A new mouse model of Charcot-Marie-Tooth 2J neuropathy replicates human axonopathy and suggest alteration in axo-glia communication
Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models s...
Saved in:
Published in | PLoS genetics Vol. 18; no. 11; p. e1010477 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
09.11.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7404 1553-7390 1553-7404 |
DOI | 10.1371/journal.pgen.1010477 |
Cover
Abstract | Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in
MPZ
are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in
Mpz
T124M
mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along
Mpz
T124M
axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the
Mpz
T124M
mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons. |
---|---|
AbstractList | Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons. Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in Mpz T124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along Mpz T124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the Mpz T124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons. Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in Mpz.sup.T124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along Mpz.sup.T124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the Mpz.sup.T124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons. Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in Mpz T124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along Mpz T124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the Mpz T124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons. Charcot-Marie-Tooth (CMT) neuropathies are a large family of incurable peripheral nerve disorders. Despite extensive clinical and genetic heterogeneity, axonal degeneration is the common end point of all the type of CMT. Thus, a major question is why axons degenerate and how to protect them. Over the years, it has become clear that myelinating glial cells, which are in close contact with axons, are essential for axonal support. However how glial cells support axons remains only partially understood. Here, we generated and characterized an animal model of Charcot-Marie-Tooth 2J (CMT2J), an axonal inherited neuropathy due to mutation in the Myelin Protein Zero ( Mpz ) gene. Mpz is expressed only in Schwann cells, the peripheral myelin-forming glia, but not in axons, making this the model unique to contribute to our understanding on how glia support axons. Our model reproduces very closely most aspects of the human neuropathy and reveals several alterations in domains crucial for axoglial communication. We also detected metabolic abnormalities in peripheral nerves of these mice that are known to be associated with axonal degeneration. Our work sheds light on the cellular and molecular mechanisms of axoglial communication and axonal degeneration, with implications for a plethora of neurodegenerative diseases. Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons. |
Audience | Academic |
Author | Claessens, Anke Rossor, Alexander M. Manohar, Senthilvelan Feltri, M. Laura Silvestri, Nicholas J. Wilson, Emma R. Wrabetz, Lawrence Sasaki, Yo Shackleford, Ghjuvan’Ghjacumu D’Antonio, Maurizio Hurley, Edward Weinstock, Nadav I. Ferri, Cinzia Ding, Dalian Marziali, Leandro N. Salvi, Richard J. Kidd, Grahame J. |
AuthorAffiliation | 3 Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy 7 Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America 5 Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom The Jackson Laboratory, UNITED STATES 1 Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America 2 Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America 6 Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America 4 Needleman Center for Neurometabolism and Axonal Therapeutics and De |
AuthorAffiliation_xml | – name: 1 Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America – name: 5 Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom – name: 7 Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America – name: 3 Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy – name: 6 Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America – name: The Jackson Laboratory, UNITED STATES – name: 4 Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, United States of America – name: 2 Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America |
Author_xml | – sequence: 1 givenname: Ghjuvan’Ghjacumu orcidid: 0000-0001-8835-9453 surname: Shackleford fullname: Shackleford, Ghjuvan’Ghjacumu – sequence: 2 givenname: Leandro N. surname: Marziali fullname: Marziali, Leandro N. – sequence: 3 givenname: Yo surname: Sasaki fullname: Sasaki, Yo – sequence: 4 givenname: Anke surname: Claessens fullname: Claessens, Anke – sequence: 5 givenname: Cinzia surname: Ferri fullname: Ferri, Cinzia – sequence: 6 givenname: Nadav I. surname: Weinstock fullname: Weinstock, Nadav I. – sequence: 7 givenname: Alexander M. surname: Rossor fullname: Rossor, Alexander M. – sequence: 8 givenname: Nicholas J. surname: Silvestri fullname: Silvestri, Nicholas J. – sequence: 9 givenname: Emma R. orcidid: 0000-0002-8069-0173 surname: Wilson fullname: Wilson, Emma R. – sequence: 10 givenname: Edward surname: Hurley fullname: Hurley, Edward – sequence: 11 givenname: Grahame J. surname: Kidd fullname: Kidd, Grahame J. – sequence: 12 givenname: Senthilvelan surname: Manohar fullname: Manohar, Senthilvelan – sequence: 13 givenname: Dalian surname: Ding fullname: Ding, Dalian – sequence: 14 givenname: Richard J. surname: Salvi fullname: Salvi, Richard J. – sequence: 15 givenname: M. Laura surname: Feltri fullname: Feltri, M. Laura – sequence: 16 givenname: Maurizio surname: D’Antonio fullname: D’Antonio, Maurizio – sequence: 17 givenname: Lawrence surname: Wrabetz fullname: Wrabetz, Lawrence |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36350884$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk21r1TAUx4tM3IN-A9GCIPqi1zQPTesLYQwfJtOBTt-G3PS0zUiTa5Lq9tovbu7Wjd0xRAk0Jed3_sl52s22rLOQZY9LtCgJL1-duslbaRarHuyiRCWinN_LdkrGSMEpols3_rez3RBOESKsbviDbJtUhKG6pjvZ7_3cwq98dFOA9G3B5K7LDwbplYvFJ-k1FCfOxSHHHxM5ebeScTjPPayMVjJCyIdplDaXZ87ONmnbPEx9DyHm0kTwMmpnc30BFb3RMlduHCe7FkiWh9n9TpoAj-Z9L_v27u3JwYfi6Pj94cH-UaE4rmJBKQWZHl3XipKOt5x2UNNWNQ1hhEtclgwahXlVobpruaQp8BqjaskA1w1FZC97eqm7Mi6IOX9BYM5YyhQvaSIOL4nWyVOx8nqU_lw4qcXFgfO9kD5qZUAQjnldNcsOM0JxRSVjGFi9VBW0XYVI0noz3zYtR2gV2Oil2RDdtFg9iN79FA1HnDdVEngxC3j3Y0rJFKMOCoyRFlK50rsJrUqCa5bQZ7fQu6ObqV6mALTtXLpXrUXFPscNZQ1ia63FHVRaLYxapR7sdDrfcHi54ZCYCGexl1MI4vDrl_9gP_87e_x9k31-gx0gtd0QnJnW7RU2wSc3q3JdjquJSAC9BJR3IXjorpESifXgXaVWrAdPzIOX3F7fclM6XnR3yp42f3f-A6gkMlI |
CitedBy_id | crossref_primary_10_1016_j_bcp_2023_115760 crossref_primary_10_1136_jnnp_2024_333842 crossref_primary_10_3389_fphys_2024_1430875 crossref_primary_10_7759_cureus_39884 crossref_primary_10_1093_brain_awad258 crossref_primary_10_1111_bpa_13200 crossref_primary_10_1101_cshperspect_a041376 |
Cites_doi | 10.1016/j.neuron.2007.12.021 10.1212/WNL.0000000000004932 10.1038/nn.3809 10.1038/s41467-019-09385-6 10.1093/emboj/16.5.978 10.1212/WNL.52.5.1010 10.1083/jcb.200307132 10.1093/hmg/ddn083 10.1016/j.neuron.2020.03.031 10.1111/j.1749-6632.1999.tb08574.x 10.1038/344871a0 10.1136/jnnp.2006.112276 10.1097/NEN.0b013e3181efa658 10.1002/glia.20751 10.1083/jcb.142.4.1095 10.1002/glia.20165 10.1177/0192623319873319 10.1016/j.neuron.2017.02.022 10.1093/brain/awh048 10.1016/j.exger.2020.111078 10.1083/jcb.200504028 10.1212/WNL.0000000000003154 10.1093/hmg/ddy420 10.18632/aging.100927 10.1038/nature11007 10.1038/nature11314 10.2337/diab.32.12.1152 10.1371/journal.pbio.1002258 10.1002/ana.25009 10.1212/WNL.50.5.1397 10.1016/j.expneurol.2020.113252 10.1016/j.expneurol.2018.07.009 10.7554/eLife.51406 10.1016/0092-8674(92)90591-Y 10.1136/jnnp.66.6.779 10.1523/JNEUROSCI.17-23-09077.1997 10.1038/s41467-018-05420-0 10.1002/glia.23889 10.1038/nm.2833 10.1016/S0896-6273(00)00084-2 10.1523/JNEUROSCI.17-12-04545.1997 10.1002/ana.410050602 10.1002/cne.21051 10.1523/JNEUROSCI.0877-14.2014 10.1111/j.1749-6632.1999.tb08590.x 10.1523/JNEUROSCI.0326-08.2008 10.1093/brain/aws140 10.1101/cshperspect.a020479 10.1002/ana.10089 10.1034/j.1600-0404.2003.00110.x 10.1523/JNEUROSCI.4047-10.2010 10.1089/ars.2017.7216 10.1093/hmg/ddac170 10.1242/jcs.03381 10.1523/JNEUROSCI.3819-05.2006 10.1016/S0896-6273(00)80176-2 10.3390/genes5010013 10.1523/JNEUROSCI.3304-17.2018 10.1006/mcne.1999.0814 10.1083/jcb.200312012 10.1002/jnr.490330417 10.1523/JNEUROSCI.0663-20.2020 10.1038/srep42257 10.1523/JNEUROSCI.0201-18.2018 10.1016/j.expneurol.2019.113031 10.7554/eLife.24241 10.1038/ejhg.2009.37 10.1002/glia.23710 10.1038/s41467-021-23552-8 10.1002/ajmg.10223 10.1083/jcb.201607099 10.1093/brain/122.2.281 10.1523/JNEUROSCI.5313-06.2007 10.1111/j.1600-0404.1990.tb03319.x 10.1007/s00415-019-09453-3 10.1016/j.neurobiolaging.2016.03.020 10.1097/00005072-198103000-00007 10.1002/jnr.24411 10.1146/annurev.biochem.73.011303.073752 10.1016/S0960-8966(01)00229-2 10.1126/science.1258366 10.1002/jnr.10386 10.1523/JNEUROSCI.0771-08.2008 10.1038/371796a0 10.1126/science.273.5274.507 10.1093/brain/awg072 10.1002/(SICI)1098-1004(1996)8:2<185::AID-HUMU13>3.0.CO;2-Z 10.1038/s41593-020-0689-4 10.1016/j.neuron.2016.05.016 10.1038/ncomms14241 10.1136/jnnp-2018-318834 10.1083/jcb.122.2.451 10.1093/brain/awg156 |
ContentType | Journal Article |
Copyright | Copyright: © 2022 Shackleford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2022 Public Library of Science 2022 Shackleford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Shackleford et al 2022 Shackleford et al |
Copyright_xml | – notice: Copyright: © 2022 Shackleford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Shackleford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Shackleford et al 2022 Shackleford et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1010477 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - The Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Axonal degeneration in CMT2J mouse model |
EISSN | 1553-7404 |
ExternalDocumentID | 2755155714 oai_doaj_org_article_3727869bf2534264a552e58bc6edf603 PMC9707796 A729459055 36350884 10_1371_journal_pgen_1010477 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: GGP19099 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ PMFND 3V. 7QP 7QR 7SS 7TK 7TM 7TO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO 5PM AAPBV ABPTK ACDSR BBAFP M~E UMP |
ID | FETCH-LOGICAL-c726t-444ea88488c43f7d74fe84dc993537a2115e9c276608fd7a44048206b5e289403 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Jan 01 07:45:50 EST 2023 Wed Aug 27 01:15:21 EDT 2025 Thu Aug 21 18:38:31 EDT 2025 Thu Sep 04 22:41:17 EDT 2025 Fri Jul 25 12:15:02 EDT 2025 Tue Jun 17 20:50:08 EDT 2025 Tue Jun 10 20:35:23 EDT 2025 Fri Jun 27 04:46:21 EDT 2025 Fri Jun 27 04:02:35 EDT 2025 Fri Jun 27 03:52:43 EDT 2025 Thu May 22 21:24:14 EDT 2025 Thu Apr 03 07:08:42 EDT 2025 Tue Jul 01 03:42:08 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright: © 2022 Shackleford et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c726t-444ea88488c43f7d74fe84dc993537a2115e9c276608fd7a44048206b5e289403 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0002-8069-0173 0000-0001-8835-9453 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1010477 |
