Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease

Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and put...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 63; pp. 201 - 209
Main Authors Toy, William A., Petzinger, Giselle M., Leyshon, Brian J., Akopian, Garnik K., Walsh, John P., Hoffman, Matilde V., Vučković, Marta G., Jakowec, Michael W.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0969-9961
1095-953X
1095-953X
DOI10.1016/j.nbd.2013.11.017

Cover

Abstract Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. •MPTP leads to reduced spine density in MSNs in both pathways of the basal ganglia.•Treadmill exercise increases spine density in MSNs of both pathways in MPTP mice.•Exercise increases dendritic arborization of striatal MSNs in MPTP mice.•MPTP induced DA depletion leads to selective pruning of DA-D2R-containing MSNs.•Exercise increases expression of proteins PSD-95 and synaptophysin in MPTP mice.
AbstractList Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD. •MPTP leads to reduced spine density in MSNs in both pathways of the basal ganglia.•Treadmill exercise increases spine density in MSNs of both pathways in MPTP mice.•Exercise increases dendritic arborization of striatal MSNs in MPTP mice.•MPTP induced DA depletion leads to selective pruning of DA-D2R-containing MSNs.•Exercise increases expression of proteins PSD-95 and synaptophysin in MPTP mice.
Exercise has been shown to be beneficial for Parkinson’s disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D 1 receptor (DA-D 1 R)-containing MSNs of the direct pathway and dopamine D 2 receptor (DA-D 2 R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D 2 R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D 1 R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D 1 R-and DA-D 2 R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
Abstract Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1 R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2 R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2 R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1 R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1 R- and DA-D2 R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia function and modifies disease progression. Dopamine (DA) depletion leads to loss of dendritic spines within the caudate nucleus and putamen (striatum) in PD and its animal models and contributes to motor impairments. Striatal medium spiny neurons (MSNs) can be delineated into two populations, the dopamine D1 receptor (DA-D1R)-containing MSNs of the direct pathway and dopamine D2 receptor (DA-D2R)-containing MSNs of the indirect pathway. There is evidence to suggest that the DA-D2R-indirect pathway MSNs may be preferentially affected after DA-depletion with a predominate loss of dendritic spine density when compared to MSNs of the DA-D1R-direct pathway in rodents; however, others have reported that both pathways may be affected in primates. The purpose of this study was to investigate the effects of intensive exercise on dendritic spine density and arborization in MSNs of these two pathways in the MPTP mouse model of PD. We found that MPTP led to a decrease in dendritic spine density in both DA-D1R- and DA-D2R-containing MSNs and 30 days of intensive treadmill exercise led to increased dendritic spine density and arborization in MSNs of both pathways. In addition, exercise increased the expression of synaptic proteins PSD-95 and synaptophysin. Taken together these findings support the potential effect of exercise in modifying synaptic connectivity within the DA-depleted striatum and in modifying disease progression in individuals with PD.
Author Akopian, Garnik K.
Jakowec, Michael W.
Leyshon, Brian J.
Petzinger, Giselle M.
Vučković, Marta G.
Hoffman, Matilde V.
Walsh, John P.
Toy, William A.
AuthorAffiliation 2 The George and MaryLou Boone Center for Parkinson’s Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA, 90033
3 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
1 The George and MaryLou Boone Center for Parkinson’s Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA, 90033
AuthorAffiliation_xml – name: 2 The George and MaryLou Boone Center for Parkinson’s Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA, 90033
– name: 3 Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
– name: 1 The George and MaryLou Boone Center for Parkinson’s Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA, 90033
Author_xml – sequence: 1
  givenname: William A.
  surname: Toy
  fullname: Toy, William A.
  email: wtoy@usc.edu
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 2
  givenname: Giselle M.
  surname: Petzinger
  fullname: Petzinger, Giselle M.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 3
  givenname: Brian J.
  surname: Leyshon
  fullname: Leyshon, Brian J.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 4
  givenname: Garnik K.
  surname: Akopian
  fullname: Akopian, Garnik K.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 5
  givenname: John P.
  surname: Walsh
  fullname: Walsh, John P.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Andrus Center for Gerontology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 6
  givenname: Matilde V.
  surname: Hoffman
  fullname: Hoffman, Matilde V.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 7
  givenname: Marta G.
  surname: Vučković
  fullname: Vučković, Marta G.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA
– sequence: 8
  givenname: Michael W.
  surname: Jakowec
  fullname: Jakowec, Michael W.
  organization: The George and MaryLou Boone Center for Parkinson's Disease Research, Department of Neurology, University of Southern California, Los Angeles, CA 90033, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24316165$$D View this record in MEDLINE/PubMed
BookMark eNqFk81u1DAUhSNURH_gAdgg7yhSM_jGiTMWUiVU8VOpiEoUiZ3l2DcdTx17sDMV83y8GJ6ZFtFKtKvEyT2fT06O94sdHzwWxUugE6DA384nvjOTigKbAEwotE-KPaCiKUXDfuwUe1RwUQrBYbfYT2lOKUAj2mfFblUz4MCbveL3RURlBuscwV8YtU1IIl5jTJiIQW-iHa0maWE9EhdSItYTYyPqkShv8upmkcZo1agcGdDY5bBRrIjHZQx-IxpnSKAccJytXFmXixn6fANH1RE74uWIY1SzlYlhsYrWrHc7_HJ-cf6GDGGZPQ3BoCOhJ-cqXlmfgn-d_WW3KuHz4mmvXMIXN9eD4vvHDxcnn8uzr59OT96flbqtYCyF6Uxdq77lVceg5zjloDraCKwNa7RWqJXSYHiPFdMNF1XFDe16VNOeiWnFDorTLdcENZeLaAcVVzIoKzcPQryUKua0HEqskbX9VPSqV3XV0k4bOu141zeNUC3QzDreshbLLiem0efvd3egd994O5OX4VoyUdO65hlweAOI4ecS0ygHmzQ6pzzmxCQ0wNuGVm37-GgtKt62GZtHX_1r66-f28LkgXY7oGMuQ8Reajuq0Ya1S-skULmuppzLXE25rqYEkLmaWQn3lLfwhzTvthrMv_XaYpRJW_Qat6XLudsH1cf31NpZb7VyV7jCNA_L6HNfJMhUSSq_rY_L-rQAo5Qxus5Y_B_wyOZ_AAHlKCw
CitedBy_id crossref_primary_10_1007_s12640_017_9853_3
crossref_primary_10_1097_NPT_0000000000000209
crossref_primary_10_1007_s12640_015_9519_y
crossref_primary_10_3390_cells9051115
crossref_primary_10_1016_j_neulet_2019_04_052
crossref_primary_10_3233_BPL_150021
crossref_primary_10_1007_s00702_017_1735_6
crossref_primary_10_1007_s12031_017_0896_y
crossref_primary_10_1111_ejn_15594
crossref_primary_10_1016_j_parkreldis_2022_09_005
crossref_primary_10_1007_s11357_017_0002_y
crossref_primary_10_3390_ijms23148011
crossref_primary_10_1038_s41531_023_00623_9
crossref_primary_10_3389_fnagi_2021_650350
crossref_primary_10_1186_1750_1326_9_54
crossref_primary_10_3389_fnana_2015_00117
crossref_primary_10_3390_cells9112441
crossref_primary_10_1007_s12640_017_9770_5
crossref_primary_10_3233_BPL_180073
crossref_primary_10_1515_revneuro_2018_0011
crossref_primary_10_3389_fnagi_2022_1001256
crossref_primary_10_1007_s00702_018_1864_6
crossref_primary_10_1080_13554794_2021_1975768
crossref_primary_10_3389_fnins_2021_752332
crossref_primary_10_1515_revneuro_2020_0099
crossref_primary_10_3389_fpsyt_2023_1096503
crossref_primary_10_1123_kr_2014_0074
crossref_primary_10_3389_fncel_2019_00032
crossref_primary_10_1007_s12035_021_02651_z
crossref_primary_10_3389_fnins_2024_1464168
crossref_primary_10_2174_1871527322666230518111323
crossref_primary_10_1016_j_ibror_2018_01_001
crossref_primary_10_1016_j_taap_2018_09_003
crossref_primary_10_1111_ejn_14728
crossref_primary_10_1016_j_pneurobio_2018_11_003
crossref_primary_10_1002_jnr_24430
crossref_primary_10_1016_j_jshs_2019_07_004
crossref_primary_10_1016_j_expneurol_2024_115085
crossref_primary_10_3390_ijms25031641
crossref_primary_10_1016_j_neuropharm_2022_109205
crossref_primary_10_1093_cercor_bhw263
crossref_primary_10_1016_j_parkreldis_2014_09_008
crossref_primary_10_1016_j_bbr_2015_11_029
crossref_primary_10_4103_NRR_NRR_D_23_00595
crossref_primary_10_1007_s12035_017_0491_9
crossref_primary_10_1136_bmjopen_2022_067280
crossref_primary_10_37349_ent_2023_00049
crossref_primary_10_1007_s12640_015_9566_4
crossref_primary_10_1007_s11064_019_02739_y
crossref_primary_10_1589_jpts_27_3203
crossref_primary_10_1016_j_exger_2021_111384
crossref_primary_10_29252_shefa_8_1_1
crossref_primary_10_3389_fneur_2019_01143
crossref_primary_10_1016_j_expneurol_2017_10_002
crossref_primary_10_1016_j_expneurol_2017_10_001
crossref_primary_10_7554_eLife_81830
crossref_primary_10_3390_ijerph16050880
crossref_primary_10_1007_s40429_017_0178_3
crossref_primary_10_1111_ejn_13644
crossref_primary_10_1097_WNR_0000000000000587
crossref_primary_10_1097_WNR_0000000000000865
crossref_primary_10_1038_s41380_020_0751_3
crossref_primary_10_1038_srep41432
crossref_primary_10_1590_s1980_6574201900030007
crossref_primary_10_1007_s12565_022_00688_1
crossref_primary_10_3389_fpsyt_2023_1094583
crossref_primary_10_1016_j_mayocp_2017_12_015
crossref_primary_10_1016_j_brainres_2016_06_032
crossref_primary_10_1016_j_expneurol_2018_12_005
crossref_primary_10_1016_j_brainresbull_2017_02_005
crossref_primary_10_1016_j_neulet_2016_04_015
crossref_primary_10_1038_ncomms6316
crossref_primary_10_1016_j_expneurol_2024_114694
crossref_primary_10_1002_jnr_24804
crossref_primary_10_1016_j_neuroscience_2017_07_031
crossref_primary_10_1097_NPT_0000000000000370
crossref_primary_10_3389_fnagi_2021_777404
crossref_primary_10_1016_j_bbr_2020_112488
crossref_primary_10_3389_fnagi_2021_695108
crossref_primary_10_1109_TBME_2017_2773540
crossref_primary_10_3233_JPD_229006
crossref_primary_10_1080_14740338_2019_1681966
crossref_primary_10_1016_j_mcn_2023_103883
crossref_primary_10_1002_jnr_24022
crossref_primary_10_3389_fncel_2022_884788
crossref_primary_10_3233_NRE_182641
crossref_primary_10_1016_j_neubiorev_2021_10_019
crossref_primary_10_1016_j_neuroimage_2018_07_036
crossref_primary_10_3389_fnmol_2022_1039302
crossref_primary_10_29252_shefa_8_1_120
crossref_primary_10_1016_j_brainres_2019_01_016
crossref_primary_10_1063_5_0038065
crossref_primary_10_1038_s41598_024_63045_4
crossref_primary_10_1093_brain_awu107
crossref_primary_10_3389_fncir_2019_00017
crossref_primary_10_3389_fnagi_2022_960479
crossref_primary_10_3390_md18090438
crossref_primary_10_1177_1073858421992265
crossref_primary_10_1016_j_autrev_2022_103033
crossref_primary_10_1002_mds_27172
crossref_primary_10_1016_j_nbd_2019_104666
crossref_primary_10_1155_2020_4293071
crossref_primary_10_1038_nn_3743
crossref_primary_10_1038_tp_2017_41
crossref_primary_10_1249_MSS_0000000000001793
crossref_primary_10_1002_syn_21754
crossref_primary_10_1371_journal_pone_0190160
crossref_primary_10_1016_j_expneurol_2024_114875
crossref_primary_10_3389_fnagi_2017_00358
crossref_primary_10_1093_ptj_pzab191
crossref_primary_10_31083_j_jin2002055
crossref_primary_10_1007_s12035_018_1278_3
crossref_primary_10_3389_fncom_2024_1410335
crossref_primary_10_1016_j_crneur_2022_100039
crossref_primary_10_1016_j_brainresbull_2022_06_004
crossref_primary_10_1016_j_yfrne_2015_07_001
crossref_primary_10_1186_s13063_022_06703_0
crossref_primary_10_3233_JPD_140508
crossref_primary_10_1016_j_expneurol_2021_113741
crossref_primary_10_1111_ejn_14777
crossref_primary_10_1002_jnr_24524
crossref_primary_10_3389_fnagi_2022_891644
crossref_primary_10_1097_WNR_0000000000001239
crossref_primary_10_1111_ejn_14894
crossref_primary_10_5812_zjrms_89902
crossref_primary_10_1523_JNEUROSCI_0492_15_2016
crossref_primary_10_1016_j_brainres_2015_06_052
crossref_primary_10_1016_j_nbd_2015_02_020
crossref_primary_10_1016_j_neurobiolaging_2014_08_016
crossref_primary_10_3233_BPL_200115
crossref_primary_10_1016_j_mcn_2022_103755
crossref_primary_10_1002_mds_26620
crossref_primary_10_1080_01616412_2018_1474840
Cites_doi 10.1002/cne.20493
10.1523/JNEUROSCI.0224-12.2012
10.1002/cne.903190107
10.1016/j.brainres.2012.09.019
10.1002/jnr.22216
10.1016/j.neuroscience.2005.01.007
10.1002/jnr.23260
10.1038/nrneurol.2011.107
10.1016/S0149-7634(96)00029-2
10.1038/nn1632
10.1002/mds.22782
10.1038/nature02033
10.1016/j.brainres.2010.07.070
10.1016/1055-8330(95)90015-2
10.1002/cne.903600111
10.1016/0006-8993(88)90124-2
10.1016/S1474-4422(13)70123-6
10.1038/nmeth.2019
10.1002/jnr.20162
10.1016/j.neuroscience.2007.06.044
10.1016/j.neuroimage.2007.03.010
10.1002/hipo.20348
10.1523/JNEUROSCI.1069-07.2007
10.1016/0006-8993(89)91686-7
10.1073/pnas.87.14.5568
10.1002/mds.20394
10.3389/fnana.2010.00133
10.3233/NRE-2010-0574
10.1016/S0166-2236(02)02143-4
10.1523/JNEUROSCI.4287-10.2011
10.1155/2013/709732
10.1523/JNEUROSCI.0229-12.2012
10.1016/0165-0270(92)90009-3
10.1016/j.neulet.2012.04.040
10.1002/cne.902170410
10.1002/cne.902790205
10.1016/j.neulet.2011.01.043
10.1002/syn.890040308
10.1523/JNEUROSCI.5493-07.2008
10.1006/nlme.1995.1025
10.1016/j.bbr.2005.04.009
10.1007/BF00227776
10.1016/j.brainres.2010.01.053
10.1212/01.WNL.0000151960.28687.93
10.1002/jnr.20114
10.1016/j.neulet.2005.06.009
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
2013 Elsevier Inc. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: 2013 Elsevier Inc. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
7TS
5PM
DOA
DOI 10.1016/j.nbd.2013.11.017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Physical Education Index
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Physical Education Index
DatabaseTitleList


MEDLINE
Neurosciences Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
EndPage 209
ExternalDocumentID oai_doaj_org_article_e4e37f89fafa4270bcd08b6bf559a710
PMC3940446
24316165
10_1016_j_nbd_2013_11_017
S0969996113003306
1_s2_0_S0969996113003306
Genre Journal Article
GrantInformation_xml – fundername: U.S. Army NETRP
  grantid: W81XWH-04-1-0444
– fundername: University of Southern California, Keck School of Medicine
  grantid: RR031986
– fundername: NINDS
  grantid: RO1 NS44327
– fundername: Southern California Clinical and Translational Science Institute
– fundername: Zumberge Foundation of USC
– fundername: NINDS NIH HHS
  grantid: R01 NS044327
– fundername: NCRR NIH HHS
  grantid: UL1 RR031986
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
0SF
6I.
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
NCXOZ
PKN
RIG
AADPK
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
7TK
7TS
5PM
ID FETCH-LOGICAL-c721t-9dbd44af762b31f6e861ab059e4d35ccaecaac1d6fe23c569226d0bfea8f39823
IEDL.DBID AIKHN
ISSN 0969-9961
1095-953X
IngestDate Wed Aug 27 01:23:59 EDT 2025
Thu Aug 21 14:31:54 EDT 2025
Fri Sep 05 12:11:10 EDT 2025
Sun Sep 28 10:19:02 EDT 2025
Thu Apr 03 07:02:06 EDT 2025
Tue Jul 01 03:07:22 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
Fri Feb 23 02:39:44 EST 2024
Sun Feb 23 10:19:12 EST 2025
Tue Aug 26 16:32:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neuroplasticity
GFP
Striatum
Parkinson's
Basal ganglia
Dopamine
Synaptogenesis
Language English
License Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c721t-9dbd44af762b31f6e861ab059e4d35ccaecaac1d6fe23c569226d0bfea8f39823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://doaj.org/article/e4e37f89fafa4270bcd08b6bf559a710
PMID 24316165
PQID 1492677044
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e4e37f89fafa4270bcd08b6bf559a710
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3940446
proquest_miscellaneous_1516750277
proquest_miscellaneous_1492677044
pubmed_primary_24316165
crossref_citationtrail_10_1016_j_nbd_2013_11_017
crossref_primary_10_1016_j_nbd_2013_11_017
elsevier_sciencedirect_doi_10_1016_j_nbd_2013_11_017
elsevier_clinicalkeyesjournals_1_s2_0_S0969996113003306
elsevier_clinicalkey_doi_10_1016_j_nbd_2013_11_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Gerecke, Jiao, Pani, Pagala, Smeyne (bb0080) 2010; 1341
Coleman, Friedlander (bb0045) 1992; 44
Comery, Shah, Greenough (bb0050) 1995; 63
Calabresi, Pisani, Centonze, Bernardi (bb0025) 1997; 21
Neely, Schmidt, Deutch (bb0155) 2007; 149
Cotman, Berchtold (bb0060) 2002; 25
Kawanishi, Yano, Yokogawa, Suzuki (bb0115) 2010; 16
Black, Isaacs, Anderson, Alcantara, Greenough (bb0020) 1990; 87
Kramer, Christensen, Hazelwood, Dobi, Bock, Sibley, Mateo, Alvarez (bb0125) 2011; 31
Takamatsu, Ishida, Hamakawa, Tamakoshi, Jung, Ishida (bb0220) 2010; 1355
Ingham, Hood, Arbuthnott (bb0095) 1989; 503
Petzinger, Fisher, McEwen, Beeler, Walsh, Jakowec (bb0170) 2013; 12
Schindelin, Arganda-Carreras, Erwin Frise, Longair, Pietzsch, Preibisch, Rueden, Saalfel, Schmid, Tinevez, White, Hartenstein, Eliceiri, Tomancak, Cardona (bb0195) 2012; 9
Bannister, Larkman (bb0010) 1995; 360
Gong, Zheng, Doughty, Losos, Didkovsky, Schambra, Nowak, Joyner, Leblanc, Hatten, Heintz (bb0085) 2003; 425
Rafols, Cheng, McNeill (bb0190) 1989; 279
Pisani, Centonze, Bernardi, Calabresi (bb0185) 2005; 20
Sholl (bb0200) 1953; 87
Bernardi, Tramontina, Nardin, Biasibetti, Costa, Vizueti, Batassini, Tortorelli, Wartchow, Dutra, Bobermin, Sesterheim, Quincozes-Santos, de Souza, Goncalves (bb0015) 2013; 2013
Chan, Peterson, Gertler, Glajch, Quintana, Cui, Sebel, Plotkin, Shen, Heiman, Heintz, Greengard, Surmeier (bb0035) 2012; 32
Nelson, Hang, Grueter, Pascoli, Luscher, Malenka, Kreitzer (bb0160) 2012; 32
Day, Wang, Ding, An, Ingham, Shering, Wokosin, Ilijic, Sun, Sampson, Mugnaini, Deutch, Sesack, Arbuthnott, Surmeier (bb0065) 2006; 9
Kintz, Petzinger, Akopian, Ptasnik, Williams, Jakowec, Walsh (bb0120) 2013; 91
Li, Liu, Lu, Zhang, Gu, Guo, An, Zhang, Zhang (bb0140) 2012; 517
Conley, Wilson (bb0055) 1992; 319
Al-Jarrah, Jamous, Al Zailaey, Bweir (bb0005) 2010; 26
Villalba, Smith (bb0235) 2010; 4
Jakowec, Nixon, Hogg, McNeill, Petzinger (bb0110) 2004; 76
Wilson, Sachdev (bb0240) 2004
Taverna, Ilijic, Surmeier (bb0225) 2008; 28
Jackson-Lewis, Jakowec, Burke, Przedborski (bb0105) 1995; 4
Speelman, van de Warrenburg, van Nimwegen, Petzinger, Munneke, Bloem (bb0205) 2011; 7
Cepeda, Walsh, Hull, Howard, Buchwald, Levine (bb0030) 1989; 4
Li, Ding, Rafols, Lai, McAllister, Ding (bb0135) 2005; 386
Fisher, Petzinger, Nixon, Hogg, Bremmer, Meshul, Jakowec (bb0075) 2004; 77
Yang, Sadler, Givrad, Maarek, Holschneider (bb0245) 2007; 36
VanLeeuwen, Petzinger, Walsh, Akopian, Vuckovic, Jakowec (bb0230) 2010; 88
McNeill, Brown, Rafols, Shoulson (bb0150) 1988; 455
Ingham, Hood, Maldegem, Weenink, Arbuthnott (bb0100) 1993; 93
Stranahan, Khalil, Gould (bb0215) 2007; 17
Petzinger, Fisher, Van Leeuwen, Vukovic, Akopian, Meshul, Holschneider, Nacca, Walsh, Jakowec (bb0175) 2010; 25
Mason (bb0145) 1983; 217
Gonzalez-Burgos, Gonzalez-Tapia, Zamora, Feria-Velasco, Beas-Zarate (bb0090) 2011; 491
Pagnussat, Simao, Anastacio, Mestriner, Michaelsen, Castro, Salbego, Netto (bb0165) 2012; 1486
Chen, Zhang, Schwarzschild, Hernán, Ascherio (bb0040) 2005; 64
Petzinger, Walsh, Akopian, Hogg, Abernathy, Arevalo, Turnquist, Vuckovic, Fisher, Togasaki, Jakowec (bb0180) 2007; 27
Leggio, Mandolesi, Federico, Spirito, Ricci, Gelfo, Petrosini (bb0130) 2005; 163
Stephens, Mueller, Shering, Hood, Taggart, Arbuthnott, Bell, Kilford, Kingsbury, Daniel, Ingham (bb0210) 2005; 132
Eadie, Redila, Christie (bb0070) 2005; 486
Gong (10.1016/j.nbd.2013.11.017_bb0085) 2003; 425
Pagnussat (10.1016/j.nbd.2013.11.017_bb0165) 2012; 1486
Kramer (10.1016/j.nbd.2013.11.017_bb0125) 2011; 31
Pisani (10.1016/j.nbd.2013.11.017_bb0185) 2005; 20
Chen (10.1016/j.nbd.2013.11.017_bb0040) 2005; 64
Coleman (10.1016/j.nbd.2013.11.017_bb0045) 1992; 44
Ingham (10.1016/j.nbd.2013.11.017_bb0095) 1989; 503
Gerecke (10.1016/j.nbd.2013.11.017_bb0080) 2010; 1341
Taverna (10.1016/j.nbd.2013.11.017_bb0225) 2008; 28
Rafols (10.1016/j.nbd.2013.11.017_bb0190) 1989; 279
Cepeda (10.1016/j.nbd.2013.11.017_bb0030) 1989; 4
Leggio (10.1016/j.nbd.2013.11.017_bb0130) 2005; 163
McNeill (10.1016/j.nbd.2013.11.017_bb0150) 1988; 455
Cotman (10.1016/j.nbd.2013.11.017_bb0060) 2002; 25
Wilson (10.1016/j.nbd.2013.11.017_bb0240) 2004
Bernardi (10.1016/j.nbd.2013.11.017_bb0015) 2013; 2013
Al-Jarrah (10.1016/j.nbd.2013.11.017_bb0005) 2010; 26
Yang (10.1016/j.nbd.2013.11.017_bb0245) 2007; 36
Petzinger (10.1016/j.nbd.2013.11.017_bb0180) 2007; 27
Kawanishi (10.1016/j.nbd.2013.11.017_bb0115) 2010; 16
Petzinger (10.1016/j.nbd.2013.11.017_bb0175) 2010; 25
Li (10.1016/j.nbd.2013.11.017_bb0135) 2005; 386
Bannister (10.1016/j.nbd.2013.11.017_bb0010) 1995; 360
Li (10.1016/j.nbd.2013.11.017_bb0140) 2012; 517
Stranahan (10.1016/j.nbd.2013.11.017_bb0215) 2007; 17
Nelson (10.1016/j.nbd.2013.11.017_bb0160) 2012; 32
Comery (10.1016/j.nbd.2013.11.017_bb0050) 1995; 63
Mason (10.1016/j.nbd.2013.11.017_bb0145) 1983; 217
Black (10.1016/j.nbd.2013.11.017_bb0020) 1990; 87
Schindelin (10.1016/j.nbd.2013.11.017_bb0195) 2012; 9
Calabresi (10.1016/j.nbd.2013.11.017_bb0025) 1997; 21
Ingham (10.1016/j.nbd.2013.11.017_bb0100) 1993; 93
VanLeeuwen (10.1016/j.nbd.2013.11.017_bb0230) 2010; 88
Speelman (10.1016/j.nbd.2013.11.017_bb0205) 2011; 7
Fisher (10.1016/j.nbd.2013.11.017_bb0075) 2004; 77
Jackson-Lewis (10.1016/j.nbd.2013.11.017_bb0105) 1995; 4
Petzinger (10.1016/j.nbd.2013.11.017_bb0170) 2013; 12
Neely (10.1016/j.nbd.2013.11.017_bb0155) 2007; 149
Stephens (10.1016/j.nbd.2013.11.017_bb0210) 2005; 132
Conley (10.1016/j.nbd.2013.11.017_bb0055) 1992; 319
Villalba (10.1016/j.nbd.2013.11.017_bb0235) 2010; 4
Eadie (10.1016/j.nbd.2013.11.017_bb0070) 2005; 486
Chan (10.1016/j.nbd.2013.11.017_bb0035) 2012; 32
Day (10.1016/j.nbd.2013.11.017_bb0065) 2006; 9
Sholl (10.1016/j.nbd.2013.11.017_bb0200) 1953; 87
Takamatsu (10.1016/j.nbd.2013.11.017_bb0220) 2010; 1355
Gonzalez-Burgos (10.1016/j.nbd.2013.11.017_bb0090) 2011; 491
Jakowec (10.1016/j.nbd.2013.11.017_bb0110) 2004; 76
Kintz (10.1016/j.nbd.2013.11.017_bb0120) 2013; 91
17888581 - Neuroscience. 2007 Oct 26;149(2):457-64
15837135 - Neuroscience. 2005;132(3):741-54
21750523 - Nat Rev Neurol. 2011 Sep;7(9):528-34
2514464 - Synapse. 1989;4(3):229-37
9195611 - Neurosci Biobehav Rev. 1997 Jul;21(4):519-23
13117757 - J Anat. 1953 Oct;87(4):387-406
20187247 - Mov Disord. 2010;25 Suppl 1:S141-5
3416180 - Brain Res. 1988 Jul 5;455(1):148-52
14586460 - Nature. 2003 Oct 30;425(6961):917-25
21262320 - Neurosci Lett. 2011 Mar 24;491(3):216-20
20555160 - NeuroRehabilitation. 2010;26(4):369-73
1695380 - Proc Natl Acad Sci U S A. 1990 Jul;87(14):5568-72
6886064 - J Comp Neurol. 1983 Jul 10;217(4):458-69
21179580 - Front Neuroanat. 2010 Dec 10;4:133
8581558 - Neurodegeneration. 1995 Sep;4(3):257-69
20659436 - Brain Res. 2010 Oct 8;1355:165-73
16024173 - Neurosci Lett. 2005 Oct 7;386(3):160-4
15728289 - Neurology. 2005 Feb 22;64(4):664-9
17636549 - Hippocampus. 2007;17(11):1017-22
2464010 - J Comp Neurol. 1989 Jan 8;279(2):212-27
18495884 - J Neurosci. 2008 May 21;28(21):5504-12
17507552 - J Neurosci. 2007 May 16;27(20):5291-300
21209197 - J Neurosci. 2011 Jan 5;31(1):126-32
22561554 - Neurosci Lett. 2012 May 31;517(2):118-22
20839495 - Exerc Immunol Rev. 2010;16:105-18
15719415 - Mov Disord. 2005 Apr;20(4):395-402
1474850 - J Neurosci Methods. 1992 Sep;44(2-3):167-77
1592905 - J Comp Neurol. 1992 May 1;319(1):51-65
7670834 - Neurobiol Learn Mem. 1995 May;63(3):217-9
19746427 - J Neurosci Res. 2010 Feb 15;88(3):650-68
23918451 - J Neurosci Res. 2013 Nov;91(11):1492-507
15248294 - J Neurosci Res. 2004 Aug 1;77(3):378-90
22764221 - J Neurosci. 2012 Jul 4;32(27):9119-23
2514009 - Brain Res. 1989 Dec 4;503(2):334-8
16415865 - Nat Neurosci. 2006 Feb;9(2):251-9
23022567 - Brain Res. 2012 Nov 27;1486:53-61
15114626 - J Neurosci Res. 2004 May 15;76(4):539-50
20116369 - Brain Res. 2010 Jun 23;1341:72-83
22743772 - Nat Methods. 2012 Jul;9(7):676-82
17481921 - Neuroimage. 2007 Jul 1;36(3):755-73
7499560 - J Comp Neurol. 1995 Sep 11;360(1):150-60
23401802 - Neural Plast. 2013;2013:709732
22764222 - J Neurosci. 2012 Jul 4;32(27):9124-32
12086747 - Trends Neurosci. 2002 Jun;25(6):295-301
23769598 - Lancet Neurol. 2013 Jul;12(7):716-26
7682182 - Exp Brain Res. 1993;93(1):17-27
15834963 - J Comp Neurol. 2005 May 23;486(1):39-47
18428594 - Curr Protoc Neurosci. 2004 May;Chapter 1:Unit 1.12
15913801 - Behav Brain Res. 2005 Aug 30;163(1):78-90
References_xml – volume: 163
  start-page: 78
  year: 2005
  end-page: 90
  ident: bb0130
  article-title: Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat
  publication-title: Behav. Brain Res.
– volume: 25
  start-page: 295
  year: 2002
  end-page: 301
  ident: bb0060
  article-title: Exercise: a behavioral intervention to enhance brain health and plasticity
  publication-title: Trends Neurosci.
– volume: 26
  start-page: 369
  year: 2010
  end-page: 373
  ident: bb0005
  article-title: Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson's disease
  publication-title: NeuroRehabilitation
– volume: 1355
  start-page: 165
  year: 2010
  end-page: 173
  ident: bb0220
  article-title: Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats
  publication-title: Brain Res.
– volume: 386
  start-page: 160
  year: 2005
  end-page: 164
  ident: bb0135
  article-title: Increased astrocyte proliferation in rats after running exercise
  publication-title: Neurosci. Lett.
– volume: 25
  start-page: S141
  year: 2010
  end-page: S145
  ident: bb0175
  article-title: Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease
  publication-title: Mov. Disord.
– volume: 91
  start-page: 1492
  year: 2013
  end-page: 1507
  ident: bb0120
  article-title: Exercise modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptor (AMPAR) expression selectively on striatopallidal indirect projection pathway neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-(MPTP)-lesioned mouse model of basal ganglia injury
  publication-title: J. Neurosci. Res.
– volume: 32
  start-page: 9119
  year: 2012
  end-page: 9123
  ident: bb0160
  article-title: A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice
  publication-title: J. Neurosci.
– volume: 279
  start-page: 212
  year: 1989
  end-page: 227
  ident: bb0190
  article-title: Golgi study of the mouse striatum: age-related dendritic changes in different neuronal populations
  publication-title: J. Comp. Neurol.
– volume: 4
  start-page: 257
  year: 1995
  end-page: 269
  ident: bb0105
  article-title: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  publication-title: Neurodegeneration
– volume: 76
  start-page: 539
  year: 2004
  end-page: 550
  ident: bb0110
  article-title: Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway
  publication-title: J. Neurosci. Res.
– start-page: 12
  year: 2004
  ident: bb0240
  article-title: Intracellular and juxtacellular staining with biocytin
  publication-title: Curr. Protoc. Neurosci.
– volume: 20
  start-page: 395
  year: 2005
  end-page: 402
  ident: bb0185
  article-title: Striatal synaptic plasticity: implications for motor learning and Parkinson's disease
  publication-title: Mov. Disord.
– volume: 27
  start-page: 5291
  year: 2007
  end-page: 5300
  ident: bb0180
  article-title: Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury
  publication-title: J. Neurosci.
– volume: 517
  start-page: 118
  year: 2012
  end-page: 122
  ident: bb0140
  article-title: Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens
  publication-title: Neurosci. Lett.
– volume: 28
  start-page: 5504
  year: 2008
  end-page: 5512
  ident: bb0225
  article-title: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease
  publication-title: J. Neurosci.
– volume: 36
  start-page: 755
  year: 2007
  end-page: 773
  ident: bb0245
  article-title: Changes in brain functional activation during resting and locomotor states after unilateral nigrostriatal damage in rats
  publication-title: Neuroimage
– volume: 491
  start-page: 216
  year: 2011
  end-page: 220
  ident: bb0090
  article-title: Guided motor training induces dendritic spine plastic changes in adult rat cerebellar Purkinje cells
  publication-title: Neurosci. Lett.
– volume: 31
  start-page: 126
  year: 2011
  end-page: 132
  ident: bb0125
  article-title: Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice
  publication-title: J. Neurosci.
– volume: 16
  start-page: 105
  year: 2010
  end-page: 118
  ident: bb0115
  article-title: Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice
  publication-title: Exerc. Immunol. Rev.
– volume: 7
  start-page: 528
  year: 2011
  end-page: 534
  ident: bb0205
  article-title: How might physical activity benefit patients with Parkinson disease?
  publication-title: Nat. Rev. Neurol.
– volume: 217
  start-page: 458
  year: 1983
  end-page: 469
  ident: bb0145
  article-title: Postnatal maturation of neurons in the cat's lateral geniculate nucleus
  publication-title: J. Comp. Neurol.
– volume: 93
  start-page: 17
  year: 1993
  end-page: 27
  ident: bb0100
  article-title: Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway
  publication-title: Exp. Brain Res.
– volume: 44
  start-page: 167
  year: 1992
  end-page: 177
  ident: bb0045
  article-title: Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin
  publication-title: J. Neurosci. Methods
– volume: 64
  start-page: 664
  year: 2005
  end-page: 669
  ident: bb0040
  article-title: Physical activity and the risk of Parkinson disease
  publication-title: Neurology
– volume: 360
  start-page: 150
  year: 1995
  end-page: 160
  ident: bb0010
  article-title: Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns
  publication-title: J. Comp. Neurol.
– volume: 87
  start-page: 5568
  year: 1990
  end-page: 5572
  ident: bb0020
  article-title: Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats
  publication-title: Proc. Natl. Acad. Sci.
– volume: 9
  start-page: 251
  year: 2006
  end-page: 259
  ident: bb0065
  article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models
  publication-title: Nat. Neurosci.
– volume: 4
  start-page: 229
  year: 1989
  end-page: 237
  ident: bb0030
  article-title: Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions
  publication-title: Synapse
– volume: 1486
  start-page: 53
  year: 2012
  end-page: 61
  ident: bb0165
  article-title: Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats
  publication-title: Brain Res.
– volume: 4
  year: 2010
  ident: bb0235
  article-title: Striatal spine plasticity in Parkinson's disease
  publication-title: Front. Neuroanat.
– volume: 425
  start-page: 917
  year: 2003
  end-page: 925
  ident: bb0085
  article-title: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes
  publication-title: Nature
– volume: 486
  start-page: 39
  year: 2005
  end-page: 47
  ident: bb0070
  article-title: Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density
  publication-title: J. Comp. Neurol.
– volume: 12
  start-page: 716
  year: 2013
  end-page: 726
  ident: bb0170
  article-title: Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease
  publication-title: Lancet Neurol.
– volume: 77
  start-page: 378
  year: 2004
  end-page: 390
  ident: bb0075
  article-title: Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia
  publication-title: J. Neurosci. Res.
– volume: 149
  start-page: 457
  year: 2007
  end-page: 464
  ident: bb0155
  article-title: Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons
  publication-title: Neuroscience
– volume: 17
  start-page: 1017
  year: 2007
  end-page: 1022
  ident: bb0215
  article-title: Running induces widespread structural alterations in the hippocampus and entorhinal cortex
  publication-title: Hippocampus
– volume: 319
  start-page: 51
  year: 1992
  end-page: 65
  ident: bb0055
  article-title: Dendritic organization of class II (inter)neurons in the dorsal lateral geniculate nucleus of the tree shrew: observations based on Golgi, immunocytochemical, and biocytin methods
  publication-title: J. Comp. Neurol.
– volume: 63
  start-page: 217
  year: 1995
  end-page: 219
  ident: bb0050
  article-title: Differential rearing alters spine density on medium-sized spiny neurons in the rat corpus striatum: evidence for association of morphological plasticity with early response gene expression
  publication-title: Neurobiol. Learn. Mem.
– volume: 2013
  start-page: 709
  year: 2013
  end-page: 732
  ident: bb0015
  article-title: Treadmill exercise induces hippocampal astroglial alterations in rats
  publication-title: Neural Plast.
– volume: 21
  start-page: 519
  year: 1997
  end-page: 523
  ident: bb0025
  article-title: Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum
  publication-title: Neurosci. Biobehav. Rev.
– volume: 455
  start-page: 148
  year: 1988
  end-page: 152
  ident: bb0150
  article-title: Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease
  publication-title: Brain Res.
– volume: 87
  start-page: 387
  year: 1953
  end-page: 406
  ident: bb0200
  article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat
  publication-title: J. Anat.
– volume: 1341
  start-page: 72
  year: 2010
  end-page: 83
  ident: bb0080
  article-title: Exercise protects against MPTP-induced neurotoxicity in mice
  publication-title: Brain Res.
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: bb0195
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
– volume: 88
  start-page: 650
  year: 2010
  end-page: 668
  ident: bb0230
  article-title: Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury
  publication-title: J. Neurosci. Res.
– volume: 32
  start-page: 9124
  year: 2012
  end-page: 9132
  ident: bb0035
  article-title: Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice
  publication-title: J. Neurosci.
– volume: 503
  start-page: 334
  year: 1989
  end-page: 338
  ident: bb0095
  article-title: Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age
  publication-title: Brain Res.
– volume: 132
  start-page: 741
  year: 2005
  end-page: 754
  ident: bb0210
  article-title: Evidence of a breakdown of corticostriatal connections in Parkinson's disease
  publication-title: Neuroscience
– volume: 486
  start-page: 39
  year: 2005
  ident: 10.1016/j.nbd.2013.11.017_bb0070
  article-title: Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20493
– volume: 32
  start-page: 9119
  year: 2012
  ident: 10.1016/j.nbd.2013.11.017_bb0160
  article-title: A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0224-12.2012
– volume: 319
  start-page: 51
  year: 1992
  ident: 10.1016/j.nbd.2013.11.017_bb0055
  article-title: Dendritic organization of class II (inter)neurons in the dorsal lateral geniculate nucleus of the tree shrew: observations based on Golgi, immunocytochemical, and biocytin methods
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903190107
– volume: 1486
  start-page: 53
  year: 2012
  ident: 10.1016/j.nbd.2013.11.017_bb0165
  article-title: Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2012.09.019
– volume: 88
  start-page: 650
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0230
  article-title: Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22216
– volume: 132
  start-page: 741
  year: 2005
  ident: 10.1016/j.nbd.2013.11.017_bb0210
  article-title: Evidence of a breakdown of corticostriatal connections in Parkinson's disease
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.01.007
– volume: 91
  start-page: 1492
  year: 2013
  ident: 10.1016/j.nbd.2013.11.017_bb0120
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23260
– volume: 7
  start-page: 528
  year: 2011
  ident: 10.1016/j.nbd.2013.11.017_bb0205
  article-title: How might physical activity benefit patients with Parkinson disease?
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2011.107
– volume: 21
  start-page: 519
  year: 1997
  ident: 10.1016/j.nbd.2013.11.017_bb0025
  article-title: Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(96)00029-2
– volume: 9
  start-page: 251
  year: 2006
  ident: 10.1016/j.nbd.2013.11.017_bb0065
  article-title: Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1632
– volume: 25
  start-page: S141
  issue: Suppl. 1
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0175
  article-title: Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22782
– volume: 425
  start-page: 917
  year: 2003
  ident: 10.1016/j.nbd.2013.11.017_bb0085
  article-title: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes
  publication-title: Nature
  doi: 10.1038/nature02033
– volume: 87
  start-page: 387
  year: 1953
  ident: 10.1016/j.nbd.2013.11.017_bb0200
  article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat
  publication-title: J. Anat.
– volume: 1355
  start-page: 165
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0220
  article-title: Treadmill running improves motor function and alters dendritic morphology in the striatum after collagenase-induced intracerebral hemorrhage in rats
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.07.070
– volume: 4
  start-page: 257
  year: 1995
  ident: 10.1016/j.nbd.2013.11.017_bb0105
  article-title: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
  publication-title: Neurodegeneration
  doi: 10.1016/1055-8330(95)90015-2
– volume: 360
  start-page: 150
  year: 1995
  ident: 10.1016/j.nbd.2013.11.017_bb0010
  article-title: Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903600111
– volume: 455
  start-page: 148
  year: 1988
  ident: 10.1016/j.nbd.2013.11.017_bb0150
  article-title: Atrophy of medium spiny I striatal dendrites in advanced Parkinson's disease
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(88)90124-2
– volume: 12
  start-page: 716
  year: 2013
  ident: 10.1016/j.nbd.2013.11.017_bb0170
  article-title: Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70123-6
– volume: 9
  start-page: 676
  year: 2012
  ident: 10.1016/j.nbd.2013.11.017_bb0195
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 77
  start-page: 378
  year: 2004
  ident: 10.1016/j.nbd.2013.11.017_bb0075
  article-title: Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.20162
– volume: 149
  start-page: 457
  year: 2007
  ident: 10.1016/j.nbd.2013.11.017_bb0155
  article-title: Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2007.06.044
– volume: 36
  start-page: 755
  year: 2007
  ident: 10.1016/j.nbd.2013.11.017_bb0245
  article-title: Changes in brain functional activation during resting and locomotor states after unilateral nigrostriatal damage in rats
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.010
– volume: 16
  start-page: 105
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0115
  article-title: Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice
  publication-title: Exerc. Immunol. Rev.
– volume: 17
  start-page: 1017
  year: 2007
  ident: 10.1016/j.nbd.2013.11.017_bb0215
  article-title: Running induces widespread structural alterations in the hippocampus and entorhinal cortex
  publication-title: Hippocampus
  doi: 10.1002/hipo.20348
– volume: 27
  start-page: 5291
  year: 2007
  ident: 10.1016/j.nbd.2013.11.017_bb0180
  article-title: Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1069-07.2007
– volume: 503
  start-page: 334
  year: 1989
  ident: 10.1016/j.nbd.2013.11.017_bb0095
  article-title: Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(89)91686-7
– volume: 87
  start-page: 5568
  year: 1990
  ident: 10.1016/j.nbd.2013.11.017_bb0020
  article-title: Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.87.14.5568
– volume: 20
  start-page: 395
  year: 2005
  ident: 10.1016/j.nbd.2013.11.017_bb0185
  article-title: Striatal synaptic plasticity: implications for motor learning and Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20394
– volume: 4
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0235
  article-title: Striatal spine plasticity in Parkinson's disease
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2010.00133
– volume: 26
  start-page: 369
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0005
  article-title: Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson's disease
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-2010-0574
– volume: 25
  start-page: 295
  year: 2002
  ident: 10.1016/j.nbd.2013.11.017_bb0060
  article-title: Exercise: a behavioral intervention to enhance brain health and plasticity
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(02)02143-4
– volume: 31
  start-page: 126
  year: 2011
  ident: 10.1016/j.nbd.2013.11.017_bb0125
  article-title: Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4287-10.2011
– volume: 2013
  start-page: 709
  year: 2013
  ident: 10.1016/j.nbd.2013.11.017_bb0015
  article-title: Treadmill exercise induces hippocampal astroglial alterations in rats
  publication-title: Neural Plast.
  doi: 10.1155/2013/709732
– volume: 32
  start-page: 9124
  year: 2012
  ident: 10.1016/j.nbd.2013.11.017_bb0035
  article-title: Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0229-12.2012
– start-page: 12
  year: 2004
  ident: 10.1016/j.nbd.2013.11.017_bb0240
  article-title: Intracellular and juxtacellular staining with biocytin
  publication-title: Curr. Protoc. Neurosci.
– volume: 44
  start-page: 167
  year: 1992
  ident: 10.1016/j.nbd.2013.11.017_bb0045
  article-title: Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin
  publication-title: J. Neurosci. Methods
  doi: 10.1016/0165-0270(92)90009-3
– volume: 517
  start-page: 118
  year: 2012
  ident: 10.1016/j.nbd.2013.11.017_bb0140
  article-title: Cocaine-induced dendritic remodeling occurs in both D1 and D2 dopamine receptor-expressing neurons in the nucleus accumbens
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.04.040
– volume: 217
  start-page: 458
  year: 1983
  ident: 10.1016/j.nbd.2013.11.017_bb0145
  article-title: Postnatal maturation of neurons in the cat's lateral geniculate nucleus
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902170410
– volume: 279
  start-page: 212
  year: 1989
  ident: 10.1016/j.nbd.2013.11.017_bb0190
  article-title: Golgi study of the mouse striatum: age-related dendritic changes in different neuronal populations
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902790205
– volume: 491
  start-page: 216
  year: 2011
  ident: 10.1016/j.nbd.2013.11.017_bb0090
  article-title: Guided motor training induces dendritic spine plastic changes in adult rat cerebellar Purkinje cells
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.01.043
– volume: 4
  start-page: 229
  year: 1989
  ident: 10.1016/j.nbd.2013.11.017_bb0030
  article-title: Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions
  publication-title: Synapse
  doi: 10.1002/syn.890040308
– volume: 28
  start-page: 5504
  year: 2008
  ident: 10.1016/j.nbd.2013.11.017_bb0225
  article-title: Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5493-07.2008
– volume: 63
  start-page: 217
  year: 1995
  ident: 10.1016/j.nbd.2013.11.017_bb0050
  article-title: Differential rearing alters spine density on medium-sized spiny neurons in the rat corpus striatum: evidence for association of morphological plasticity with early response gene expression
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1006/nlme.1995.1025
– volume: 163
  start-page: 78
  year: 2005
  ident: 10.1016/j.nbd.2013.11.017_bb0130
  article-title: Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2005.04.009
– volume: 93
  start-page: 17
  year: 1993
  ident: 10.1016/j.nbd.2013.11.017_bb0100
  article-title: Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00227776
– volume: 1341
  start-page: 72
  year: 2010
  ident: 10.1016/j.nbd.2013.11.017_bb0080
  article-title: Exercise protects against MPTP-induced neurotoxicity in mice
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.01.053
– volume: 64
  start-page: 664
  year: 2005
  ident: 10.1016/j.nbd.2013.11.017_bb0040
  article-title: Physical activity and the risk of Parkinson disease
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000151960.28687.93
– volume: 76
  start-page: 539
  year: 2004
  ident: 10.1016/j.nbd.2013.11.017_bb0110
  article-title: Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.20114
– volume: 386
  start-page: 160
  year: 2005
  ident: 10.1016/j.nbd.2013.11.017_bb0135
  article-title: Increased astrocyte proliferation in rats after running exercise
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2005.06.009
– reference: 7682182 - Exp Brain Res. 1993;93(1):17-27
– reference: 20116369 - Brain Res. 2010 Jun 23;1341:72-83
– reference: 15913801 - Behav Brain Res. 2005 Aug 30;163(1):78-90
– reference: 1474850 - J Neurosci Methods. 1992 Sep;44(2-3):167-77
– reference: 20839495 - Exerc Immunol Rev. 2010;16:105-18
– reference: 15837135 - Neuroscience. 2005;132(3):741-54
– reference: 15728289 - Neurology. 2005 Feb 22;64(4):664-9
– reference: 15834963 - J Comp Neurol. 2005 May 23;486(1):39-47
– reference: 17507552 - J Neurosci. 2007 May 16;27(20):5291-300
– reference: 14586460 - Nature. 2003 Oct 30;425(6961):917-25
– reference: 7499560 - J Comp Neurol. 1995 Sep 11;360(1):150-60
– reference: 7670834 - Neurobiol Learn Mem. 1995 May;63(3):217-9
– reference: 15114626 - J Neurosci Res. 2004 May 15;76(4):539-50
– reference: 18428594 - Curr Protoc Neurosci. 2004 May;Chapter 1:Unit 1.12
– reference: 6886064 - J Comp Neurol. 1983 Jul 10;217(4):458-69
– reference: 23022567 - Brain Res. 2012 Nov 27;1486:53-61
– reference: 9195611 - Neurosci Biobehav Rev. 1997 Jul;21(4):519-23
– reference: 1592905 - J Comp Neurol. 1992 May 1;319(1):51-65
– reference: 17636549 - Hippocampus. 2007;17(11):1017-22
– reference: 13117757 - J Anat. 1953 Oct;87(4):387-406
– reference: 2514464 - Synapse. 1989;4(3):229-37
– reference: 19746427 - J Neurosci Res. 2010 Feb 15;88(3):650-68
– reference: 21750523 - Nat Rev Neurol. 2011 Sep;7(9):528-34
– reference: 16415865 - Nat Neurosci. 2006 Feb;9(2):251-9
– reference: 23401802 - Neural Plast. 2013;2013:709732
– reference: 15248294 - J Neurosci Res. 2004 Aug 1;77(3):378-90
– reference: 21262320 - Neurosci Lett. 2011 Mar 24;491(3):216-20
– reference: 17481921 - Neuroimage. 2007 Jul 1;36(3):755-73
– reference: 8581558 - Neurodegeneration. 1995 Sep;4(3):257-69
– reference: 12086747 - Trends Neurosci. 2002 Jun;25(6):295-301
– reference: 22764221 - J Neurosci. 2012 Jul 4;32(27):9119-23
– reference: 15719415 - Mov Disord. 2005 Apr;20(4):395-402
– reference: 21209197 - J Neurosci. 2011 Jan 5;31(1):126-32
– reference: 22561554 - Neurosci Lett. 2012 May 31;517(2):118-22
– reference: 20659436 - Brain Res. 2010 Oct 8;1355:165-73
– reference: 22764222 - J Neurosci. 2012 Jul 4;32(27):9124-32
– reference: 2514009 - Brain Res. 1989 Dec 4;503(2):334-8
– reference: 23918451 - J Neurosci Res. 2013 Nov;91(11):1492-507
– reference: 20555160 - NeuroRehabilitation. 2010;26(4):369-73
– reference: 16024173 - Neurosci Lett. 2005 Oct 7;386(3):160-4
– reference: 21179580 - Front Neuroanat. 2010 Dec 10;4:133
– reference: 2464010 - J Comp Neurol. 1989 Jan 8;279(2):212-27
– reference: 3416180 - Brain Res. 1988 Jul 5;455(1):148-52
– reference: 23769598 - Lancet Neurol. 2013 Jul;12(7):716-26
– reference: 20187247 - Mov Disord. 2010;25 Suppl 1:S141-5
– reference: 1695380 - Proc Natl Acad Sci U S A. 1990 Jul;87(14):5568-72
– reference: 18495884 - J Neurosci. 2008 May 21;28(21):5504-12
– reference: 17888581 - Neuroscience. 2007 Oct 26;149(2):457-64
– reference: 22743772 - Nat Methods. 2012 Jul;9(7):676-82
SSID ssj0011597
Score 2.4805286
Snippet Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia...
Abstract Exercise has been shown to be beneficial for Parkinson's disease (PD). A major interest in our lab has been to investigate how exercise modulates...
Exercise has been shown to be beneficial for Parkinson’s disease (PD). A major interest in our lab has been to investigate how exercise modulates basal ganglia...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms Analysis of Variance
Animals
Basal ganglia
Corpus Striatum - pathology
Dendritic Spines - pathology
Dendritic Spines - ultrastructure
Disease Models, Animal
Dopamine
Exercise Test
GFP
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Lysine - analogs & derivatives
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
MPTP Poisoning - pathology
MPTP Poisoning - rehabilitation
Neurology
Neurons - pathology
Neurons - ultrastructure
Neuroplasticity
Parkinson's
Physical Conditioning, Animal - methods
Primates
Receptors, Dopamine D2 - genetics
Receptors, Dopamine D2 - metabolism
Silver Staining
Striatum
Synaptogenesis
Time Factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQHhAviG18FAYyEuJLDdixY8ePAzFNSEWT6KS9WU5sa0VdWrXdQ_8-_jHunKSsgLoX3tLGjh3nl7vf5c53hLzKhZCF92VW5jpkUjE4Msxkpi6jF6WTRcQNzqNv6vRcfr0oLm6U-sKYsDY9cLtwH4MMQsfSRBedzDWras_KSlURqLDT7eYqZlhvTHX-A1DSuvdhpmiupsK0oFx8wJSdqTrZby2UkvVvKaO_yeafMZM3lNDJA3K_Y4_0uJ31PrkTmgNyeNyA5Xy1pq9piudMH8oPyN1R5zY_JD_HQA09FhiifYkliqmbMH6DguDxqd4BXc6hNZ3ChOmkoa2yo67xFP3a6Ucq8gF0naJL_voq9VjTlBOzSZ2ATlKeYVnq9TSTGQaQwQEf5kMxVNkqwE1drv1iNl8vJh5Hezs6G5-9o_gBItBUlofOIsW92Glb2huYX-tCekjOT76MP59mXfWGrAarcpUZX3kpXQRpWwkeVSgVdxWwuSC9KAA4oXau5l7FkIu6UAaIoGdVDK6MwpS5eET2mlkTnhCquTFRG6OZB8IRC1fyGi4K2hfYIiBhQFj_NG3dpTbHChtT28ew_bAAAIsAAJPHAgAG5P2my7zN67Gr8SeEyKYhpuROfwBQbQdUextQByTvAWb7Xa8gp-FCk10j6391CstO0iwtt8vcMvsdTFG0XTm6J2Fl1IDITc-OTLVQuW3Alz32LQga9B65JgAGwEY0udKaSbmjTcHBAMWwgAF53L4vm0XLMekCV_Cw9NabtLWq22eayWVKeC6MxLiDp__jMTwj9-B2ZRtGeET2Vovr8Bx45ap6kUTIL4cReao
  priority: 102
  providerName: Directory of Open Access Journals
Title Treadmill exercise reverses dendritic spine loss in direct and indirect striatal medium spiny neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0969996113003306
https://www.clinicalkey.es/playcontent/1-s2.0-S0969996113003306
https://dx.doi.org/10.1016/j.nbd.2013.11.017
https://www.ncbi.nlm.nih.gov/pubmed/24316165
https://www.proquest.com/docview/1492677044
https://www.proquest.com/docview/1516750277
https://pubmed.ncbi.nlm.nih.gov/PMC3940446
https://doaj.org/article/e4e37f89fafa4270bcd08b6bf559a710
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2TkK8INiAlUtlJMRNzRrHzsWPpWIql04VdNLerCS2WVCXVm330Bf-HH-Mc5ykUIaKxFsuduw4x-d8J-dGyPOAcxFqnXhJEBtPRD4cSV96Mk-s5kkqQosBzqOzaHguPlyEF3tk0MTCoFtlzfsrnu64dX2lV69mb14UvS8AvhGtMzTIgFYe7ZODAKR90iIH_fcfh2cbYwJIbBc1De097NAYN52bV5lhvlDGTzCXpytb9ks8uSz-W1LqJgr905nyN-l0epfcqWEl7Vczv0f2THlIjvolqNRXa_qCOkdP9wf9kNwa1fb0I_JjAphRY-Uh2tReopjTCR07KHAk7Qoh0OUcWtMpTJgWJa1WjKalpmjwdieu-gfgeIq2-usr12NNXbLM0nUCnEmZh_Wq11NPeOhZBgesG3R5N_JWBl7qcq0Xs_l6UWgc7dVoPBm_pvhnwlBXr4fOLMUgbRev9hLmV9mW7pPz03eTwdCryzp4OaibK0_qTAuRWmDDGWc2MknE0gxgnhGah0BRJk_TnOnImoDnYSQBIWo_syZNLJdJwB-QVjkrzTGhMZPSxlLGvgYkYsM0YTk8FMQywMjMhm3iN19T5XXOcyy9MVWNc9s3BQSgkABAF1JAAG3yZtNlXiX82NX4LZLIpiHm6nYXZouvqiZWZYThsU2kTW0qgtjPcu0nWQTTC2UKAK9NgobAVBMOCwwcHlTsGjn-WyezrFnQUjG1DJSvbmyTNhGbnls77V8DPmtoXwEHQrNSWhqgAVAeZRDFsS_EjjYhA80U_QXa5GG1XzaLFmA2BhbBx4q3dtLWqm7fKYtLlwmdS4EOCY_-75Uek9twJiqPwiektVpcm6cAMVdZh-yffGcdYCSDz5_GnZqhdNwPm5-iW397
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJwEvCDYu5WokxGVqaBw7Fz-WialjazWJTtqb5cQ2K-rSqu0e-vv4Y5zjJIUyVCTecvGJHef4-Ds5N0LeRJyL2JgsyKLUBiIJ4UiGMpBF5gzPtIgdBjgPhkn_XHy5iC92yGETC4NulbXsr2S6l9b1lW49m93ZeNz9CuAb0TpDgwxo5cktsiuwqHWL7PaOT_rDtTEBdmwfNQ3tAyRojJvezavMMV8o4x8xl6cvW_Zre_JZ_Dd2qZso9E9nyt92p6P75F4NK2mvGvkDsmPLPbLfK0GlvlrRt9Q7evo_6Hvk9qC2p--THyPAjAYrD9Gm9hLFnE7o2EFBIhlfCIEuZtCaTmDAdFzSasaoLg1Fg7c_8dU_AMdTtNVfX3mKFfXJMktPBDiTsgDrVa8mgQjQswwOWCfq8E4SLC281OXKzKez1XxssLf3g7PR2QeKfyYs9fV66NRRDNL28WrvYHyVbekhOT_6PDrsB3VZh6AAdXMZSJMbIbQDMZxz5hKbJUznAPOsMDwGjrKF1gUzibMRL-JEAkI0Ye6szhyXWcQfkVY5Le0TQlMmpUulTEMDSMTFOmMFPBS2ZYCRuYvbJGy-pirqnOdYemOiGue27woYQCEDgC6kgAHa5GBNMqsSfmxr_AlZZN0Qc3X7C9P5N1Uzq7LC8tRl0mmnRZSGeWHCLE9geLHUAPDaJGoYTDXhsCDA4UHjbT2nfyOyi1oELRRTi0iF6sYyaROxptxYaf_q8HXD-wokEJqVdGmBB0B5lFGSpqEQW9rEDDRT9Bdok8fVellPWoTZGFgCHyvdWEkbs7p5pxxf-kzoXAp0SHj6f6_0itzpjwan6vR4ePKM3IU7ovIufE5ay_m1fQFwc5m_rMXJT6g7ftc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treadmill+exercise+reverses+dendritic+spine+loss+in+direct+and+indirect+striatal+medium+spiny+neurons+in+the+1-methyl-4-phenyl-1%2C2%2C3%2C6-tetrahydropyridine+%28MPTP%29+mouse+model+of+Parkinson%E2%80%99s+disease&rft.jtitle=Neurobiology+of+disease&rft.au=Toy%2C+William+A.&rft.au=Petzinger%2C+Giselle+M.&rft.au=Leyshon%2C+Brian+J.&rft.au=Akopian%2C+Garnik+K.&rft.date=2014-03-01&rft.issn=0969-9961&rft.eissn=1095-953X&rft.volume=63&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1016%2Fj.nbd.2013.11.017&rft_id=info%3Apmid%2F24316165&rft.externalDocID=PMC3940446
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996113X00142%2Fcov150h.gif