Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity
Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eightee...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 59; no. 3; pp. 572 - 579 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
American Diabetes Association
01.03.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X 1939-327X |
DOI | 10.2337/db09-1322 |
Cover
Abstract | Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.
Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.
Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.
Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. |
---|---|
AbstractList | Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.OBJECTIVEMitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes.Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.RESEARCH DESIGN AND METHODSEighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training.Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.RESULTSMitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers.Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.CONCLUSIONSExercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. OBJECTIVE--Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS--Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and V[O.sub.2max] participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS--Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS--Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. Diabetes 59:572-579, 2010 OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo(2max) participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS-Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P <0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P <0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P <0.01 in control subjects and -52% in diabetic subjects; P <0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS-Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. Diabetes 59:572-579, 2010 Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. |
Audience | Professional |
Author | Moonen-Kornips, Esther van de Weijer, Tineke Sels, Jean-Pierre Meex, Ruth C.R. Schaart, Gert Schrauwen-Hinderling, Vera B. Mensink, Marco Phielix, Esther Schrauwen, Patrick Hesselink, Matthijs K.C. |
Author_xml | – sequence: 1 givenname: Ruth C.R. surname: Meex fullname: Meex, Ruth C.R. organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 2 givenname: Vera B. surname: Schrauwen-Hinderling fullname: Schrauwen-Hinderling, Vera B. organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands;, Department of Radiology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 3 givenname: Esther surname: Moonen-Kornips fullname: Moonen-Kornips, Esther organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands;, Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 4 givenname: Gert surname: Schaart fullname: Schaart, Gert organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 5 givenname: Marco surname: Mensink fullname: Mensink, Marco organization: Human Nutrition, Wageningen University, the Netherlands – sequence: 6 givenname: Esther surname: Phielix fullname: Phielix, Esther organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 7 givenname: Tineke surname: van de Weijer fullname: van de Weijer, Tineke organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 8 givenname: Jean-Pierre surname: Sels fullname: Sels, Jean-Pierre organization: Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 9 givenname: Patrick surname: Schrauwen fullname: Schrauwen, Patrick organization: Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands – sequence: 10 givenname: Matthijs K.C. surname: Hesselink fullname: Hesselink, Matthijs K.C. organization: Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22505328$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20028948$$D View this record in MEDLINE/PubMed |
BookMark | eNp9k1trFDEUxwep2Is--AUkKCI-bJvJXOODUGq3LnSp2Aq-hUzmzDYlm6zJTNv9en4yT7rb6mqRPITJ_M7_3HeTLessJMnLlO6zLKsO2obyUZox9iTZSXnGRxmrvm8lO5SmbJRWvNpOdkO4opSWeJ4l24xSVvO83kl-foXQOy977SxxHZkOQRkgU907dels67U0ZDxYdQdI25Ip9LJxRisyNnCrG210vyTakovlAggjn7RsoIdAmiU5vgWvdABy4aW22s7IJJAv0ktjwEAbkYlVHmTAj-nSKTBmMNKTsezJeYxrBndOJ_OFd9cITWwYDDo7Bxt0r6_R9_PkaSdNgBfrey_5Nj6-OPo8Oj07mRwdno5UxYp-VBVlqzLeljlXrEgVb5uyyFkNvOtYC01Z5UUroZB503Y1UnXW1JIXXc55XmZltpd8WOneYFQxGbDCypifcFILoxsv_VLcDF5YE6_F0ASR0ypn0fjjyhgf59AqsD1WQSy8nkejKLD5x-pLMXPXgtWsLosUBd6tBbz7MWDTxFyHWC9pwQ1BVFlWcooZIfn6L_LKDd5iaQRLy7zOUBChNytoJg0IbTuHXlWUFIeMpTytaRadjh6hMHHAEHEGO43PG_z-IzyeFuZaPWrwfsMAmR5u-5kcQhD1yen_glmzyuEwzUBgr4_ONvlXf5b8odb3w4_A2zUgg5Km89LGZj5wrKAFFgu5gxWnvAvBQyeU7u82BrPTRqRUxDUUcQ1FXMPfaT1Y3Iv-y_4C95MzFw |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1016_j_mehy_2019_01_013 crossref_primary_10_1016_j_pharmthera_2011_04_004 crossref_primary_10_1161_JAHA_124_035721 crossref_primary_10_1016_j_cmet_2023_12_008 crossref_primary_10_1123_kr_2021_0024 crossref_primary_10_3934_molsci_2016_4_479 crossref_primary_10_1139_apnm_2023_0315 crossref_primary_10_1007_s13679_021_00434_0 crossref_primary_10_1139_apnm_2017_0358 crossref_primary_10_1016_j_metabol_2022_155268 crossref_primary_10_1080_07435800_2017_1323914 crossref_primary_10_3390_ijms22126642 crossref_primary_10_1016_j_diabres_2012_06_006 crossref_primary_10_1080_13813455_2017_1391847 crossref_primary_10_1002_emmm_201000074 crossref_primary_10_1038_s41366_018_0068_3 crossref_primary_10_1093_molehr_gau042 crossref_primary_10_2337_db14_0667 crossref_primary_10_1016_j_jep_2019_112326 crossref_primary_10_1096_fj_14_263699 crossref_primary_10_1016_j_neubiorev_2015_09_012 crossref_primary_10_1016_j_drudis_2014_03_007 crossref_primary_10_2337_dc18_0296 crossref_primary_10_1002_mnfr_201300747 crossref_primary_10_3390_ijms23169252 crossref_primary_10_1016_j_clnu_2011_02_009 crossref_primary_10_1159_000527227 crossref_primary_10_1152_ajpendo_00272_2012 crossref_primary_10_1371_journal_pone_0057494 crossref_primary_10_1080_14789450_2018_1528147 crossref_primary_10_1152_ajpcell_00144_2024 crossref_primary_10_1111_joim_12729 crossref_primary_10_3390_cells8030237 crossref_primary_10_2337_dc11_1426 crossref_primary_10_1152_ajpendo_00142_2017 crossref_primary_10_14814_phy2_13063 crossref_primary_10_1007_s41048_015_0013_0 crossref_primary_10_1093_ptj_pzab162 crossref_primary_10_1139_apnm_2020_0943 crossref_primary_10_1155_2020_8819627 crossref_primary_10_1016_j_cmet_2011_10_002 crossref_primary_10_1139_bcb_2015_0012 crossref_primary_10_1136_bjsports_2016_096724 crossref_primary_10_1371_journal_pone_0287412 crossref_primary_10_1016_j_plipres_2011_11_003 crossref_primary_10_1155_2012_983814 crossref_primary_10_1007_s00125_016_4068_3 crossref_primary_10_14814_phy2_14189 crossref_primary_10_1111_apha_13032 crossref_primary_10_3390_ijms25126321 crossref_primary_10_1038_nrd4023 crossref_primary_10_1177_1479164112459664 crossref_primary_10_1210_jc_2012_3874 crossref_primary_10_1007_s00125_020_05335_w crossref_primary_10_1152_ajpendo_00126_2018 crossref_primary_10_1152_ajpendo_00093_2023 crossref_primary_10_2337_db12_0466 crossref_primary_10_1038_s41467_022_31249_9 crossref_primary_10_1007_s40200_020_00611_3 crossref_primary_10_1152_ajpendo_00143_2023 crossref_primary_10_1016_j_smrv_2017_01_001 crossref_primary_10_1113_JP285523 crossref_primary_10_1186_s12920_020_00784_z crossref_primary_10_3389_fendo_2020_00567 crossref_primary_10_3390_sports9090121 crossref_primary_10_1172_JCI46069 crossref_primary_10_1152_japplphysiol_00148_2022 crossref_primary_10_2337_db23_0432 crossref_primary_10_1002_dmrr_3099 crossref_primary_10_18632_aging_203051 crossref_primary_10_1007_s00125_020_05170_z crossref_primary_10_2337_dc24_0470 crossref_primary_10_1007_s00125_011_2442_8 crossref_primary_10_1210_js_2017_00092 crossref_primary_10_1152_physiolgenomics_00014_2019 crossref_primary_10_2139_ssrn_3944597 crossref_primary_10_1152_ajpendo_00238_2010 crossref_primary_10_1002_dmrr_1025 crossref_primary_10_1016_j_molmet_2017_08_007 crossref_primary_10_20945_2359_4292_2023_0040 crossref_primary_10_1155_2015_592915 crossref_primary_10_1016_j_molmet_2018_01_022 crossref_primary_10_3390_ijms20215271 crossref_primary_10_1139_apnm_2015_0258 crossref_primary_10_1016_j_yexcr_2015_10_023 crossref_primary_10_3389_fendo_2020_566548 crossref_primary_10_1210_endrev_bnab038 crossref_primary_10_1002_jcp_22812 crossref_primary_10_1007_s40279_018_0936_y crossref_primary_10_1152_ajpcell_00146_2022 crossref_primary_10_1371_journal_pone_0187554 crossref_primary_10_1016_j_cmet_2024_02_014 crossref_primary_10_3390_nu15051217 crossref_primary_10_3389_fphys_2019_00532 crossref_primary_10_1007_s10735_023_10158_1 crossref_primary_10_1139_cjpp_2015_0020 crossref_primary_10_1007_s00421_018_3818_y crossref_primary_10_1089_ars_2015_6291 crossref_primary_10_2337_db13_0303 crossref_primary_10_1002_oby_22783 crossref_primary_10_14814_phy2_14503 crossref_primary_10_1016_j_bbadis_2018_09_013 crossref_primary_10_3390_ijms21155374 crossref_primary_10_1096_fj_201500100R crossref_primary_10_1007_s13410_022_01056_5 crossref_primary_10_1038_nrendo_2011_158 crossref_primary_10_1152_ajpendo_00266_2017 crossref_primary_10_1158_1055_9965_EPI_21_1449 crossref_primary_10_1152_ajpregu_00409_2012 crossref_primary_10_1371_journal_pone_0051648 crossref_primary_10_1210_en_2013_1382 crossref_primary_10_1016_j_lfs_2022_120467 crossref_primary_10_1007_s00394_025_03585_1 crossref_primary_10_1016_j_clinthera_2017_05_001 crossref_primary_10_1002_pbc_31369 crossref_primary_10_1016_j_molmet_2017_10_006 crossref_primary_10_14814_phy2_14416 crossref_primary_10_1007_s00125_010_1764_2 crossref_primary_10_1002_14651858_CD011340 crossref_primary_10_1148_radiol_13121631 crossref_primary_10_3810_psm_2011_05_1899 crossref_primary_10_3810_psm_2011_05_1898 crossref_primary_10_1089_ars_2017_7313 crossref_primary_10_1242_jeb_167015 crossref_primary_10_1113_JP287589 crossref_primary_10_1038_s41366_021_00815_4 crossref_primary_10_3389_fendo_2020_00120 crossref_primary_10_1007_s11357_023_00855_w crossref_primary_10_1016_j_bcp_2015_06_032 crossref_primary_10_3109_10409238_2014_931337 crossref_primary_10_1007_s00125_010_1813_x crossref_primary_10_1210_clinem_dgaa571 crossref_primary_10_1249_MSS_0000000000001041 crossref_primary_10_3390_ijms20081850 crossref_primary_10_1007_s00125_021_05558_5 crossref_primary_10_1038_s41598_023_42072_7 crossref_primary_10_1111_ijpo_12123 crossref_primary_10_1016_j_xcrm_2022_100633 crossref_primary_10_1152_ajpregu_00127_2019 crossref_primary_10_1111_apha_12307 crossref_primary_10_1016_j_mam_2024_101277 crossref_primary_10_1016_j_bbadis_2016_11_010 crossref_primary_10_1210_jc_2011_3454 crossref_primary_10_1017_S0029665113003856 crossref_primary_10_1007_s00125_021_05535_y crossref_primary_10_1038_nrendo_2011_138 crossref_primary_10_1113_JP280603 crossref_primary_10_2337_db15_0675 crossref_primary_10_1016_j_molmet_2018_08_004 crossref_primary_10_1007_s00125_016_3885_8 crossref_primary_10_1007_s00421_022_04929_z crossref_primary_10_1038_s41598_020_67431_6 crossref_primary_10_1111_micc_12517 crossref_primary_10_1007_s00125_020_05166_9 crossref_primary_10_2337_dc12_0204 crossref_primary_10_1519_JSC_0000000000000624 crossref_primary_10_1152_physiolgenomics_00174_2013 crossref_primary_10_1007_s00125_020_05128_1 crossref_primary_10_1016_j_metabol_2013_04_001 crossref_primary_10_7717_peerj_11485 crossref_primary_10_2337_db11_1402 crossref_primary_10_1038_s41467_021_21813_0 crossref_primary_10_1152_ajpendo_00278_2011 crossref_primary_10_1016_j_molmet_2025_102116 crossref_primary_10_14814_phy2_14669 crossref_primary_10_1016_j_tem_2012_05_007 crossref_primary_10_2337_dc16_0499 crossref_primary_10_1007_s40618_021_01551_2 crossref_primary_10_1152_ajpendo_00221_2011 crossref_primary_10_1186_1743_7075_10_8 crossref_primary_10_1152_japplphysiol_00952_2020 crossref_primary_10_3109_13813455_2011_584538 crossref_primary_10_1016_j_freeradbiomed_2016_01_006 crossref_primary_10_1152_japplphysiol_00496_2018 crossref_primary_10_1042_CS20100153 crossref_primary_10_2337_db11_1832 crossref_primary_10_1111_nyas_12185 crossref_primary_10_1080_23328940_2015_1131506 crossref_primary_10_1038_srep35047 crossref_primary_10_3390_ijms25094889 crossref_primary_10_1172_jci_insight_127928 crossref_primary_10_1007_s11306_014_0701_7 crossref_primary_10_1007_s11154_011_9168_2 crossref_primary_10_1152_ajpcell_00035_2022 crossref_primary_10_14814_phy2_12835 crossref_primary_10_1152_ajpendo_00161_2018 crossref_primary_10_1007_s00125_020_05315_0 crossref_primary_10_1124_jpet_123_001733 crossref_primary_10_2337_dc14_2813 crossref_primary_10_3390_cells10113013 crossref_primary_10_1152_advan_00080_2014 crossref_primary_10_1038_nrendo_2016_104 crossref_primary_10_3390_medicina59071320 crossref_primary_10_1152_ajpgi_00179_2013 crossref_primary_10_1152_ajpendo_00091_2024 crossref_primary_10_1007_s00125_012_2513_5 crossref_primary_10_1002_dmrr_2601 crossref_primary_10_1111_obr_12862 crossref_primary_10_1016_j_molmet_2022_101620 crossref_primary_10_3390_ijms21186948 crossref_primary_10_1002_jcb_26139 crossref_primary_10_1249_MSS_0000000000000316 crossref_primary_10_1021_acschembio_2c00720 crossref_primary_10_1016_j_biocel_2012_09_019 crossref_primary_10_1080_09613218_2017_1307647 crossref_primary_10_1038_nm_3891 crossref_primary_10_1371_journal_pone_0053887 crossref_primary_10_1507_endocrj_EJ21_0589 crossref_primary_10_1111_obr_12719 crossref_primary_10_14814_phy2_12187 crossref_primary_10_1136_bjsports_2015_095179 crossref_primary_10_1016_j_smhs_2025_02_010 crossref_primary_10_1080_09168451_2015_1062715 crossref_primary_10_18632_oncotarget_11267 crossref_primary_10_1016_j_taap_2017_11_016 crossref_primary_10_1016_j_bbadis_2014_11_012 crossref_primary_10_1016_j_bbalip_2017_05_011 crossref_primary_10_4161_adip_19132 crossref_primary_10_3390_biology8020033 crossref_primary_10_1152_ajpendo_00314_2018 crossref_primary_10_1194_jlr_P028910 crossref_primary_10_1186_1475_2840_10_75 crossref_primary_10_2337_db11_1725 crossref_primary_10_2337_dbi18_0042 crossref_primary_10_1007_s00125_016_4037_x crossref_primary_10_1152_japplphysiol_01591_2011 crossref_primary_10_1007_s00125_018_4618_y crossref_primary_10_1016_j_bbabio_2016_07_008 crossref_primary_10_1038_s41598_021_98792_1 crossref_primary_10_2337_db23_0142 crossref_primary_10_1016_S0140_6736_11_61892_8 crossref_primary_10_1586_eem_10_21 crossref_primary_10_1016_j_nupar_2011_07_003 crossref_primary_10_1249_MSS_0000000000002516 crossref_primary_10_1016_j_mce_2013_06_018 crossref_primary_10_1002_oby_22826 crossref_primary_10_1111_obr_13131 |
Cites_doi | 10.1172/JCI30565 10.2337/db06-0783 10.3109/00365517909108833 10.1007/s00125-007-0594-3 10.1007/s00125-006-0475-1 10.1007/s11892-008-0030-1 10.1007/s004180100297 10.1096/fj.08-112318 10.2337/diab.41.3.354 10.1152/jappl.1983.55.2.628 10.1016/j.febslet.2006.01.059 10.1152/ajpendo.00464.2003 10.1111/j.1463-1326.2007.00716.x 10.1210/jc.2002-021464 10.1056/NEJMoa031314 10.1210/jc.2005-1572 10.1371/journal.pmed.0040154 10.2337/diab.44.9.1010 10.2337/db06-0981 10.1055/s-2008-1025839 10.1210/jc.2003-030791 10.2337/db07-1429 10.1073/pnas.1032913100 10.1210/jc.2002-021674 10.1056/NEJM199001253220403 10.2337/diabetes.51.10.2944 10.1007/s001250051123 10.1172/JCI30566 10.1210/jcem.86.12.8075 10.1007/BF02668096 10.1371/journal.pmed.0020233 10.1038/sj.ijo.0803567 10.2337/diabetes.49.5.677 10.1006/jmre.1997.1244 10.2337/dc09-S013 10.2337/diabetes.53.6.1412 10.2337/diab.46.6.983 10.1038/sj.ijo.0803102 10.1016/S0168-8227(98)00035-7 10.1016/j.mito.2004.07.034 10.1002/nbm.1940060111 10.1038/ng1180 10.1016/B978-1-4832-3110-5.50011-X 10.2337/db08-0391 10.1111/j.1749-6632.1959.tb44923.x 10.2337/db08-0043 10.1152/ajpregu.00472.2006 10.2337/diabetes.50.12.2870 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2010 American Diabetes Association COPYRIGHT 2010 American Diabetes Association Copyright American Diabetes Association Mar 2010 2010 by the American Diabetes Association. Wageningen University & Research |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 American Diabetes Association – notice: COPYRIGHT 2010 American Diabetes Association – notice: Copyright American Diabetes Association Mar 2010 – notice: 2010 by the American Diabetes Association. – notice: Wageningen University & Research |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 8GL 3V. 7RV 7X7 7XB 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. KB0 LK8 M0R M0S M1P M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U S0X 7X8 5PM QVL |
DOI | 10.2337/db09-1322 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: High School ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Consumer Health Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Research Library Science Database Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 579 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_407426 PMC2828651 1995143111 A221918031 20028948 22505328 10_2337_db09_1322 |
Genre | Research Support, Non-U.S. Gov't Controlled Clinical Trial Journal Article |
GeographicLocations | Netherlands |
GeographicLocations_xml | – name: Netherlands |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 7RV 7X7 88E 88I 8AF 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8GL 8R4 8R5 AAFWJ AAKAS AAQQT AAWTL AAYEP AAYJJ AAYOK AAYXX ABOCM ABUWG ACGFO ACGOD ACPRK ADBBV ADGHP ADZCM AEGXH AENEX AERZD AFKRA AHMBA AIAGR AIZAD ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BAWUL BBNVY BCR BCU BEC BENPR BES BHPHI BKEYQ BKNYI BLC BPHCQ BTFSW BVXVI C1A CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EDB EJD EMOBN EX3 F5P FRP FYUFA GICCO GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HZ~ H~9 IAG IAO IEA IHR INH INR IOF IPO ITC K-O K2M K9- KQ8 L7B LK8 M0R M1P M2O M2P M2Q M5~ M7P N4W NAPCQ O5R O5S O9- OB3 OHH OK1 OVD P2P PCD PEA PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RHI RPM S0X SJFOW SJN SV3 TDI TEORI TR2 UKHRP VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 8F7 AFFNX AI. IQODW J5H MVM PJZUB PPXIY PQGLB VH1 XOL YQJ ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM 08R ABFLS ABPTK ACEMF AFHIN BBAFP PADUT QVL RHF UMP ZA5 |
ID | FETCH-LOGICAL-c725t-756dc39d649c251c9db65428e9ff2deb6745dae5a4bdf864983b8a95f49946363 |
IEDL.DBID | 7X7 |
ISSN | 0012-1797 1939-327X |
IngestDate | Thu Oct 13 09:30:14 EDT 2022 Thu Aug 21 18:13:23 EDT 2025 Fri Sep 05 04:38:40 EDT 2025 Fri Jul 25 19:34:00 EDT 2025 Tue Jun 17 21:13:26 EDT 2025 Thu Jun 12 23:54:54 EDT 2025 Tue Jun 10 20:36:23 EDT 2025 Fri Jun 27 03:50:41 EDT 2025 Tue Jun 10 19:57:14 EDT 2025 Thu Apr 03 06:55:09 EDT 2025 Mon Jul 21 09:13:33 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 03:04:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Endocrinopathy Type 2 diabetes Physical exercise Pancreatic hormone Mitochondria Sensitivity Storage Restoration Metabolic diseases Muscle Insulin |
Language | English |
License | CC BY 4.0 Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c725t-756dc39d649c251c9db65428e9ff2deb6745dae5a4bdf864983b8a95f49946363 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2828651 |
PMID | 20028948 |
PQID | 216483286 |
PQPubID | 34443 |
PageCount | 8 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_407426 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2828651 proquest_miscellaneous_733690654 proquest_journals_216483286 gale_infotracmisc_A221918031 gale_infotracgeneralonefile_A221918031 gale_infotracacademiconefile_A221918031 gale_incontextgauss_8GL_A221918031 gale_incontextcollege_GICCO_A221918031 pubmed_primary_20028948 pascalfrancis_primary_22505328 crossref_citationtrail_10_2337_db09_1322 crossref_primary_10_2337_db09_1322 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-03-01 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2010 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | van Loon (2022031209044428500_B40) 2004; 287 Liu (2022031209044428500_B42) 2007; 117 Widen (2022031209044428500_B47) 1992; 41 Petersen (2022031209044428500_B8) 2004; 350 Steele (2022031209044428500_B20) 1959; 82 Bruce (2022031209044428500_B41) 2003; 88 Kemp (2022031209044428500_B25) 1993; 6 Kuipers (2022031209044428500_B19) 1985; 6 Kelley (2022031209044428500_B44) 2000; 49 Roden (2022031209044428500_B3) 2005; 29 Boushel (2022031209044428500_B35) 2007; 50 De Feyter (2022031209044428500_B34) 2008; 22 Petersen (2022031209044428500_B2) 2005; 2 Kelley (2022031209044428500_B4) 2002; 51 Dela (2022031209044428500_B48) 1995; 44 Befroy (2022031209044428500_B1) 2007; 56 Schrauwen-Hinderling (2022031209044428500_B14) 2003; 88 Frayn (2022031209044428500_B21) 1983; 55 Schrauwen-Hinderling (2022031209044428500_B9) 2007; 50 Arias-Mendoza (2022031209044428500_B26) 2004; 4 Mogensen (2022031209044428500_B36) 2007; 56 Mattei (2022031209044428500_B27) 2004; 56 Szendroedi (2022031209044428500_B32) 2007; 4 Thamer (2022031209044428500_B16) 2003; 88 Siri (2022031209044428500_B18) 1956; 4 Mootha (2022031209044428500_B5) 2003; 34 Schenk (2022031209044428500_B43) 2007; 117 Vanhamme (2022031209044428500_B22) 1997; 129 Alberti (2022031209044428500_B17) 1998; 40 Sahlin (2022031209044428500_B24) 1979; 39 Shulman (2022031209044428500_B46) 1990; 322 Abdul-Ghani (2022031209044428500_B33) 2008; 8 Schrauwen (2022031209044428500_B30) 2001; 50 Phielix (2022031209044428500_B10) 2008; 57 Hoeks (2022031209044428500_B29) 2006; 580 Schrauwen (2022031209044428500_B37) 2004; 53 Krssak (2022031209044428500_B38) 1999; 42 Toledo (2022031209044428500_B13) 2008; 57 Patti (2022031209044428500_B6) 2003; 100 Goodpaster (2022031209044428500_B11) 2001; 86 Koopman (2022031209044428500_B28) 2001; 116 Galgani (2022031209044428500_B45) 2008; 57 Yokoyama (2022031209044428500_B49) 2008; 10 Naressi (2022031209044428500_B23) 2001; 12 Schrauwen (2022031209044428500_B31) 2006; 91 Mensink (2022031209044428500_B7) 2007; 31 (2022031209044428500_B12) 2009; 32 Tarnopolsky (2022031209044428500_B15) 2007; 292 Pan (2022031209044428500_B39) 1997; 46 17510710 - J Clin Invest. 2007 Jun;117(6):1679-89 18410564 - Diabetes Obes Metab. 2008 May;10(5):400-7 14602787 - J Clin Endocrinol Metab. 2003 Nov;88(11):5444-51 16385762 - Int J Obes (Lond). 2005 Sep;29 Suppl 2:S111-5 18653763 - FASEB J. 2008 Nov;22(11):3947-55 17510709 - J Clin Invest. 2007 Jun;117(6):1690-8 11390270 - MAGMA. 2001 May;12(2-3):141-52 10027589 - Diabetologia. 1999 Jan;42(1):113-6 16384852 - J Clin Endocrinol Metab. 2006 Apr;91(4):1520-5 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71 17334651 - Diabetologia. 2007 Apr;50(4):790-6 15105904 - Reumatismo. 2004 Jan-Mar;56(1):9-14 17093944 - Diabetologia. 2007 Jan;50(1):113-20 4044103 - Int J Sports Med. 1985 Aug;6(4):197-201 18285553 - Diabetes. 2008 Apr;57(4):841-5 15165998 - Am J Physiol Endocrinol Metab. 2004 Sep;287(3):E558-65 43580 - Scand J Clin Lab Invest. 1979 Oct;39(6):551-8 9166669 - Diabetes. 1997 Jun;46(6):983-8 17095651 - Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1271-8 17287462 - Diabetes. 2007 May;56(5):1376-81 10905472 - Diabetes. 2000 May;49(5):677-83 12679446 - J Clin Endocrinol Metab. 2003 Apr;88(4):1610-6 6618956 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34 13833973 - Ann N Y Acad Sci. 1959 Sep 25;82:420-30 16120408 - Mitochondrion. 2004 Sep;4(5-6):491-501 11723073 - Diabetes. 2001 Dec;50(12):2870-3 9740495 - Diabetes Res Clin Pract. 1998 Jul;40 Suppl:S3-8 18625112 - Curr Diab Rep. 2008 Jun;8(3):173-8 19118286 - Diabetes Care. 2009 Jan;32 Suppl 1:S13-61 18252894 - Diabetes. 2008 Apr;57(4):987-94 9405214 - J Magn Reson. 1997 Nov;129(1):35-43 18678616 - Diabetes. 2008 Nov;57(11):2943-9 11479724 - Histochem Cell Biol. 2001 Jul;116(1):63-8 12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71 11739435 - J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61 16455084 - FEBS Lett. 2006 Feb 20;580(5):1371-5 7657022 - Diabetes. 1995 Sep;44(9):1010-20 17310221 - Int J Obes (Lond). 2007 Aug;31(8):1302-10 16089501 - PLoS Med. 2005 Sep;2(9):e233 13354513 - Adv Biol Med Phys. 1956;4:239-80 12679474 - J Clin Endocrinol Metab. 2003 Apr;88(4):1785-91 8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72 12808457 - Nat Genet. 2003 Jul;34(3):267-73 17472434 - PLoS Med. 2007 May;4(5):e154 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8 15161742 - Diabetes. 2004 Jun;53(6):1412-7 17351150 - Diabetes. 2007 Jun;56(6):1592-9 1551495 - Diabetes. 1992 Mar;41(3):354-8 12351431 - Diabetes. 2002 Oct;51(10):2944-50 |
References_xml | – volume: 117 start-page: 1679 year: 2007 ident: 2022031209044428500_B42 article-title: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance publication-title: J Clin Invest doi: 10.1172/JCI30565 – volume: 56 start-page: 1376 year: 2007 ident: 2022031209044428500_B1 article-title: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients publication-title: Diabetes doi: 10.2337/db06-0783 – volume: 39 start-page: 551 year: 1979 ident: 2022031209044428500_B24 article-title: Resynthesis of creatine phosphate in human muscle after exercise in relation to intramuscular pH and availability of oxygen publication-title: Scand J Clin Lab Invest doi: 10.3109/00365517909108833 – volume: 50 start-page: 790 year: 2007 ident: 2022031209044428500_B35 article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-007-0594-3 – volume: 50 start-page: 113 year: 2007 ident: 2022031209044428500_B9 article-title: Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects publication-title: Diabetologia doi: 10.1007/s00125-006-0475-1 – volume: 8 start-page: 173 year: 2008 ident: 2022031209044428500_B33 article-title: Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus publication-title: Curr Diab Rep doi: 10.1007/s11892-008-0030-1 – volume: 116 start-page: 63 year: 2001 ident: 2022031209044428500_B28 article-title: Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids publication-title: Histochem Cell Biol doi: 10.1007/s004180100297 – volume: 22 start-page: 3947 year: 2008 ident: 2022031209044428500_B34 article-title: Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes publication-title: FASEB J doi: 10.1096/fj.08-112318 – volume: 41 start-page: 354 year: 1992 ident: 2022031209044428500_B47 article-title: Metformin normalizes nonoxidative glucose metabolism in insulin-resistant normoglycemic first-degree relatives of patients with NIDDM publication-title: Diabetes doi: 10.2337/diab.41.3.354 – volume: 55 start-page: 628 year: 1983 ident: 2022031209044428500_B21 article-title: Calculation of substrate oxidation rates in vivo from gaseous exchange publication-title: J Appl Physiol doi: 10.1152/jappl.1983.55.2.628 – volume: 580 start-page: 1371 year: 2006 ident: 2022031209044428500_B29 article-title: The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice publication-title: FEBS Lett doi: 10.1016/j.febslet.2006.01.059 – volume: 287 start-page: E558 year: 2004 ident: 2022031209044428500_B40 article-title: Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00464.2003 – volume: 10 start-page: 400 year: 2008 ident: 2022031209044428500_B49 article-title: Non-oxidative glucose disposal is reduced in type 2 diabetes, but can be restored by aerobic exercise publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2007.00716.x – volume: 88 start-page: 1610 year: 2003 ident: 2022031209044428500_B14 article-title: The increase in intramyocellular lipid content is a very early response to training publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2002-021464 – volume: 350 start-page: 664 year: 2004 ident: 2022031209044428500_B8 article-title: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa031314 – volume: 91 start-page: 1520 year: 2006 ident: 2022031209044428500_B31 article-title: Reduced skeletal muscle uncoupling protein-3 content in prediabetic subjects and type 2 diabetic patients: restoration by rosiglitazone treatment publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2005-1572 – volume: 4 start-page: e154 year: 2007 ident: 2022031209044428500_B32 article-title: Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes publication-title: PLoS Med doi: 10.1371/journal.pmed.0040154 – volume: 44 start-page: 1010 year: 1995 ident: 2022031209044428500_B48 article-title: Insulin-stimulated muscle glucose clearance in patients with NIDDM: effects of one-legged physical training publication-title: Diabetes doi: 10.2337/diab.44.9.1010 – volume: 56 start-page: 1592 year: 2007 ident: 2022031209044428500_B36 article-title: Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/db06-0981 – volume: 6 start-page: 197 year: 1985 ident: 2022031209044428500_B19 article-title: Variability of aerobic performance in the laboratory and its physiologic correlates publication-title: Int J Sports Med doi: 10.1055/s-2008-1025839 – volume: 88 start-page: 5444 year: 2003 ident: 2022031209044428500_B41 article-title: Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2003-030791 – volume: 57 start-page: 987 year: 2008 ident: 2022031209044428500_B13 article-title: Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content publication-title: Diabetes doi: 10.2337/db07-1429 – volume: 100 start-page: 8466 year: 2003 ident: 2022031209044428500_B6 article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1032913100 – volume: 88 start-page: 1785 year: 2003 ident: 2022031209044428500_B16 article-title: Intramyocellular lipids: anthropometric determinants and relationships with maximal aerobic capacity and insulin sensitivity publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2002-021674 – volume: 322 start-page: 223 year: 1990 ident: 2022031209044428500_B46 article-title: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy publication-title: N Engl J Med doi: 10.1056/NEJM199001253220403 – volume: 51 start-page: 2944 year: 2002 ident: 2022031209044428500_B4 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 – volume: 42 start-page: 113 year: 1999 ident: 2022031209044428500_B38 article-title: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study publication-title: Diabetologia doi: 10.1007/s001250051123 – volume: 117 start-page: 1690 year: 2007 ident: 2022031209044428500_B43 article-title: Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance publication-title: J Clin Invest doi: 10.1172/JCI30566 – volume: 86 start-page: 5755 year: 2001 ident: 2022031209044428500_B11 article-title: Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.86.12.8075 – volume: 12 start-page: 141 year: 2001 ident: 2022031209044428500_B23 article-title: Java-based graphical user interface for the MRUI quantitation package publication-title: MAGMA doi: 10.1007/BF02668096 – volume: 2 start-page: e233 year: 2005 ident: 2022031209044428500_B2 article-title: Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents publication-title: PLoS Med doi: 10.1371/journal.pmed.0020233 – volume: 31 start-page: 1302 year: 2007 ident: 2022031209044428500_B7 article-title: Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus publication-title: Int J Obes (Lond) doi: 10.1038/sj.ijo.0803567 – volume: 49 start-page: 677 year: 2000 ident: 2022031209044428500_B44 article-title: Fuel selection in human skeletal muscle in insulin resistance: a reexamination publication-title: Diabetes doi: 10.2337/diabetes.49.5.677 – volume: 56 start-page: 9 year: 2004 ident: 2022031209044428500_B27 article-title: P-31 magnetic resonance spectroscopy: a tool for diagnostic purposes and pathophysiological insights in muscle diseases publication-title: Reumatismo – volume: 129 start-page: 35 year: 1997 ident: 2022031209044428500_B22 article-title: Improved method for accurate and efficient quantification of MRS data with use of prior knowledge publication-title: J Magn Reson doi: 10.1006/jmre.1997.1244 – volume: 32 start-page: S13 year: 2009 ident: 2022031209044428500_B12 article-title: Standards of medical care in diabetes—2009 publication-title: Diabetes Care doi: 10.2337/dc09-S013 – volume: 53 start-page: 1412 year: 2004 ident: 2022031209044428500_B37 article-title: Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.53.6.1412 – volume: 46 start-page: 983 year: 1997 ident: 2022031209044428500_B39 article-title: Skeletal muscle triglyceride levels are inversely related to insulin action publication-title: Diabetes doi: 10.2337/diab.46.6.983 – volume: 29 start-page: S111 year: 2005 ident: 2022031209044428500_B3 article-title: Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes publication-title: Int J Obes (Lond) doi: 10.1038/sj.ijo.0803102 – volume: 40 start-page: S3 year: 1998 ident: 2022031209044428500_B17 article-title: Impaired glucose tolerance: what are the clinical implications? publication-title: Diabetes Res Clin Pract doi: 10.1016/S0168-8227(98)00035-7 – volume: 4 start-page: 491 year: 2004 ident: 2022031209044428500_B26 article-title: In vivo magnetic resonance spectroscopy in the evaluation of mitochondrial disorders publication-title: Mitochondrion doi: 10.1016/j.mito.2004.07.034 – volume: 6 start-page: 66 year: 1993 ident: 2022031209044428500_B25 article-title: Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle publication-title: NMR Biomed doi: 10.1002/nbm.1940060111 – volume: 34 start-page: 267 year: 2003 ident: 2022031209044428500_B5 article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat Genet doi: 10.1038/ng1180 – volume: 4 start-page: 239 year: 1956 ident: 2022031209044428500_B18 article-title: The gross composition of the body publication-title: Adv Biol Med Phys doi: 10.1016/B978-1-4832-3110-5.50011-X – volume: 57 start-page: 2943 year: 2008 ident: 2022031209044428500_B10 article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients publication-title: Diabetes doi: 10.2337/db08-0391 – volume: 82 start-page: 420 year: 1959 ident: 2022031209044428500_B20 article-title: Influences of glucose loading and of injected insulin on hepatic glucose output publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1959.tb44923.x – volume: 57 start-page: 841 year: 2008 ident: 2022031209044428500_B45 article-title: Metabolic flexibility in response to glucose is not impaired in people with type 2 diabetes after controlling for glucose disposal rate publication-title: Diabetes doi: 10.2337/db08-0043 – volume: 292 start-page: R1271 year: 2007 ident: 2022031209044428500_B15 article-title: Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00472.2006 – volume: 50 start-page: 2870 year: 2001 ident: 2022031209044428500_B30 article-title: Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.50.12.2870 – reference: 13833973 - Ann N Y Acad Sci. 1959 Sep 25;82:420-30 – reference: 17095651 - Am J Physiol Regul Integr Comp Physiol. 2007 Mar;292(3):R1271-8 – reference: 9740495 - Diabetes Res Clin Pract. 1998 Jul;40 Suppl:S3-8 – reference: 16120408 - Mitochondrion. 2004 Sep;4(5-6):491-501 – reference: 7657022 - Diabetes. 1995 Sep;44(9):1010-20 – reference: 10905472 - Diabetes. 2000 May;49(5):677-83 – reference: 18653763 - FASEB J. 2008 Nov;22(11):3947-55 – reference: 15161742 - Diabetes. 2004 Jun;53(6):1412-7 – reference: 12351431 - Diabetes. 2002 Oct;51(10):2944-50 – reference: 17510710 - J Clin Invest. 2007 Jun;117(6):1679-89 – reference: 11739435 - J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61 – reference: 12679446 - J Clin Endocrinol Metab. 2003 Apr;88(4):1610-6 – reference: 17093944 - Diabetologia. 2007 Jan;50(1):113-20 – reference: 18252894 - Diabetes. 2008 Apr;57(4):987-94 – reference: 9405214 - J Magn Reson. 1997 Nov;129(1):35-43 – reference: 18678616 - Diabetes. 2008 Nov;57(11):2943-9 – reference: 16384852 - J Clin Endocrinol Metab. 2006 Apr;91(4):1520-5 – reference: 19118286 - Diabetes Care. 2009 Jan;32 Suppl 1:S13-61 – reference: 9166669 - Diabetes. 1997 Jun;46(6):983-8 – reference: 43580 - Scand J Clin Lab Invest. 1979 Oct;39(6):551-8 – reference: 18410564 - Diabetes Obes Metab. 2008 May;10(5):400-7 – reference: 18625112 - Curr Diab Rep. 2008 Jun;8(3):173-8 – reference: 8457428 - NMR Biomed. 1993 Jan-Feb;6(1):66-72 – reference: 16455084 - FEBS Lett. 2006 Feb 20;580(5):1371-5 – reference: 14602787 - J Clin Endocrinol Metab. 2003 Nov;88(11):5444-51 – reference: 12679474 - J Clin Endocrinol Metab. 2003 Apr;88(4):1785-91 – reference: 12832613 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8466-71 – reference: 15165998 - Am J Physiol Endocrinol Metab. 2004 Sep;287(3):E558-65 – reference: 16089501 - PLoS Med. 2005 Sep;2(9):e233 – reference: 4044103 - Int J Sports Med. 1985 Aug;6(4):197-201 – reference: 10027589 - Diabetologia. 1999 Jan;42(1):113-6 – reference: 17334651 - Diabetologia. 2007 Apr;50(4):790-6 – reference: 17472434 - PLoS Med. 2007 May;4(5):e154 – reference: 14960743 - N Engl J Med. 2004 Feb 12;350(7):664-71 – reference: 12808457 - Nat Genet. 2003 Jul;34(3):267-73 – reference: 11723073 - Diabetes. 2001 Dec;50(12):2870-3 – reference: 16385762 - Int J Obes (Lond). 2005 Sep;29 Suppl 2:S111-5 – reference: 11479724 - Histochem Cell Biol. 2001 Jul;116(1):63-8 – reference: 17351150 - Diabetes. 2007 Jun;56(6):1592-9 – reference: 15105904 - Reumatismo. 2004 Jan-Mar;56(1):9-14 – reference: 13354513 - Adv Biol Med Phys. 1956;4:239-80 – reference: 17310221 - Int J Obes (Lond). 2007 Aug;31(8):1302-10 – reference: 18285553 - Diabetes. 2008 Apr;57(4):841-5 – reference: 6618956 - J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34 – reference: 2403659 - N Engl J Med. 1990 Jan 25;322(4):223-8 – reference: 17510709 - J Clin Invest. 2007 Jun;117(6):1690-8 – reference: 11390270 - MAGMA. 2001 May;12(2-3):141-52 – reference: 1551495 - Diabetes. 1992 Mar;41(3):354-8 – reference: 17287462 - Diabetes. 2007 May;56(5):1376-81 |
SSID | ssj0006060 |
Score | 2.4718485 |
Snippet | Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes.... OBJECTIVE--Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type... OBJECTIVE-Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2... |
SourceID | wageningen pubmedcentral proquest gale pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 572 |
SubjectTerms | Adipose Tissue - metabolism Biological and medical sciences Blood Glucose - metabolism Calorimetry, Indirect Care and treatment Complications and side effects Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - physiopathology Diabetes Mellitus, Type 2 - therapy Diabetes. Impaired glucose tolerance Endocrine pancreas. Apud cells (diseases) Endocrinopathies enzyme-activity Etiopathogenesis. Screening. Investigations. Target tissue resistance Exercise Exercise Therapy - methods Fats - metabolism Glucose Clamp Technique glucose disposal Health aspects human skeletal-muscle Humans Hyperinsulinism - metabolism Hyperinsulinism - physiopathology Insulin Resistance - physiology intramyocellular lipid-content Magnetic Resonance Spectroscopy Male Medical sciences Middle Aged Mitochondria - physiology Mitochondrial diseases Muscle, Skeletal - physiology Muscles Original oxidative capacity Phosphorus Isotopes Risk factors rosiglitazone treatment Skeletal muscle substrate oxidation triglyceride synthesis Type 2 diabetes uncoupling protein-3 content |
Title | Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20028948 https://www.proquest.com/docview/216483286 https://www.proquest.com/docview/733690654 https://pubmed.ncbi.nlm.nih.gov/PMC2828651 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F407426 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9swEBZbC6Mwxt6XtQtijG5fTBv5VZ9GF5K1Y-5KXyDfhC3JWSDIWZxQ8vf2y3YnKe7MyiAkBD-RrejudDqd7iHkA-dxxjju6iaJDqKMs6BMEwmOXKiZKqqysjHd_Dw5vYm-TeKJz81pfFrl1iZaQ61qiTHyIwZ-PUhflnxe_AqQNAo3Vz2DxkOyOwBHBJkb0km73joG39ydQBkwrMKZusJCLAzTI1UiC0DIWGc68kb58aJo4A-qHLPFfa7nvxmUe7eg_saeh_prfho_JU-8Y0lPnCQ8Iw-0eU4e5X7r_AX5fWk5ZOxA0Lqi-boBHM1Bo8ECGoWCSMcwy1lAYRTN9QokZD6TdIxVM20W7YbODMW1K2XUJ9M0tNzQkWduoteecoKeNfSiWCJTy1wrhIAlwgR4-JJvatwvwARYOi5W9Aqfa6rtTV2QA0BnLkmeXmGGvaO4eEluxqPr4WngCRwCmbJ4FaRxomTIVRJxCX6U5KpEfqxM86piSpdJGsWq0HERlarKAJWFZVbwuIJlGBYyC1-RHVMb_YZQFUYRK0GgohBex4orHauo4mksdaYGaY982o6jkL66OZJszAWscnDIBQ65wCHvkfctdOFKetwHOkRhEFgiw2AOjnRxHAH9G_4QJwws_SADiwitdYHTYt00Ivv6vQP66EFVDU8lC3_2AfqG5bc6yMMOcuqKj98HPOgAwSrIzuV-R4rbnjL0eUGPemR_K9bCm61GtErWI7S9ii1jJp7R9boRWD6T44nkHnntdOCuabttHUHTaUc7WgCWMu9eMbOftqQ5LvyTGJ46vNMjYZBNq7G_8iFNcbteCjPHD2inERFGdpK3_-3KPtlzGR-YN3hAdlbLtX4HjuSq7FtzAe_ZcNAnu19G5xeXfRvv-wMJKXno |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkGASQrxTNoaFYOxLtNVx3j4gNI2VljUDsU7qN5PETqlUOaVpVfVH8Sf4ZdzZaUZExbdJlarKT51Ydz6fz-d7CHkTRV7IIjzV9X3l8DBiThr4GThyrmIyydPcxHTjC797xT8PveEW-bW-C4NplWubaAy1LDKMkR8x8OtB-0L_w_Sng6RReLi6ZtCwWnGuVkvYsZXvex9BvG8Z65wNTrtORSrgZAHz5k7g-TJzI-nzKIO1PYtkipxNoYrynEmV-gH3ZKK8hKcyDwEVummYRF4OWwMsruVCv7fIbY4njDB9gmG9vzuGvYC98dJmWPUzsIWMmOsGRzJF1gGXscbyVy0C96ZJCQLJLZPGJlf334zNnSWYG23uX_21HnYekPuVI0tPrOY9JFtKPyJ34uqo_jH5_c1w1hjB0yKn8aIEHI3BgoDF1RIVn3ZgVTWAREsaqzlo5GSc0Q5W6TRZuys61hT3ypTRKnmnpOmKnlVMUXRQUVzQXkm_JjNkhpkoiRCwfJhwDz_iVYHnE5hwSzvJnF7ie42UeagNqgCoZ5Py6SVm9FtKjSfk6kZk-5Rs60Kr54RKl3OWggJzFz7HMpLKkzyPAi9ToWwHLXK4lqPIqmrqSOoxEbCrQpELFLlAkbfI6xo6tSVENoEOUBkEluTQmPOT2biRgPGdfhEnDFaWdggWGHprAkfJoixF-KnfAL2rQHkBb5Ul1V0LGBuW-2ogDxrIkS12vgm41wCCFcoazfsNLa5HytDHhnnbIrtrtRaVmSxFPalbhNat2DNm_mlVLEqB5TojvAHdIs_sHLju2hyTc-g6aMyOGoCl05stevzDlFDHQIPvwVu71_NIaGTvKs2_qhCqWC5mQk_wC_opBcdIkv_iv0N5Re52B3Ff9HsX57tkx2abYM7iHtmezxbqJTix83TfmA5Kvt-0rfoDX86zMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBddC6Uwxr6XtevE2Lq9mCzy90MZXRuvWess9AP6ptmWnAWCnMUJIf_e3vZf7c5S3JmFvRUCIegX2eJOd9LpdD9C3oahG7AQT3U9T1pOEDIr9b0MFnK2ZCLJ07yK6cZ97_Ta-Xrj3myQ36u7MJhWubKJlaEWRYYx8jaDdT1oX-C1c5MVMTiJPk1-WkgghQetKzaNxLAsiMOq2pi543EmlwvYzZWHvRMQ_TvGou7V8allCAeszGfuzPJdT2R2KDwnzMDvZ6FIkc8pkGGeMyFTz3dckUg3cVKRB4AK7DRIQjeHbQMW3rKh33tkywenD_vArc_d_uCidguwU9D3YToMa4L6uswRs22_LVLkJLAZazhH4yLuT5ISxJVrno11C-F_8zl3FmCMVHU76y9vGT0kD8wylx5pvXxENqR6TLZjc5D_hPy6qBhtKrWgRU7jeQk4GoN9AXusBE4LGoHPrQCJEjSWM9DX8SijEdbwrHJ6l3SkKO6kKaMmtaek6ZJ2DY8UvTIEGLRX0kEyRd6YsRQIAbuI6fjwI14WeHqB6bg0Smb0Et9rKKuH6pALgHo6ZZ9eYr6_Jtx4Sq7vRLrPyKYqlHxBqLAdh6Wg3o4Nn48iFNIVTh76biYD0fFb5MNKjjwztdaR8mPMYc-FIucoco4ib5E3NXSiC4ysAx2gMnAs2KFQ9zMdVeIwvuNv_IiB3-kEYJ-htyZwmMzLkgdfzhug9waUF_BWWWJuYsDYsBhYA3nQQA51KfR1wL0GEGxU1mjeb2hxPVKGK3CY1S2yu1Jrboxoyesp3yK0bsWeMS9QyWJecizmGeL96BZ5rufAbdfVIboDXfuN2VEDsLB6s0WNflQF1jEM4bnw1vbtPOIKub3K6l8mwMoX8ylXY_yCfkruYJzJe_nfobwm22C3-Hmvf7ZLdnQqCiY07pHN2XQuX8EKd5buG9tByfe7Nld_AIFrvgs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoration+of+muscle+mitochondrial+function+and+metabolic+flexibility+in+type+2+diabetes+by+exercise+training+is+paralleled+by+increased+myocellular+fat+storage+and+improved+insulin+sensitivity&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Meex%2C+Ruth+C.R&rft.au=Schrauwen-Hinderling%2C+Vera+B&rft.au=Moonen-Kornips%2C+Esther&rft.au=Schaart%2C+Gert&rft.date=2010-03-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.volume=59&rft.issue=3&rft.spage=572&rft_id=info:doi/10.2337%2Fdb09-1322&rft.externalDocID=A221918031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |