Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease
Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and put...
Saved in:
Published in | Neurobiology of disease Vol. 63; pp. 201 - 209 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0969-9961 1095-953X 1095-953X |
DOI | 10.1016/j.nbd.2013.11.017 |
Cover
Abstract | Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
•MPTP leads to reduced spine density in MSNs in both pathways of the basal ganglia.•Treadmill exercise increases spine density in MSNs of both pathways in MPTP mice.•Exercise increases dendritic arborization of striatal MSNs in MPTP mice.•MPTP induced DA depletion leads to selective pruning of DA-D2R-containing MSNs.•Exercise increases expression of proteins PSD-95 and synaptophysin in MPTP mice. |
---|---|
AbstractList | Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
•MPTP leads to reduced spine density in MSNs in both pathways of the basal ganglia.•Treadmill exercise increases spine density in MSNs of both pathways in MPTP mice.•Exercise increases dendritic arborization of striatal MSNs in MPTP mice.•MPTP induced DA depletion leads to selective pruning of DA-D2R-containing MSNs.•Exercise increases expression of proteins PSD-95 and synaptophysin in MPTP mice. Exercise has been shown to be beneficial for Parkinson’s disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D 1 receptor (DA-D 1 R)-containing MSNs of the direct pathway and dopamine D 2 receptor (DA-D 2 R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D 2 R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D 1 R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D 1 R-and DA-D 2 R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. Abstract Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1 R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2 R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2 R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1 R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1 R- and DA-D2 R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. |
Author | Akopian, Garnik K. Jakowec, Michael W. Leyshon, Brian J. Petzinger, Giselle M. Vučković, Marta G. Hoffman, Matilde V. Walsh, John P. Toy, William A. |
AuthorAffiliation | 2 The George and MaryLou Boone Center for Parkinson’s Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA, 90033 3 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033 1 The George and MaryLou Boone Center for Parkinson’s Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA, 90033 |
AuthorAffiliation_xml | – name: 2 The George and MaryLou Boone Center for Parkinson’s Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA, 90033 – name: 3 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033 – name: 1 The George and MaryLou Boone Center for Parkinson’s Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA, 90033 |
Author_xml | – sequence: 1 givenname: William A. surname: Toy fullname: Toy, William A. email: wtoy@usc.edu organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 2 givenname: Giselle M. surname: Petzinger fullname: Petzinger, Giselle M. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 3 givenname: Brian J. surname: Leyshon fullname: Leyshon, Brian J. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 4 givenname: Garnik K. surname: Akopian fullname: Akopian, Garnik K. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 5 givenname: John P. surname: Walsh fullname: Walsh, John P. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 6 givenname: Matilde V. surname: Hoffman fullname: Hoffman, Matilde V. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 7 givenname: Marta G. surname: Vučković fullname: Vučković, Marta G. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA – sequence: 8 givenname: Michael W. surname: Jakowec fullname: Jakowec, Michael W. organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24316165$$D View this record in MEDLINE/PubMed |
BookMark | eNqFk81u1DAUhSNURH_gAdgg7yhSM_jGiTMWUiVU8VOpiEoUiZ3l2DcdTx17sDMV83y8GJ6ZFtFKtKvEyT2fT06O94sdHzwWxUugE6DA384nvjOTigKbAEwotE-KPaCiKUXDfuwUe1RwUQrBYbfYT2lOKUAj2mfFblUz4MCbveL3RURlBuscwV8YtU1IIl5jTJiIQW-iHa0maWE9EhdSItYTYyPqkShv8upmkcZo1agcGdDY5bBRrIjHZQx-IxpnSKAccJytXFmXixn6fANH1RE74uWIY1SzlYlhsYrWrHc7_HJ-cf6GDGGZPQ3BoCOhJ-cqXlmfgn-d_WW3KuHz4mmvXMIXN9eD4vvHDxcnn8uzr59OT96flbqtYCyF6Uxdq77lVceg5zjloDraCKwNa7RWqJXSYHiPFdMNF1XFDe16VNOeiWnFDorTLdcENZeLaAcVVzIoKzcPQryUKua0HEqskbX9VPSqV3XV0k4bOu141zeNUC3QzDreshbLLiem0efvd3egd994O5OX4VoyUdO65hlweAOI4ecS0ygHmzQ6pzzmxCQ0wNuGVm37-GgtKt62GZtHX_1r66-f28LkgXY7oGMuQ8Reajuq0Ya1S-skULmuppzLXE25rqYEkLmaWQn3lLfwhzTvthrMv_XaYpRJW_Qat6XLudsH1cf31NpZb7VyV7jCNA_L6HNfJMhUSSq_rY_L-rQAo5Qxus5Y_B_wyOZ_AAHlKCw |
CitedBy_id | crossref_primary_10_1007_s12640_017_9853_3 crossref_primary_10_1097_NPT_0000000000000209 crossref_primary_10_1007_s12640_015_9519_y crossref_primary_10_3390_cells9051115 crossref_primary_10_1016_j_neulet_2019_04_052 crossref_primary_10_3233_BPL_150021 crossref_primary_10_1007_s00702_017_1735_6 crossref_primary_10_1007_s12031_017_0896_y crossref_primary_10_1111_ejn_15594 crossref_primary_10_1016_j_parkreldis_2022_09_005 crossref_primary_10_1007_s11357_017_0002_y crossref_primary_10_3390_ijms23148011 crossref_primary_10_1038_s41531_023_00623_9 crossref_primary_10_3389_fnagi_2021_650350 crossref_primary_10_1186_1750_1326_9_54 crossref_primary_10_3389_fnana_2015_00117 crossref_primary_10_3390_cells9112441 crossref_primary_10_1007_s12640_017_9770_5 crossref_primary_10_3233_BPL_180073 crossref_primary_10_1515_revneuro_2018_0011 crossref_primary_10_3389_fnagi_2022_1001256 crossref_primary_10_1007_s00702_018_1864_6 crossref_primary_10_1080_13554794_2021_1975768 crossref_primary_10_3389_fnins_2021_752332 crossref_primary_10_1515_revneuro_2020_0099 crossref_primary_10_3389_fpsyt_2023_1096503 crossref_primary_10_1123_kr_2014_0074 crossref_primary_10_3389_fncel_2019_00032 crossref_primary_10_1007_s12035_021_02651_z crossref_primary_10_3389_fnins_2024_1464168 crossref_primary_10_2174_1871527322666230518111323 crossref_primary_10_1016_j_ibror_2018_01_001 crossref_primary_10_1016_j_taap_2018_09_003 crossref_primary_10_1111_ejn_14728 crossref_primary_10_1016_j_pneurobio_2018_11_003 crossref_primary_10_1002_jnr_24430 crossref_primary_10_1016_j_jshs_2019_07_004 crossref_primary_10_1016_j_expneurol_2024_115085 crossref_primary_10_3390_ijms25031641 crossref_primary_10_1016_j_neuropharm_2022_109205 crossref_primary_10_1093_cercor_bhw263 crossref_primary_10_1016_j_parkreldis_2014_09_008 crossref_primary_10_1016_j_bbr_2015_11_029 crossref_primary_10_4103_NRR_NRR_D_23_00595 crossref_primary_10_1007_s12035_017_0491_9 crossref_primary_10_1136_bmjopen_2022_067280 crossref_primary_10_37349_ent_2023_00049 crossref_primary_10_1007_s12640_015_9566_4 crossref_primary_10_1007_s11064_019_02739_y crossref_primary_10_1589_jpts_27_3203 crossref_primary_10_1016_j_exger_2021_111384 crossref_primary_10_29252_shefa_8_1_1 crossref_primary_10_3389_fneur_2019_01143 crossref_primary_10_1016_j_expneurol_2017_10_002 crossref_primary_10_1016_j_expneurol_2017_10_001 crossref_primary_10_7554_eLife_81830 crossref_primary_10_3390_ijerph16050880 crossref_primary_10_1007_s40429_017_0178_3 crossref_primary_10_1111_ejn_13644 crossref_primary_10_1097_WNR_0000000000000587 crossref_primary_10_1097_WNR_0000000000000865 crossref_primary_10_1038_s41380_020_0751_3 crossref_primary_10_1038_srep41432 crossref_primary_10_1590_s1980_6574201900030007 crossref_primary_10_1007_s12565_022_00688_1 crossref_primary_10_3389_fpsyt_2023_1094583 crossref_primary_10_1016_j_mayocp_2017_12_015 crossref_primary_10_1016_j_brainres_2016_06_032 crossref_primary_10_1016_j_expneurol_2018_12_005 crossref_primary_10_1016_j_brainresbull_2017_02_005 crossref_primary_10_1016_j_neulet_2016_04_015 crossref_primary_10_1038_ncomms6316 crossref_primary_10_1016_j_expneurol_2024_114694 crossref_primary_10_1002_jnr_24804 crossref_primary_10_1016_j_neuroscience_2017_07_031 crossref_primary_10_1097_NPT_0000000000000370 crossref_primary_10_3389_fnagi_2021_777404 crossref_primary_10_1016_j_bbr_2020_112488 crossref_primary_10_3389_fnagi_2021_695108 crossref_primary_10_1109_TBME_2017_2773540 crossref_primary_10_3233_JPD_229006 crossref_primary_10_1080_14740338_2019_1681966 crossref_primary_10_1016_j_mcn_2023_103883 crossref_primary_10_1002_jnr_24022 crossref_primary_10_3389_fncel_2022_884788 crossref_primary_10_3233_NRE_182641 crossref_primary_10_1016_j_neubiorev_2021_10_019 crossref_primary_10_1016_j_neuroimage_2018_07_036 crossref_primary_10_3389_fnmol_2022_1039302 crossref_primary_10_29252_shefa_8_1_120 crossref_primary_10_1016_j_brainres_2019_01_016 crossref_primary_10_1063_5_0038065 crossref_primary_10_1038_s41598_024_63045_4 crossref_primary_10_1093_brain_awu107 crossref_primary_10_3389_fncir_2019_00017 crossref_primary_10_3389_fnagi_2022_960479 crossref_primary_10_3390_md18090438 crossref_primary_10_1177_1073858421992265 crossref_primary_10_1016_j_autrev_2022_103033 crossref_primary_10_1002_mds_27172 crossref_primary_10_1016_j_nbd_2019_104666 crossref_primary_10_1155_2020_4293071 crossref_primary_10_1038_nn_3743 crossref_primary_10_1038_tp_2017_41 crossref_primary_10_1249_MSS_0000000000001793 crossref_primary_10_1002_syn_21754 crossref_primary_10_1371_journal_pone_0190160 crossref_primary_10_1016_j_expneurol_2024_114875 crossref_primary_10_3389_fnagi_2017_00358 crossref_primary_10_1093_ptj_pzab191 crossref_primary_10_31083_j_jin2002055 crossref_primary_10_1007_s12035_018_1278_3 crossref_primary_10_3389_fncom_2024_1410335 crossref_primary_10_1016_j_crneur_2022_100039 crossref_primary_10_1016_j_brainresbull_2022_06_004 crossref_primary_10_1016_j_yfrne_2015_07_001 crossref_primary_10_1186_s13063_022_06703_0 crossref_primary_10_3233_JPD_140508 crossref_primary_10_1016_j_expneurol_2021_113741 crossref_primary_10_1111_ejn_14777 crossref_primary_10_1002_jnr_24524 crossref_primary_10_3389_fnagi_2022_891644 crossref_primary_10_1097_WNR_0000000000001239 crossref_primary_10_1111_ejn_14894 crossref_primary_10_5812_zjrms_89902 crossref_primary_10_1523_JNEUROSCI_0492_15_2016 crossref_primary_10_1016_j_brainres_2015_06_052 crossref_primary_10_1016_j_nbd_2015_02_020 crossref_primary_10_1016_j_neurobiolaging_2014_08_016 crossref_primary_10_3233_BPL_200115 crossref_primary_10_1016_j_mcn_2022_103755 crossref_primary_10_1002_mds_26620 crossref_primary_10_1080_01616412_2018_1474840 |
Cites_doi | 10.1002/cne.20493 10.1523/JNEUROSCI.0224-12.2012 10.1002/cne.903190107 10.1016/j.brainres.2012.09.019 10.1002/jnr.22216 10.1016/j.neuroscience.2005.01.007 10.1002/jnr.23260 10.1038/nrneurol.2011.107 10.1016/S0149-7634(96)00029-2 10.1038/nn1632 10.1002/mds.22782 10.1038/nature02033 10.1016/j.brainres.2010.07.070 10.1016/1055-8330(95)90015-2 10.1002/cne.903600111 10.1016/0006-8993(88)90124-2 10.1016/S1474-4422(13)70123-6 10.1038/nmeth.2019 10.1002/jnr.20162 10.1016/j.neuroscience.2007.06.044 10.1016/j.neuroimage.2007.03.010 10.1002/hipo.20348 10.1523/JNEUROSCI.1069-07.2007 10.1016/0006-8993(89)91686-7 10.1073/pnas.87.14.5568 10.1002/mds.20394 10.3389/fnana.2010.00133 10.3233/NRE-2010-0574 10.1016/S0166-2236(02)02143-4 10.1523/JNEUROSCI.4287-10.2011 10.1155/2013/709732 10.1523/JNEUROSCI.0229-12.2012 10.1016/0165-0270(92)90009-3 10.1016/j.neulet.2012.04.040 10.1002/cne.902170410 10.1002/cne.902790205 10.1016/j.neulet.2011.01.043 10.1002/syn.890040308 10.1523/JNEUROSCI.5493-07.2008 10.1006/nlme.1995.1025 10.1016/j.bbr.2005.04.009 10.1007/BF00227776 10.1016/j.brainres.2010.01.053 10.1212/01.WNL.0000151960.28687.93 10.1002/jnr.20114 10.1016/j.neulet.2005.06.009 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. 2013 Elsevier Inc. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 7TS 5PM DOA |
DOI | 10.1016/j.nbd.2013.11.017 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts Physical Education Index PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts Physical Education Index |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
EndPage | 209 |
ExternalDocumentID | oai_doaj_org_article_e4e37f89fafa4270bcd08b6bf559a710 PMC3940446 24316165 10_1016_j_nbd_2013_11_017 S0969996113003306 1_s2_0_S0969996113003306 |
Genre | Journal Article |
GrantInformation_xml | – fundername: U.S. Army NETRP grantid: W81XWH-04-1-0444 – fundername: University of Southern California, Keck School of Medicine grantid: RR031986 – fundername: NINDS grantid: RO1 NS44327 – fundername: Southern California Clinical and Translational Science Institute – fundername: Zumberge Foundation of USC – fundername: NINDS NIH HHS grantid: R01 NS044327 – fundername: NCRR NIH HHS grantid: UL1 RR031986 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- 0SF 6I. AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ PKN RIG AADPK AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT ~HD 7TK 7TS 5PM |
ID | FETCH-LOGICAL-c721t-9dbd44af762b31f6e861ab059e4d35ccaecaac1d6fe23c569226d0bfea8f39823 |
IEDL.DBID | AIKHN |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:23:59 EDT 2025 Thu Aug 21 14:31:54 EDT 2025 Fri Sep 05 12:11:10 EDT 2025 Sun Sep 28 10:19:02 EDT 2025 Thu Apr 03 07:02:06 EDT 2025 Tue Jul 01 03:07:22 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Fri Feb 23 02:39:44 EST 2024 Sun Feb 23 10:19:12 EST 2025 Tue Aug 26 16:32:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neuroplasticity GFP Striatum Parkinson's Basal ganglia Dopamine Synaptogenesis |
Language | English |
License | Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c721t-9dbd44af762b31f6e861ab059e4d35ccaecaac1d6fe23c569226d0bfea8f39823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doaj.org/article/e4e37f89fafa4270bcd08b6bf559a710 |
PMID | 24316165 |
PQID | 1492677044 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4e37f89fafa4270bcd08b6bf559a710 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3940446 proquest_miscellaneous_1516750277 proquest_miscellaneous_1492677044 pubmed_primary_24316165 crossref_citationtrail_10_1016_j_nbd_2013_11_017 crossref_primary_10_1016_j_nbd_2013_11_017 elsevier_sciencedirect_doi_10_1016_j_nbd_2013_11_017 elsevier_clinicalkeyesjournals_1_s2_0_S0969996113003306 elsevier_clinicalkey_doi_10_1016_j_nbd_2013_11_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-03-01 |
PublicationDateYYYYMMDD | 2014-03-01 |
PublicationDate_xml | – month: 03 year: 2014 text: 2014-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Gerecke, Jiao, Pani, Pagala, Smeyne (bb0080) 2010; 1341 Coleman, Friedlander (bb0045) 1992; 44 Comery, Shah, Greenough (bb0050) 1995; 63 Calabresi, Pisani, Centonze, Bernardi (bb0025) 1997; 21 Neely, Schmidt, Deutch (bb0155) 2007; 149 Cotman, Berchtold (bb0060) 2002; 25 Kawanishi, Yano, Yokogawa, Suzuki (bb0115) 2010; 16 Black, Isaacs, Anderson, Alcantara, Greenough (bb0020) 1990; 87 Kramer, Christensen, Hazelwood, Dobi, Bock, Sibley, Mateo, Alvarez (bb0125) 2011; 31 Takamatsu, Ishida, Hamakawa, Tamakoshi, Jung, Ishida (bb0220) 2010; 1355 Ingham, Hood, Arbuthnott (bb0095) 1989; 503 Petzinger, Fisher, McEwen, Beeler, Walsh, Jakowec (bb0170) 2013; 12 Schindelin, Arganda-Carreras, Erwin Frise, Longair, Pietzsch, Preibisch, Rueden, Saalfel, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bb0195) 2012; 9 Bannister, Larkman (bb0010) 1995; 360 Gong, Zheng, Doughty, Losos, Didkovsky, Schambra, Nowak, Joyner, Leblanc, Hatten, Heintz (bb0085) 2003; 425 Rafols, Cheng, McNeill (bb0190) 1989; 279 Pisani, Centonze, Bernardi, Calabresi (bb0185) 2005; 20 Sholl (bb0200) 1953; 87 Bernardi, Tramontina, Nardin, Biasibetti, Costa, Vizueti, Batassini, Tortorelli, Wartchow, Dutra, Bobermin, Sesterheim, Quincozes-Santos, de Souza, Goncalves (bb0015) 2013; 2013 Chan, Peterson, Gertler, Glajch, Quintana, Cui, Sebel, Plotkin, Shen, Heiman, Heintz, Greengard, Surmeier (bb0035) 2012; 32 Nelson, Hang, Grueter, Pascoli, Luscher, Malenka, Kreitzer (bb0160) 2012; 32 Day, Wang, Ding, An, Ingham, Shering, Wokosin, Ilijic, Sun, Sampson, Mugnaini, Deutch, Sesack, Arbuthnott, Surmeier (bb0065) 2006; 9 Kintz, Petzinger, Akopian, Ptasnik, Williams, Jakowec, Walsh (bb0120) 2013; 91 Li, Liu, Lu, Zhang, Gu, Guo, An, Zhang, Zhang (bb0140) 2012; 517 Conley, Wilson (bb0055) 1992; 319 Al-Jarrah, Jamous, Al Zailaey, Bweir (bb0005) 2010; 26 Villalba, Smith (bb0235) 2010; 4 Jakowec, Nixon, Hogg, McNeill, Petzinger (bb0110) 2004; 76 Wilson, Sachdev (bb0240) 2004 Taverna, Ilijic, Surmeier (bb0225) 2008; 28 Jackson-Lewis, Jakowec, Burke, Przedborski (bb0105) 1995; 4 Speelman, van de Warrenburg, van Nimwegen, Petzinger, Munneke, Bloem (bb0205) 2011; 7 Cepeda, Walsh, Hull, Howard, Buchwald, Levine (bb0030) 1989; 4 Li, Ding, Rafols, Lai, McAllister, Ding (bb0135) 2005; 386 Fisher, Petzinger, Nixon, Hogg, Bremmer, Meshul, Jakowec (bb0075) 2004; 77 Yang, Sadler, Givrad, Maarek, Holschneider (bb0245) 2007; 36 VanLeeuwen, Petzinger, Walsh, Akopian, Vuckovic, Jakowec (bb0230) 2010; 88 McNeill, Brown, Rafols, Shoulson (bb0150) 1988; 455 Ingham, Hood, Maldegem, Weenink, Arbuthnott (bb0100) 1993; 93 Stranahan, Khalil, Gould (bb0215) 2007; 17 Petzinger, Fisher, Van Leeuwen, Vukovic, Akopian, Meshul, Holschneider, Nacca, Walsh, Jakowec (bb0175) 2010; 25 Mason (bb0145) 1983; 217 Gonzalez-Burgos, Gonzalez-Tapia, Zamora, Feria-Velasco, Beas-Zarate (bb0090) 2011; 491 Pagnussat, Simao, Anastacio, Mestriner, Michaelsen, Castro, Salbego, Netto (bb0165) 2012; 1486 Chen, Zhang, Schwarzschild, Hernán, Ascherio (bb0040) 2005; 64 Petzinger, Walsh, Akopian, Hogg, Abernathy, Arevalo, Turnquist, Vuckovic, Fisher, Togasaki, Jakowec (bb0180) 2007; 27 Leggio, Mandolesi, Federico, Spirito, Ricci, Gelfo, Petrosini (bb0130) 2005; 163 Stephens, Mueller, Shering, Hood, Taggart, Arbuthnott, Bell, Kilford, Kingsbury, Daniel, Ingham (bb0210) 2005; 132 Eadie, Redila, Christie (bb0070) 2005; 486 Gong (10.1016/j.nbd.2013.11.017_bb0085) 2003; 425 Pagnussat (10.1016/j.nbd.2013.11.017_bb0165) 2012; 1486 Kramer (10.1016/j.nbd.2013.11.017_bb0125) 2011; 31 Pisani (10.1016/j.nbd.2013.11.017_bb0185) 2005; 20 Chen (10.1016/j.nbd.2013.11.017_bb0040) 2005; 64 Coleman (10.1016/j.nbd.2013.11.017_bb0045) 1992; 44 Ingham (10.1016/j.nbd.2013.11.017_bb0095) 1989; 503 Gerecke (10.1016/j.nbd.2013.11.017_bb0080) 2010; 1341 Taverna (10.1016/j.nbd.2013.11.017_bb0225) 2008; 28 Rafols (10.1016/j.nbd.2013.11.017_bb0190) 1989; 279 Cepeda (10.1016/j.nbd.2013.11.017_bb0030) 1989; 4 Leggio (10.1016/j.nbd.2013.11.017_bb0130) 2005; 163 McNeill (10.1016/j.nbd.2013.11.017_bb0150) 1988; 455 Cotman (10.1016/j.nbd.2013.11.017_bb0060) 2002; 25 Wilson (10.1016/j.nbd.2013.11.017_bb0240) 2004 Bernardi (10.1016/j.nbd.2013.11.017_bb0015) 2013; 2013 Al-Jarrah (10.1016/j.nbd.2013.11.017_bb0005) 2010; 26 Yang (10.1016/j.nbd.2013.11.017_bb0245) 2007; 36 Petzinger (10.1016/j.nbd.2013.11.017_bb0180) 2007; 27 Kawanishi (10.1016/j.nbd.2013.11.017_bb0115) 2010; 16 Petzinger (10.1016/j.nbd.2013.11.017_bb0175) 2010; 25 Li (10.1016/j.nbd.2013.11.017_bb0135) 2005; 386 Bannister (10.1016/j.nbd.2013.11.017_bb0010) 1995; 360 Li (10.1016/j.nbd.2013.11.017_bb0140) 2012; 517 Stranahan (10.1016/j.nbd.2013.11.017_bb0215) 2007; 17 Nelson (10.1016/j.nbd.2013.11.017_bb0160) 2012; 32 Comery (10.1016/j.nbd.2013.11.017_bb0050) 1995; 63 Mason (10.1016/j.nbd.2013.11.017_bb0145) 1983; 217 Black (10.1016/j.nbd.2013.11.017_bb0020) 1990; 87 Schindelin (10.1016/j.nbd.2013.11.017_bb0195) 2012; 9 Calabresi (10.1016/j.nbd.2013.11.017_bb0025) 1997; 21 Ingham (10.1016/j.nbd.2013.11.017_bb0100) 1993; 93 VanLeeuwen (10.1016/j.nbd.2013.11.017_bb0230) 2010; 88 Speelman (10.1016/j.nbd.2013.11.017_bb0205) 2011; 7 Fisher (10.1016/j.nbd.2013.11.017_bb0075) 2004; 77 Jackson-Lewis (10.1016/j.nbd.2013.11.017_bb0105) 1995; 4 Petzinger (10.1016/j.nbd.2013.11.017_bb0170) 2013; 12 Neely (10.1016/j.nbd.2013.11.017_bb0155) 2007; 149 Stephens (10.1016/j.nbd.2013.11.017_bb0210) 2005; 132 Conley (10.1016/j.nbd.2013.11.017_bb0055) 1992; 319 Villalba (10.1016/j.nbd.2013.11.017_bb0235) 2010; 4 Eadie (10.1016/j.nbd.2013.11.017_bb0070) 2005; 486 Chan (10.1016/j.nbd.2013.11.017_bb0035) 2012; 32 Day (10.1016/j.nbd.2013.11.017_bb0065) 2006; 9 Sholl (10.1016/j.nbd.2013.11.017_bb0200) 1953; 87 Takamatsu (10.1016/j.nbd.2013.11.017_bb0220) 2010; 1355 Gonzalez-Burgos (10.1016/j.nbd.2013.11.017_bb0090) 2011; 491 Jakowec (10.1016/j.nbd.2013.11.017_bb0110) 2004; 76 Kintz (10.1016/j.nbd.2013.11.017_bb0120) 2013; 91 17888581 - Neuroscience. 2007 Oct 26;149(2):457-64 15837135 - Neuroscience. 2005;132(3):741-54 21750523 - Nat Rev Neurol. 2011 Sep;7(9):528-34 2514464 - Synapse. 1989;4(3):229-37 9195611 - Neurosci Biobehav Rev. 1997 Jul;21(4):519-23 13117757 - J Anat. 1953 Oct;87(4):387-406 20187247 - Mov Disord. 2010;25 Suppl 1:S141-5 3416180 - Brain Res. 1988 Jul 5;455(1):148-52 14586460 - Nature. 2003 Oct 30;425(6961):917-25 21262320 - Neurosci Lett. 2011 Mar 24;491(3):216-20 20555160 - NeuroRehabilitation. 2010;26(4):369-73 1695380 - Proc Natl Acad Sci U S A. 1990 Jul;87(14):5568-72 6886064 - J Comp Neurol. 1983 Jul 10;217(4):458-69 21179580 - Front Neuroanat. 2010 Dec 10;4:133 8581558 - Neurodegeneration. 1995 Sep;4(3):257-69 20659436 - Brain Res. 2010 Oct 8;1355:165-73 16024173 - Neurosci Lett. 2005 Oct 7;386(3):160-4 15728289 - Neurology. 2005 Feb 22;64(4):664-9 17636549 - Hippocampus. 2007;17(11):1017-22 2464010 - J Comp Neurol. 1989 Jan 8;279(2):212-27 18495884 - J Neurosci. 2008 May 21;28(21):5504-12 17507552 - J Neurosci. 2007 May 16;27(20):5291-300 21209197 - J Neurosci. 2011 Jan 5;31(1):126-32 22561554 - Neurosci Lett. 2012 May 31;517(2):118-22 20839495 - Exerc Immunol Rev. 2010;16:105-18 15719415 - Mov Disord. 2005 Apr;20(4):395-402 1474850 - J Neurosci Methods. 1992 Sep;44(2-3):167-77 1592905 - J Comp Neurol. 1992 May 1;319(1):51-65 7670834 - Neurobiol Learn Mem. 1995 May;63(3):217-9 19746427 - J Neurosci Res. 2010 Feb 15;88(3):650-68 23918451 - J Neurosci Res. 2013 Nov;91(11):1492-507 15248294 - J Neurosci Res. 2004 Aug 1;77(3):378-90 22764221 - J Neurosci. 2012 Jul 4;32(27):9119-23 2514009 - Brain Res. 1989 Dec 4;503(2):334-8 16415865 - Nat Neurosci. 2006 Feb;9(2):251-9 23022567 - Brain Res. 2012 Nov 27;1486:53-61 15114626 - J Neurosci Res. 2004 May 15;76(4):539-50 20116369 - Brain Res. 2010 Jun 23;1341:72-83 22743772 - Nat Methods. 2012 Jul;9(7):676-82 17481921 - Neuroimage. 2007 Jul 1;36(3):755-73 7499560 - J Comp Neurol. 1995 Sep 11;360(1):150-60 23401802 - Neural Plast. 2013;2013:709732 22764222 - J Neurosci. 2012 Jul 4;32(27):9124-32 12086747 - Trends Neurosci. 2002 Jun;25(6):295-301 23769598 - Lancet Neurol. 2013 Jul;12(7):716-26 7682182 - Exp Brain Res. 1993;93(1):17-27 15834963 - J Comp Neurol. 2005 May 23;486(1):39-47 18428594 - Curr Protoc Neurosci. 2004 May;Chapter 1:Unit 1.12 15913801 - Behav Brain Res. 2005 Aug 30;163(1):78-90 |
References_xml | – volume: 163 start-page: 78 year: 2005 end-page: 90 ident: bb0130 article-title: Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat publication-title: Behav. Brain Res. – volume: 25 start-page: 295 year: 2002 end-page: 301 ident: bb0060 article-title: Exercise: a behavioral intervention to enhance brain health and plasticity publication-title: Trends Neurosci. – volume: 26 start-page: 369 year: 2010 end-page: 373 ident: bb0005 article-title: Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson's disease publication-title: NeuroRehabilitation – volume: 1355 start-page: 165 year: 2010 end-page: 173 ident: bb0220 article-title: Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats publication-title: Brain Res. – volume: 386 start-page: 160 year: 2005 end-page: 164 ident: bb0135 article-title: Increased astrocyte proliferation in rats after running exercise publication-title: Neurosci. Lett. – volume: 25 start-page: S141 year: 2010 end-page: S145 ident: bb0175 article-title: Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease publication-title: Mov. Disord. – volume: 91 start-page: 1492 year: 2013 end-page: 1507 ident: bb0120 article-title: Exercise modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptor (AMPAR) expression selectively on striatopallidal indirect projection pathway neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-(MPTP)-lesioned mouse model of basal ganglia injury publication-title: J. Neurosci. Res. – volume: 32 start-page: 9119 year: 2012 end-page: 9123 ident: bb0160 article-title: A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice publication-title: J. Neurosci. – volume: 279 start-page: 212 year: 1989 end-page: 227 ident: bb0190 article-title: Golgi study of the mouse striatum: age-related dendritic changes in different neuronal populations publication-title: J. Comp. Neurol. – volume: 4 start-page: 257 year: 1995 end-page: 269 ident: bb0105 article-title: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine publication-title: Neurodegeneration – volume: 76 start-page: 539 year: 2004 end-page: 550 ident: bb0110 article-title: Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway publication-title: J. Neurosci. Res. – start-page: 12 year: 2004 ident: bb0240 article-title: Intracellular and juxtacellular staining with biocytin publication-title: Curr. Protoc. Neurosci. – volume: 20 start-page: 395 year: 2005 end-page: 402 ident: bb0185 article-title: Striatal synaptic plasticity: implications for motor learning and Parkinson's disease publication-title: Mov. Disord. – volume: 27 start-page: 5291 year: 2007 end-page: 5300 ident: bb0180 article-title: Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury publication-title: J. Neurosci. – volume: 517 start-page: 118 year: 2012 end-page: 122 ident: bb0140 article-title: Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens publication-title: Neurosci. Lett. – volume: 28 start-page: 5504 year: 2008 end-page: 5512 ident: bb0225 article-title: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease publication-title: J. Neurosci. – volume: 36 start-page: 755 year: 2007 end-page: 773 ident: bb0245 article-title: Changes in brain functional activation during resting and locomotor states after unilateral nigrostriatal damage in rats publication-title: Neuroimage – volume: 491 start-page: 216 year: 2011 end-page: 220 ident: bb0090 article-title: Guided motor training induces dendritic spine plastic changes in adult rat cerebellar Purkinje cells publication-title: Neurosci. Lett. – volume: 31 start-page: 126 year: 2011 end-page: 132 ident: bb0125 article-title: Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice publication-title: J. Neurosci. – volume: 16 start-page: 105 year: 2010 end-page: 118 ident: bb0115 article-title: Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice publication-title: Exerc. Immunol. Rev. – volume: 7 start-page: 528 year: 2011 end-page: 534 ident: bb0205 article-title: How might physical activity benefit patients with Parkinson disease? publication-title: Nat. Rev. Neurol. – volume: 217 start-page: 458 year: 1983 end-page: 469 ident: bb0145 article-title: Postnatal maturation of neurons in the cat's lateral geniculate nucleus publication-title: J. Comp. Neurol. – volume: 93 start-page: 17 year: 1993 end-page: 27 ident: bb0100 article-title: Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway publication-title: Exp. Brain Res. – volume: 44 start-page: 167 year: 1992 end-page: 177 ident: bb0045 article-title: Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin publication-title: J. Neurosci. Methods – volume: 64 start-page: 664 year: 2005 end-page: 669 ident: bb0040 article-title: Physical activity and the risk of Parkinson disease publication-title: Neurology – volume: 360 start-page: 150 year: 1995 end-page: 160 ident: bb0010 article-title: Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns publication-title: J. Comp. Neurol. – volume: 87 start-page: 5568 year: 1990 end-page: 5572 ident: bb0020 article-title: Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 251 year: 2006 end-page: 259 ident: bb0065 article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models publication-title: Nat. Neurosci. – volume: 4 start-page: 229 year: 1989 end-page: 237 ident: bb0030 article-title: Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions publication-title: Synapse – volume: 1486 start-page: 53 year: 2012 end-page: 61 ident: bb0165 article-title: Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats publication-title: Brain Res. – volume: 4 year: 2010 ident: bb0235 article-title: Striatal spine plasticity in Parkinson's disease publication-title: Front. Neuroanat. – volume: 425 start-page: 917 year: 2003 end-page: 925 ident: bb0085 article-title: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes publication-title: Nature – volume: 486 start-page: 39 year: 2005 end-page: 47 ident: bb0070 article-title: Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density publication-title: J. Comp. Neurol. – volume: 12 start-page: 716 year: 2013 end-page: 726 ident: bb0170 article-title: Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease publication-title: Lancet Neurol. – volume: 77 start-page: 378 year: 2004 end-page: 390 ident: bb0075 article-title: Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia publication-title: J. Neurosci. Res. – volume: 149 start-page: 457 year: 2007 end-page: 464 ident: bb0155 article-title: Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons publication-title: Neuroscience – volume: 17 start-page: 1017 year: 2007 end-page: 1022 ident: bb0215 article-title: Running induces widespread structural alterations in the hippocampus and entorhinal cortex publication-title: Hippocampus – volume: 319 start-page: 51 year: 1992 end-page: 65 ident: bb0055 article-title: Dendritic organization of class II (inter)neurons in the dorsal lateral geniculate nucleus of the tree shrew: observations based on Golgi, immunocytochemical, and biocytin methods publication-title: J. Comp. Neurol. – volume: 63 start-page: 217 year: 1995 end-page: 219 ident: bb0050 article-title: Differential rearing alters spine density on medium-sized spiny neurons in the rat corpus striatum: evidence for association of morphological plasticity with early response gene expression publication-title: Neurobiol. Learn. Mem. – volume: 2013 start-page: 709 year: 2013 end-page: 732 ident: bb0015 article-title: Treadmill exercise induces hippocampal astroglial alterations in rats publication-title: Neural Plast. – volume: 21 start-page: 519 year: 1997 end-page: 523 ident: bb0025 article-title: Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum publication-title: Neurosci. Biobehav. Rev. – volume: 455 start-page: 148 year: 1988 end-page: 152 ident: bb0150 article-title: Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease publication-title: Brain Res. – volume: 87 start-page: 387 year: 1953 end-page: 406 ident: bb0200 article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat publication-title: J. Anat. – volume: 1341 start-page: 72 year: 2010 end-page: 83 ident: bb0080 article-title: Exercise protects against MPTP-induced neurotoxicity in mice publication-title: Brain Res. – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: bb0195 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods – volume: 88 start-page: 650 year: 2010 end-page: 668 ident: bb0230 article-title: Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury publication-title: J. Neurosci. Res. – volume: 32 start-page: 9124 year: 2012 end-page: 9132 ident: bb0035 article-title: Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice publication-title: J. Neurosci. – volume: 503 start-page: 334 year: 1989 end-page: 338 ident: bb0095 article-title: Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age publication-title: Brain Res. – volume: 132 start-page: 741 year: 2005 end-page: 754 ident: bb0210 article-title: Evidence of a breakdown of corticostriatal connections in Parkinson's disease publication-title: Neuroscience – volume: 486 start-page: 39 year: 2005 ident: 10.1016/j.nbd.2013.11.017_bb0070 article-title: Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density publication-title: J. Comp. Neurol. doi: 10.1002/cne.20493 – volume: 32 start-page: 9119 year: 2012 ident: 10.1016/j.nbd.2013.11.017_bb0160 article-title: A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0224-12.2012 – volume: 319 start-page: 51 year: 1992 ident: 10.1016/j.nbd.2013.11.017_bb0055 article-title: Dendritic organization of class II (inter)neurons in the dorsal lateral geniculate nucleus of the tree shrew: observations based on Golgi, immunocytochemical, and biocytin methods publication-title: J. Comp. Neurol. doi: 10.1002/cne.903190107 – volume: 1486 start-page: 53 year: 2012 ident: 10.1016/j.nbd.2013.11.017_bb0165 article-title: Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats publication-title: Brain Res. doi: 10.1016/j.brainres.2012.09.019 – volume: 88 start-page: 650 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0230 article-title: Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22216 – volume: 132 start-page: 741 year: 2005 ident: 10.1016/j.nbd.2013.11.017_bb0210 article-title: Evidence of a breakdown of corticostriatal connections in Parkinson's disease publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.01.007 – volume: 91 start-page: 1492 year: 2013 ident: 10.1016/j.nbd.2013.11.017_bb0120 publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23260 – volume: 7 start-page: 528 year: 2011 ident: 10.1016/j.nbd.2013.11.017_bb0205 article-title: How might physical activity benefit patients with Parkinson disease? publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2011.107 – volume: 21 start-page: 519 year: 1997 ident: 10.1016/j.nbd.2013.11.017_bb0025 article-title: Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(96)00029-2 – volume: 9 start-page: 251 year: 2006 ident: 10.1016/j.nbd.2013.11.017_bb0065 article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models publication-title: Nat. Neurosci. doi: 10.1038/nn1632 – volume: 25 start-page: S141 issue: Suppl. 1 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0175 article-title: Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.22782 – volume: 425 start-page: 917 year: 2003 ident: 10.1016/j.nbd.2013.11.017_bb0085 article-title: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes publication-title: Nature doi: 10.1038/nature02033 – volume: 87 start-page: 387 year: 1953 ident: 10.1016/j.nbd.2013.11.017_bb0200 article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat publication-title: J. Anat. – volume: 1355 start-page: 165 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0220 article-title: Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats publication-title: Brain Res. doi: 10.1016/j.brainres.2010.07.070 – volume: 4 start-page: 257 year: 1995 ident: 10.1016/j.nbd.2013.11.017_bb0105 article-title: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine publication-title: Neurodegeneration doi: 10.1016/1055-8330(95)90015-2 – volume: 360 start-page: 150 year: 1995 ident: 10.1016/j.nbd.2013.11.017_bb0010 article-title: Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns publication-title: J. Comp. Neurol. doi: 10.1002/cne.903600111 – volume: 455 start-page: 148 year: 1988 ident: 10.1016/j.nbd.2013.11.017_bb0150 article-title: Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease publication-title: Brain Res. doi: 10.1016/0006-8993(88)90124-2 – volume: 12 start-page: 716 year: 2013 ident: 10.1016/j.nbd.2013.11.017_bb0170 article-title: Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70123-6 – volume: 9 start-page: 676 year: 2012 ident: 10.1016/j.nbd.2013.11.017_bb0195 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 77 start-page: 378 year: 2004 ident: 10.1016/j.nbd.2013.11.017_bb0075 article-title: Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20162 – volume: 149 start-page: 457 year: 2007 ident: 10.1016/j.nbd.2013.11.017_bb0155 article-title: Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons publication-title: Neuroscience doi: 10.1016/j.neuroscience.2007.06.044 – volume: 36 start-page: 755 year: 2007 ident: 10.1016/j.nbd.2013.11.017_bb0245 article-title: Changes in brain functional activation during resting and locomotor states after unilateral nigrostriatal damage in rats publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.010 – volume: 16 start-page: 105 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0115 article-title: Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice publication-title: Exerc. Immunol. Rev. – volume: 17 start-page: 1017 year: 2007 ident: 10.1016/j.nbd.2013.11.017_bb0215 article-title: Running induces widespread structural alterations in the hippocampus and entorhinal cortex publication-title: Hippocampus doi: 10.1002/hipo.20348 – volume: 27 start-page: 5291 year: 2007 ident: 10.1016/j.nbd.2013.11.017_bb0180 article-title: Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1069-07.2007 – volume: 503 start-page: 334 year: 1989 ident: 10.1016/j.nbd.2013.11.017_bb0095 article-title: Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age publication-title: Brain Res. doi: 10.1016/0006-8993(89)91686-7 – volume: 87 start-page: 5568 year: 1990 ident: 10.1016/j.nbd.2013.11.017_bb0020 article-title: Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.87.14.5568 – volume: 20 start-page: 395 year: 2005 ident: 10.1016/j.nbd.2013.11.017_bb0185 article-title: Striatal synaptic plasticity: implications for motor learning and Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.20394 – volume: 4 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0235 article-title: Striatal spine plasticity in Parkinson's disease publication-title: Front. Neuroanat. doi: 10.3389/fnana.2010.00133 – volume: 26 start-page: 369 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0005 article-title: Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson's disease publication-title: NeuroRehabilitation doi: 10.3233/NRE-2010-0574 – volume: 25 start-page: 295 year: 2002 ident: 10.1016/j.nbd.2013.11.017_bb0060 article-title: Exercise: a behavioral intervention to enhance brain health and plasticity publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(02)02143-4 – volume: 31 start-page: 126 year: 2011 ident: 10.1016/j.nbd.2013.11.017_bb0125 article-title: Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4287-10.2011 – volume: 2013 start-page: 709 year: 2013 ident: 10.1016/j.nbd.2013.11.017_bb0015 article-title: Treadmill exercise induces hippocampal astroglial alterations in rats publication-title: Neural Plast. doi: 10.1155/2013/709732 – volume: 32 start-page: 9124 year: 2012 ident: 10.1016/j.nbd.2013.11.017_bb0035 article-title: Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0229-12.2012 – start-page: 12 year: 2004 ident: 10.1016/j.nbd.2013.11.017_bb0240 article-title: Intracellular and juxtacellular staining with biocytin publication-title: Curr. Protoc. Neurosci. – volume: 44 start-page: 167 year: 1992 ident: 10.1016/j.nbd.2013.11.017_bb0045 article-title: Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin publication-title: J. Neurosci. Methods doi: 10.1016/0165-0270(92)90009-3 – volume: 517 start-page: 118 year: 2012 ident: 10.1016/j.nbd.2013.11.017_bb0140 article-title: Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.04.040 – volume: 217 start-page: 458 year: 1983 ident: 10.1016/j.nbd.2013.11.017_bb0145 article-title: Postnatal maturation of neurons in the cat's lateral geniculate nucleus publication-title: J. Comp. Neurol. doi: 10.1002/cne.902170410 – volume: 279 start-page: 212 year: 1989 ident: 10.1016/j.nbd.2013.11.017_bb0190 article-title: Golgi study of the mouse striatum: age-related dendritic changes in different neuronal populations publication-title: J. Comp. Neurol. doi: 10.1002/cne.902790205 – volume: 491 start-page: 216 year: 2011 ident: 10.1016/j.nbd.2013.11.017_bb0090 article-title: Guided motor training induces dendritic spine plastic changes in adult rat cerebellar Purkinje cells publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.01.043 – volume: 4 start-page: 229 year: 1989 ident: 10.1016/j.nbd.2013.11.017_bb0030 article-title: Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions publication-title: Synapse doi: 10.1002/syn.890040308 – volume: 28 start-page: 5504 year: 2008 ident: 10.1016/j.nbd.2013.11.017_bb0225 article-title: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5493-07.2008 – volume: 63 start-page: 217 year: 1995 ident: 10.1016/j.nbd.2013.11.017_bb0050 article-title: Differential rearing alters spine density on medium-sized spiny neurons in the rat corpus striatum: evidence for association of morphological plasticity with early response gene expression publication-title: Neurobiol. Learn. Mem. doi: 10.1006/nlme.1995.1025 – volume: 163 start-page: 78 year: 2005 ident: 10.1016/j.nbd.2013.11.017_bb0130 article-title: Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2005.04.009 – volume: 93 start-page: 17 year: 1993 ident: 10.1016/j.nbd.2013.11.017_bb0100 article-title: Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway publication-title: Exp. Brain Res. doi: 10.1007/BF00227776 – volume: 1341 start-page: 72 year: 2010 ident: 10.1016/j.nbd.2013.11.017_bb0080 article-title: Exercise protects against MPTP-induced neurotoxicity in mice publication-title: Brain Res. doi: 10.1016/j.brainres.2010.01.053 – volume: 64 start-page: 664 year: 2005 ident: 10.1016/j.nbd.2013.11.017_bb0040 article-title: Physical activity and the risk of Parkinson disease publication-title: Neurology doi: 10.1212/01.WNL.0000151960.28687.93 – volume: 76 start-page: 539 year: 2004 ident: 10.1016/j.nbd.2013.11.017_bb0110 article-title: Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20114 – volume: 386 start-page: 160 year: 2005 ident: 10.1016/j.nbd.2013.11.017_bb0135 article-title: Increased astrocyte proliferation in rats after running exercise publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2005.06.009 – reference: 7682182 - Exp Brain Res. 1993;93(1):17-27 – reference: 20116369 - Brain Res. 2010 Jun 23;1341:72-83 – reference: 15913801 - Behav Brain Res. 2005 Aug 30;163(1):78-90 – reference: 1474850 - J Neurosci Methods. 1992 Sep;44(2-3):167-77 – reference: 20839495 - Exerc Immunol Rev. 2010;16:105-18 – reference: 15837135 - Neuroscience. 2005;132(3):741-54 – reference: 15728289 - Neurology. 2005 Feb 22;64(4):664-9 – reference: 15834963 - J Comp Neurol. 2005 May 23;486(1):39-47 – reference: 17507552 - J Neurosci. 2007 May 16;27(20):5291-300 – reference: 14586460 - Nature. 2003 Oct 30;425(6961):917-25 – reference: 7499560 - J Comp Neurol. 1995 Sep 11;360(1):150-60 – reference: 7670834 - Neurobiol Learn Mem. 1995 May;63(3):217-9 – reference: 15114626 - J Neurosci Res. 2004 May 15;76(4):539-50 – reference: 18428594 - Curr Protoc Neurosci. 2004 May;Chapter 1:Unit 1.12 – reference: 6886064 - J Comp Neurol. 1983 Jul 10;217(4):458-69 – reference: 23022567 - Brain Res. 2012 Nov 27;1486:53-61 – reference: 9195611 - Neurosci Biobehav Rev. 1997 Jul;21(4):519-23 – reference: 1592905 - J Comp Neurol. 1992 May 1;319(1):51-65 – reference: 17636549 - Hippocampus. 2007;17(11):1017-22 – reference: 13117757 - J Anat. 1953 Oct;87(4):387-406 – reference: 2514464 - Synapse. 1989;4(3):229-37 – reference: 19746427 - J Neurosci Res. 2010 Feb 15;88(3):650-68 – reference: 21750523 - Nat Rev Neurol. 2011 Sep;7(9):528-34 – reference: 16415865 - Nat Neurosci. 2006 Feb;9(2):251-9 – reference: 23401802 - Neural Plast. 2013;2013:709732 – reference: 15248294 - J Neurosci Res. 2004 Aug 1;77(3):378-90 – reference: 21262320 - Neurosci Lett. 2011 Mar 24;491(3):216-20 – reference: 17481921 - Neuroimage. 2007 Jul 1;36(3):755-73 – reference: 8581558 - Neurodegeneration. 1995 Sep;4(3):257-69 – reference: 12086747 - Trends Neurosci. 2002 Jun;25(6):295-301 – reference: 22764221 - J Neurosci. 2012 Jul 4;32(27):9119-23 – reference: 15719415 - Mov Disord. 2005 Apr;20(4):395-402 – reference: 21209197 - J Neurosci. 2011 Jan 5;31(1):126-32 – reference: 22561554 - Neurosci Lett. 2012 May 31;517(2):118-22 – reference: 20659436 - Brain Res. 2010 Oct 8;1355:165-73 – reference: 22764222 - J Neurosci. 2012 Jul 4;32(27):9124-32 – reference: 2514009 - Brain Res. 1989 Dec 4;503(2):334-8 – reference: 23918451 - J Neurosci Res. 2013 Nov;91(11):1492-507 – reference: 20555160 - NeuroRehabilitation. 2010;26(4):369-73 – reference: 16024173 - Neurosci Lett. 2005 Oct 7;386(3):160-4 – reference: 21179580 - Front Neuroanat. 2010 Dec 10;4:133 – reference: 2464010 - J Comp Neurol. 1989 Jan 8;279(2):212-27 – reference: 3416180 - Brain Res. 1988 Jul 5;455(1):148-52 – reference: 23769598 - Lancet Neurol. 2013 Jul;12(7):716-26 – reference: 20187247 - Mov Disord. 2010;25 Suppl 1:S141-5 – reference: 1695380 - Proc Natl Acad Sci U S A. 1990 Jul;87(14):5568-72 – reference: 18495884 - J Neurosci. 2008 May 21;28(21):5504-12 – reference: 17888581 - Neuroscience. 2007 Oct 26;149(2):457-64 – reference: 22743772 - Nat Methods. 2012 Jul;9(7):676-82 |
SSID | ssj0011597 |
Score | 2.4805286 |
Snippet | Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia... Abstract Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates... Exercise has been shown to be beneficial for Parkinson’s disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 201 |
SubjectTerms | Analysis of Variance Animals Basal ganglia Corpus Striatum - pathology Dendritic Spines - pathology Dendritic Spines - ultrastructure Disease Models, Animal Dopamine Exercise Test GFP Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Lysine - analogs & derivatives Male Mice Mice, Inbred C57BL Mice, Transgenic MPTP Poisoning - pathology MPTP Poisoning - rehabilitation Neurology Neurons - pathology Neurons - ultrastructure Neuroplasticity Parkinson's Physical Conditioning, Animal - methods Primates Receptors, Dopamine D2 - genetics Receptors, Dopamine D2 - metabolism Silver Staining Striatum Synaptogenesis Time Factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQHhAviG18FAYyEuJLDdixY8ePAzFNSEWT6KS9WU5sa0VdWrXdQ_8-_jHunKSsgLoX3tLGjh3nl7vf5c53hLzKhZCF92VW5jpkUjE4Msxkpi6jF6WTRcQNzqNv6vRcfr0oLm6U-sKYsDY9cLtwH4MMQsfSRBedzDWras_KSlURqLDT7eYqZlhvTHX-A1DSuvdhpmiupsK0oFx8wJSdqTrZby2UkvVvKaO_yeafMZM3lNDJA3K_Y4_0uJ31PrkTmgNyeNyA5Xy1pq9piudMH8oPyN1R5zY_JD_HQA09FhiifYkliqmbMH6DguDxqd4BXc6hNZ3ChOmkoa2yo67xFP3a6Ucq8gF0naJL_voq9VjTlBOzSZ2ATlKeYVnq9TSTGQaQwQEf5kMxVNkqwE1drv1iNl8vJh5Hezs6G5-9o_gBItBUlofOIsW92Glb2huYX-tCekjOT76MP59mXfWGrAarcpUZX3kpXQRpWwkeVSgVdxWwuSC9KAA4oXau5l7FkIu6UAaIoGdVDK6MwpS5eET2mlkTnhCquTFRG6OZB8IRC1fyGi4K2hfYIiBhQFj_NG3dpTbHChtT28ew_bAAAIsAAJPHAgAG5P2my7zN67Gr8SeEyKYhpuROfwBQbQdUextQByTvAWb7Xa8gp-FCk10j6391CstO0iwtt8vcMvsdTFG0XTm6J2Fl1IDITc-OTLVQuW3Alz32LQga9B65JgAGwEY0udKaSbmjTcHBAMWwgAF53L4vm0XLMekCV_Cw9NabtLWq22eayWVKeC6MxLiDp__jMTwj9-B2ZRtGeET2Vovr8Bx45ap6kUTIL4cReao priority: 102 providerName: Directory of Open Access Journals |
Title | Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996113003306 https://www.clinicalkey.es/playcontent/1-s2.0-S0969996113003306 https://dx.doi.org/10.1016/j.nbd.2013.11.017 https://www.ncbi.nlm.nih.gov/pubmed/24316165 https://www.proquest.com/docview/1492677044 https://www.proquest.com/docview/1516750277 https://pubmed.ncbi.nlm.nih.gov/PMC3940446 https://doaj.org/article/e4e37f89fafa4270bcd08b6bf559a710 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2TkK8INiAlUtlJMRNzRrHzsWPpWIql04VdNLerCS2WVCXVm330Bf-HH-Mc5ykUIaKxFsuduw4x-d8J-dGyPOAcxFqnXhJEBtPRD4cSV96Mk-s5kkqQosBzqOzaHguPlyEF3tk0MTCoFtlzfsrnu64dX2lV69mb14UvS8AvhGtMzTIgFYe7ZODAKR90iIH_fcfh2cbYwJIbBc1De097NAYN52bV5lhvlDGTzCXpytb9ks8uSz-W1LqJgr905nyN-l0epfcqWEl7Vczv0f2THlIjvolqNRXa_qCOkdP9wf9kNwa1fb0I_JjAphRY-Uh2tReopjTCR07KHAk7Qoh0OUcWtMpTJgWJa1WjKalpmjwdieu-gfgeIq2-usr12NNXbLM0nUCnEmZh_Wq11NPeOhZBgesG3R5N_JWBl7qcq0Xs_l6UWgc7dVoPBm_pvhnwlBXr4fOLMUgbRev9hLmV9mW7pPz03eTwdCryzp4OaibK0_qTAuRWmDDGWc2MknE0gxgnhGah0BRJk_TnOnImoDnYSQBIWo_syZNLJdJwB-QVjkrzTGhMZPSxlLGvgYkYsM0YTk8FMQywMjMhm3iN19T5XXOcyy9MVWNc9s3BQSgkABAF1JAAG3yZtNlXiX82NX4LZLIpiHm6nYXZouvqiZWZYThsU2kTW0qgtjPcu0nWQTTC2UKAK9NgobAVBMOCwwcHlTsGjn-WyezrFnQUjG1DJSvbmyTNhGbnls77V8DPmtoXwEHQrNSWhqgAVAeZRDFsS_EjjYhA80U_QXa5GG1XzaLFmA2BhbBx4q3dtLWqm7fKYtLlwmdS4EOCY_-75Uek9twJiqPwiektVpcm6cAMVdZh-yffGcdYCSDz5_GnZqhdNwPm5-iW397 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJwEvCDYu5WokxGVqaBw7Fz-WialjazWJTtqb5cQ2K-rSqu0e-vv4Y5zjJIUyVCTecvGJHef4-Ds5N0LeRJyL2JgsyKLUBiIJ4UiGMpBF5gzPtIgdBjgPhkn_XHy5iC92yGETC4NulbXsr2S6l9b1lW49m93ZeNz9CuAb0TpDgwxo5cktsiuwqHWL7PaOT_rDtTEBdmwfNQ3tAyRojJvezavMMV8o4x8xl6cvW_Zre_JZ_Dd2qZso9E9nyt92p6P75F4NK2mvGvkDsmPLPbLfK0GlvlrRt9Q7evo_6Hvk9qC2p--THyPAjAYrD9Gm9hLFnE7o2EFBIhlfCIEuZtCaTmDAdFzSasaoLg1Fg7c_8dU_AMdTtNVfX3mKFfXJMktPBDiTsgDrVa8mgQjQswwOWCfq8E4SLC281OXKzKez1XxssLf3g7PR2QeKfyYs9fV66NRRDNL28WrvYHyVbekhOT_6PDrsB3VZh6AAdXMZSJMbIbQDMZxz5hKbJUznAPOsMDwGjrKF1gUzibMRL-JEAkI0Ye6szhyXWcQfkVY5Le0TQlMmpUulTEMDSMTFOmMFPBS2ZYCRuYvbJGy-pirqnOdYemOiGue27woYQCEDgC6kgAHa5GBNMqsSfmxr_AlZZN0Qc3X7C9P5N1Uzq7LC8tRl0mmnRZSGeWHCLE9geLHUAPDaJGoYTDXhsCDA4UHjbT2nfyOyi1oELRRTi0iF6sYyaROxptxYaf_q8HXD-wokEJqVdGmBB0B5lFGSpqEQW9rEDDRT9Bdok8fVellPWoTZGFgCHyvdWEkbs7p5pxxf-kzoXAp0SHj6f6_0itzpjwan6vR4ePKM3IU7ovIufE5ay_m1fQFwc5m_rMXJT6g7ftc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treadmill+exercise+reverses+dendritic+spine+loss+in+direct+and+indirect+striatal+medium+spiny+neurons+in+the+1-methyl-4-phenyl-1%2C2%2C3%2C6-tetrahydropyridine+%28MPTP%29+mouse+model+of+Parkinson%E2%80%99s+disease&rft.jtitle=Neurobiology+of+disease&rft.au=Toy%2C+William+A.&rft.au=Petzinger%2C+Giselle+M.&rft.au=Leyshon%2C+Brian+J.&rft.au=Akopian%2C+Garnik+K.&rft.date=2014-03-01&rft.issn=0969-9961&rft.eissn=1095-953X&rft.volume=63&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1016%2Fj.nbd.2013.11.017&rft_id=info%3Apmid%2F24316165&rft.externalDocID=PMC3940446 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996113X00142%2Fcov150h.gif |