PMID | 36350884 |
PQID | 2755155714 |
PQPubID | 1436339 |
PageCount | e1010477 |
ParticipantIDs | plos_journals_2755155714 doaj_primary_oai_doaj_org_article_3727869bf2534264a552e58bc6edf603 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9707796 proquest_miscellaneous_2734613285 proquest_journals_2755155714 gale_infotracmisc_A729459055 gale_infotracacademiconefile_A729459055 gale_incontextgauss_ISR_A729459055 gale_incontextgauss_ISN_A729459055 gale_incontextgauss_IOV_A729459055 gale_healthsolutions_A729459055 pubmed_primary_36350884 crossref_primary_10_1371_journal_pgen_1010477 crossref_citationtrail_10_1371_journal_pgen_1010477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-09 |
PublicationDateYYYYMMDD | 2022-11-09 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | M Juneja (pgen.1010477.ref064) 2019; 90 MG Marrosu (pgen.1010477.ref009) 1998; 50 Y Zhou (pgen.1010477.ref081) 2019; 321 AK Sharma (pgen.1010477.ref033) 1983; 32 P Anzini (pgen.1010477.ref029) 1997; 17 How Schwann Cells Sort Axons: New Concepts—M (pgen.1010477.ref036) 2016 MN Rasband (pgen.1010477.ref045) 2005; 50 L Santoro (pgen.1010477.ref010) 2004; 75 CO Hanemann (pgen.1010477.ref015) 2001; 11 F Chapon (pgen.1010477.ref013) 1999; 66 J Gerdts (pgen.1010477.ref059) 2015; 348 MK Jha (pgen.1010477.ref076) 2020; 68 S Kurihara (pgen.1010477.ref063) 2003; 108 D Feltri ML (pgen.1010477.ref037) 1999; 883 JD Rohrer (pgen.1010477.ref090) 2016; 87 J Li (pgen.1010477.ref012) 2006; 498 CF Boerkoel (pgen.1010477.ref018) 2002; 51 F Blanquet-Grossard (pgen.1010477.ref068) 1996; 8 G Saher (pgen.1010477.ref078) 2012; 18 X Yin (pgen.1010477.ref049) 2008; 28 A Nodari (pgen.1010477.ref088) 2008; 28 Y Lee (pgen.1010477.ref052) 2012; 487 DW Summers (pgen.1010477.ref087) 2014; 34 DB Parkinson (pgen.1010477.ref023) 2004; 164 G Benard (pgen.1010477.ref082) 2007; 120 MAC Saporta (pgen.1010477.ref043) 2012; 135 F Bouçanova (pgen.1010477.ref077) 2021; 69 R Fledrich (pgen.1010477.ref027) 2019; 10 Y Sasaki (pgen.1010477.ref061) 2020; 329 Å Sandelius (pgen.1010477.ref021) 2018; 90 A Mierzwa (pgen.1010477.ref044) 2010; 30 I Sugiyama (pgen.1010477.ref028) 2002; 70 N Vavlitou (pgen.1010477.ref050) 2010; 69 B Beirowski (pgen.1010477.ref054) 2014; 17 E Babetto (pgen.1010477.ref075) 2020; 23 A Helenius (pgen.1010477.ref041) 2004; 73 NI Weinstock (pgen.1010477.ref089) 2020; 107 P De Jonghe (pgen.1010477.ref014) 1999; 122 T Stojkovic (pgen.1010477.ref020) 1999; 52 N Grover-Johnson (pgen.1010477.ref031) 1981; 40 G Della-Flora Nunes (pgen.1010477.ref094) 2021; 12 WA Meier (pgen.1010477.ref032) 2020; 48 T Hamada (pgen.1010477.ref034) 1981; 2 AS Saab (pgen.1010477.ref056) 2016; 91 A Trevisiol (pgen.1010477.ref057) 2017; 6 V Timmerman (pgen.1010477.ref005) 2014; 5 G Feng (pgen.1010477.ref038) 2000; 28 SB Siems (pgen.1010477.ref001) 2020; 9 ME Shy (pgen.1010477.ref007) 2004; 127 M Grandis (pgen.1010477.ref067) 2008; 17 F Florio (pgen.1010477.ref022) 2018; 38 R Seijffers (pgen.1010477.ref040) 2007; 27 R Fledrich (pgen.1010477.ref080) 2018; 9 U Fünfschilling (pgen.1010477.ref053) 2012; 485 SS Scherer (pgen.1010477.ref016) 2008; 56 LS Griffith (pgen.1010477.ref065) 1992; 33 KA Chamberlain (pgen.1010477.ref073) 2019; 97 SA Berghoff (pgen.1010477.ref079) 2017; 8 A Starr (pgen.1010477.ref017) 2003; 126 Y Sasaki (pgen.1010477.ref086) 2018; 38 D Ding (pgen.1010477.ref096) 2016; 8 M Simons (pgen.1010477.ref055) 2015; 8 V Brügger (pgen.1010477.ref048) 2015; 13 SM Deschênes (pgen.1010477.ref093) 1997; 17 KMD Cornett (pgen.1010477.ref006) 2017; 82 W Xiao (pgen.1010477.ref058) 2018; 28 I Callegari (pgen.1010477.ref008) 2019; 266 RJ Balice-Gordon (pgen.1010477.ref051) 1998; 142 J Wang (pgen.1010477.ref074) 2005; 170 K Essuman (pgen.1010477.ref060) 2017; 93 FA Veneri (pgen.1010477.ref070) 2022 C Brifault (pgen.1010477.ref035) 2020; 40 L Shapiro (pgen.1010477.ref002) 1996; 17 PS Spencer (pgen.1010477.ref083) 1979; 5 T Yoshimura (pgen.1010477.ref047) 2017; 7 DM Menichella (pgen.1010477.ref071) 1999; 883 Y Takase (pgen.1010477.ref062) 1990; 82 M Pennuto (pgen.1010477.ref042) 2008; 57 X Yin (pgen.1010477.ref085) 2016; 215 D Wrabetz L (pgen.1010477.ref026) 2006; 26 MJ Kovach (pgen.1010477.ref019) 2002; 108 S Belin (pgen.1010477.ref091) 2019; 28 E Peles (pgen.1010477.ref092) 1997; 16 M Laurà (pgen.1010477.ref011) 2007; 78 MK Jha (pgen.1010477.ref072) 2018; 309 M Jaegle (pgen.1010477.ref024) 1996; 273 KP Giese (pgen.1010477.ref004) 1992; 71 P Topilko (pgen.1010477.ref025) 1994; 371 Y Takagishi (pgen.1010477.ref046) 2016; 43 I Kobsar (pgen.1010477.ref030) 2003; 126 P Mandich (pgen.1010477.ref069) 2009; 17 MT Filbin (pgen.1010477.ref003) 1990; 344 H Tsujino (pgen.1010477.ref039) 2000; 15 MT Filbin (pgen.1010477.ref066) 1993; 122 JM Edgar (pgen.1010477.ref084) 2004; 166 MJ Kim (pgen.1010477.ref095) 2020; 141 |
References_xml | – volume: 57 start-page: 393 issue: 3 year: 2008 ident: pgen.1010477.ref042 article-title: Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice publication-title: Neuron doi: 10.1016/j.neuron.2007.12.021 – volume: 90 start-page: e518 issue: 6 year: 2018 ident: pgen.1010477.ref021 article-title: Plasma neurofilament light chain concentration in the inherited peripheral neuropathies publication-title: Neurology doi: 10.1212/WNL.0000000000004932 – volume: 17 start-page: 1351 issue: 10 year: 2014 ident: pgen.1010477.ref054 article-title: Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance publication-title: Nat Neurosci doi: 10.1038/nn.3809 – volume: 10 start-page: 1467 issue: 1 year: 2019 ident: pgen.1010477.ref027 article-title: NRG1 type I dependent autoparacrine stimulation of Schwann cells in onion bulbs of peripheral neuropathies publication-title: Nat Commun doi: 10.1038/s41467-019-09385-6 – year: 2016 ident: pgen.1010477.ref036 publication-title: Laura Feltri, Yannick Poitelon, Stefano Carlo Previtali, – volume: 16 start-page: 978 issue: 5 year: 1997 ident: pgen.1010477.ref092 article-title: Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions publication-title: EMBO J doi: 10.1093/emboj/16.5.978 – volume: 52 start-page: 1010 issue: 5 year: 1999 ident: pgen.1010477.ref020 article-title: Sensorineural deafness in X-linked Charcot-Marie-Tooth disease with connexin 32 mutation (R142Q) publication-title: Neurology doi: 10.1212/WNL.52.5.1010 – volume: 164 start-page: 385 issue: 3 year: 2004 ident: pgen.1010477.ref023 article-title: Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death publication-title: J Cell Biol doi: 10.1083/jcb.200307132 – volume: 17 start-page: 1877 issue: 13 year: 2008 ident: pgen.1010477.ref067 article-title: Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations publication-title: Hum Mol Genet doi: 10.1093/hmg/ddn083 – volume: 107 start-page: 65 issue: 1 year: 2020 ident: pgen.1010477.ref089 article-title: Macrophages Expressing GALC Improve Peripheral Krabbe Disease by a Mechanism Independent of Cross-Correction publication-title: Neuron doi: 10.1016/j.neuron.2020.03.031 – volume: 883 start-page: 116 issue: 1 year: 1999 ident: pgen.1010477.ref037 article-title: P0-Cre Transgenic Mice for Inactivation of Adhesion Molecules in Schwann Cells publication-title: Annals of the New York Academy of Sciences doi: 10.1111/j.1749-6632.1999.tb08574.x – volume: 344 start-page: 871 issue: 6269 year: 1990 ident: pgen.1010477.ref003 article-title: Role of myelin P0 protein as a homophilic adhesion molecule publication-title: Nature doi: 10.1038/344871a0 – volume: 78 start-page: 1263 issue: 11 year: 2007 ident: pgen.1010477.ref011 article-title: Rapid progression of late onset axonal Charcot-Marie-Tooth disease associated with a novel MPZ mutation in the extracellular domain publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2006.112276 – volume: 69 start-page: 945 issue: 9 year: 2010 ident: pgen.1010477.ref050 article-title: Axonal pathology precedes demyelination in a mouse model of X-linked demyelinating/type I Charcot-Marie Tooth neuropathy publication-title: J Neuropathol Exp Neurol doi: 10.1097/NEN.0b013e3181efa658 – volume: 56 start-page: 1578 issue: 14 year: 2008 ident: pgen.1010477.ref016 article-title: Molecular mechanisms of inherited demyelinating neuropathies publication-title: Glia doi: 10.1002/glia.20751 – volume: 142 start-page: 1095 issue: 4 year: 1998 ident: pgen.1010477.ref051 article-title: Functional gap junctions in the schwann cell myelin sheath publication-title: J Cell Biol doi: 10.1083/jcb.142.4.1095 – volume: 50 start-page: 86 issue: 1 year: 2005 ident: pgen.1010477.ref045 article-title: CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS publication-title: Glia doi: 10.1002/glia.20165 – volume: 48 start-page: 132 issue: 1 year: 2020 ident: pgen.1010477.ref032 article-title: Incidental Ultrastructural Findings in the Sural Nerve and Dorsal Root Ganglion of Aged Control Sprague Dawley Rats in a Nonclinical Carcinogenicity Study publication-title: Toxicol Pathol doi: 10.1177/0192623319873319 – volume: 93 start-page: 1334 issue: 6 year: 2017 ident: pgen.1010477.ref060 article-title: The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD+ Cleavage Activity that Promotes Pathological Axonal Degeneration publication-title: Neuron doi: 10.1016/j.neuron.2017.02.022 – volume: 127 start-page: 371 issue: Pt 2): year: 2004 ident: pgen.1010477.ref007 article-title: Phenotypic clustering in MPZ mutations publication-title: Brain doi: 10.1093/brain/awh048 – volume: 141 start-page: 111078 year: 2020 ident: pgen.1010477.ref095 article-title: Txn2 haplodeficiency does not affect cochlear antioxidant defenses or accelerate the progression of cochlear cell loss or hearing loss across the lifespan publication-title: Exp Gerontol doi: 10.1016/j.exger.2020.111078 – volume: 170 start-page: 349 issue: 3 year: 2005 ident: pgen.1010477.ref074 article-title: A local mechanism mediates NAD-dependent protection of axon degeneration publication-title: J Cell Biol doi: 10.1083/jcb.200504028 – volume: 87 start-page: 1329 issue: 13 year: 2016 ident: pgen.1010477.ref090 article-title: Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia publication-title: Neurology doi: 10.1212/WNL.0000000000003154 – volume: 28 start-page: 1260 issue: 8 year: 2019 ident: pgen.1010477.ref091 article-title: Neuregulin 1 type III improves peripheral nerve myelination in a mouse model of congenital hypomyelinating neuropathy publication-title: Hum Mol Genet doi: 10.1093/hmg/ddy420 – volume: 8 start-page: 730 issue: 4 year: 2016 ident: pgen.1010477.ref096 article-title: N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice publication-title: Aging (Albany NY) doi: 10.18632/aging.100927 – volume: 485 start-page: 517 issue: 7399 year: 2012 ident: pgen.1010477.ref053 article-title: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity publication-title: Nature doi: 10.1038/nature11007 – volume: 487 start-page: 443 issue: 7408 year: 2012 ident: pgen.1010477.ref052 article-title: Oligodendroglia metabolically support axons and contribute to neurodegeneration publication-title: Nature doi: 10.1038/nature11314 – volume: 32 start-page: 1152 issue: 12 year: 1983 ident: pgen.1010477.ref033 article-title: Peripheral nerve abnormalities in the diabetic mutant mouse publication-title: Diabetes doi: 10.2337/diab.32.12.1152 – volume: 13 start-page: e1002258 issue: 9 year: 2015 ident: pgen.1010477.ref048 article-title: HDAC1/2-Dependent P0 Expression Maintains Paranodal and Nodal Integrity Independently of Myelin Stability through Interactions with Neurofascins publication-title: PLoS Biol doi: 10.1371/journal.pbio.1002258 – volume: 82 start-page: 353 issue: 3 year: 2017 ident: pgen.1010477.ref006 article-title: Natural history of Charcot-Marie-Tooth disease during childhood publication-title: Ann Neurol doi: 10.1002/ana.25009 – volume: 50 start-page: 1397 issue: 5 year: 1998 ident: pgen.1010477.ref009 article-title: Charcot-Marie-Tooth disease type 2 associated with mutation of the myelin protein zero gene publication-title: Neurology doi: 10.1212/WNL.50.5.1397 – volume: 329 start-page: 113252 year: 2020 ident: pgen.1010477.ref061 article-title: cADPR is a gene dosage-sensitive biomarker of SARM1 activity in healthy, compromised, and degenerating axons publication-title: Exp Neurol doi: 10.1016/j.expneurol.2020.113252 – volume: 309 start-page: 23 year: 2018 ident: pgen.1010477.ref072 article-title: Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters publication-title: Exp Neurol doi: 10.1016/j.expneurol.2018.07.009 – volume: 9 start-page: e51406 year: 2020 ident: pgen.1010477.ref001 article-title: Proteome profile of peripheral myelin in healthy mice and in a neuropathy model publication-title: Elife doi: 10.7554/eLife.51406 – volume: 71 start-page: 565 issue: 4 year: 1992 ident: pgen.1010477.ref004 article-title: Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons publication-title: Cell doi: 10.1016/0092-8674(92)90591-Y – volume: 66 start-page: 779 issue: 6 year: 1999 ident: pgen.1010477.ref013 article-title: Axonal phenotype of Charcot-Marie-Tooth disease associated with a mutation in the myelin protein zero gene publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.66.6.779 – volume: 75 start-page: 262 issue: 2 year: 2004 ident: pgen.1010477.ref010 article-title: A novel mutation of myelin protein zero associated with an axonal form of Charcot–Marie–Tooth disease publication-title: J Neurol Neurosurg Psychiatry – volume: 17 start-page: 9077 issue: 23 year: 1997 ident: pgen.1010477.ref093 article-title: Altered trafficking of mutant connexin32 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-23-09077.1997 – volume: 9 start-page: 3025 issue: 1 year: 2018 ident: pgen.1010477.ref080 article-title: Targeting myelin lipid metabolism as a potential therapeutic strategy in a model of CMT1A neuropathy publication-title: Nat Commun doi: 10.1038/s41467-018-05420-0 – volume: 69 start-page: 124 issue: 1 year: 2021 ident: pgen.1010477.ref077 article-title: Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation publication-title: Glia doi: 10.1002/glia.23889 – volume: 18 start-page: 1130 issue: 7 year: 2012 ident: pgen.1010477.ref078 article-title: Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet publication-title: Nat Med doi: 10.1038/nm.2833 – volume: 28 start-page: 41 issue: 1 year: 2000 ident: pgen.1010477.ref038 article-title: Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP publication-title: Neuron doi: 10.1016/S0896-6273(00)00084-2 – volume: 17 start-page: 4545 issue: 12 year: 1997 ident: pgen.1010477.ref029 article-title: Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.17-12-04545.1997 – volume: 2 start-page: 33 issue: 1 year: 1981 ident: pgen.1010477.ref034 article-title: Mechanism of glycogenosome formation in axons of cadmium-induced neuropathy—ultrastructural and biochemical studies publication-title: Neurotoxicology – volume: 5 start-page: 501 issue: 6 year: 1979 ident: pgen.1010477.ref083 article-title: Does a defect of energy metabolism in the nerve fiber underlie axonal degeneration in polyneuropathies publication-title: Ann Neurol doi: 10.1002/ana.410050602 – volume: 498 start-page: 252 issue: 2 year: 2006 ident: pgen.1010477.ref012 article-title: Major myelin protein gene (P0) mutation causes a novel form of axonal degeneration publication-title: J Comp Neurol doi: 10.1002/cne.21051 – volume: 34 start-page: 9338 issue: 28 year: 2014 ident: pgen.1010477.ref087 article-title: Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0877-14.2014 – volume: 883 start-page: 281 year: 1999 ident: pgen.1010477.ref071 article-title: The absence of myelin P0 protein produces a novel molecular phenotype in Schwann cells publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1999.tb08590.x – volume: 28 start-page: 6714 issue: 26 year: 2008 ident: pgen.1010477.ref088 article-title: Alpha6beta4 integrin and dystroglycan cooperate to stabilize the myelin sheath publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0326-08.2008 – volume: 135 start-page: 2032 issue: Pt 7 year: 2012 ident: pgen.1010477.ref043 article-title: MpzR98C arrests Schwann cell development in a mouse model of early-onset Charcot-Marie-Tooth disease type 1B publication-title: Brain doi: 10.1093/brain/aws140 – volume: 8 start-page: a020479 issue: 1 year: 2015 ident: pgen.1010477.ref055 article-title: Oligodendrocytes: Myelination and Axonal Support publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a020479 – volume: 51 start-page: 190 issue: 2 year: 2002 ident: pgen.1010477.ref018 article-title: Charcot-Marie-Tooth disease and related neuropathies: mutation distribution and genotype-phenotype correlation publication-title: Ann Neurol doi: 10.1002/ana.10089 – volume: 108 start-page: 157 issue: 3 year: 2003 ident: pgen.1010477.ref063 article-title: Axonal and demyelinating forms of the MPZ Thr124Met mutation publication-title: Acta Neurol Scand doi: 10.1034/j.1600-0404.2003.00110.x – volume: 30 start-page: 15962 issue: 47 year: 2010 ident: pgen.1010477.ref044 article-title: Permeability of the paranodal junction of myelinated nerve fibers publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4047-10.2010 – volume: 28 start-page: 251 issue: 3 year: 2018 ident: pgen.1010477.ref058 article-title: NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism publication-title: Antioxid Redox Signal doi: 10.1089/ars.2017.7216 – start-page: ddac170 year: 2022 ident: pgen.1010477.ref070 article-title: A novel mouse model of CMT1B identifies hyperglycosylation as a new pathogenetic mechanism publication-title: Hum Mol Genet doi: 10.1093/hmg/ddac170 – volume: 120 start-page: 838 issue: Pt 5 year: 2007 ident: pgen.1010477.ref082 article-title: Mitochondrial bioenergetics and structural network organization publication-title: J Cell Sci doi: 10.1242/jcs.03381 – volume: 26 start-page: 2358 issue: 8 year: 2006 ident: pgen.1010477.ref026 article-title: Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3819-05.2006 – volume: 17 start-page: 435 issue: 3 year: 1996 ident: pgen.1010477.ref002 article-title: Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin publication-title: Neuron doi: 10.1016/S0896-6273(00)80176-2 – volume: 5 start-page: 13 issue: 1 year: 2014 ident: pgen.1010477.ref005 article-title: Genetics of Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success. publication-title: Genes (Basel). doi: 10.3390/genes5010013 – volume: 38 start-page: 6546 issue: 29 year: 2018 ident: pgen.1010477.ref086 article-title: Dysregulation of NAD+ Metabolism Induces a Schwann Cell Dedifferentiation Program publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3304-17.2018 – volume: 15 start-page: 170 issue: 2 year: 2000 ident: pgen.1010477.ref039 article-title: Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury publication-title: Mol Cell Neurosci doi: 10.1006/mcne.1999.0814 – volume: 166 start-page: 121 issue: 1 year: 2004 ident: pgen.1010477.ref084 article-title: Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia publication-title: J Cell Biol doi: 10.1083/jcb.200312012 – volume: 33 start-page: 639 issue: 4 year: 1992 ident: pgen.1010477.ref065 article-title: L2/HNK-1 carbohydrate and protein-protein interactions mediate the homophilic binding of the neural adhesion molecule P0 publication-title: J Neurosci Res doi: 10.1002/jnr.490330417 – volume: 40 start-page: 9121 issue: 47 year: 2020 ident: pgen.1010477.ref035 article-title: Deletion of the Gene Encoding the NMDA Receptor GluN1 Subunit in Schwann Cells Causes Ultrastructural Changes in Remak Bundles and Hypersensitivity in Pain Processing publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0663-20.2020 – volume: 7 start-page: 42257 year: 2017 ident: pgen.1010477.ref047 article-title: GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system publication-title: Sci Rep doi: 10.1038/srep42257 – volume: 38 start-page: 4275 issue: 18 year: 2018 ident: pgen.1010477.ref022 article-title: Sustained Expression of Negative Regulators of Myelination Protects Schwann Cells from Dysmyelination in a Charcot-Marie-Tooth 1B Mouse Model publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0201-18.2018 – volume: 321 start-page: 113031 year: 2019 ident: pgen.1010477.ref081 article-title: A neutral lipid-enriched diet improves myelination and alleviates peripheral nerve pathology in neuropathic mice publication-title: Exp Neurol doi: 10.1016/j.expneurol.2019.113031 – volume: 6 start-page: e24241 year: 2017 ident: pgen.1010477.ref057 article-title: Monitoring ATP dynamics in electrically active white matter tracts publication-title: Elife doi: 10.7554/eLife.24241 – volume: 17 start-page: 1129 issue: 9 year: 2009 ident: pgen.1010477.ref069 article-title: Clinical features and molecular modelling of novel MPZ mutations in demyelinating and axonal neuropathies publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2009.37 – volume: 68 start-page: 161 issue: 1 year: 2020 ident: pgen.1010477.ref076 article-title: Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging publication-title: Glia doi: 10.1002/glia.23710 – volume: 12 start-page: 3285 issue: 1 year: 2021 ident: pgen.1010477.ref094 article-title: Prohibitin 1 is essential to preserve mitochondria and myelin integrity in Schwann cells publication-title: Nat Commun doi: 10.1038/s41467-021-23552-8 – volume: 108 start-page: 295 issue: 4 year: 2002 ident: pgen.1010477.ref019 article-title: Anticipation in a unique family with Charcot-Marie-Tooth syndrome and deafness: delineation of the clinical features and review of the literature publication-title: Am J Med Genet doi: 10.1002/ajmg.10223 – volume: 215 start-page: 531 issue: 4 year: 2016 ident: pgen.1010477.ref085 article-title: Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling publication-title: J Cell Biol doi: 10.1083/jcb.201607099 – volume: 122 start-page: 281 issue: Pt 2) year: 1999 ident: pgen.1010477.ref014 article-title: The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype publication-title: Brain doi: 10.1093/brain/122.2.281 – volume: 27 start-page: 7911 issue: 30 year: 2007 ident: pgen.1010477.ref040 article-title: ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5313-06.2007 – volume: 82 start-page: 368 issue: 6 year: 1990 ident: pgen.1010477.ref062 article-title: Hereditary motor and sensory neuropathy type 1 (HMSN1) associated with cranial neuropathy: an autopsy case report publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1990.tb03319.x – volume: 266 start-page: 2629 issue: 11 year: 2019 ident: pgen.1010477.ref008 article-title: Mutation update for myelin protein zero-related neuropathies and the increasing role of variants causing a late-onset phenotype publication-title: J Neurol doi: 10.1007/s00415-019-09453-3 – volume: 43 start-page: 34 year: 2016 ident: pgen.1010477.ref046 article-title: Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.03.020 – volume: 40 start-page: 155 issue: 2 year: 1981 ident: pgen.1010477.ref031 article-title: Peripheral nerve abnormalities in aging rats publication-title: J Neuropathol Exp Neurol doi: 10.1097/00005072-198103000-00007 – volume: 97 start-page: 897 issue: 8 year: 2019 ident: pgen.1010477.ref073 article-title: Mechanisms for the maintenance and regulation of axonal energy supply publication-title: J Neurosci Res doi: 10.1002/jnr.24411 – volume: 73 start-page: 1019 year: 2004 ident: pgen.1010477.ref041 article-title: Roles of N-linked glycans in the endoplasmic reticulum publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073752 – volume: 11 start-page: 753 issue: 8 year: 2001 ident: pgen.1010477.ref015 article-title: Axon damage in CMT due to mutation in myelin protein P0 publication-title: Neuromuscul Disord doi: 10.1016/S0960-8966(01)00229-2 – volume: 348 start-page: 453 issue: 6233 year: 2015 ident: pgen.1010477.ref059 article-title: SARM1 activation triggers axon degeneration locally via NAD+ destruction publication-title: Science doi: 10.1126/science.1258366 – volume: 70 start-page: 309 issue: 3 year: 2002 ident: pgen.1010477.ref028 article-title: Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats publication-title: Journal of Neuroscience Research doi: 10.1002/jnr.10386 – volume: 28 start-page: 7068 issue: 28 year: 2008 ident: pgen.1010477.ref049 article-title: P0 protein is required for and can induce formation of schmidt-lantermann incisures in myelin internodes publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0771-08.2008 – volume: 371 start-page: 796 issue: 6500 year: 1994 ident: pgen.1010477.ref025 article-title: Krox-20 controls myelination in the peripheral nervous system publication-title: Nature doi: 10.1038/371796a0 – volume: 273 start-page: 507 issue: 5274 year: 1996 ident: pgen.1010477.ref024 article-title: The POU factor Oct-6 and Schwann cell differentiation publication-title: Science doi: 10.1126/science.273.5274.507 – volume: 126 start-page: 804 issue: Pt 4 year: 2003 ident: pgen.1010477.ref030 article-title: Preserved myelin integrity and reduced axonopathy in connexin32-deficient mice lacking the recombination activating gene-1 publication-title: Brain doi: 10.1093/brain/awg072 – volume: 8 start-page: 185 issue: 2 year: 1996 ident: pgen.1010477.ref068 article-title: Charcot-Marie-Tooth type 1B neuropathy: a mutation at the single glycosylation site in the major peripheral myelin glycoprotein Po publication-title: Hum Mutat doi: 10.1002/(SICI)1098-1004(1996)8:2<185::AID-HUMU13>3.0.CO;2-Z – volume: 23 start-page: 1215 issue: 10 year: 2020 ident: pgen.1010477.ref075 article-title: A glycolytic shift in Schwann cells supports injured axons publication-title: Nat Neurosci doi: 10.1038/s41593-020-0689-4 – volume: 91 start-page: 119 issue: 1 year: 2016 ident: pgen.1010477.ref056 article-title: Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism publication-title: Neuron doi: 10.1016/j.neuron.2016.05.016 – volume: 8 start-page: 14241 year: 2017 ident: pgen.1010477.ref079 article-title: Dietary cholesterol promotes repair of demyelinated lesions in the adult brain publication-title: Nat Commun doi: 10.1038/ncomms14241 – volume: 90 start-page: 58 issue: 1 year: 2019 ident: pgen.1010477.ref064 article-title: Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2018-318834 – volume: 122 start-page: 451 issue: 2 year: 1993 ident: pgen.1010477.ref066 article-title: Homophilic adhesion of the myelin P0 protein requires glycosylation of both molecules in the homophilic pair publication-title: J Cell Biol doi: 10.1083/jcb.122.2.451 – volume: 126 start-page: 1604 issue: Pt 7) year: 2003 ident: pgen.1010477.ref017 article-title: Pathology and physiology of auditory neuropathy with a novel mutation in the MPZ gene (Tyr145->Ser) publication-title: Brain doi: 10.1093/brain/awg156 |
SSID | ssj0035897 |
Score | 2.4505305 |
Snippet | Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1010477 |
SubjectTerms | Action potential Age Animal models Animal models in research Animals Axon guidance Axonal transport Axons Axons - metabolism Biology and Life Sciences Cell interactions Charcot-Marie-Tooth disease Charcot-Marie-Tooth Disease - genetics Communication Degeneration Demyelination Development and progression Disease Models, Animal Gap junctions Genotype & phenotype Health aspects Hearing loss Humans Medicine and Health Sciences Methionine Mice Mice, Knockout Mitochondria Motor task performance Mutants Mutation Myelin P0 protein Myelin proteolipid protein Myelin Sheath - genetics Myelin Sheath - metabolism Myelin-associated glycoprotein Myelination Nerve conduction Nervous system Neurodegeneration Neuroglia Neurological research Neuronal-glial interactions Neuropathy Peripheral neuropathy Physiological aspects Proteins Research and Analysis Methods Schwann cells Threonine |
SummonAdditionalLinks | – databaseName: DOAJ - The Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxNBEF8kIPgifjdadRXBp7WX_bx7jGKphVbQVvq27O3tpYFwF3oJ2Gf_cWd2LyEnhfbB18zsQWZmd2aYmd8Q8kGZWgGtYlUInEkZSpZLxVmpKl9qHcAn4jTyyak-OpfHF-piZ9UX9oQleOAkuAMBDjbXRVlzJdB7O6V4UHnpdahqnXA-syLbJFPpDRYqT2tVlBLMQFrfD80JMznodfRpCQrC3DWTxgycUsTu377Qo-Wi7W4KP__totxxS4ePyMM-nqTT9D8ek3uheULupw2T10_JnymFuJlifh9o3HpD25pijd23K3aCiTI7a0FblB_TiG2JK4qv6VVIde3Q0bjFj7rfbdPTXFPRbj3DwhSNxfaoXDqPTGy2mDvqd8dOnpHzw69nX45Yv3eBecP1CjQmg8tzuNpeitpURtYhl5WHUEYJ4yBlVKHw3Gid5XVlHEIMIgx8qQKkbzITz8moaZuwR6guS-eN8KEonKwn2vGqFtxj742cgALHRGwEb30PSo67MRY2VtoMJCdJjhbVZXt1jQnbnlomUI5b-D-jTre8CKkdfwBDs72h2dsMbUzeokXYNJ-6fRjsFNITqYpMqTF5HzkQVqPBvp2ZW3ed_fb91x2Yfp7ehenHgOljz1S3IDPv-oEKkDxieg049wec8IL4AXkPjXwjus5yo3Dzj5lIOLkx_JvJ77Zk_Cg27DUBTNoiahJEijyHr79I92QrfgFBLjg3OG0GN2ignyGlmV9G6PPCZMYU-uX_UOgr8oDjLAvWCIp9MlpdrcNriDBX5Zv4mPwFWbh3sg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_0RPBF_O5p1VUEn9bm9jN5klMstdAK2krfwmazuR4cyXm5A_vsP-7MZi82UrSvmdkQZnZnZzIfP0LeKFMpoJWs9J4zKX3BUqk4K1TpCq093InYjXx0rA9O5eGZOos_3NpYVrm1icFQl43Df-R73ChEIzET-X75gyFqFGZXI4TGTXJrAp4IQjeYsz7gEirtwFWUEsxAcB9b54SZ7EVNvVuCmjCCTaQxg6spTPDv7fRouWjaq5zQv2spL11O-_fI3ehV0mm3De6TG75-QG53OJMXD8mvKQXvmWKU72nAvqFNRTHT7po1O8JwmZ00oDPKD2mYcIlAxRd05bvstm9pwPKj9mdTR5qtS9puZpieoiHlHlRM54GJzRZzS93l5pNH5HT_08nHAxbRF5gzXK9Bb9LbNIUD7qSoTGlk5VNZOnBolDAWAkflM8eN1klalcbioEEcBl8oD0GcTMRjMqqb2u8QqovCOiOczzIrq4m2vKwEd1iBIye-rMZEbAWfuziaHBEyFnnItxkIUTo55qiuPKprTFi_atmN5vgP_wfUac-Lg7XDg2Y1y-M5zQX4c6nOioorgc6iVYp7lRZOw3fqRIzJS9wRedel2puHfApBilRZotSYvA4cOFyjxuqdmd20bf75y_drMH07vg7T1wHT28hUNSAzZ2NbBUgeJ3sNOHcHnGBH3IC8g5t8K7o2_3PiYOV2419NftWT8aVYtld72NI5zk4Cf5Gn8PYn3TnpxS_A1YUrDlabwQka6GdIqefnYQB6ZhJjMv3035_1jNzh2KuCOYBsl4zWq41_Dh7kungRzMRvwddwHA priority: 102 providerName: ProQuest |
Title | A new mouse model of Charcot-Marie-Tooth 2J neuropathy replicates human axonopathy and suggest alteration in axo-glia communication |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36350884 https://www.proquest.com/docview/2755155714 https://www.proquest.com/docview/2734613285 https://pubmed.ncbi.nlm.nih.gov/PMC9707796 https://doaj.org/article/3727869bf2534264a552e58bc6edf603 http://dx.doi.org/10.1371/journal.pgen.1010477 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61qZC4IN4NlLAgJE6unH3aB4QSaFQqNaDSoN4se71OI0V2iBOpOfPHmVk7Vo0C9BQpM2slM_uY8ex8HyHvpM4kyFIvtZZ5QtjEC4RkXiJTkyhl4UzEbuTzsTqdiLMrebVHtpyttQHLnakd8klNlvPjm5-bj7DgPzjWBt3fDjpegMkxG_WF1vvkwFWM8DKfaOoKXAYV3YqU3NOQ7tfNdH97Suuwcpj-zc7dWcyLcldY-uftylvH1egheVDHmXRQTYxHZM_mj8m9inly84T8GlCIpynm_ZY6NhxaZBRr76ZYeeeYQHuXBXiRsjPqMC-RunhDl7aqd9uSOnY_Gt8UeS2L85SW6ykWrKgrwjun05lT8qbzWUzN7XaUp2QyOrn8dOrVfAye0UytwJPCxkEAS94InulUi8wGIjUQ4kiuY0glpQ0N00r5QZbqGKEHER4-kRbSOuHzZ6STF7k9JFQlSWw0NzYMY5H1VczSjDODd3JE36ZZl_Ct4SNTg5UjZ8Y8chU4DUlLZccI3RXV7uoSrxm1qMA6_qM_RJ82ugi17b4oltOoXrkRhwgvUGGSMckxfIylZFYGiVHwO5XPu-Q1zoio6lttNoxoAGmLkKEvZZe8dRoIt5HjfZ5pvC7L6MvXH3dQ-j6-i9JFS-l9rZQVYDMT140WYHnE-mppHrU0YWcxLfEhTvKt6cqIaYmMQLovYOR24u8Wv2nE-FC8yJdbmNIRoilBBMkCePrzap005ucQ_MKhB6N1awW1_NOW5LNrB4keal_rUL349x96Se4z7F7BqkB4RDqr5dq-gphylfTIvr7SPXIwGH4ejuBzeDL-dtFzb2h6bgv5DVhkeos |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWCEFwQ7wYKXRCIk6mzD699QCg8qqRtggRtlZux1-sQKbJDnAhy5n_4RmbWD2pUQS-9emZXq5nZeXh2Zgh5LlUqAZY4iTHMEcLEji8kc2KZ6NjzDNhErEYejb3BiTiYyMkW-VXXwuCzylonWkWd5Br_ke8xJXEaieqJN4tvDk6NwuxqPUKjFItDs_kOIVvxevge-PuCsf0Px-8GTjVVwNGKeSs4jzCR74PgasFTlSiRGl8kGgy15CqCgEiaQDPlea6fJirCBnrY5DyWBoIT4XLY9wq5KjDFCPdHTZoAj0u_HOYiJXcUD9yqVI-r3l4lGa8WIBYYMbtCqZYptBMDGrvQWczz4jyn9--3m2eM4f4tcrPyYmm_FLvbZMtkd8i1cq7l5i752afgrVP8q2ConbVD85RiZl_nK2eE4blznIOMUHZAbUdNHIy8oUtTZtNNQe3sQBr9yLMKFmUJLdZTTIdRm-K3IkVnFsmZzmcR1WeLXe6Rk0vhy33SyfLMbBPqxXGkFdcmCCKR9ryIJSlnGl_8iJ5J0i7hNeFDXbVCx4kc89Dm9xSERCUdQ2RXWLGrS5xm1aJsBfIf_LfI0wYXG3nbD_lyGlZ6IeTgP_peEKdMcnROIymZkX6sPTin5_Iu2UWJCMuq2EYdhX0IioQMXCm75JnFwGYeGb4WmkbrogiHH08vgPR5fBGkTy2klxVSmgPNdFSVcQDlsZNYC3OnhQl6S7fA2yjkNemK8M8Nh5W14J8PftqAcVN8JpgZEOkQezWBf8p82P1BeU8a8nNwrcGkwmrVukEt_rQh2eyrbbgeKFepwHv472PtkuuD49FReDQcHz4iNxjWyWD-IdghndVybR6D97qKn1iVQcmXy9ZRvwFyDqpx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtQFwQ7y4UahCIU2jWjzg5VKilrfqgS1Va1FtwHGeptEqWzVbQM3_HVzHjOEuDKuil152x5Z0ZzyOeByGvpCokwPIgt5YFQtgsiIVkQSZzk0WRBZuI1cj7g2j7WOyeyJM58quthcG0ylYnOkWdVwa_ka8wJXEaieqLlcKnRRxsbL0bfwtwghS-tLbjNLQfs5CvunZjvshjz55_h3CuXt3ZAN6_Zmxr8-j9duAnDgRGsWgKZxVWxzEItRG8ULkShY1FbsCIS640BEvSJoapKArjIlcam-thA_RMWghcRMhh3xtkQcE_hEBwYX1zcHDY2gUu42bUi5Q8AIzQF_Jx1V_xcvN2DEKD8XQolOoYSjdPYGY15sejqr7MJf47s_OCqdy6S-54H5euNUJ5j8zZ8j652Uy9PH9Afq5R8OUpfnOw1E3ioVVB8d3fVNNgH4P34KgCCaJsl7p-mzg2-ZxObPPWbmvqJgtS_aMqPUyXOa3PhvhYRl0CgBM4euqQguHoVFNzsRTmITm-Fs48IvNlVdpFQqMs00ZxY5NEi6IfaZYXnBnMBxJ9mxc9wlvCp8Y3Ssd5HaPUvf4pCJgaOqbIrtSzq0eC2apx0yjkP_jryNMZLrb5dj9Uk2HqtUbKwbuMoyQrmOToumopmZVxZiI4ZxTyHllGiUibmtmZskrXIGQSMgml7JGXDgNbfZR4aYb6rK7TnY-fr4D0aXAVpMMO0huPVFRAM6N9kQdQHvuMdTCXOpig1UwHvIhC3pKuTv_cf1jZCv7l4BczMG6KSYSlBZFOsZMTeK8sht0fN_dkRn4OjjcYXFitOjeow58upDz96tqxJypUKome_PtYy-QW6Kv0w85g7ym5zbCIBh8nkiUyP52c2Wfg2k6z515nUPLlutXUb2BltUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+mouse+model+of+Charcot-Marie-Tooth+2J+neuropathy+replicates+human+axonopathy+and+suggest+alteration+in+axo-glia+communication&rft.jtitle=PLoS+genetics&rft.au=Shackleford%2C+Ghjuvan%27Ghjacumu&rft.au=Marziali%2C+Leandro+N&rft.au=Sasaki%2C+Yo&rft.au=Claessens%2C+Anke&rft.date=2022-11-09&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=18&rft.issue=11&rft.spage=e1010477&rft_id=info:doi/10.1371%2Fjournal.pgen.1010477&rft.externalDocID=A729459055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |