Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eightee...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 59; no. 3; pp. 572 - 579
Main Authors Meex, Ruth C.R., Schrauwen-Hinderling, Vera B., Moonen-Kornips, Esther, Schaart, Gert, Mensink, Marco, Phielix, Esther, van de Weijer, Tineke, Sels, Jean-Pierre, Schrauwen, Patrick, Hesselink, Matthijs K.C.
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.03.2010
Subjects
Online AccessGet full text
ISSN0012-1797
1939-327X
1939-327X
DOI10.2337/db09-1322

Cover

Abstract Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
AbstractList Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.OBJECTIVEMitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.RESEARCH DESIGN AND METHODSEighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.RESULTSMitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.CONCLUSIONSExercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
OBJECTIVE--Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS--Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and V[O.sub.2max] participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS--Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS--Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. Diabetes 59:572-579, 2010
OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo(2max) participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS-Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P <0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P <0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P <0.01 in control subjects and -52% in diabetic subjects; P <0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS-Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. Diabetes 59:572-579, 2010
Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.
Audience Professional
Author Moonen-Kornips, Esther
van de Weijer, Tineke
Sels, Jean-Pierre
Meex, Ruth C.R.
Schaart, Gert
Schrauwen-Hinderling, Vera B.
Mensink, Marco
Phielix, Esther
Schrauwen, Patrick
Hesselink, Matthijs K.C.
Author_xml – sequence: 1
  givenname: Ruth C.R.
  surname: Meex
  fullname: Meex, Ruth C.R.
  organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 2
  givenname: Vera B.
  surname: Schrauwen-Hinderling
  fullname: Schrauwen-Hinderling, Vera B.
  organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands;, Department of Radiology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 3
  givenname: Esther
  surname: Moonen-Kornips
  fullname: Moonen-Kornips, Esther
  organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands;, Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 4
  givenname: Gert
  surname: Schaart
  fullname: Schaart, Gert
  organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 5
  givenname: Marco
  surname: Mensink
  fullname: Mensink, Marco
  organization: Human Nutrition, Wageningen University, the Netherlands
– sequence: 6
  givenname: Esther
  surname: Phielix
  fullname: Phielix, Esther
  organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 7
  givenname: Tineke
  surname: van de Weijer
  fullname: van de Weijer, Tineke
  organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 8
  givenname: Jean-Pierre
  surname: Sels
  fullname: Sels, Jean-Pierre
  organization: Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 9
  givenname: Patrick
  surname: Schrauwen
  fullname: Schrauwen, Patrick
  organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
– sequence: 10
  givenname: Matthijs K.C.
  surname: Hesselink
  fullname: Hesselink, Matthijs K.C.
  organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22505328$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20028948$$D View this record in MEDLINE/PubMed
BookMark eNp9k1trFDEUxwep2Is--AUkKCI-bJvJXOODUGq3LnSp2Aq-hUzmzDYlm6zJTNv9en4yT7rb6mqRPITJ_M7_3HeTLessJMnLlO6zLKsO2obyUZox9iTZSXnGRxmrvm8lO5SmbJRWvNpOdkO4opSWeJ4l24xSVvO83kl-foXQOy977SxxHZkOQRkgU907dels67U0ZDxYdQdI25Ip9LJxRisyNnCrG210vyTakovlAggjn7RsoIdAmiU5vgWvdABy4aW22s7IJJAv0ktjwEAbkYlVHmTAj-nSKTBmMNKTsezJeYxrBndOJ_OFd9cITWwYDDo7Bxt0r6_R9_PkaSdNgBfrey_5Nj6-OPo8Oj07mRwdno5UxYp-VBVlqzLeljlXrEgVb5uyyFkNvOtYC01Z5UUroZB503Y1UnXW1JIXXc55XmZltpd8WOneYFQxGbDCypifcFILoxsv_VLcDF5YE6_F0ASR0ypn0fjjyhgf59AqsD1WQSy8nkejKLD5x-pLMXPXgtWsLosUBd6tBbz7MWDTxFyHWC9pwQ1BVFlWcooZIfn6L_LKDd5iaQRLy7zOUBChNytoJg0IbTuHXlWUFIeMpTytaRadjh6hMHHAEHEGO43PG_z-IzyeFuZaPWrwfsMAmR5u-5kcQhD1yen_glmzyuEwzUBgr4_ONvlXf5b8odb3w4_A2zUgg5Km89LGZj5wrKAFFgu5gxWnvAvBQyeU7u82BrPTRqRUxDUUcQ1FXMPfaT1Y3Iv-y_4C95MzFw
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1016_j_mehy_2019_01_013
crossref_primary_10_1016_j_pharmthera_2011_04_004
crossref_primary_10_1161_JAHA_124_035721
crossref_primary_10_1016_j_cmet_2023_12_008
crossref_primary_10_1123_kr_2021_0024
crossref_primary_10_3934_molsci_2016_4_479
crossref_primary_10_1139_apnm_2023_0315
crossref_primary_10_1007_s13679_021_00434_0
crossref_primary_10_1139_apnm_2017_0358
crossref_primary_10_1016_j_metabol_2022_155268
crossref_primary_10_1080_07435800_2017_1323914
crossref_primary_10_3390_ijms22126642
crossref_primary_10_1016_j_diabres_2012_06_006
crossref_primary_10_1080_13813455_2017_1391847
crossref_primary_10_1002_emmm_201000074
crossref_primary_10_1038_s41366_018_0068_3
crossref_primary_10_1093_molehr_gau042
crossref_primary_10_2337_db14_0667
crossref_primary_10_1016_j_jep_2019_112326
crossref_primary_10_1096_fj_14_263699
crossref_primary_10_1016_j_neubiorev_2015_09_012
crossref_primary_10_1016_j_drudis_2014_03_007
crossref_primary_10_2337_dc18_0296
crossref_primary_10_1002_mnfr_201300747
crossref_primary_10_3390_ijms23169252
crossref_primary_10_1016_j_clnu_2011_02_009
crossref_primary_10_1159_000527227
crossref_primary_10_1152_ajpendo_00272_2012
crossref_primary_10_1371_journal_pone_0057494
crossref_primary_10_1080_14789450_2018_1528147
crossref_primary_10_1152_ajpcell_00144_2024
crossref_primary_10_1111_joim_12729
crossref_primary_10_3390_cells8030237
crossref_primary_10_2337_dc11_1426
crossref_primary_10_1152_ajpendo_00142_2017
crossref_primary_10_14814_phy2_13063
crossref_primary_10_1007_s41048_015_0013_0
crossref_primary_10_1093_ptj_pzab162
crossref_primary_10_1139_apnm_2020_0943
crossref_primary_10_1155_2020_8819627
crossref_primary_10_1016_j_cmet_2011_10_002
crossref_primary_10_1139_bcb_2015_0012
crossref_primary_10_1136_bjsports_2016_096724
crossref_primary_10_1371_journal_pone_0287412
crossref_primary_10_1016_j_plipres_2011_11_003
crossref_primary_10_1155_2012_983814
crossref_primary_10_1007_s00125_016_4068_3
crossref_primary_10_14814_phy2_14189
crossref_primary_10_1111_apha_13032
crossref_primary_10_3390_ijms25126321
crossref_primary_10_1038_nrd4023
crossref_primary_10_1177_1479164112459664
crossref_primary_10_1210_jc_2012_3874
crossref_primary_10_1007_s00125_020_05335_w
crossref_primary_10_1152_ajpendo_00126_2018
crossref_primary_10_1152_ajpendo_00093_2023
crossref_primary_10_2337_db12_0466
crossref_primary_10_1038_s41467_022_31249_9
crossref_primary_10_1007_s40200_020_00611_3
crossref_primary_10_1152_ajpendo_00143_2023
crossref_primary_10_1016_j_smrv_2017_01_001
crossref_primary_10_1113_JP285523
crossref_primary_10_1186_s12920_020_00784_z
crossref_primary_10_3389_fendo_2020_00567
crossref_primary_10_3390_sports9090121
crossref_primary_10_1172_JCI46069
crossref_primary_10_1152_japplphysiol_00148_2022
crossref_primary_10_2337_db23_0432
crossref_primary_10_1002_dmrr_3099
crossref_primary_10_18632_aging_203051
crossref_primary_10_1007_s00125_020_05170_z
crossref_primary_10_2337_dc24_0470
crossref_primary_10_1007_s00125_011_2442_8
crossref_primary_10_1210_js_2017_00092
crossref_primary_10_1152_physiolgenomics_00014_2019
crossref_primary_10_2139_ssrn_3944597
crossref_primary_10_1152_ajpendo_00238_2010
crossref_primary_10_1002_dmrr_1025
crossref_primary_10_1016_j_molmet_2017_08_007
crossref_primary_10_20945_2359_4292_2023_0040
crossref_primary_10_1155_2015_592915
crossref_primary_10_1016_j_molmet_2018_01_022
crossref_primary_10_3390_ijms20215271
crossref_primary_10_1139_apnm_2015_0258
crossref_primary_10_1016_j_yexcr_2015_10_023
crossref_primary_10_3389_fendo_2020_566548
crossref_primary_10_1210_endrev_bnab038
crossref_primary_10_1002_jcp_22812
crossref_primary_10_1007_s40279_018_0936_y
crossref_primary_10_1152_ajpcell_00146_2022
crossref_primary_10_1371_journal_pone_0187554
crossref_primary_10_1016_j_cmet_2024_02_014
crossref_primary_10_3390_nu15051217
crossref_primary_10_3389_fphys_2019_00532
crossref_primary_10_1007_s10735_023_10158_1
crossref_primary_10_1139_cjpp_2015_0020
crossref_primary_10_1007_s00421_018_3818_y
crossref_primary_10_1089_ars_2015_6291
crossref_primary_10_2337_db13_0303
crossref_primary_10_1002_oby_22783
crossref_primary_10_14814_phy2_14503
crossref_primary_10_1016_j_bbadis_2018_09_013
crossref_primary_10_3390_ijms21155374
crossref_primary_10_1096_fj_201500100R
crossref_primary_10_1007_s13410_022_01056_5
crossref_primary_10_1038_nrendo_2011_158
crossref_primary_10_1152_ajpendo_00266_2017
crossref_primary_10_1158_1055_9965_EPI_21_1449
crossref_primary_10_1152_ajpregu_00409_2012
crossref_primary_10_1371_journal_pone_0051648
crossref_primary_10_1210_en_2013_1382
crossref_primary_10_1016_j_lfs_2022_120467
crossref_primary_10_1007_s00394_025_03585_1
crossref_primary_10_1016_j_clinthera_2017_05_001
crossref_primary_10_1002_pbc_31369
crossref_primary_10_1016_j_molmet_2017_10_006
crossref_primary_10_14814_phy2_14416
crossref_primary_10_1007_s00125_010_1764_2
crossref_primary_10_1002_14651858_CD011340
crossref_primary_10_1148_radiol_13121631
crossref_primary_10_3810_psm_2011_05_1899
crossref_primary_10_3810_psm_2011_05_1898
crossref_primary_10_1089_ars_2017_7313
crossref_primary_10_1242_jeb_167015
crossref_primary_10_1113_JP287589
crossref_primary_10_1038_s41366_021_00815_4
crossref_primary_10_3389_fendo_2020_00120
crossref_primary_10_1007_s11357_023_00855_w
crossref_primary_10_1016_j_bcp_2015_06_032
crossref_primary_10_3109_10409238_2014_931337
crossref_primary_10_1007_s00125_010_1813_x
crossref_primary_10_1210_clinem_dgaa571
crossref_primary_10_1249_MSS_0000000000001041
crossref_primary_10_3390_ijms20081850
crossref_primary_10_1007_s00125_021_05558_5
crossref_primary_10_1038_s41598_023_42072_7
crossref_primary_10_1111_ijpo_12123
crossref_primary_10_1016_j_xcrm_2022_100633
crossref_primary_10_1152_ajpregu_00127_2019
crossref_primary_10_1111_apha_12307
crossref_primary_10_1016_j_mam_2024_101277
crossref_primary_10_1016_j_bbadis_2016_11_010
crossref_primary_10_1210_jc_2011_3454
crossref_primary_10_1017_S0029665113003856
crossref_primary_10_1007_s00125_021_05535_y
crossref_primary_10_1038_nrendo_2011_138
crossref_primary_10_1113_JP280603
crossref_primary_10_2337_db15_0675
crossref_primary_10_1016_j_molmet_2018_08_004
crossref_primary_10_1007_s00125_016_3885_8
crossref_primary_10_1007_s00421_022_04929_z
crossref_primary_10_1038_s41598_020_67431_6
crossref_primary_10_1111_micc_12517
crossref_primary_10_1007_s00125_020_05166_9
crossref_primary_10_2337_dc12_0204
crossref_primary_10_1519_JSC_0000000000000624
crossref_primary_10_1152_physiolgenomics_00174_2013
crossref_primary_10_1007_s00125_020_05128_1
crossref_primary_10_1016_j_metabol_2013_04_001
crossref_primary_10_7717_peerj_11485
crossref_primary_10_2337_db11_1402
crossref_primary_10_1038_s41467_021_21813_0
crossref_primary_10_1152_ajpendo_00278_2011
crossref_primary_10_1016_j_molmet_2025_102116
crossref_primary_10_14814_phy2_14669
crossref_primary_10_1016_j_tem_2012_05_007
crossref_primary_10_2337_dc16_0499
crossref_primary_10_1007_s40618_021_01551_2
crossref_primary_10_1152_ajpendo_00221_2011
crossref_primary_10_1186_1743_7075_10_8
crossref_primary_10_1152_japplphysiol_00952_2020
crossref_primary_10_3109_13813455_2011_584538
crossref_primary_10_1016_j_freeradbiomed_2016_01_006
crossref_primary_10_1152_japplphysiol_00496_2018
crossref_primary_10_1042_CS20100153
crossref_primary_10_2337_db11_1832
crossref_primary_10_1111_nyas_12185
crossref_primary_10_1080_23328940_2015_1131506
crossref_primary_10_1038_srep35047
crossref_primary_10_3390_ijms25094889
crossref_primary_10_1172_jci_insight_127928
crossref_primary_10_1007_s11306_014_0701_7
crossref_primary_10_1007_s11154_011_9168_2
crossref_primary_10_1152_ajpcell_00035_2022
crossref_primary_10_14814_phy2_12835
crossref_primary_10_1152_ajpendo_00161_2018
crossref_primary_10_1007_s00125_020_05315_0
crossref_primary_10_1124_jpet_123_001733
crossref_primary_10_2337_dc14_2813
crossref_primary_10_3390_cells10113013
crossref_primary_10_1152_advan_00080_2014
crossref_primary_10_1038_nrendo_2016_104
crossref_primary_10_3390_medicina59071320
crossref_primary_10_1152_ajpgi_00179_2013
crossref_primary_10_1152_ajpendo_00091_2024
crossref_primary_10_1007_s00125_012_2513_5
crossref_primary_10_1002_dmrr_2601
crossref_primary_10_1111_obr_12862
crossref_primary_10_1016_j_molmet_2022_101620
crossref_primary_10_3390_ijms21186948
crossref_primary_10_1002_jcb_26139
crossref_primary_10_1249_MSS_0000000000000316
crossref_primary_10_1021_acschembio_2c00720
crossref_primary_10_1016_j_biocel_2012_09_019
crossref_primary_10_1080_09613218_2017_1307647
crossref_primary_10_1038_nm_3891
crossref_primary_10_1371_journal_pone_0053887
crossref_primary_10_1507_endocrj_EJ21_0589
crossref_primary_10_1111_obr_12719
crossref_primary_10_14814_phy2_12187
crossref_primary_10_1136_bjsports_2015_095179
crossref_primary_10_1016_j_smhs_2025_02_010
crossref_primary_10_1080_09168451_2015_1062715
crossref_primary_10_18632_oncotarget_11267
crossref_primary_10_1016_j_taap_2017_11_016
crossref_primary_10_1016_j_bbadis_2014_11_012
crossref_primary_10_1016_j_bbalip_2017_05_011
crossref_primary_10_4161_adip_19132
crossref_primary_10_3390_biology8020033
crossref_primary_10_1152_ajpendo_00314_2018
crossref_primary_10_1194_jlr_P028910
crossref_primary_10_1186_1475_2840_10_75
crossref_primary_10_2337_db11_1725
crossref_primary_10_2337_dbi18_0042
crossref_primary_10_1007_s00125_016_4037_x
crossref_primary_10_1152_japplphysiol_01591_2011
crossref_primary_10_1007_s00125_018_4618_y
crossref_primary_10_1016_j_bbabio_2016_07_008
crossref_primary_10_1038_s41598_021_98792_1
crossref_primary_10_2337_db23_0142
crossref_primary_10_1016_S0140_6736_11_61892_8
crossref_primary_10_1586_eem_10_21
crossref_primary_10_1016_j_nupar_2011_07_003
crossref_primary_10_1249_MSS_0000000000002516
crossref_primary_10_1016_j_mce_2013_06_018
crossref_primary_10_1002_oby_22826
crossref_primary_10_1111_obr_13131
Cites_doi 10.1172/JCI30565
10.2337/db06-0783
10.3109/00365517909108833
10.1007/s00125-007-0594-3
10.1007/s00125-006-0475-1
10.1007/s11892-008-0030-1
10.1007/s004180100297
10.1096/fj.08-112318
10.2337/diab.41.3.354
10.1152/jappl.1983.55.2.628
10.1016/j.febslet.2006.01.059
10.1152/ajpendo.00464.2003
10.1111/j.1463-1326.2007.00716.x
10.1210/jc.2002-021464
10.1056/NEJMoa031314
10.1210/jc.2005-1572
10.1371/journal.pmed.0040154
10.2337/diab.44.9.1010
10.2337/db06-0981
10.1055/s-2008-1025839
10.1210/jc.2003-030791
10.2337/db07-1429
10.1073/pnas.1032913100
10.1210/jc.2002-021674
10.1056/NEJM199001253220403
10.2337/diabetes.51.10.2944
10.1007/s001250051123
10.1172/JCI30566
10.1210/jcem.86.12.8075
10.1007/BF02668096
10.1371/journal.pmed.0020233
10.1038/sj.ijo.0803567
10.2337/diabetes.49.5.677
10.1006/jmre.1997.1244
10.2337/dc09-S013
10.2337/diabetes.53.6.1412
10.2337/diab.46.6.983
10.1038/sj.ijo.0803102
10.1016/S0168-8227(98)00035-7
10.1016/j.mito.2004.07.034
10.1002/nbm.1940060111
10.1038/ng1180
10.1016/B978-1-4832-3110-5.50011-X
10.2337/db08-0391
10.1111/j.1749-6632.1959.tb44923.x
10.2337/db08-0043
10.1152/ajpregu.00472.2006
10.2337/diabetes.50.12.2870
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2010 American Diabetes Association
COPYRIGHT 2010 American Diabetes Association
Copyright American Diabetes Association Mar 2010
2010 by the American Diabetes Association.
Wageningen University & Research
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 American Diabetes Association
– notice: COPYRIGHT 2010 American Diabetes Association
– notice: Copyright American Diabetes Association Mar 2010
– notice: 2010 by the American Diabetes Association.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
QVL
DOI 10.2337/db09-1322
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 579
ExternalDocumentID oai_library_wur_nl_wurpubs_407426
PMC2828651
1995143111
A221918031
20028948
22505328
10_2337_db09_1322
Genre Research Support, Non-U.S. Gov't
Controlled Clinical Trial
Journal Article
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
.55
.XZ
08P
0R~
18M
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAFWJ
AAKAS
AAQQT
AAWTL
AAYEP
AAYJJ
AAYOK
AAYXX
ABOCM
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADGHP
ADZCM
AEGXH
AENEX
AERZD
AFKRA
AHMBA
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BTFSW
BVXVI
C1A
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GICCO
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
K-O
K2M
K9-
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5~
M7P
N4W
NAPCQ
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
PEA
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
TEORI
TR2
UKHRP
VVN
W8F
WH7
WOQ
WOW
X7M
YFH
YHG
YOC
ZY1
~KM
.GJ
1CY
8F7
AFFNX
AI.
IQODW
J5H
MVM
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
08R
ABFLS
ABPTK
ACEMF
AFHIN
BBAFP
PADUT
QVL
RHF
UMP
ZA5
ID FETCH-LOGICAL-c725t-756dc39d649c251c9db65428e9ff2deb6745dae5a4bdf864983b8a95f49946363
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Thu Oct 13 09:30:14 EDT 2022
Thu Aug 21 18:13:23 EDT 2025
Fri Sep 05 04:38:40 EDT 2025
Fri Jul 25 19:34:00 EDT 2025
Tue Jun 17 21:13:26 EDT 2025
Thu Jun 12 23:54:54 EDT 2025
Tue Jun 10 20:36:23 EDT 2025
Fri Jun 27 03:50:41 EDT 2025
Tue Jun 10 19:57:14 EDT 2025
Thu Apr 03 06:55:09 EDT 2025
Mon Jul 21 09:13:33 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Tue Jul 01 03:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Endocrinopathy
Type 2 diabetes
Physical exercise
Pancreatic hormone
Mitochondria
Sensitivity
Storage
Restoration
Metabolic diseases
Muscle
Insulin
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c725t-756dc39d649c251c9db65428e9ff2deb6745dae5a4bdf864983b8a95f49946363
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2828651
PMID 20028948
PQID 216483286
PQPubID 34443
PageCount 8
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_407426
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2828651
proquest_miscellaneous_733690654
proquest_journals_216483286
gale_infotracmisc_A221918031
gale_infotracgeneralonefile_A221918031
gale_infotracacademiconefile_A221918031
gale_incontextgauss_8GL_A221918031
gale_incontextcollege_GICCO_A221918031
pubmed_primary_20028948
pascalfrancis_primary_22505328
crossref_citationtrail_10_2337_db09_1322
crossref_primary_10_2337_db09_1322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2010
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References van Loon (2022031209044428500_B40) 2004; 287
Liu (2022031209044428500_B42) 2007; 117
Widen (2022031209044428500_B47) 1992; 41
Petersen (2022031209044428500_B8) 2004; 350
Steele (2022031209044428500_B20) 1959; 82
Bruce (2022031209044428500_B41) 2003; 88
Kemp (2022031209044428500_B25) 1993; 6
Kuipers (2022031209044428500_B19) 1985; 6
Kelley (2022031209044428500_B44) 2000; 49
Roden (2022031209044428500_B3) 2005; 29
Boushel (2022031209044428500_B35) 2007; 50
De Feyter (2022031209044428500_B34) 2008; 22
Petersen (2022031209044428500_B2) 2005; 2
Kelley (2022031209044428500_B4) 2002; 51
Dela (2022031209044428500_B48) 1995; 44
Befroy (2022031209044428500_B1) 2007; 56
Schrauwen-Hinderling (2022031209044428500_B14) 2003; 88
Frayn (2022031209044428500_B21) 1983; 55
Schrauwen-Hinderling (2022031209044428500_B9) 2007; 50
Arias-Mendoza (2022031209044428500_B26) 2004; 4
Mogensen (2022031209044428500_B36) 2007; 56
Mattei (2022031209044428500_B27) 2004; 56
Szendroedi (2022031209044428500_B32) 2007; 4
Thamer (2022031209044428500_B16) 2003; 88
Siri (2022031209044428500_B18) 1956; 4
Mootha (2022031209044428500_B5) 2003; 34
Schenk (2022031209044428500_B43) 2007; 117
Vanhamme (2022031209044428500_B22) 1997; 129
Alberti (2022031209044428500_B17) 1998; 40
Sahlin (2022031209044428500_B24) 1979; 39
Shulman (2022031209044428500_B46) 1990; 322
Abdul-Ghani (2022031209044428500_B33) 2008; 8
Schrauwen (2022031209044428500_B30) 2001; 50
Phielix (2022031209044428500_B10) 2008; 57
Hoeks (2022031209044428500_B29) 2006; 580
Schrauwen (2022031209044428500_B37) 2004; 53
Krssak (2022031209044428500_B38) 1999; 42
Toledo (2022031209044428500_B13) 2008; 57
Patti (2022031209044428500_B6) 2003; 100
Goodpaster (2022031209044428500_B11) 2001; 86
Koopman (2022031209044428500_B28) 2001; 116
Galgani (2022031209044428500_B45) 2008; 57
Yokoyama (2022031209044428500_B49) 2008; 10
Naressi (2022031209044428500_B23) 2001; 12
Schrauwen (2022031209044428500_B31) 2006; 91
Mensink (2022031209044428500_B7) 2007; 31
(2022031209044428500_B12) 2009; 32
Tarnopolsky (2022031209044428500_B15) 2007; 292
Pan (2022031209044428500_B39) 1997; 46
17510710 - J Clin Invest. 2007 Jun;117(6):1679-89
18410564 - Diabetes Obes Metab. 2008 May;10(5):400-7
14602787 - J Clin Endocrinol Metab. 2003 Nov;88(11):5444-51
16385762 - Int J Obes (Lond). 2005 Sep;29 Suppl 2:S111-5
18653763 - FASEB J. 2008 Nov;22(11):3947-55
17510709 - J Clin Invest. 2007 Jun;117(6):1690-8
11390270 - MAGMA. 2001 May;12(2-3):141-52
10027589 - Diabetologia. 1999 Jan;42(1):113-6
16384852 - J Clin Endocrinol Metab. 2006 Apr;91(4):1520-5
14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71
17334651 - Diabetologia. 2007 Apr;50(4):790-6
15105904 - Reumatismo. 2004 Jan-Mar;56(1):9-14
17093944 - Diabetologia. 2007 Jan;50(1):113-20
4044103 - Int J Sports Med. 1985 Aug;6(4):197-201
18285553 - Diabetes. 2008 Apr;57(4):841-5
15165998 - Am J Physiol Endocrinol Metab. 2004 Sep;287(3):E558-65
43580 - Scand J Clin Lab Invest. 1979 Oct;39(6):551-8
9166669 - Diabetes. 1997 Jun;46(6):983-8
17095651 - Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1271-8
17287462 - Diabetes. 2007 May;56(5):1376-81
10905472 - Diabetes. 2000 May;49(5):677-83
12679446 - J Clin Endocrinol Metab. 2003 Apr;88(4):1610-6
6618956 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34
13833973 - Ann N Y Acad Sci. 1959 Sep 25;82:420-30
16120408 - Mitochondrion. 2004 Sep;4(5-6):491-501
11723073 - Diabetes. 2001 Dec;50(12):2870-3
9740495 - Diabetes Res Clin Pract. 1998 Jul;40 Suppl:S3-8
18625112 - Curr Diab Rep. 2008 Jun;8(3):173-8
19118286 - Diabetes Care. 2009 Jan;32 Suppl 1:S13-61
18252894 - Diabetes. 2008 Apr;57(4):987-94
9405214 - J Magn Reson. 1997 Nov;129(1):35-43
18678616 - Diabetes. 2008 Nov;57(11):2943-9
11479724 - Histochem Cell Biol. 2001 Jul;116(1):63-8
12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71
11739435 - J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61
16455084 - FEBS Lett. 2006 Feb 20;580(5):1371-5
7657022 - Diabetes. 1995 Sep;44(9):1010-20
17310221 - Int J Obes (Lond). 2007 Aug;31(8):1302-10
16089501 - PLoS Med. 2005 Sep;2(9):e233
13354513 - Adv Biol Med Phys. 1956;4:239-80
12679474 - J Clin Endocrinol Metab. 2003 Apr;88(4):1785-91
8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72
12808457 - Nat Genet. 2003 Jul;34(3):267-73
17472434 - PLoS Med. 2007 May;4(5):e154
2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8
15161742 - Diabetes. 2004 Jun;53(6):1412-7
17351150 - Diabetes. 2007 Jun;56(6):1592-9
1551495 - Diabetes. 1992 Mar;41(3):354-8
12351431 - Diabetes. 2002 Oct;51(10):2944-50
References_xml – volume: 117
  start-page: 1679
  year: 2007
  ident: 2022031209044428500_B42
  article-title: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance
  publication-title: J Clin Invest
  doi: 10.1172/JCI30565
– volume: 56
  start-page: 1376
  year: 2007
  ident: 2022031209044428500_B1
  article-title: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db06-0783
– volume: 39
  start-page: 551
  year: 1979
  ident: 2022031209044428500_B24
  article-title: Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen
  publication-title: Scand J Clin Lab Invest
  doi: 10.3109/00365517909108833
– volume: 50
  start-page: 790
  year: 2007
  ident: 2022031209044428500_B35
  article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0594-3
– volume: 50
  start-page: 113
  year: 2007
  ident: 2022031209044428500_B9
  article-title: Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0475-1
– volume: 8
  start-page: 173
  year: 2008
  ident: 2022031209044428500_B33
  article-title: Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus
  publication-title: Curr Diab Rep
  doi: 10.1007/s11892-008-0030-1
– volume: 116
  start-page: 63
  year: 2001
  ident: 2022031209044428500_B28
  article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids
  publication-title: Histochem Cell Biol
  doi: 10.1007/s004180100297
– volume: 22
  start-page: 3947
  year: 2008
  ident: 2022031209044428500_B34
  article-title: Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes
  publication-title: FASEB J
  doi: 10.1096/fj.08-112318
– volume: 41
  start-page: 354
  year: 1992
  ident: 2022031209044428500_B47
  article-title: Metformin normalizes nonoxidative glucose metabolism in insulin-resistant normoglycemic first-degree relatives of patients with NIDDM
  publication-title: Diabetes
  doi: 10.2337/diab.41.3.354
– volume: 55
  start-page: 628
  year: 1983
  ident: 2022031209044428500_B21
  article-title: Calculation of substrate oxidation rates in vivo from gaseous exchange
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1983.55.2.628
– volume: 580
  start-page: 1371
  year: 2006
  ident: 2022031209044428500_B29
  article-title: The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2006.01.059
– volume: 287
  start-page: E558
  year: 2004
  ident: 2022031209044428500_B40
  article-title: Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00464.2003
– volume: 10
  start-page: 400
  year: 2008
  ident: 2022031209044428500_B49
  article-title: Non-oxidative glucose disposal is reduced in type 2 diabetes, but can be restored by aerobic exercise
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2007.00716.x
– volume: 88
  start-page: 1610
  year: 2003
  ident: 2022031209044428500_B14
  article-title: The increase in intramyocellular lipid content is a very early response to training
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-021464
– volume: 350
  start-page: 664
  year: 2004
  ident: 2022031209044428500_B8
  article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa031314
– volume: 91
  start-page: 1520
  year: 2006
  ident: 2022031209044428500_B31
  article-title: Reduced skeletal muscle uncoupling protein-3 content in prediabetic subjects and type 2 diabetic patients: restoration by rosiglitazone treatment
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2005-1572
– volume: 4
  start-page: e154
  year: 2007
  ident: 2022031209044428500_B32
  article-title: Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0040154
– volume: 44
  start-page: 1010
  year: 1995
  ident: 2022031209044428500_B48
  article-title: Insulin-stimulated muscle glucose clearance in patients with NIDDM: effects of one-legged physical training
  publication-title: Diabetes
  doi: 10.2337/diab.44.9.1010
– volume: 56
  start-page: 1592
  year: 2007
  ident: 2022031209044428500_B36
  article-title: Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db06-0981
– volume: 6
  start-page: 197
  year: 1985
  ident: 2022031209044428500_B19
  article-title: Variability of aerobic performance in the laboratory and its physiologic correlates
  publication-title: Int J Sports Med
  doi: 10.1055/s-2008-1025839
– volume: 88
  start-page: 5444
  year: 2003
  ident: 2022031209044428500_B41
  article-title: Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2003-030791
– volume: 57
  start-page: 987
  year: 2008
  ident: 2022031209044428500_B13
  article-title: Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content
  publication-title: Diabetes
  doi: 10.2337/db07-1429
– volume: 100
  start-page: 8466
  year: 2003
  ident: 2022031209044428500_B6
  article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1032913100
– volume: 88
  start-page: 1785
  year: 2003
  ident: 2022031209044428500_B16
  article-title: Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-021674
– volume: 322
  start-page: 223
  year: 1990
  ident: 2022031209044428500_B46
  article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199001253220403
– volume: 51
  start-page: 2944
  year: 2002
  ident: 2022031209044428500_B4
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
– volume: 42
  start-page: 113
  year: 1999
  ident: 2022031209044428500_B38
  article-title: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study
  publication-title: Diabetologia
  doi: 10.1007/s001250051123
– volume: 117
  start-page: 1690
  year: 2007
  ident: 2022031209044428500_B43
  article-title: Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance
  publication-title: J Clin Invest
  doi: 10.1172/JCI30566
– volume: 86
  start-page: 5755
  year: 2001
  ident: 2022031209044428500_B11
  article-title: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.86.12.8075
– volume: 12
  start-page: 141
  year: 2001
  ident: 2022031209044428500_B23
  article-title: Java-based graphical user interface for the MRUI quantitation package
  publication-title: MAGMA
  doi: 10.1007/BF02668096
– volume: 2
  start-page: e233
  year: 2005
  ident: 2022031209044428500_B2
  article-title: Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0020233
– volume: 31
  start-page: 1302
  year: 2007
  ident: 2022031209044428500_B7
  article-title: Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus
  publication-title: Int J Obes (Lond)
  doi: 10.1038/sj.ijo.0803567
– volume: 49
  start-page: 677
  year: 2000
  ident: 2022031209044428500_B44
  article-title: Fuel selection in human skeletal muscle in insulin resistance: a reexamination
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.5.677
– volume: 56
  start-page: 9
  year: 2004
  ident: 2022031209044428500_B27
  article-title: P-31 magnetic resonance spectroscopy: a tool for diagnostic purposes and pathophysiological insights in muscle diseases
  publication-title: Reumatismo
– volume: 129
  start-page: 35
  year: 1997
  ident: 2022031209044428500_B22
  article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge
  publication-title: J Magn Reson
  doi: 10.1006/jmre.1997.1244
– volume: 32
  start-page: S13
  year: 2009
  ident: 2022031209044428500_B12
  article-title: Standards of medical care in diabetes—2009
  publication-title: Diabetes Care
  doi: 10.2337/dc09-S013
– volume: 53
  start-page: 1412
  year: 2004
  ident: 2022031209044428500_B37
  article-title: Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.6.1412
– volume: 46
  start-page: 983
  year: 1997
  ident: 2022031209044428500_B39
  article-title: Skeletal muscle triglyceride levels are inversely related to insulin action
  publication-title: Diabetes
  doi: 10.2337/diab.46.6.983
– volume: 29
  start-page: S111
  year: 2005
  ident: 2022031209044428500_B3
  article-title: Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes
  publication-title: Int J Obes (Lond)
  doi: 10.1038/sj.ijo.0803102
– volume: 40
  start-page: S3
  year: 1998
  ident: 2022031209044428500_B17
  article-title: Impaired glucose tolerance: what are the clinical implications?
  publication-title: Diabetes Res Clin Pract
  doi: 10.1016/S0168-8227(98)00035-7
– volume: 4
  start-page: 491
  year: 2004
  ident: 2022031209044428500_B26
  article-title: In vivo magnetic resonance spectroscopy in the evaluation of mitochondrial disorders
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2004.07.034
– volume: 6
  start-page: 66
  year: 1993
  ident: 2022031209044428500_B25
  article-title: Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle
  publication-title: NMR Biomed
  doi: 10.1002/nbm.1940060111
– volume: 34
  start-page: 267
  year: 2003
  ident: 2022031209044428500_B5
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng1180
– volume: 4
  start-page: 239
  year: 1956
  ident: 2022031209044428500_B18
  article-title: The gross composition of the body
  publication-title: Adv Biol Med Phys
  doi: 10.1016/B978-1-4832-3110-5.50011-X
– volume: 57
  start-page: 2943
  year: 2008
  ident: 2022031209044428500_B10
  article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db08-0391
– volume: 82
  start-page: 420
  year: 1959
  ident: 2022031209044428500_B20
  article-title: Influences of glucose loading and of injected insulin on hepatic glucose output
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1959.tb44923.x
– volume: 57
  start-page: 841
  year: 2008
  ident: 2022031209044428500_B45
  article-title: Metabolic flexibility in response to glucose is not impaired in people with type 2 diabetes after controlling for glucose disposal rate
  publication-title: Diabetes
  doi: 10.2337/db08-0043
– volume: 292
  start-page: R1271
  year: 2007
  ident: 2022031209044428500_B15
  article-title: Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity
  publication-title: Am J Physiol Regul Integr Comp Physiol
  doi: 10.1152/ajpregu.00472.2006
– volume: 50
  start-page: 2870
  year: 2001
  ident: 2022031209044428500_B30
  article-title: Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.12.2870
– reference: 13833973 - Ann N Y Acad Sci. 1959 Sep 25;82:420-30
– reference: 17095651 - Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1271-8
– reference: 9740495 - Diabetes Res Clin Pract. 1998 Jul;40 Suppl:S3-8
– reference: 16120408 - Mitochondrion. 2004 Sep;4(5-6):491-501
– reference: 7657022 - Diabetes. 1995 Sep;44(9):1010-20
– reference: 10905472 - Diabetes. 2000 May;49(5):677-83
– reference: 18653763 - FASEB J. 2008 Nov;22(11):3947-55
– reference: 15161742 - Diabetes. 2004 Jun;53(6):1412-7
– reference: 12351431 - Diabetes. 2002 Oct;51(10):2944-50
– reference: 17510710 - J Clin Invest. 2007 Jun;117(6):1679-89
– reference: 11739435 - J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61
– reference: 12679446 - J Clin Endocrinol Metab. 2003 Apr;88(4):1610-6
– reference: 17093944 - Diabetologia. 2007 Jan;50(1):113-20
– reference: 18252894 - Diabetes. 2008 Apr;57(4):987-94
– reference: 9405214 - J Magn Reson. 1997 Nov;129(1):35-43
– reference: 18678616 - Diabetes. 2008 Nov;57(11):2943-9
– reference: 16384852 - J Clin Endocrinol Metab. 2006 Apr;91(4):1520-5
– reference: 19118286 - Diabetes Care. 2009 Jan;32 Suppl 1:S13-61
– reference: 9166669 - Diabetes. 1997 Jun;46(6):983-8
– reference: 43580 - Scand J Clin Lab Invest. 1979 Oct;39(6):551-8
– reference: 18410564 - Diabetes Obes Metab. 2008 May;10(5):400-7
– reference: 18625112 - Curr Diab Rep. 2008 Jun;8(3):173-8
– reference: 8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72
– reference: 16455084 - FEBS Lett. 2006 Feb 20;580(5):1371-5
– reference: 14602787 - J Clin Endocrinol Metab. 2003 Nov;88(11):5444-51
– reference: 12679474 - J Clin Endocrinol Metab. 2003 Apr;88(4):1785-91
– reference: 12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71
– reference: 15165998 - Am J Physiol Endocrinol Metab. 2004 Sep;287(3):E558-65
– reference: 16089501 - PLoS Med. 2005 Sep;2(9):e233
– reference: 4044103 - Int J Sports Med. 1985 Aug;6(4):197-201
– reference: 10027589 - Diabetologia. 1999 Jan;42(1):113-6
– reference: 17334651 - Diabetologia. 2007 Apr;50(4):790-6
– reference: 17472434 - PLoS Med. 2007 May;4(5):e154
– reference: 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71
– reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73
– reference: 11723073 - Diabetes. 2001 Dec;50(12):2870-3
– reference: 16385762 - Int J Obes (Lond). 2005 Sep;29 Suppl 2:S111-5
– reference: 11479724 - Histochem Cell Biol. 2001 Jul;116(1):63-8
– reference: 17351150 - Diabetes. 2007 Jun;56(6):1592-9
– reference: 15105904 - Reumatismo. 2004 Jan-Mar;56(1):9-14
– reference: 13354513 - Adv Biol Med Phys. 1956;4:239-80
– reference: 17310221 - Int J Obes (Lond). 2007 Aug;31(8):1302-10
– reference: 18285553 - Diabetes. 2008 Apr;57(4):841-5
– reference: 6618956 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34
– reference: 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8
– reference: 17510709 - J Clin Invest. 2007 Jun;117(6):1690-8
– reference: 11390270 - MAGMA. 2001 May;12(2-3):141-52
– reference: 1551495 - Diabetes. 1992 Mar;41(3):354-8
– reference: 17287462 - Diabetes. 2007 May;56(5):1376-81
SSID ssj0006060
Score 2.4718485
Snippet Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes....
OBJECTIVE--Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type...
OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2...
SourceID wageningen
pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 572
SubjectTerms Adipose Tissue - metabolism
Biological and medical sciences
Blood Glucose - metabolism
Calorimetry, Indirect
Care and treatment
Complications and side effects
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - physiopathology
Diabetes Mellitus, Type 2 - therapy
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
enzyme-activity
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Exercise
Exercise Therapy - methods
Fats - metabolism
Glucose Clamp Technique
glucose disposal
Health aspects
human skeletal-muscle
Humans
Hyperinsulinism - metabolism
Hyperinsulinism - physiopathology
Insulin Resistance - physiology
intramyocellular lipid-content
Magnetic Resonance Spectroscopy
Male
Medical sciences
Middle Aged
Mitochondria - physiology
Mitochondrial diseases
Muscle, Skeletal - physiology
Muscles
Original
oxidative capacity
Phosphorus Isotopes
Risk factors
rosiglitazone treatment
Skeletal muscle
substrate oxidation
triglyceride synthesis
Type 2 diabetes
uncoupling protein-3 content
Title Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity
URI https://www.ncbi.nlm.nih.gov/pubmed/20028948
https://www.proquest.com/docview/216483286
https://www.proquest.com/docview/733690654
https://pubmed.ncbi.nlm.nih.gov/PMC2828651
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F407426
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swEBZbC6Mwxt6XtQtijG5fTBv5VZ9GF5K1Y-5KXyDfhC3JWSDIWZxQ8vf2y3YnKe7MyiAkBD-RrejudDqd7iHkA-dxxjju6iaJDqKMs6BMEwmOXKiZKqqysjHd_Dw5vYm-TeKJz81pfFrl1iZaQ61qiTHyIwZ-PUhflnxe_AqQNAo3Vz2DxkOyOwBHBJkb0km73joG39ydQBkwrMKZusJCLAzTI1UiC0DIWGc68kb58aJo4A-qHLPFfa7nvxmUe7eg_saeh_prfho_JU-8Y0lPnCQ8Iw-0eU4e5X7r_AX5fWk5ZOxA0Lqi-boBHM1Bo8ECGoWCSMcwy1lAYRTN9QokZD6TdIxVM20W7YbODMW1K2XUJ9M0tNzQkWduoteecoKeNfSiWCJTy1wrhIAlwgR4-JJvatwvwARYOi5W9Aqfa6rtTV2QA0BnLkmeXmGGvaO4eEluxqPr4WngCRwCmbJ4FaRxomTIVRJxCX6U5KpEfqxM86piSpdJGsWq0HERlarKAJWFZVbwuIJlGBYyC1-RHVMb_YZQFUYRK0GgohBex4orHauo4mksdaYGaY982o6jkL66OZJszAWscnDIBQ65wCHvkfctdOFKetwHOkRhEFgiw2AOjnRxHAH9G_4QJwws_SADiwitdYHTYt00Ivv6vQP66EFVDU8lC3_2AfqG5bc6yMMOcuqKj98HPOgAwSrIzuV-R4rbnjL0eUGPemR_K9bCm61GtErWI7S9ii1jJp7R9boRWD6T44nkHnntdOCuabttHUHTaUc7WgCWMu9eMbOftqQ5LvyTGJ46vNMjYZBNq7G_8iFNcbteCjPHD2inERFGdpK3_-3KPtlzGR-YN3hAdlbLtX4HjuSq7FtzAe_ZcNAnu19G5xeXfRvv-wMJKXno
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkGASQrxTNoaFYOxLtNVx3j4gNI2VljUDsU7qN5PETqlUOaVpVfVH8Sf4ZdzZaUZExbdJlarKT51Ydz6fz-d7CHkTRV7IIjzV9X3l8DBiThr4GThyrmIyydPcxHTjC797xT8PveEW-bW-C4NplWubaAy1LDKMkR8x8OtB-0L_w_Sng6RReLi6ZtCwWnGuVkvYsZXvex9BvG8Z65wNTrtORSrgZAHz5k7g-TJzI-nzKIO1PYtkipxNoYrynEmV-gH3ZKK8hKcyDwEVummYRF4OWwMsruVCv7fIbY4njDB9gmG9vzuGvYC98dJmWPUzsIWMmOsGRzJF1gGXscbyVy0C96ZJCQLJLZPGJlf334zNnSWYG23uX_21HnYekPuVI0tPrOY9JFtKPyJ34uqo_jH5_c1w1hjB0yKn8aIEHI3BgoDF1RIVn3ZgVTWAREsaqzlo5GSc0Q5W6TRZuys61hT3ypTRKnmnpOmKnlVMUXRQUVzQXkm_JjNkhpkoiRCwfJhwDz_iVYHnE5hwSzvJnF7ie42UeagNqgCoZ5Py6SVm9FtKjSfk6kZk-5Rs60Kr54RKl3OWggJzFz7HMpLKkzyPAi9ToWwHLXK4lqPIqmrqSOoxEbCrQpELFLlAkbfI6xo6tSVENoEOUBkEluTQmPOT2biRgPGdfhEnDFaWdggWGHprAkfJoixF-KnfAL2rQHkBb5Ul1V0LGBuW-2ogDxrIkS12vgm41wCCFcoazfsNLa5HytDHhnnbIrtrtRaVmSxFPalbhNat2DNm_mlVLEqB5TojvAHdIs_sHLju2hyTc-g6aMyOGoCl05stevzDlFDHQIPvwVu71_NIaGTvKs2_qhCqWC5mQk_wC_opBcdIkv_iv0N5Re52B3Ff9HsX57tkx2abYM7iHtmezxbqJTix83TfmA5Kvt-0rfoDX86zMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBddC6Uwxr6XtevE2Lq9mCzy90MZXRuvWess9AP6ptmWnAWCnMUJIf_e3vZf7c5S3JmFvRUCIegX2eJOd9LpdD9C3oahG7AQT3U9T1pOEDIr9b0MFnK2ZCLJ07yK6cZ97_Ta-Xrj3myQ36u7MJhWubKJlaEWRYYx8jaDdT1oX-C1c5MVMTiJPk1-WkgghQetKzaNxLAsiMOq2pi543EmlwvYzZWHvRMQ_TvGou7V8allCAeszGfuzPJdT2R2KDwnzMDvZ6FIkc8pkGGeMyFTz3dckUg3cVKRB4AK7DRIQjeHbQMW3rKh33tkywenD_vArc_d_uCidguwU9D3YToMa4L6uswRs22_LVLkJLAZazhH4yLuT5ISxJVrno11C-F_8zl3FmCMVHU76y9vGT0kD8wylx5pvXxENqR6TLZjc5D_hPy6qBhtKrWgRU7jeQk4GoN9AXusBE4LGoHPrQCJEjSWM9DX8SijEdbwrHJ6l3SkKO6kKaMmtaek6ZJ2DY8UvTIEGLRX0kEyRd6YsRQIAbuI6fjwI14WeHqB6bg0Smb0Et9rKKuH6pALgHo6ZZ9eYr6_Jtx4Sq7vRLrPyKYqlHxBqLAdh6Wg3o4Nn48iFNIVTh76biYD0fFb5MNKjjwztdaR8mPMYc-FIucoco4ib5E3NXSiC4ysAx2gMnAs2KFQ9zMdVeIwvuNv_IiB3-kEYJ-htyZwmMzLkgdfzhug9waUF_BWWWJuYsDYsBhYA3nQQA51KfR1wL0GEGxU1mjeb2hxPVKGK3CY1S2yu1Jrboxoyesp3yK0bsWeMS9QyWJecizmGeL96BZ5rufAbdfVIboDXfuN2VEDsLB6s0WNflQF1jEM4bnw1vbtPOIKub3K6l8mwMoX8ylXY_yCfkruYJzJe_nfobwm22C3-Hmvf7ZLdnQqCiY07pHN2XQuX8EKd5buG9tByfe7Nld_AIFrvgs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoration+of+muscle+mitochondrial+function+and+metabolic+flexibility+in+type+2+diabetes+by+exercise+training+is+paralleled+by+increased+myocellular+fat+storage+and+improved+insulin+sensitivity&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Meex%2C+Ruth+C.R&rft.au=Schrauwen-Hinderling%2C+Vera+B&rft.au=Moonen-Kornips%2C+Esther&rft.au=Schaart%2C+Gert&rft.date=2010-03-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=59&rft.issue=3&rft.spage=572&rft_id=info:doi/10.2337%2Fdb09-1322&rft.externalDocID=A221918031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon