlfCkWDea6WAANbyZ2JJFDHjbnYsl-iMp4AtmGQ-LOienIp7uSnxzX8OuIGAnK9-jff2uD3AD7lL6fTHcfk5s-BoM15u866c1PF_oJhLJz-dTaCEq-XLVZ-gUi4LFu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+analysis+of+double-strand+break+processing+reveals+in+vivo+properties+of+the+helicase-nuclease+complex+AddAB&rft.jtitle=PLoS+genetics&rft.au=Badrinarayanan%2C+Anjana&rft.au=Le%2C+Tung&rft.au=Jan-Hendrik+Spille&rft.au=Cisse%2C+Ibrahim&rft.date=2017-05-10&rft.pub=Public+Library+of+Science&rft.eissn=1553-7404&rft.volume=13&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pgen.1006783&rft.externalDocID=1910463605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |