Normalisation against Circadian and Age-Related Disturbances Enables Robust Detection of Gene Expression Changes in Liver of Aged Mice
The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the m...
Saved in:
Published in | PloS one Vol. 12; no. 1; p. e0169615 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
09.01.2017
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0169615 |
Cover
Abstract | The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome. |
---|---|
AbstractList | The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome. The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ζ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome. The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome.The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3β, and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ, and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome. The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h, Gsk3[Beta], and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono, Tprkb, Tspo, and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1[delta] and 1[epsilon], and Sfpq, while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome. The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However, transcriptional noise increasing with advancing age renders difficult the identification of real age-related changes because it may affect the marker genes as well. Here, we report a selection procedure for genes appropriate to normalise the mouse liver transcriptome under various conditions including age. These genes were chosen from an initial set of 16 candidate genes defined based on a RNA-sequencing experiment and published literature. A subset of genes was selected based on rigorous statistical assessment of their variability using both RNA-sequencing and Nanostring hybridization experiments. The robustness of these marker genes was then verified by the analysis of 130 publicly available data sets using the mouse liver transcriptome. Altogether, a set of three genes, Atp5h , Gsk3 β , and Sirt2 fulfilled our strict selection criteria in all assessments, while four more genes, Nono , Tprkb , Tspo , and Ttr passed all but one assessment and were included into the final set of marker genes to enhance robustness of normalisation against outliers. Using the geometric mean of expression of the genes to normalise Nanostring hybridization experiments we reliably identified age-related increases in the expression of Casein kinase 1δ and 1ϵ , and Sfpq , while the expression of the glucose transporter Glut2 decreased. The age-related changes were verified by real-time PCR and Western blot analysis. As conclusion, proper normalisation enhances the robustness of quantitative methods addressing age-related changes of a transcriptome. |
Audience | Academic |
Author | Fonseca Costa, Sara S. Wegmann, Daniel Ripperger, Jürgen A. |
AuthorAffiliation | Montana State University Bozeman, UNITED STATES 2 Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland 1 Department of Biology, University of Fribourg, Fribourg, Switzerland |
AuthorAffiliation_xml | – name: 2 Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland – name: 1 Department of Biology, University of Fribourg, Fribourg, Switzerland – name: Montana State University Bozeman, UNITED STATES |
Author_xml | – sequence: 1 givenname: Sara S. surname: Fonseca Costa fullname: Fonseca Costa, Sara S. – sequence: 2 givenname: Daniel surname: Wegmann fullname: Wegmann, Daniel – sequence: 3 givenname: Jürgen A. surname: Ripperger fullname: Ripperger, Jürgen A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28068403$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk9tq3DAQhk1JaQ7tG5TWUCjtxW5t2ZLtXBTCJk0X0gbSw60YyyOvglbaSnJIX6DPXTnZLdkQSjBCYvz9v0YjzX6yY6zBJHmZZ9O8qPIPl3ZwBvR0FcPTLGcNy-mTZC9vCjJhJCt27qx3k33vL7OMFjVjz5JdUmesLrNiL_nz1bolaOUhKGtS6EEZH9KZcgI6BTFiuvSox8kFagjYpcfKh8G1YAT69MRAq-N8Ydshqo4xoLjxsTI9RYPpyfXKofdjaLYA00dWmfRMXaEbmWjcpV-UwOfJUwna44v1fJD8-HTyffZ5cnZ-Op8dnU1ERWiYUCrzqupq0jAgIBuRC5QS2oywskBGREOKklFsKFIgGVbjqhMRzCDraFMcJK9vfVfaer4uoed5TVlNG1pXkZjfEp2FS75yagnuN7eg-E3Aup6DC0po5NAWUqIkZcyopNDWLTKsy7gdVLTuZPT6uN5taJcxDzTBgd4y3f5j1IL39opTQgjLymjwbm3g7K8BfeBL5QVqDQbtMObN6qIs43gESquiaiqSR_TNPfThQqypHuJZlZE2pihGU35UVqyuG8aKSE0foOLX4VKJ-DSlivEtwfstQWQCXoceBu_5_NvF49nzn9vs2zvsAkGHhbd6GJ-j3wZf3b2Uf7ex6YkIHN4CwlnvHUouVLhpj3g0pXme8bEBN0XjYwPydQNGcXlPvPH_r-wv4BU1xQ |
CitedBy_id | crossref_primary_10_18632_aging_102528 crossref_primary_10_3390_clockssleep4010017 crossref_primary_10_1371_journal_pgen_1009625 crossref_primary_10_1038_s41598_021_01178_6 |
Cites_doi | 10.1073/pnas.1008882108 10.1093/bioinformatics/bts188 10.1016/j.neuron.2004.07.018 10.1126/science.1117389 10.1128/MCB.00280-13 10.1038/nrn3208 10.1016/S0092-8674(02)00825-5 10.1038/nbt1385 10.1016/j.celrep.2014.09.048 10.1016/S0169-5347(99)01646-8 10.1038/sj.onc.1201541 10.1093/geronj/30.1.28 10.1016/S0092-8674(00)80566-8 10.1258/002367776780956917 10.1177/07430402017003004 10.1073/pnas.151588598 10.1016/j.mad.2009.12.005 10.1038/nature11243 10.1093/gerona/61.1.20 10.1210/me.2006-0052 10.1523/JNEUROSCI.0451-11.2011 10.1126/science.288.5465.483 10.1016/S0092-8674(02)00685-2 10.1126/science.288.5468.1013 10.1016/0047-6374(90)90042-E 10.1016/j.jneumeth.2009.12.018 10.1093/bioinformatics/btp073 10.1096/fj.02-0533fje 10.1002/elps.201100335 10.1016/j.neurobiolaging.2012.11.019 10.1038/ng1738 10.1073/pnas.1107178108 10.1146/annurev-physiol-021909-135821 10.1073/pnas.0806717105 10.1016/j.cell.2013.05.039 10.1016/j.cell.2006.11.043 10.1128/MCB.00334-12 10.1186/gb-2002-3-7-research0034 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Public Library of Science 2017 Fonseca Costa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017 Fonseca Costa et al 2017 Fonseca Costa et al |
Copyright_xml | – notice: COPYRIGHT 2017 Public Library of Science – notice: 2017 Fonseca Costa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017 Fonseca Costa et al 2017 Fonseca Costa et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0169615 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
DocumentTitleAlternate | Age-Related Changes in Gene Expression |
EISSN | 1932-6203 |
ExternalDocumentID | 1856859587 oai_doaj_org_article_ab3ffef247d845ab8be6e84cf9a758df PMC5222604 4297354661 A476889663 28068403 10_1371_journal_pone_0169615 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 31003A_152792 – fundername: ; grantid: 51PHP0_157318 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 ESTFP PUEGO 5PM - 02 AAPBV ABPTK BBAFP KM |
ID | FETCH-LOGICAL-c725t-55f177d8296a2af9c1ceffab02643e62c923465e95e5a20e7e95edcf9c0a0d593 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Sep 04 00:10:40 EDT 2022 Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 18:34:35 EDT 2025 Mon Sep 08 15:46:47 EDT 2025 Sun Sep 28 06:15:08 EDT 2025 Fri Jul 25 10:19:23 EDT 2025 Tue Jun 17 21:25:26 EDT 2025 Tue Jun 10 20:27:17 EDT 2025 Fri Jun 27 03:35:56 EDT 2025 Fri Jun 27 03:38:48 EDT 2025 Thu May 22 21:21:18 EDT 2025 Mon Jul 21 05:58:05 EDT 2025 Tue Jul 01 02:03:10 EDT 2025 Thu Apr 24 23:07:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c725t-55f177d8296a2af9c1ceffab02643e62c923465e95e5a20e7e95edcf9c0a0d593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Conceptualization: SFC DW.Data curation: SFC.Formal analysis: SFC DW.Funding acquisition: DW JAR.Investigation: SFC JAR.Methodology: SFC DW JAR.Validation: DW JAR.Writing – original draft: DW JAR.Writing – review & editing: SFC DW JAR. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0169615 |
PMID | 28068403 |
PQID | 1856859587 |
PQPubID | 1436336 |
PageCount | e0169615 |
ParticipantIDs | plos_journals_1856859587 doaj_primary_oai_doaj_org_article_ab3ffef247d845ab8be6e84cf9a758df pubmedcentral_primary_oai_pubmedcentral_nih_gov_5222604 proquest_miscellaneous_1868344834 proquest_miscellaneous_1857379721 proquest_journals_1856859587 gale_infotracmisc_A476889663 gale_infotracacademiconefile_A476889663 gale_incontextgauss_ISR_A476889663 gale_incontextgauss_IOV_A476889663 gale_healthsolutions_A476889663 pubmed_primary_28068403 crossref_citationtrail_10_1371_journal_pone_0169615 crossref_primary_10_1371_journal_pone_0169615 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-09 |
PublicationDateYYYYMMDD | 2017-01-09 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2017 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | I Bochkis (ref27) 2014; 9 P Lowrey (ref40) 2000; 288 L Canaple (ref7) 2006; 20 CJ Dunlap (ref5) 1999; 96 T Nakamura (ref14) 2011; 31 L Pagani (ref15) 2011; 108 J Vandesompele (ref39) 2002; 3 H Lee (ref11) 2011; 108 C López-Otín (ref2) 2013; 153 C Liu (ref43) 2002; 108 M Thattai (ref19) 2001; 98 J De Magalhães (ref16) 2009; 25 M Forster (ref22) 2003; 17 J Chen (ref37) 2006; 61 A Kondratova (ref4) 2012; 13 K Gärtner (ref23) 1992; 35 ref20 D Carter (ref34) 1975; 30 L Partridge (ref1) 1999; 14 M Oklejewicz (ref41) 2002; 17 D Waggott (ref36) 2012; 28 A Sugathan (ref29) 2013; 33 T Sato (ref9) 2004; 43 Y Shen (ref28) 2012; 488 SS Fonseca Costa (ref3) 2015; 6 N Preitner (ref8) 2002; 110 K Nelissen (ref18) 2010; 187 M Zampieri (ref38) 2010; 131 Q Wang (ref35) 2013; 34 A Simon (ref31) 2015; 31 Y Xu (ref10) 2007; 128 U Knippschild (ref42) 1997; 15 E Kowalska (ref12) 2012; 32 G Geiss (ref26) 2008; 26 D Kim (ref30) 2013; 25 JA Ripperger (ref33) 2006; 38 P Slagboom (ref17) 1990; 53 P Aranda (ref24) 2012; 33 L Shearman (ref6) 2000; 288 C Rowlatt (ref21) 1976; 10 T Hruz (ref32) 2008 C Dibner (ref13) 2010; 72 K Lamia (ref44) 2008; 105 J Shendure (ref25) 2005; 309 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 11955436 - Cell. 2002 Mar 22;108(6):837-47 23746838 - Cell. 2013 Jun 6;153(6):1194-217 16456191 - J Gerontol A Biol Sci Med Sci. 2006 Jan;61(1):20-7 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 20148687 - Annu Rev Physiol. 2010;72:517-49 10511720 - Trends Ecol Evol. 1999 Nov;14(11):438-442 18779586 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15172-7 17218255 - Cell. 2007 Jan 12;128(1):59-70 22395806 - Nat Rev Neurosci. 2012 Mar 07;13(5):325-35 1295578 - J Exp Anim Sci. 1992 Dec;35(3):125-35 2376984 - Mech Ageing Dev. 1990 Apr 30;53(3):243-57 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 23290588 - Neurobiol Aging. 2013 Jun;34(6):1662-73 12150932 - Cell. 2002 Jul 26;110(2):251-60 22222980 - Electrophoresis. 2012 Jan;33(2):366-9 16556735 - Mol Endocrinol. 2006 Aug;20(8):1715-27 22763441 - Nature. 2012 Aug 2;488(7409):116-20 21752996 - J Neurosci. 2011 Jul 13;31(28):10201-5 16474407 - Nat Genet. 2006 Mar;38(3):369-74 10807566 - Science. 2000 May 12;288(5468):1013-9 21482780 - Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7218-23 23836885 - Mol Cell Biol. 2013 Sep;33(18):3594-610 12586746 - FASEB J. 2003 Apr;17(6):690-2 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 12054192 - J Biol Rhythms. 2002 Jun;17(3):210-6 19189975 - Bioinformatics. 2009 Apr 1;25(7):875-81 25437555 - Cell Rep. 2014 Nov 6;9(3):996-1006 20038437 - Mech Ageing Dev. 2010 Feb;131(2):89-95 19956698 - Adv Bioinformatics. 2008;2008:420747 10775102 - Science. 2000 Apr 21;288(5465):483-92 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 9349507 - Oncogene. 1997 Oct 2;15(14):1727-36 25798127 - Front Neurol. 2015 Mar 06;6:43 22513995 - Bioinformatics. 2012 Jun 1;28(11):1546-8 979138 - Lab Anim. 1976 Oct;10(10):419-42 9988221 - Cell. 1999 Jan 22;96(2):271-90 15312651 - Neuron. 2004 Aug 19;43(4):527-37 1109389 - J Gerontol. 1975 Jan;30(1):28-32 22966205 - Mol Cell Biol. 2012 Nov;32(22):4585-94 21930935 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16451-6 20036692 - J Neurosci Methods. 2010 Mar 15;187(1):78-83 16081699 - Science. 2005 Sep 9;309(5741):1728-32 |
References_xml | – volume: 108 start-page: 7218 issue: 17 year: 2011 ident: ref15 article-title: Serum factors in older individuals change cellular clock properties publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1008882108 – volume: 31 issue: 2 year: 2015 ident: ref31 article-title: HTSeq-a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 28 start-page: 1546 issue: 11 year: 2012 ident: ref36 article-title: NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts188 – volume: 43 start-page: 527 issue: 4 year: 2004 ident: ref9 article-title: A functional genomics strategy reveals Rora as a component of the mammalian circadian clock publication-title: Neuron doi: 10.1016/j.neuron.2004.07.018 – volume: 309 start-page: 1728 issue: 5741 year: 2005 ident: ref25 article-title: Accurate multiplex polony sequencing of an evolved bacterial genome publication-title: Science doi: 10.1126/science.1117389 – volume: 33 start-page: 3594 issue: 18 year: 2013 ident: ref29 article-title: Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver publication-title: Mol Cell Biol doi: 10.1128/MCB.00280-13 – volume: 13 start-page: 325 issue: 5 year: 2012 ident: ref4 article-title: The circadian clock and pathology of the ageing brain publication-title: Nat Rev Neurosci doi: 10.1038/nrn3208 – volume: 110 start-page: 251 issue: 2 year: 2002 ident: ref8 article-title: The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator publication-title: Cell doi: 10.1016/S0092-8674(02)00825-5 – ident: ref20 – volume: 26 start-page: 317 issue: 3 year: 2008 ident: ref26 article-title: Direct multiplexed measurement of gene expression with color-coded probe pairs publication-title: Nat Biotechnol doi: 10.1038/nbt1385 – volume: 9 start-page: 996 issue: 3 year: 2014 ident: ref27 article-title: Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver publication-title: Cell Rep doi: 10.1016/j.celrep.2014.09.048 – volume: 14 start-page: 438 issue: 11 year: 1999 ident: ref1 article-title: Messages from mortality: the evolution of death rates in the old publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(99)01646-8 – volume: 15 start-page: 1727 issue: 14 year: 1997 ident: ref42 article-title: p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs publication-title: Oncogene doi: 10.1038/sj.onc.1201541 – volume: 30 start-page: 28 issue: 1 year: 1975 ident: ref34 article-title: Composition of liver histones in aging rat and mouse publication-title: J Gerontol doi: 10.1093/geronj/30.1.28 – volume: 96 start-page: 271 issue: 2 year: 1999 ident: ref5 article-title: Molecular Bases for Circadian Clocks publication-title: Cell doi: 10.1016/S0092-8674(00)80566-8 – volume: 10 start-page: 419 issue: 10 year: 1976 ident: ref21 article-title: Lifespan, age changes and tumour incidence in an ageing C57BL mouse colony publication-title: Lab Anim doi: 10.1258/002367776780956917 – volume: 17 start-page: 210 issue: 3 year: 2002 ident: ref41 article-title: Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus publication-title: J Biol Rhythms doi: 10.1177/07430402017003004 – volume: 98 start-page: 8614 issue: 15 year: 2001 ident: ref19 article-title: Intrinsic noise in gene regulatory networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.151588598 – volume: 131 start-page: 89 issue: 2 year: 2010 ident: ref38 article-title: Validation of suitable internal control genes for expression studies in aging publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2009.12.005 – volume: 35 start-page: 125 issue: 3 year: 1992 ident: ref23 article-title: Life expectancy, its relation to sexual activity and body weight in male inbred mice publication-title: J Exp Anim Sci – volume: 488 start-page: 116 issue: 7409 year: 2012 ident: ref28 article-title: A map of the cis-regulatory sequences in the mouse genome publication-title: Nature doi: 10.1038/nature11243 – volume: 61 start-page: 20 issue: 1 year: 2006 ident: ref37 article-title: Identification of valid housekeeping genes and antioxidant enzyme gene expression change in the aging rat liver publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/61.1.20 – volume: 20 start-page: 1715 issue: 8 year: 2006 ident: ref7 article-title: Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock publication-title: Mol Endocrinol doi: 10.1210/me.2006-0052 – volume: 31 start-page: 10201 issue: 28 year: 2011 ident: ref14 article-title: Age-related decline in circadian output publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0451-11.2011 – volume: 25 issue: 4 year: 2013 ident: ref30 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biol – volume: 288 start-page: 483 issue: 5465 year: 2000 ident: ref40 article-title: Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau publication-title: Science doi: 10.1126/science.288.5465.483 – volume: 108 start-page: 837 issue: 6 year: 2002 ident: ref43 article-title: Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism publication-title: Cell doi: 10.1016/S0092-8674(02)00685-2 – volume: 288 start-page: 1013 issue: 5468 year: 2000 ident: ref6 article-title: Interacting molecular loops in the mammalian circadian clock publication-title: Science doi: 10.1126/science.288.5468.1013 – volume: 53 start-page: 243 issue: 3 year: 1990 ident: ref17 article-title: Messenger RNA levels and methylation patterns of GAPDH and beta-actin genes in rat liver, spleen and brain in relation to aging publication-title: Mech Ageing Dev doi: 10.1016/0047-6374(90)90042-E – volume: 187 start-page: 78 issue: 1 year: 2010 ident: ref18 article-title: Selection of reference genes for gene expression studies in rat oligodendrocytes using quantitative real time PCR publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2009.12.018 – volume: 25 issue: 7 year: 2009 ident: ref16 article-title: Meta-analysis of age-related gene expression profiles identifies common signatures of aging publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp073 – volume: 17 start-page: 690 issue: 6 year: 2003 ident: ref22 article-title: Genotype and age influence the effect of caloric intake on mortality in mice publication-title: FASEB J doi: 10.1096/fj.02-0533fje – volume: 33 start-page: 366 issue: 2 year: 2012 ident: ref24 article-title: Bleach gel: a simple agarose gel for analyzing RNA quality publication-title: Electrophoresis doi: 10.1002/elps.201100335 – volume: 34 start-page: 1662 issue: 6 year: 2013 ident: ref35 article-title: Glucocorticoid receptor protein expression in human hippocampus; stability with age publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2012.11.019 – volume: 6 issue: 43 year: 2015 ident: ref3 article-title: Impact of the circadian clock on the aging process publication-title: Frontiers in Neurology – issue: 420747 year: 2008 ident: ref32 article-title: Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes publication-title: Adv Bioinformatics – volume: 38 start-page: 369 issue: 3 year: 2006 ident: ref33 article-title: Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions publication-title: Nat Genet doi: 10.1038/ng1738 – volume: 108 start-page: 16451 issue: 39 year: 2011 ident: ref11 article-title: The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1107178108 – volume: 72 start-page: 517 year: 2010 ident: ref13 article-title: The mammalian circadian timing system: organization and coordination of central and peripheral clocks publication-title: Annu Rev Physiol doi: 10.1146/annurev-physiol-021909-135821 – volume: 105 start-page: 15172 issue: 39 year: 2008 ident: ref44 article-title: Physiological significance of a peripheral tissue circadian clock publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0806717105 – volume: 153 start-page: 1194 issue: 6 year: 2013 ident: ref2 article-title: The Hallmarks of Aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 128 start-page: 59 issue: 1 year: 2007 ident: ref10 article-title: Modeling of a human circadian mutation yields insights into clock regulation by PER2 publication-title: Cell doi: 10.1016/j.cell.2006.11.043 – volume: 32 start-page: 4585 issue: 22 year: 2012 ident: ref12 article-title: Distinct roles of DBHS family members in the circadian transcriptional feedback loop publication-title: Mol Cell Biol doi: 10.1128/MCB.00334-12 – volume: 3 issue: 7 year: 2002 ident: ref39 article-title: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes publication-title: Genome Biol doi: 10.1186/gb-2002-3-7-research0034 – reference: 23746838 - Cell. 2013 Jun 6;153(6):1194-217 – reference: 23836885 - Mol Cell Biol. 2013 Sep;33(18):3594-610 – reference: 11955436 - Cell. 2002 Mar 22;108(6):837-47 – reference: 20036692 - J Neurosci Methods. 2010 Mar 15;187(1):78-83 – reference: 22395806 - Nat Rev Neurosci. 2012 Mar 07;13(5):325-35 – reference: 23290588 - Neurobiol Aging. 2013 Jun;34(6):1662-73 – reference: 16081699 - Science. 2005 Sep 9;309(5741):1728-32 – reference: 20148687 - Annu Rev Physiol. 2010;72:517-49 – reference: 10511720 - Trends Ecol Evol. 1999 Nov;14(11):438-442 – reference: 16474407 - Nat Genet. 2006 Mar;38(3):369-74 – reference: 22513995 - Bioinformatics. 2012 Jun 1;28(11):1546-8 – reference: 19189975 - Bioinformatics. 2009 Apr 1;25(7):875-81 – reference: 21482780 - Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7218-23 – reference: 19956698 - Adv Bioinformatics. 2008;2008:420747 – reference: 1295578 - J Exp Anim Sci. 1992 Dec;35(3):125-35 – reference: 25798127 - Front Neurol. 2015 Mar 06;6:43 – reference: 11438714 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8614-9 – reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 – reference: 9988221 - Cell. 1999 Jan 22;96(2):271-90 – reference: 25260700 - Bioinformatics. 2015 Jan 15;31(2):166-9 – reference: 10807566 - Science. 2000 May 12;288(5468):1013-9 – reference: 12150932 - Cell. 2002 Jul 26;110(2):251-60 – reference: 20038437 - Mech Ageing Dev. 2010 Feb;131(2):89-95 – reference: 16456191 - J Gerontol A Biol Sci Med Sci. 2006 Jan;61(1):20-7 – reference: 21930935 - Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16451-6 – reference: 22763441 - Nature. 2012 Aug 2;488(7409):116-20 – reference: 10775102 - Science. 2000 Apr 21;288(5465):483-92 – reference: 15312651 - Neuron. 2004 Aug 19;43(4):527-37 – reference: 17218255 - Cell. 2007 Jan 12;128(1):59-70 – reference: 16556735 - Mol Endocrinol. 2006 Aug;20(8):1715-27 – reference: 979138 - Lab Anim. 1976 Oct;10(10):419-42 – reference: 18779586 - Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15172-7 – reference: 18278033 - Nat Biotechnol. 2008 Mar;26(3):317-25 – reference: 12184808 - Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 – reference: 21752996 - J Neurosci. 2011 Jul 13;31(28):10201-5 – reference: 9349507 - Oncogene. 1997 Oct 2;15(14):1727-36 – reference: 2376984 - Mech Ageing Dev. 1990 Apr 30;53(3):243-57 – reference: 12054192 - J Biol Rhythms. 2002 Jun;17(3):210-6 – reference: 1109389 - J Gerontol. 1975 Jan;30(1):28-32 – reference: 22966205 - Mol Cell Biol. 2012 Nov;32(22):4585-94 – reference: 12586746 - FASEB J. 2003 Apr;17(6):690-2 – reference: 22222980 - Electrophoresis. 2012 Jan;33(2):366-9 – reference: 25437555 - Cell Rep. 2014 Nov 6;9(3):996-1006 |
SSID | ssj0053866 |
Score | 2.235998 |
Snippet | The expression of some genes is affected by age. To detect such age-related changes, their expression levels are related to constant marker genes. However,... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0169615 |
SubjectTerms | Age Aging Aging - genetics Animals Bioinformatics Biology Biology and Life Sciences Casein Change detection Circadian rhythm Circadian Rhythm - genetics Circadian rhythm sleep disorders Circadian rhythms Computational Biology - methods Gene expression Gene Expression Profiling Gene Expression Regulation Gene sequencing Genes Genetic aspects Genetic Markers Genetically modified mice Genomes Glucose transporter Health aspects Hybridization Kinases Life expectancy Liver Liver - metabolism Mammals Metabolism Mice Outliers (statistics) Phosphorylation Physiology Research and analysis methods Ribonucleic acid RNA Robustness Rodents Set theory Transcription Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdQn3hBjK8VBhiEBDxky6edPJat00BsSIOhvUW2cy6VqqRqWom_gL-bO8eNGjQxHnioVNU_u-nd-XLX3P3M2BuM2Y2GIg0AIAzSROhA6QoCEElloiSvui7-8wtxdpV-us6ud476opqwjh64E9yR0om1YONUVnmaKZ1rEJCnxhYKQ93KkvcNi3CbTHU-GHexEL5RLpHRkdfL4bKp4ZD4RwQdg7tzI3J8_b1XHi0XTXtTyPln5eTOrej0PrvnY0g-6a59j92B-gHb87u05e88lfT7h-zXBYWkC1-yw9VMzTEc5MfzlXGcBFzVFZ_MIHA1cVDxE9T6ZqWVW2jq-qpaftnoDc46gbWr26p5Yzl9B5_-9GW0Ne-6FFo-r_lnKvUgDC5c8XP0RI_Y1en02_FZ4E9eCIyMs3WQZTaSKPC4ECpWtjCRAWuVxoQtTUDEBsPCVGRQZJCpOARJ7yrUiQlVWGVF8piNapT1PuORscoqaXVYGAzWKi1lhqtAqGMFqhBjlmzVUBpPS06nYyxK96xNYnrSSbUk5ZVeeWMW9LOWHS3HLfgPpOEeS6Ta7gM0tdKbWnmbqY3ZS7KPsutQ7V1DOUkxZ8sxb0zG7LVDELFGTZU7M7Vp2_Ljl-__APp6OQC99SDboDiM8t0S-JuIsGuAPBgg0T2YwfA-WfNWKm2JAZogUrtc4sythd88_KofpkWpGq-GZuMwMpHE-_Q3jKAjXPA1Zk-6TdNLn57m52mI1yYH22mgnuFIPf_huM8xXcAMPH36P_T5jN2NKUijP9SKAzZarzbwHEPMtX7hvMlvkyB_7Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJyReEBsfKwwwCAl4yJbmw04eEOq2TgOxggZDe4v8WSpVSWlaCf4B_m7uHKcsaBo8VKrqsxv7fOe7-O53hLwAm11JkyeBMSYMkpjJQEhtAsNirQZxppss_tMxOzlP3l-kFxtk3ObCYFhlqxOdotaVwnfk-3CuMMTiyvjb-fcAq0bh7WpbQkP40gr6jYMYu0E2QSWnYY9sHozGn85a3QzSzZhPoIv5YN_za29elWYPcUkYlse9dEA5HP-1tu7NZ1V9lSn6d0TlpSPq-A657W1LOmw2wxbZMOU2udlUm_y5Tba8HNf0lQebfn2X_Bqj0TrzQT1UTMQUDEZ6OF0oh1pARanpcGICFzVnND2CfbFaSOEGGrnMq5qeVXIFvY7M0kV2lbSyFP-Djn74QNuSNnkMNZ2W9AMGgyANDKzpKeiqe-T8ePTl8CTwtRkCxaN0GaSpHXCusyhnIhI2VwNlrBUSXLokNixSYDgmLDV5alIRhYbjN62AMBShTvP4PumVsOo7hA6UFVZwK8NcgTmnJecpjGJCGQkjctYnccuQQnngcqyfMSvcbRwHB6ZZ3wLZWHg29kmw7jVvgDv-QX-AvF7TIuy2-6FaTAovxYWQsbXGRgnMPEmFzKRhJktgWgL8Lm375CnulKLJYV0rj2KYgFeXgWcZ98lzR4HQGyXG9kzEqq6Ldx-__gfR57MO0UtPZCtYDiV8PgXMCSG9OpS7HUpQIKrTvIP7ul2VuvgjatCz3etXNz9bN-OgGK9XmmrlaHjMERnqOhqGRV7g0ycPGvFZrz7e92dJCM_GO4LVYU-3pZx-c-jo4FCAj548vP7RH5FbERpo-DIt3yW95WJlHoN5uZRPvM74DaP-fus priority: 102 providerName: ProQuest |
Title | Normalisation against Circadian and Age-Related Disturbances Enables Robust Detection of Gene Expression Changes in Liver of Aged Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28068403 https://www.proquest.com/docview/1856859587 https://www.proquest.com/docview/1857379721 https://www.proquest.com/docview/1868344834 https://pubmed.ncbi.nlm.nih.gov/PMC5222604 https://doaj.org/article/ab3ffef247d845ab8be6e84cf9a758df http://dx.doi.org/10.1371/journal.pone.0169615 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaW7oULYnltYSkGIQGHrPJ2ckCo221ZEFtQoai3yHbsUqlKStNKyx_gdzPjuBFBZeHQqKo_O_X4kZl45htCnoPOLoVKQ0cp5TphEAuHi1w5Kg5y6QVJXkfxX47ji2n4fhbNDsguZ6sVYLXXtMN8UtP18vTq-483sOBfm6wNzNtVOl2VhTpFdpEYo84PzYkROvOFzbkCrG5zeolaixP7bmCD6f7WSuthZTj9m527s1qW1T619E_vyt8eV6Pb5JbVM2m_nhhH5EAVd8iRXckVfWnppl_dJT_HqLYurVsP5XO-AJWRDhZraXgLKC9y2p8rx_jNqZyew8zYrgU3DQ1N7FVFJ6XYQq1ztTG-XQUtNcV70OGVdbUtaB3JUNFFQT-gOwhioOGcXsJudY9MR8MvgwvHZmdwJPOjjRNF2mMsT_w05j7XqfSk0poLMOrCQMW-BNUxjCOVRirivqsYfsslAF3u5lEa3CedAmR9TKgnNdecaeGmEhS6XDAWQSvKFT5XPI27JNgNQyYtdTlm0Fhm5jyOgQlTSzXDwcvs4HWJ09Ra1dQd_8Cf4Qg3WCTeNj-U63lm13HGRaC10n4IPQ8jLhKhYpWE0C0Olleuu-QJzo-sjmJtto-sH4Jdl4BtGXTJM4NA8o0CvXvmfFtV2buPX_8D9HnSAr2wIF2COCS3ERXQJyT1aiFPWkjYQmSr-Bhn804qVQZKXIzEdwmDmrsZvr_4aVOMjaLHXqHKrcGwgCE31HWYGNO8wKdLHtSLppE-nvgnoQv_jbWWU2t42iXF4pvhRweTAqz08OH1nX5EbvqoouHrtPSEdDbrrXoMCuZG9MgNNmNwTQYeXkdve-TwbDj-NOmZVzY9s6f8Am4OgeI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqRBcEC2PBgpdEAg4uHX8WNuHCqVNqpa2AZUW9Wb25RApskOcCPoH-Fn8NmbW61CjqnDpIVKUnd14d3bnsZ75hpCXYLNLoZPA0Vq7TuAz4XChtKOZr2THj1WVxX88YPtnwfvz8HyJ_KpzYTCsspaJRlCrQuId-RboFYZYXHH0bvLNwapR-Ha1LqHBbWkFtW0gxmxix6G--A4uXLl90AN-v_K8vf7p7r5jqww4MvLCmROGWSeKVOwljHs8S2RH6izjApyTwNfMk2ACBSzUSahD7rk6wm9KAqHLXRUiGBOogOUAL1BaZHmnP_h4UusCkCaM2YQ9P-ps2f2xOSlyvYk4KAzL8V5SiKZuwEI7tCbjorzK9P07gvOSSty7R-5aW5Z2q823QpZ0vkpuVdUtL1bJipUbJX1jwa3f3ic_B2gkj20QEeVDPgIDle6OptKgJFCeK9odasdE6WlFe7AP51PBzUB9k-lV0pNCzKFXT89MJFlOi4zif9D-DxvYm9Mqb6Kko5weYfAJ0sDAih6DbHxAzm6ESw9JK4dVXyO0IzOe8SgTbiLBfFQiikIYRbvC45onrE38miGptEDpWK9jnJq3fxE4TNX6psjG1LKxTZxFr0kFFPIP-h3k9YIWYb7ND8V0mFqpkXLhZ5nOvABmHoRcxEIzHQcwLQ5-nsraZAN3SlrlzC6EVdoNwIuMwZP12-SFoUCojxxjiYZ8XpbpwYfP_0H06aRB9NoSZQUsh-Q2fwPmhBBiDcr1BiUILNloXsN9Xa9Kmf452tCz3utXNz9fNOOgGB-Y62JuaCI_QiSq62gYFpWBT5s8qo7PYvUxviAOXHi2qHGwGuxptuSjrwaNHRwYj7nB4-sffYPc3j89PkqPDgaHT8gdD41DvMhL1klrNp3rp2DazsQzKz8o-XLTIus30v-8gA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemIRAviI0_KwxmEAh4yJYmjp08IFTWThv7AxoM9S04jl0qTUlpWsG-AB-KT8ed44YFTYOXPUSq4rMb-87nu-Tud4Q8A5tdZTphntba91jIM09mufY0D3PVDeO8zuI_POK7J-zdMBoukV-LXBgMq1zoRKuo81LhO_ItOFc4YnHFYsu4sIgP_Z03k28eVpDCL62Lchq1iOzrs-_gvlWv9_rA6-dBsDP4tL3ruQoDnhJBNPOiyHSFyOMg4TKQJlFdpY2RGTgmLNQ8UGD-MB7pJNKRDHwt8FeugNCXfh4hEBOo_2siZAzLRohh4-yBHuHcpeqForvlJGNzUhZ6ExFQOBbiPXcU2ooBzbmwPDktq4uM3r9jN88dhju3yS1nxdJeLXYrZEkXq-R6XdfybJWsOI1R0ZcO1vrVHfLzCM3jUxc-ROVIjsE0pdvjqbL4CFQWOe2NtGfj83RO-yCB82km7UADm-NV0eMym0Ovvp7ZGLKClobif9DBDxfSW9A6Y6Ki44IeYNgJ0sDAOT0ErXiXnFwJj-6R5QJWfY3QrjLSSGEyP1FgOOaZEBGMov0skFomvEPCBUNS5SDSsVLHaWq_-wlwler1TZGNqWNjh3hNr0kNEfIP-rfI64YWAb7tjXI6Sp2-SGUWGqNNwGDmLJJZnGmuYwbTkuDh5aZDNlBS0jpbtlFTaY-B_xiDDxt2yFNLgSAfBW6XkZxXVbr3_vN_EH08bhG9cESmhOVQ0mVuwJwQPKxFud6iBFWlWs1rKNeLVanSP5saei5k_eLmJ00zDoqRgYUu55ZGhAIxqC6j4VhOBq4OuV9vn2b1MbIgZj48m2htrBZ72i3F-KvFYQfXJeA-e3D5o2-QG6Co0oO9o_2H5GaAViG-wUvWyfJsOtePwKadZY-t8qDky1Vrq9_EBroc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalisation+against+Circadian+and+Age-Related+Disturbances+Enables+Robust+Detection+of+Gene+Expression+Changes+in+Liver+of+Aged+Mice&rft.jtitle=PloS+one&rft.au=Fonseca+Costa%2C+Sara+S&rft.au=Wegmann%2C+Daniel&rft.au=Ripperger%2C+Jurgen+A&rft.date=2017-01-09&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.spage=e0169615&rft_id=info:doi/10.1371%2Fjournal.pone.0169615&rft.externalDocID=A476889663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |