A Neurosemantic Theory of Concrete Noun Representation Based on the Underlying Brain Codes
This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple thoughts through their fMRI patterns. We use factor anal...
Saved in:
| Published in | PloS one Vol. 5; no. 1; p. e8622 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
13.01.2010
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0008622 |
Cover
| Summary: | This article describes the discovery of a set of biologically-driven semantic dimensions underlying the neural representation of concrete nouns, and then demonstrates how a resulting theory of noun representation can be used to identify simple thoughts through their fMRI patterns. We use factor analysis of fMRI brain imaging data to reveal the biological representation of individual concrete nouns like apple, in the absence of any pictorial stimuli. From this analysis emerge three main semantic factors underpinning the neural representation of nouns naming physical objects, which we label manipulation, shelter, and eating. Each factor is neurally represented in 3-4 different brain locations that correspond to a cortical network that co-activates in non-linguistic tasks, such as tool use pantomime for the manipulation factor. Several converging methods, such as the use of behavioral ratings of word meaning and text corpus characteristics, provide independent evidence of the centrality of these factors to the representations. The factors are then used with machine learning classifier techniques to show that the fMRI-measured brain representation of an individual concrete noun like apple can be identified with good accuracy from among 60 candidate words, using only the fMRI activity in the 16 locations associated with these factors. To further demonstrate the generativity of the proposed account, a theory-based model is developed to predict the brain activation patterns for words to which the algorithm has not been previously exposed. The methods, findings, and theory constitute a new approach of using brain activity for understanding how object concepts are represented in the mind. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: MAJ TMM. Performed the experiments: MAJ. Analyzed the data: VLC SA. Contributed reagents/materials/analysis tools: VLC SA TMM. Wrote the paper: MAJ VLC TMM. |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0008622 |