Robots that can adapt like animals

An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage. Robots built to adapt Autonomous mobile robots would be extremely useful in remote or hostile environments such as space, deep oceans or disaster...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 521; no. 7553; pp. 503 - 507
Main Authors Cully, Antoine, Clune, Jeff, Tarapore, Danesh, Mouret, Jean-Baptiste
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.05.2015
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature14422

Cover

Abstract An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage. Robots built to adapt Autonomous mobile robots would be extremely useful in remote or hostile environments such as space, deep oceans or disaster areas. An outstanding challenge is to make such robots able to recover after damage. Jean-Baptiste Mouret and colleagues have developed a machine learning algorithm that enables damaged robots to quickly regain their ability to perform tasks. When they sustain damage — such as broken or even missing legs — the robots adopt an intelligent trial-and-error approach, trying out possible behaviours that they calculate to be potentially high-performing. After a handful of such experiments they discover, in less than two minutes, a compensatory behaviour that works in spite of the damage. Robots have transformed many industries, most notably manufacturing 1 , and have the power to deliver tremendous benefits to society, such as in search and rescue 2 , disaster response 3 , health care 4 and transportation 5 . They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets 6 to deep oceans 7 . A major obstacle to their widespread adoption in more complex environments outside factories is their fragility 6 , 8 . Whereas animals can quickly adapt to injuries, current robots cannot ‘think outside the box’ to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes 9 , and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots 6 , 8 . A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage 10 , 11 , but current techniques are slow even with small, constrained search spaces 12 . Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot’s prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
AbstractList An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage. Robots built to adapt Autonomous mobile robots would be extremely useful in remote or hostile environments such as space, deep oceans or disaster areas. An outstanding challenge is to make such robots able to recover after damage. Jean-Baptiste Mouret and colleagues have developed a machine learning algorithm that enables damaged robots to quickly regain their ability to perform tasks. When they sustain damage — such as broken or even missing legs — the robots adopt an intelligent trial-and-error approach, trying out possible behaviours that they calculate to be potentially high-performing. After a handful of such experiments they discover, in less than two minutes, a compensatory behaviour that works in spite of the damage. Robots have transformed many industries, most notably manufacturing 1 , and have the power to deliver tremendous benefits to society, such as in search and rescue 2 , disaster response 3 , health care 4 and transportation 5 . They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets 6 to deep oceans 7 . A major obstacle to their widespread adoption in more complex environments outside factories is their fragility 6 , 8 . Whereas animals can quickly adapt to injuries, current robots cannot ‘think outside the box’ to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes 9 , and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots 6 , 8 . A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage 10 , 11 , but current techniques are slow even with small, constrained search spaces 12 . Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot’s prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the inevitable fact that they will become damaged. However, while animals can quickly adapt to a wide variety of injuries, current robots cannot "think outside the box " to find a compensatory behavior when damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes 6 , and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. Here we introduce an intelligent trial and error algorithm that allows robots to adapt to damage in less than two minutes, without requiring self-diagnosis or pre-specified contingency plans. Before deployment, a robot exploits a novel algorithm to create a detailed map of the space of high-performing behaviors: This map represents the robot's intuitions about what behaviors it can perform and their value. If the robot is damaged, it uses these intuitions to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a compensatory behavior that works in spite of the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new technique will enable more robust, effective, autonomous robots, and suggests principles that animals may use to adapt to injury.
An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage.
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial- and- error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage. Robots built to adapt Autonomous mobile robots would be extremely useful in remote or hostile environments such as space, deep oceans or disaster areas. An outstanding challenge is to make such robots able to recover after damage. Jean-Baptiste Mouret and colleagues have developed a machine learning algorithm that enables damaged robots to quickly regain their ability to perform tasks. When they sustain damage -- such as broken or even missing legs -- the robots adopt an intelligent trial-and-error approach, trying out possible behaviours that they calculate to be potentially high-performing. After a handful of such experiments they discover, in less than two minutes, a compensatory behaviour that works in spite of the damage. Robots have transformed many industries, most notably manufacturing.sup.1, and have the power to deliver tremendous benefits to society, such as in search and rescue.sup.2, disaster response.sup.3, health care.sup.4 and transportation.sup.5. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets.sup.6 to deep oceans.sup.7. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility.sup.6,8. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes.sup.9, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots.sup.6,8. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage.sup.10,11, but current techniques are slow even with small, constrained search spaces.sup.12. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.
Audience Academic
Author Mouret, Jean-Baptiste
Tarapore, Danesh
Clune, Jeff
Cully, Antoine
Author_xml – sequence: 1
  givenname: Antoine
  surname: Cully
  fullname: Cully, Antoine
  organization: Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR)
– sequence: 2
  givenname: Jeff
  surname: Clune
  fullname: Clune, Jeff
  organization: Department of Computer Science, University of Wyoming
– sequence: 3
  givenname: Danesh
  surname: Tarapore
  fullname: Tarapore, Danesh
  organization: Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), †Present addresses: Department of Electronics, University of York, York YO10 5DD, UK (D.T.); Inria, Villers-lès-Nancy, F-54600, France (J.-B.M.)
– sequence: 4
  givenname: Jean-Baptiste
  surname: Mouret
  fullname: Mouret, Jean-Baptiste
  email: jean-baptiste.mouret@inria.fr
  organization: Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 06, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR), Inria, Team Larsen, CNRS, Loria, UMR 7503, Université de Lorraine, Loria, UMR 7503, †Present addresses: Department of Electronics, University of York, York YO10 5DD, UK (D.T.); Inria, Villers-lès-Nancy, F-54600, France (J.-B.M.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26017452$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01158243$$DView record in HAL
BookMark eNqN0-9r1DAYB_AgE3ebvvK9lO2NQzvzu-nLY6gbHAhTX4c0TW6ZvfSWpKL_vTlvzt7odLSQEj7PNyl5cgD2fO8NAC8RPEWQiHdepSEYRCnGT8AM0YqXlItqD8wgxKKEgvB9cBDjNYSQoYo-A_uYw_zB8AwcXfZNn2KRrlQqtPKFatU6FZ37Zgrl3Up18Tl4avNgXtyOh-Drh_dfzs7LxaePF2fzRakrDFNpiLGE1S00Dak1F5hXrbaaW0YtxwwbzBrYIIKR0KLGCiNOOW8tFRxbbWpyCE62uVeqk-uQ1w4_Za-cPJ8v5GYOIsQEpuQ7yvb11q5DfzOYmOTKRW26TnnTD1EiLiglsCIi0-N79Lofgs9_8lvVLL_or1qqzkjnbZ-C0ptQOeesrlGFK_xPRRFjnCDOsion1NJ4E1SXz866PL2T-hg_zj-a8HrtbuQ49EE0TjqdQPlpzcrpya0-qmC8wslOQTbJ_EhLNcQoLz5f7ob_z45zX92e6tCsTHvXL386O4M3W6BDH2Mw9o4gKDf3Ro7uTdbontYuqeTyDoJy3QM1b7c1MSf7pQmjxprgvwCw8R5r
CODEN NATUAS
CitedBy_id crossref_primary_10_1007_s10710_023_09465_z
crossref_primary_10_1109_TRO_2021_3082017
crossref_primary_10_3389_fspor_2022_861466
crossref_primary_10_1002_admt_202200047
crossref_primary_10_1016_j_jesp_2023_104553
crossref_primary_10_1002_aisy_202400790
crossref_primary_10_3389_fnbot_2019_00104
crossref_primary_10_12688_wellcomeopenres_21252_1
crossref_primary_10_1007_s10458_017_9380_x
crossref_primary_10_1016_j_jsv_2024_118424
crossref_primary_10_1098_rsos_171200
crossref_primary_10_3167_ares_2019_100109
crossref_primary_10_1109_LRA_2021_3062814
crossref_primary_10_1017_S0269888922000042
crossref_primary_10_3389_fnbot_2017_00039
crossref_primary_10_3389_frobt_2016_00040
crossref_primary_10_1109_ACCESS_2020_3008735
crossref_primary_10_1126_sciadv_adi3621
crossref_primary_10_1002_admt_202100437
crossref_primary_10_1155_2019_8261617
crossref_primary_10_1109_ACCESS_2022_3208883
crossref_primary_10_1109_TEVC_2022_3159855
crossref_primary_10_1016_j_robot_2019_103312
crossref_primary_10_1007_s10676_019_09510_5
crossref_primary_10_1109_LRA_2021_3060408
crossref_primary_10_3389_fnbot_2017_00029
crossref_primary_10_1145_3696426
crossref_primary_10_1080_0952813X_2018_1430861
crossref_primary_10_1016_j_conengprac_2020_104488
crossref_primary_10_1162_EVCO_a_00189
crossref_primary_10_1016_j_swevo_2024_101732
crossref_primary_10_1109_LRA_2021_3060415
crossref_primary_10_3390_s23229277
crossref_primary_10_2514_1_G008112
crossref_primary_10_1109_LRA_2018_2818933
crossref_primary_10_1177_26349795231188727
crossref_primary_10_1109_TSTE_2021_3055764
crossref_primary_10_17531_ein_2020_1_6
crossref_primary_10_1016_j_ijhydene_2024_03_223
crossref_primary_10_1088_1748_3190_ac9fb6
crossref_primary_10_1109_TCDS_2020_3008574
crossref_primary_10_1016_j_matpr_2022_04_238
crossref_primary_10_1016_j_apm_2019_09_021
crossref_primary_10_3233_AIC_220127
crossref_primary_10_1109_TMECH_2017_2681722
crossref_primary_10_1016_j_tws_2024_112645
crossref_primary_10_1038_nrd_2017_232
crossref_primary_10_1109_TEVC_2017_2735550
crossref_primary_10_1145_3664656
crossref_primary_10_1109_TKDE_2021_3079836
crossref_primary_10_1007_s10015_024_00984_1
crossref_primary_10_3233_AIC_230040
crossref_primary_10_1109_TCIAIG_2015_2494596
crossref_primary_10_1007_s10994_021_05982_z
crossref_primary_10_1109_LCSYS_2024_3410152
crossref_primary_10_1109_TCDS_2016_2628817
crossref_primary_10_1109_TEVC_2017_2722101
crossref_primary_10_1177_1059712321994685
crossref_primary_10_1145_3596912
crossref_primary_10_1111_brv_12539
crossref_primary_10_3389_fnbot_2017_00003
crossref_primary_10_1109_ACCESS_2019_2920429
crossref_primary_10_1242_jeb_174268
crossref_primary_10_1038_ncomms15546
crossref_primary_10_1126_scirobotics_aau0307
crossref_primary_10_1080_09544828_2023_2266864
crossref_primary_10_1098_rsif_2017_0937
crossref_primary_10_3390_robotics13110157
crossref_primary_10_1080_14484846_2024_2395120
crossref_primary_10_1016_j_jbusres_2023_114360
crossref_primary_10_1115_1_4067523
crossref_primary_10_3390_nano12010159
crossref_primary_10_1038_nature_2015_17641
crossref_primary_10_1126_scirobotics_adk9978
crossref_primary_10_1017_S0263574719001140
crossref_primary_10_1061__ASCE_ST_1943_541X_0001817
crossref_primary_10_1115_1_4037344
crossref_primary_10_1039_C8ME00020D
crossref_primary_10_3390_a15120478
crossref_primary_10_1007_s00146_019_00886_y
crossref_primary_10_1002_admt_202001095
crossref_primary_10_1093_icb_icae121
crossref_primary_10_2197_ipsjjip_31_220
crossref_primary_10_1109_TG_2022_3169168
crossref_primary_10_1109_TIM_2023_3260263
crossref_primary_10_1080_09544828_2021_1914323
crossref_primary_10_1109_TASE_2024_3424328
crossref_primary_10_1007_s10846_018_0881_x
crossref_primary_10_1242_jeb_133652
crossref_primary_10_1371_journal_pone_0219004
crossref_primary_10_1109_TG_2022_3151025
crossref_primary_10_1109_JSAC_2019_2927068
crossref_primary_10_3389_frobt_2019_00151
crossref_primary_10_3390_s21186305
crossref_primary_10_1093_icb_icae051
crossref_primary_10_1162_evco_a_00282
crossref_primary_10_1016_j_rcim_2022_102360
crossref_primary_10_1016_j_swevo_2018_06_009
crossref_primary_10_1162_artl_a_00294
crossref_primary_10_1109_LRA_2022_3149580
crossref_primary_10_1016_j_neunet_2019_01_011
crossref_primary_10_1177_1073858416638641
crossref_primary_10_1038_521426a
crossref_primary_10_1098_rsos_160938
crossref_primary_10_1109_TPAMI_2024_3455257
crossref_primary_10_1109_THMS_2021_3134553
crossref_primary_10_1007_s10994_020_05899_z
crossref_primary_10_1109_LRA_2021_3052391
crossref_primary_10_3390_s21227609
crossref_primary_10_1016_j_robot_2020_103708
crossref_primary_10_1177_17298814211044934
crossref_primary_10_1038_s41467_024_50131_4
crossref_primary_10_1109_TRO_2020_2992983
crossref_primary_10_3389_frobt_2020_00061
crossref_primary_10_1109_ACCESS_2018_2835836
crossref_primary_10_1002_aisy_202300774
crossref_primary_10_1109_TAC_2016_2644380
crossref_primary_10_1016_j_robot_2019_103398
crossref_primary_10_1016_j_robot_2020_103710
crossref_primary_10_1039_D0ME00005A
crossref_primary_10_1109_TCYB_2018_2805695
crossref_primary_10_1109_TMRB_2022_3185425
crossref_primary_10_1109_TASE_2024_3410522
crossref_primary_10_1126_scirobotics_aao4369
crossref_primary_10_2139_ssrn_4048864
crossref_primary_10_1126_scirobotics_abb2174
crossref_primary_10_1109_ACCESS_2023_3238872
crossref_primary_10_3389_fnbot_2020_555271
crossref_primary_10_3389_frobt_2017_00062
crossref_primary_10_1038_s41598_017_15601_4
crossref_primary_10_3390_machines10030185
crossref_primary_10_1111_emre_12289
crossref_primary_10_1016_j_engappai_2022_105367
crossref_primary_10_1038_s42256_020_00258_y
crossref_primary_10_1371_journal_pcbi_1004829
crossref_primary_10_1016_j_cirp_2023_05_005
crossref_primary_10_1371_journal_pone_0162235
crossref_primary_10_3390_app14188383
crossref_primary_10_1109_ACCESS_2021_3106815
crossref_primary_10_1039_C9SE00750D
crossref_primary_10_3389_frobt_2020_00083
crossref_primary_10_1016_j_neunet_2020_05_029
crossref_primary_10_1109_LRA_2023_3273393
crossref_primary_10_1038_nprot_2017_092
crossref_primary_10_3389_fnbot_2020_570308
crossref_primary_10_3389_fnhum_2017_00298
crossref_primary_10_3389_frobt_2020_579403
crossref_primary_10_1145_3476412
crossref_primary_10_3389_frobt_2018_00043
crossref_primary_10_1162_artl_a_00374
crossref_primary_10_1016_j_mattod_2021_01_009
crossref_primary_10_1145_3577203
crossref_primary_10_1002_rob_21887
crossref_primary_10_1038_s41578_024_00711_z
crossref_primary_10_3390_act12100393
crossref_primary_10_3389_frobt_2018_00012
crossref_primary_10_3390_electronics10121491
crossref_primary_10_3390_act12040157
crossref_primary_10_1109_LRA_2022_3177294
crossref_primary_10_1098_rsbl_2015_0674
crossref_primary_10_3389_frobt_2016_00008
crossref_primary_10_1109_TKDE_2019_2912367
crossref_primary_10_17587_mau_22_601_609
crossref_primary_10_1007_s10710_022_09433_z
crossref_primary_10_1162_artl_a_00263
crossref_primary_10_1016_j_biosystems_2022_104686
crossref_primary_10_1016_j_procs_2016_07_412
crossref_primary_10_1007_s42484_024_00225_5
crossref_primary_10_1162_EVCO_a_00172
crossref_primary_10_1038_s41378_023_00592_2
crossref_primary_10_3389_frobt_2017_00034
crossref_primary_10_1016_j_swevo_2025_101849
crossref_primary_10_1109_LRA_2023_3313012
crossref_primary_10_1075_is_18001_sze
crossref_primary_10_1109_TCST_2017_2692727
crossref_primary_10_1109_LRA_2021_3062342
crossref_primary_10_3390_min11090989
crossref_primary_10_1007_s10514_019_09842_7
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122725
crossref_primary_10_1039_D4DD00054D
crossref_primary_10_1016_j_apmt_2019_100463
crossref_primary_10_1016_j_robot_2019_06_001
crossref_primary_10_3389_frobt_2016_00014
crossref_primary_10_1109_TRO_2019_2958211
crossref_primary_10_1016_j_mechmachtheory_2024_105592
crossref_primary_10_1016_j_robot_2019_06_006
crossref_primary_10_1109_LRA_2023_3243440
crossref_primary_10_1162_evco_a_00343
crossref_primary_10_1162_evco_a_00336
crossref_primary_10_3389_frobt_2023_1145798
crossref_primary_10_7554_eLife_92683_4
crossref_primary_10_1007_s13218_019_00615_z
crossref_primary_10_1109_LRA_2022_3148438
crossref_primary_10_1109_TWC_2023_3307875
crossref_primary_10_1109_MRA_2016_2580593
crossref_primary_10_1109_JIOT_2022_3194726
crossref_primary_10_1088_1748_3190_ac884f
crossref_primary_10_3389_fnbot_2022_882518
crossref_primary_10_1007_s43154_022_00079_4
crossref_primary_10_1109_TNNLS_2020_3016523
crossref_primary_10_1109_TEVC_2017_2704781
crossref_primary_10_1002_smll_202305805
crossref_primary_10_1016_j_ccr_2025_216460
crossref_primary_10_1109_LRA_2019_2926660
crossref_primary_10_1016_j_rcim_2017_11_014
crossref_primary_10_1109_JLT_2018_2821361
crossref_primary_10_52825_solarpaces_v1i_636
crossref_primary_10_1016_j_procir_2021_01_016
crossref_primary_10_3390_philosophies4020020
crossref_primary_10_1145_3605782
crossref_primary_10_3390_act8030053
crossref_primary_10_1088_1402_4896_ac807c
crossref_primary_10_1162_artl_a_00454
crossref_primary_10_1162_artl_a_00331
crossref_primary_10_1162_artl_a_00330
crossref_primary_10_1016_j_autcon_2022_104691
crossref_primary_10_1109_TPAMI_2023_3264741
crossref_primary_10_1007_s10994_021_05956_1
crossref_primary_10_1088_1748_3190_10_6_065006
crossref_primary_10_1007_s12541_019_00199_6
crossref_primary_10_1109_MCI_2023_3277770
crossref_primary_10_1177_1475472X20978395
crossref_primary_10_1109_TNNLS_2021_3119127
crossref_primary_10_1109_TPAMI_2017_2777486
crossref_primary_10_1002_smtd_202300820
crossref_primary_10_1016_j_mechmachtheory_2019_07_008
crossref_primary_10_1007_s00500_022_07037_4
crossref_primary_10_1017_S0269888917000121
crossref_primary_10_1016_j_ifacol_2020_12_276
crossref_primary_10_1016_j_biosystems_2024_105178
crossref_primary_10_1038_s41586_020_03157_9
crossref_primary_10_1162_evco_a_00326
crossref_primary_10_1038_s42256_020_00263_1
crossref_primary_10_1039_C9TC05758G
crossref_primary_10_1371_journal_pone_0174635
crossref_primary_10_1109_LRA_2021_3139083
crossref_primary_10_1520_SSMS20200059
crossref_primary_10_4018_IJEHMC_2020070104
crossref_primary_10_1016_j_cobeha_2015_11_008
crossref_primary_10_3390_app10082959
crossref_primary_10_1017_pds_2021_603
crossref_primary_10_1162_artl_a_00357
crossref_primary_10_7554_eLife_92683
crossref_primary_10_1089_soro_2022_0073
crossref_primary_10_1016_j_sftr_2022_100068
crossref_primary_10_1109_TCDS_2016_2624705
crossref_primary_10_1126_scirobotics_abf1628
crossref_primary_10_1145_3587101
crossref_primary_10_1364_OE_426761
crossref_primary_10_1002_aisy_202200329
crossref_primary_10_1103_PhysRevE_108_065303
crossref_primary_10_1109_TNNLS_2020_3027552
crossref_primary_10_1002_aelm_202201064
crossref_primary_10_3390_biomimetics9060329
crossref_primary_10_1038_s42256_018_0009_9
crossref_primary_10_1109_LRA_2017_2715879
crossref_primary_10_1016_j_neubiorev_2024_105617
crossref_primary_10_1109_TAI_2021_3104789
crossref_primary_10_1057_s41599_020_0445_0
crossref_primary_10_1109_TVT_2022_3205452
crossref_primary_10_1109_ACCESS_2016_2601167
crossref_primary_10_1088_1367_2630_ab8677
crossref_primary_10_1016_j_jmsy_2021_02_005
crossref_primary_10_1109_TEVC_2017_2703142
crossref_primary_10_1016_j_patrec_2018_11_008
crossref_primary_10_1177_02783649211021869
crossref_primary_10_1109_TRO_2022_3158194
crossref_primary_10_1016_j_cirpj_2021_06_008
crossref_primary_10_1038_s41563_022_01269_3
crossref_primary_10_1089_soro_2022_0177
crossref_primary_10_1038_s42256_019_0076_6
crossref_primary_10_3389_fmats_2021_518886
crossref_primary_10_1109_TCAD_2021_3118963
crossref_primary_10_1007_s10514_020_09929_6
crossref_primary_10_1016_j_dt_2024_05_007
crossref_primary_10_1007_s11432_020_2863_y
crossref_primary_10_1016_j_ynexs_2024_100003
crossref_primary_10_1038_s42256_024_00852_4
crossref_primary_10_1016_j_robot_2017_11_010
crossref_primary_10_3390_s21061954
crossref_primary_10_1093_jisesa_iey038
crossref_primary_10_34133_icomputing_0025
crossref_primary_10_1145_3628158
crossref_primary_10_1007_s40820_024_01423_3
crossref_primary_10_1177_02783649231184498
crossref_primary_10_1162_ARTL_a_00226
crossref_primary_10_1109_TNNLS_2018_2886017
crossref_primary_10_1002_inf2_12028
crossref_primary_10_1016_j_mechmachtheory_2022_105069
crossref_primary_10_1162_ARTL_a_00228
crossref_primary_10_1016_j_aei_2023_102140
crossref_primary_10_1002_med_21774
crossref_primary_10_12737_2219_0767_2022_15_3_7_16
crossref_primary_10_1007_s11633_023_1429_5
crossref_primary_10_1109_LRA_2022_3186501
crossref_primary_10_1162_ARTL_a_00236
crossref_primary_10_1016_j_ecoinf_2024_102950
crossref_primary_10_1080_10447318_2023_2266796
crossref_primary_10_1162_artl_a_00319
crossref_primary_10_1002_adfm_202200241
crossref_primary_10_1016_j_mtcomm_2023_107584
crossref_primary_10_3389_frobt_2023_1271610
crossref_primary_10_1016_j_sna_2022_113676
crossref_primary_10_3389_fncir_2023_1111285
crossref_primary_10_1016_j_robot_2023_104443
crossref_primary_10_3390_e26060481
crossref_primary_10_3389_fnbot_2015_00010
crossref_primary_10_1109_JPROC_2020_2979233
crossref_primary_10_3389_frobt_2021_639173
crossref_primary_10_1371_journal_pone_0186107
crossref_primary_10_1038_s41586_019_1138_y
crossref_primary_10_21105_joss_00545
crossref_primary_10_1109_LRA_2019_2961598
crossref_primary_10_3390_technologies6040100
crossref_primary_10_1371_journal_pone_0151834
crossref_primary_10_1177_1059712315611964
crossref_primary_10_1109_LRA_2017_2716418
crossref_primary_10_1016_j_neunet_2022_04_009
crossref_primary_10_1109_TRO_2021_3106832
crossref_primary_10_3390_s22186991
crossref_primary_10_1016_j_isci_2020_101772
crossref_primary_10_1016_j_mattod_2019_10_007
crossref_primary_10_1016_j_comnet_2020_107230
crossref_primary_10_1109_ACCESS_2020_2966228
crossref_primary_10_1038_s44287_024_00081_2
crossref_primary_10_1051_matecconf_202338804022
crossref_primary_10_1016_j_tics_2017_01_006
crossref_primary_10_1109_TPAMI_2022_3200726
crossref_primary_10_1098_rsos_210848
crossref_primary_10_1016_j_nanoen_2020_105559
crossref_primary_10_3389_fncir_2020_00046
crossref_primary_10_1109_TEVC_2022_3152384
crossref_primary_10_1093_beheco_arz090
crossref_primary_10_1111_cogs_13279
crossref_primary_10_1038_s41562_018_0467_4
crossref_primary_10_1016_j_cirpj_2020_09_010
crossref_primary_10_1109_LRA_2020_2974685
crossref_primary_10_1016_j_engappai_2024_109539
crossref_primary_10_1126_sciadv_adi4566
crossref_primary_10_1126_scirobotics_abf6354
crossref_primary_10_1016_j_cogsys_2016_08_001
crossref_primary_10_1016_j_sger_2019_09_003
crossref_primary_10_1038_s42256_022_00444_0
crossref_primary_10_1038_srep23911
crossref_primary_10_1016_j_neunet_2021_09_010
crossref_primary_10_1109_TRO_2019_2929015
crossref_primary_10_1016_j_neunet_2021_09_017
crossref_primary_10_3902_jnns_31_116
crossref_primary_10_1108_IR_03_2020_0057
crossref_primary_10_1371_journal_pone_0215671
crossref_primary_10_1007_s10846_021_01558_0
crossref_primary_10_1038_s42256_018_0006_z
crossref_primary_10_1016_j_compstruct_2024_118331
crossref_primary_10_1109_TCDS_2021_3052548
crossref_primary_10_1109_TEVC_2021_3068157
crossref_primary_10_1109_TEVC_2023_3273560
crossref_primary_10_1016_j_neunet_2018_10_005
crossref_primary_10_1155_2018_2913636
crossref_primary_10_9746_sicetr_58_304
crossref_primary_10_12677_mos_2025_142190
crossref_primary_10_3389_frobt_2021_684304
crossref_primary_10_3389_frobt_2023_1127898
crossref_primary_10_1016_j_knosys_2024_112551
crossref_primary_10_1073_pnas_2017015118
crossref_primary_10_1016_j_isci_2020_101731
crossref_primary_10_1038_s41598_024_75607_7
crossref_primary_10_1109_TCDS_2018_2796940
crossref_primary_10_1371_journal_pone_0147754
crossref_primary_10_1038_s41598_020_79147_8
crossref_primary_10_1038_s44260_025_00031_5
crossref_primary_10_1007_s10015_023_00872_0
crossref_primary_10_1371_journal_pone_0213193
crossref_primary_10_1021_acsami_1c10311
crossref_primary_10_1038_srep29610
crossref_primary_10_1016_j_cma_2017_03_037
crossref_primary_10_1038_s41467_019_14234_7
crossref_primary_10_1038_s42256_020_0208_z
crossref_primary_10_1002_mame_202100478
crossref_primary_10_1016_j_robot_2016_11_018
crossref_primary_10_1016_j_ifacol_2020_12_2159
crossref_primary_10_1145_3665336
crossref_primary_10_1016_j_asoc_2021_107688
crossref_primary_10_1109_LRA_2022_3188884
crossref_primary_10_1089_soro_2019_0142
crossref_primary_10_1089_soro_2017_0055
crossref_primary_10_1021_acs_macromol_2c00434
crossref_primary_10_3390_s19173705
crossref_primary_10_1515_itit_2019_0003
crossref_primary_10_3389_frobt_2022_799893
crossref_primary_10_1007_s11721_016_0126_1
crossref_primary_10_1109_TEVC_2020_3036578
crossref_primary_10_1088_1748_3190_ab2958
crossref_primary_10_3390_electronics13173545
crossref_primary_10_3390_app9040799
crossref_primary_10_1016_j_physa_2023_128810
crossref_primary_10_1089_soro_2017_0066
crossref_primary_10_1098_rstb_2021_0117
crossref_primary_10_1002_aisy_202200375
crossref_primary_10_1016_j_destud_2021_101029
crossref_primary_10_1038_s41578_022_00513_1
crossref_primary_10_1145_3703453
crossref_primary_10_1115_1_4055167
Cites_doi 10.1038/nn.3495
10.1016/j.robot.2013.05.009
10.1038/nature03275
10.1038/nature02169
10.1177/0278364913495721
10.1016/j.tvjl.2014.05.012
10.1109/MRA.2004.1337826
10.1109/ICRA.2014.6907117
10.1126/science.1133687
10.1007/978-3-540-30301-5
10.1109/MRA.2004.1310942
10.1007/978-3-540-30301-5_44
10.1523/JNEUROSCI.18-23-10105.1998
10.1002/rob.20147
10.1038/463600a
10.2460/ajvr.74.9.1155
10.1016/j.robot.2008.10.024
10.1109/ROBOT.2004.1307456
10.1177/0278364907088401
10.1016/S1364-6613(00)01773-3
10.1007/s12369-009-0030-6
10.1038/nrn2332
10.1109/TRO.2004.838027
10.1038/nature02223
10.1109/IROS.2011.6095076
10.1002/rob.21439
10.1038/nrn1137
ContentType Journal Article
Copyright Springer Nature Limited 2015
COPYRIGHT 2015 Nature Publishing Group
Copyright Nature Publishing Group May 28, 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature Limited 2015
– notice: COPYRIGHT 2015 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 28, 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
1XC
VOOES
DOI 10.1038/nature14422
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
eLibrary Curriculum
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (ProQuest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database (ProQuest)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database (ProQuest)
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList




Agricultural Science Database
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 1476-4687
EndPage 507
ExternalDocumentID oai:HAL:hal-01158243v1
3701623741
A659917272
A415563165
26017452
10_1038_nature14422
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
ESTFP
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
ABUFD
ACMFV
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
1XC
VOOES
ID FETCH-LOGICAL-c720t-e3ef359d0eb39c68267dcfc6f54f6252e25b0b13218c892a216466df4862fce93
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Tue Oct 14 20:32:59 EDT 2025
Thu Oct 02 14:08:07 EDT 2025
Tue Oct 07 06:48:04 EDT 2025
Mon Oct 20 21:53:01 EDT 2025
Mon Oct 20 22:21:34 EDT 2025
Thu Jun 12 23:32:22 EDT 2025
Thu Jun 12 23:33:57 EDT 2025
Tue Jun 10 15:34:31 EDT 2025
Tue Jun 10 15:32:57 EDT 2025
Mon Oct 20 16:17:12 EDT 2025
Mon Oct 20 16:22:57 EDT 2025
Thu Oct 16 15:04:05 EDT 2025
Thu Oct 16 14:46:37 EDT 2025
Thu Apr 03 06:56:52 EDT 2025
Wed Oct 01 04:00:12 EDT 2025
Thu Apr 24 23:06:25 EDT 2025
Fri Feb 21 02:38:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7553
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c720t-e3ef359d0eb39c68267dcfc6f54f6252e25b0b13218c892a216466df4862fce93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3190-7073
0000-0002-2513-027X
OpenAccessLink https://hal.science/hal-01158243
PMID 26017452
PQID 1684954951
PQPubID 40569
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_01158243v1
proquest_miscellaneous_1684430738
proquest_journals_1684954951
gale_infotracmisc_A659917272
gale_infotracmisc_A415563165
gale_infotracgeneralonefile_A659917272
gale_infotracgeneralonefile_A415563165
gale_infotraccpiq_659917272
gale_infotraccpiq_415563165
gale_infotracacademiconefile_A659917272
gale_infotracacademiconefile_A415563165
gale_incontextgauss_ISR_A659917272
gale_incontextgauss_ISR_A415563165
pubmed_primary_26017452
crossref_primary_10_1038_nature14422
crossref_citationtrail_10_1038_nature14422
springer_journals_10_1038_nature14422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-28
PublicationDateYYYYMMDD 2015-05-28
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BongardJZykovVLipsonHResilient machines through continuous self-modelingScience2006314111811212006Sci...314.1118B1:CAS:528:DC%2BD28Xht1SmtrjO10.1126/science.1133687
PougetABeckJMMaWJLathamPEProbabilistic brains: knowns and unknownsNature Neurosci.201316117011781:CAS:528:DC%2BC3sXht1ylu7vJ10.1038/nn.3495
KlugerJLovellJApollo 132006
DerégnaucourtSMitraPPFehérOPytteCTchernichovskiOHow sleep affects the developmental learning of bird songNature20054337107162005Natur.433..710D10.1038/nature03275
MurphyRRTrial by fireRobot. Automat. Mag.200411506110.1109/MRA.2004.1337826
BorjiAIttiLBayesian optimization explains human active searchAdv. Neural Inform. Process. Syst.20132655631373.94046
NagataniKEmergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robotsJ. Field Robot.201330446310.1002/rob.21439
SproewitzAMoeckelRMayeJIjspeertALearning to move in modular robots using central pattern generators and online optimizationInt. J. Robot. Res.20082742344310.1177/0278364907088401
ThrunSStanley: the robot that won the DARPA grand challengeJ. Field Robot.20062366169210.1002/rob.20147
Kohl, N. & Stone, P. Policy gradient reinforcement learning for fast quadrupedal locomotion. In Proc. IEEE Int. Conf. on ‘Robotics and Automation’ (ICRA) 2619–2624 (IEEE, 2004).
BlankeMKinnaertMLunzeJStaroswieckiMDiagnosis and Fault-Tolerant Control20061126.93004
AntonelliGFossenTIYoergerDRSicilianoBKhatibOSpringer Handbook of Robotics2008987100810.1007/978-3-540-30301-5_44
SicilianoBKhatibOSpringer Handbook of Robotics200810.1007/978-3-540-30301-5
Tesch, M. Schneider, J. & Choset, H. Using response surfaces and expected improvement to optimize snake robot gait parameters. In Proc. IEEE/RSJ Int. Conf. on ‘Intelligent Robots and Systems (IROS)’ 1069–1074 (IEEE, 2011).
SandersonKMars rover Spirit (2003–10)Nature20104636001:CAS:528:DC%2BC3cXhsVyns70%3D10.1038/463600a
BroadbentEStaffordRMacDonaldBAcceptance of healthcare robots for the older population: review and future directionsInt. J. Social Robot.2009131933010.1007/s12369-009-0030-6
MockusJBayesian Approach to Global Optimization: Theory and Applications20130693.49001
CarlsonJMurphyRRHow UGVs physically fail in the fieldIEEE Trans. Robot.20052142343710.1109/TRO.2004.838027
Mouret, J.-B. & Clune, J. Illuminating search spaces by mapping elites. Preprint at http://arxiv.org/abs/1504.04909 (2015).
WagnerUGaisSHaiderHVerlegerRBornJSleep inspires insightNature20044273523552004Natur.427..352W1:CAS:528:DC%2BD2cXltFChuw%3D%3D10.1038/nature02223
KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt. J. Robot. Res.2013321238127410.1177/0278364913495721
RasmussenCEWilliamsCKIGaussian Processes for Machine Learning20061177.68165
ItoMControl of mental activities by internal models in the cerebellumNature Rev. Neurosci.200893043131:CAS:528:DC%2BD1cXjsFCks70%3D10.1038/nrn2332
VermaVGordonGSimmonsRThrunSReal-time fault diagnosisRobot. Automat. Mag.200411566610.1109/MRA.2004.1310942
JarvisSLKinematic and kinetic analysis of dogs during trotting after amputation of a thoracic limbAm. J. Vet. Res.2013741155116310.2460/ajvr.74.9.1155
KördingKPWolpertDMBayesian integration in sensorimotor learningNature20044272442472004Natur.427..244K10.1038/nature02169
GrillnerSThe motor infrastructure: from ion channels to neuronal networksNature Rev. Neurosci.200345735861:CAS:528:DC%2BD3sXltVWmtr4%3D10.1038/nrn1137
Lizotte, D. J. Wang, T. Bowling, M. H. & Schuurmans, D. Automatic gait optimization with Gaussian process regression. In Proc. Int. Joint Conf. on ‘Artificial Intelligence’ (IJCAI) 944–949 (2007).
FuchsAGoldnerBNolteISchillingNGround reaction force adaptations to tripedal locomotion in dogsVet. J.20142013073151:STN:280:DC%2BC2cjns1Ogsw%3D%3D10.1016/j.tvjl.2014.05.012
Benson-AmramSHolekampKEInnovative problem solving by wild spotted hyenasProc. R. Soc. Lond. B201227940874095
ArgallBDChernovaSVelosoMBrowningBA survey of robot learning from demonstrationRobot. Auton. Syst.20095746948310.1016/j.robot.2008.10.024
Calandra, R. Seyfarth, A., Peters, J. & Deisenroth, M. P. An experimental comparison of bayesian optimization for bipedal locomotion. In Proc. IEEE Int. Conf. on ‘Robotics and Automation’ (ICRA) 1951–1958 (IEEE, 2014).
ChristensenDJSchultzUPStoyKA distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robotsRobot. Auton. Syst.2013611021103510.1016/j.robot.2013.05.009
SantelloMPostural hand synergies for tool useJ. Neurosci.19981810105101151:CAS:528:DyaK1cXnslyqsLs%3D10.1523/JNEUROSCI.18-23-10105.1998
WolpertDMGhahramaniZFlanaganJRPerspective and problems in motor learningTrends Cogn. Sci.2001548749410.1016/S1364-6613(00)01773-3
S Thrun (BFnature14422_CR5) 2006; 23
RR Murphy (BFnature14422_CR2) 2004; 11
J Carlson (BFnature14422_CR8) 2005; 21
K Nagatani (BFnature14422_CR3) 2013; 30
BD Argall (BFnature14422_CR18) 2009; 57
CE Rasmussen (BFnature14422_CR21) 2006
KP Körding (BFnature14422_CR27) 2004; 427
S Benson-Amram (BFnature14422_CR25) 2012; 279
J Mockus (BFnature14422_CR22) 2013
J Kluger (BFnature14422_CR15) 2006
B Siciliano (BFnature14422_CR1) 2008
G Antonelli (BFnature14422_CR7) 2008
SL Jarvis (BFnature14422_CR16) 2013; 74
J Bongard (BFnature14422_CR14) 2006; 314
DJ Christensen (BFnature14422_CR11) 2013; 61
S Grillner (BFnature14422_CR24) 2003; 4
DM Wolpert (BFnature14422_CR19) 2001; 5
V Verma (BFnature14422_CR13) 2004; 11
M Santello (BFnature14422_CR20) 1998; 18
A Fuchs (BFnature14422_CR17) 2014; 201
M Blanke (BFnature14422_CR9) 2006
BFnature14422_CR34
BFnature14422_CR33
BFnature14422_CR35
J Kober (BFnature14422_CR12) 2013; 32
U Wagner (BFnature14422_CR29) 2004; 427
BFnature14422_CR32
BFnature14422_CR31
A Borji (BFnature14422_CR23) 2013; 26
A Pouget (BFnature14422_CR26) 2013; 16
E Broadbent (BFnature14422_CR4) 2009; 1
S Derégnaucourt (BFnature14422_CR28) 2005; 433
K Sanderson (BFnature14422_CR6) 2010; 463
A Sproewitz (BFnature14422_CR10) 2008; 27
M Ito (BFnature14422_CR30) 2008; 9
12838332 - Nat Rev Neurosci. 2003 Jul;4(7):573-86
17110570 - Science. 2006 Nov 17;314(5802):1118-21
15716944 - Nature. 2005 Feb 17;433(7027):710-6
23955561 - Nat Neurosci. 2013 Sep;16(9):1170-8
9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15
23977887 - Am J Vet Res. 2013 Sep;74(9):1155-63
14737168 - Nature. 2004 Jan 22;427(6972):352-5
22874748 - Proc Biol Sci. 2012 Oct 7;279(1744):4087-95
26017437 - Nature. 2015 May 28;521(7553):426-7
14724638 - Nature. 2004 Jan 15;427(6971):244-7
11684481 - Trends Cogn Sci. 2001 Nov 1;5(11):487-494
24881509 - Vet J. 2014 Sep;201(3):307-15
18319727 - Nat Rev Neurosci. 2008 Apr;9(4):304-13
20130624 - Nature. 2010 Feb 4;463(7281):600
References_xml – reference: Kohl, N. & Stone, P. Policy gradient reinforcement learning for fast quadrupedal locomotion. In Proc. IEEE Int. Conf. on ‘Robotics and Automation’ (ICRA) 2619–2624 (IEEE, 2004).
– reference: SicilianoBKhatibOSpringer Handbook of Robotics200810.1007/978-3-540-30301-5
– reference: Lizotte, D. J. Wang, T. Bowling, M. H. & Schuurmans, D. Automatic gait optimization with Gaussian process regression. In Proc. Int. Joint Conf. on ‘Artificial Intelligence’ (IJCAI) 944–949 (2007).
– reference: BlankeMKinnaertMLunzeJStaroswieckiMDiagnosis and Fault-Tolerant Control20061126.93004
– reference: BorjiAIttiLBayesian optimization explains human active searchAdv. Neural Inform. Process. Syst.20132655631373.94046
– reference: WolpertDMGhahramaniZFlanaganJRPerspective and problems in motor learningTrends Cogn. Sci.2001548749410.1016/S1364-6613(00)01773-3
– reference: Benson-AmramSHolekampKEInnovative problem solving by wild spotted hyenasProc. R. Soc. Lond. B201227940874095
– reference: Calandra, R. Seyfarth, A., Peters, J. & Deisenroth, M. P. An experimental comparison of bayesian optimization for bipedal locomotion. In Proc. IEEE Int. Conf. on ‘Robotics and Automation’ (ICRA) 1951–1958 (IEEE, 2014).
– reference: ThrunSStanley: the robot that won the DARPA grand challengeJ. Field Robot.20062366169210.1002/rob.20147
– reference: KlugerJLovellJApollo 132006
– reference: JarvisSLKinematic and kinetic analysis of dogs during trotting after amputation of a thoracic limbAm. J. Vet. Res.2013741155116310.2460/ajvr.74.9.1155
– reference: MockusJBayesian Approach to Global Optimization: Theory and Applications20130693.49001
– reference: DerégnaucourtSMitraPPFehérOPytteCTchernichovskiOHow sleep affects the developmental learning of bird songNature20054337107162005Natur.433..710D10.1038/nature03275
– reference: NagataniKEmergency response to the nuclear accident at the Fukushima Daiichi nuclear power plants using mobile rescue robotsJ. Field Robot.201330446310.1002/rob.21439
– reference: CarlsonJMurphyRRHow UGVs physically fail in the fieldIEEE Trans. Robot.20052142343710.1109/TRO.2004.838027
– reference: VermaVGordonGSimmonsRThrunSReal-time fault diagnosisRobot. Automat. Mag.200411566610.1109/MRA.2004.1310942
– reference: GrillnerSThe motor infrastructure: from ion channels to neuronal networksNature Rev. Neurosci.200345735861:CAS:528:DC%2BD3sXltVWmtr4%3D10.1038/nrn1137
– reference: ItoMControl of mental activities by internal models in the cerebellumNature Rev. Neurosci.200893043131:CAS:528:DC%2BD1cXjsFCks70%3D10.1038/nrn2332
– reference: RasmussenCEWilliamsCKIGaussian Processes for Machine Learning20061177.68165
– reference: MurphyRRTrial by fireRobot. Automat. Mag.200411506110.1109/MRA.2004.1337826
– reference: BroadbentEStaffordRMacDonaldBAcceptance of healthcare robots for the older population: review and future directionsInt. J. Social Robot.2009131933010.1007/s12369-009-0030-6
– reference: Mouret, J.-B. & Clune, J. Illuminating search spaces by mapping elites. Preprint at http://arxiv.org/abs/1504.04909 (2015).
– reference: BongardJZykovVLipsonHResilient machines through continuous self-modelingScience2006314111811212006Sci...314.1118B1:CAS:528:DC%2BD28Xht1SmtrjO10.1126/science.1133687
– reference: KördingKPWolpertDMBayesian integration in sensorimotor learningNature20044272442472004Natur.427..244K10.1038/nature02169
– reference: KoberJBagnellJAPetersJReinforcement learning in robotics: a surveyInt. J. Robot. Res.2013321238127410.1177/0278364913495721
– reference: ChristensenDJSchultzUPStoyKA distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robotsRobot. Auton. Syst.2013611021103510.1016/j.robot.2013.05.009
– reference: FuchsAGoldnerBNolteISchillingNGround reaction force adaptations to tripedal locomotion in dogsVet. J.20142013073151:STN:280:DC%2BC2cjns1Ogsw%3D%3D10.1016/j.tvjl.2014.05.012
– reference: PougetABeckJMMaWJLathamPEProbabilistic brains: knowns and unknownsNature Neurosci.201316117011781:CAS:528:DC%2BC3sXht1ylu7vJ10.1038/nn.3495
– reference: SproewitzAMoeckelRMayeJIjspeertALearning to move in modular robots using central pattern generators and online optimizationInt. J. Robot. Res.20082742344310.1177/0278364907088401
– reference: Tesch, M. Schneider, J. & Choset, H. Using response surfaces and expected improvement to optimize snake robot gait parameters. In Proc. IEEE/RSJ Int. Conf. on ‘Intelligent Robots and Systems (IROS)’ 1069–1074 (IEEE, 2011).
– reference: AntonelliGFossenTIYoergerDRSicilianoBKhatibOSpringer Handbook of Robotics2008987100810.1007/978-3-540-30301-5_44
– reference: ArgallBDChernovaSVelosoMBrowningBA survey of robot learning from demonstrationRobot. Auton. Syst.20095746948310.1016/j.robot.2008.10.024
– reference: SandersonKMars rover Spirit (2003–10)Nature20104636001:CAS:528:DC%2BC3cXhsVyns70%3D10.1038/463600a
– reference: SantelloMPostural hand synergies for tool useJ. Neurosci.19981810105101151:CAS:528:DyaK1cXnslyqsLs%3D10.1523/JNEUROSCI.18-23-10105.1998
– reference: WagnerUGaisSHaiderHVerlegerRBornJSleep inspires insightNature20044273523552004Natur.427..352W1:CAS:528:DC%2BD2cXltFChuw%3D%3D10.1038/nature02223
– volume: 16
  start-page: 1170
  year: 2013
  ident: BFnature14422_CR26
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.3495
– volume: 61
  start-page: 1021
  year: 2013
  ident: BFnature14422_CR11
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2013.05.009
– volume: 433
  start-page: 710
  year: 2005
  ident: BFnature14422_CR28
  publication-title: Nature
  doi: 10.1038/nature03275
– volume: 427
  start-page: 244
  year: 2004
  ident: BFnature14422_CR27
  publication-title: Nature
  doi: 10.1038/nature02169
– volume: 32
  start-page: 1238
  year: 2013
  ident: BFnature14422_CR12
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913495721
– volume: 201
  start-page: 307
  year: 2014
  ident: BFnature14422_CR17
  publication-title: Vet. J.
  doi: 10.1016/j.tvjl.2014.05.012
– volume: 11
  start-page: 50
  year: 2004
  ident: BFnature14422_CR2
  publication-title: Robot. Automat. Mag.
  doi: 10.1109/MRA.2004.1337826
– ident: BFnature14422_CR34
  doi: 10.1109/ICRA.2014.6907117
– volume: 314
  start-page: 1118
  year: 2006
  ident: BFnature14422_CR14
  publication-title: Science
  doi: 10.1126/science.1133687
– volume-title: Springer Handbook of Robotics
  year: 2008
  ident: BFnature14422_CR1
  doi: 10.1007/978-3-540-30301-5
– volume: 11
  start-page: 56
  year: 2004
  ident: BFnature14422_CR13
  publication-title: Robot. Automat. Mag.
  doi: 10.1109/MRA.2004.1310942
– start-page: 987
  volume-title: Springer Handbook of Robotics
  year: 2008
  ident: BFnature14422_CR7
  doi: 10.1007/978-3-540-30301-5_44
– volume: 18
  start-page: 10105
  year: 1998
  ident: BFnature14422_CR20
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-23-10105.1998
– ident: BFnature14422_CR35
– volume: 23
  start-page: 661
  year: 2006
  ident: BFnature14422_CR5
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20147
– volume: 463
  start-page: 600
  year: 2010
  ident: BFnature14422_CR6
  publication-title: Nature
  doi: 10.1038/463600a
– volume-title: Bayesian Approach to Global Optimization: Theory and Applications
  year: 2013
  ident: BFnature14422_CR22
– volume: 279
  start-page: 4087
  year: 2012
  ident: BFnature14422_CR25
  publication-title: Proc. R. Soc. Lond. B
– volume-title: Apollo 13
  year: 2006
  ident: BFnature14422_CR15
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: BFnature14422_CR21
– volume: 74
  start-page: 1155
  year: 2013
  ident: BFnature14422_CR16
  publication-title: Am. J. Vet. Res.
  doi: 10.2460/ajvr.74.9.1155
– volume: 57
  start-page: 469
  year: 2009
  ident: BFnature14422_CR18
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2008.10.024
– ident: BFnature14422_CR31
  doi: 10.1109/ROBOT.2004.1307456
– volume: 26
  start-page: 55
  year: 2013
  ident: BFnature14422_CR23
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 27
  start-page: 423
  year: 2008
  ident: BFnature14422_CR10
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364907088401
– volume: 5
  start-page: 487
  year: 2001
  ident: BFnature14422_CR19
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01773-3
– volume-title: Diagnosis and Fault-Tolerant Control
  year: 2006
  ident: BFnature14422_CR9
– volume: 1
  start-page: 319
  year: 2009
  ident: BFnature14422_CR4
  publication-title: Int. J. Social Robot.
  doi: 10.1007/s12369-009-0030-6
– volume: 9
  start-page: 304
  year: 2008
  ident: BFnature14422_CR30
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn2332
– volume: 21
  start-page: 423
  year: 2005
  ident: BFnature14422_CR8
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2004.838027
– volume: 427
  start-page: 352
  year: 2004
  ident: BFnature14422_CR29
  publication-title: Nature
  doi: 10.1038/nature02223
– ident: BFnature14422_CR33
  doi: 10.1109/IROS.2011.6095076
– volume: 30
  start-page: 44
  year: 2013
  ident: BFnature14422_CR3
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21439
– ident: BFnature14422_CR32
– volume: 4
  start-page: 573
  year: 2003
  ident: BFnature14422_CR24
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn1137
– reference: 18319727 - Nat Rev Neurosci. 2008 Apr;9(4):304-13
– reference: 15716944 - Nature. 2005 Feb 17;433(7027):710-6
– reference: 14724638 - Nature. 2004 Jan 15;427(6971):244-7
– reference: 23955561 - Nat Neurosci. 2013 Sep;16(9):1170-8
– reference: 26017437 - Nature. 2015 May 28;521(7553):426-7
– reference: 20130624 - Nature. 2010 Feb 4;463(7281):600
– reference: 23977887 - Am J Vet Res. 2013 Sep;74(9):1155-63
– reference: 11684481 - Trends Cogn Sci. 2001 Nov 1;5(11):487-494
– reference: 22874748 - Proc Biol Sci. 2012 Oct 7;279(1744):4087-95
– reference: 12838332 - Nat Rev Neurosci. 2003 Jul;4(7):573-86
– reference: 14737168 - Nature. 2004 Jan 22;427(6972):352-5
– reference: 17110570 - Science. 2006 Nov 17;314(5802):1118-21
– reference: 9822764 - J Neurosci. 1998 Dec 1;18(23):10105-15
– reference: 24881509 - Vet J. 2014 Sep;201(3):307-15
SSID ssj0005174
Score 2.668134
Snippet An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage....
Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and...
An intelligent trial-and-error learning algorithm is presented that allows robots to adapt in minutes to compensate for a wide variety of types of damage.
As robots leave the controlled environments of factories to autonomously function in more complex, natural environments, they will have to respond to the...
SourceID hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 503
SubjectTerms 639/705/117
Adaptation level (Psychology)
Adaptation, Physiological
Adaptive control
Algorithms
Analysis
Animal behavior
Animals
Artificial Intelligence
Behavior, Animal
Biomimetics
Biomimetics - methods
Computer Science
Control
Design
Disaster management
Dogs
Extremities - injuries
Extremities - physiopathology
Humanities and Social Sciences
letter
Machine learning
Maintenance and repair
Methods
Mobile robots
Motor Skills
multidisciplinary
Oceans
Robotics
Robotics - instrumentation
Robotics - methods
Robots
Science
Search and rescue
Technology application
Time Factors
Title Robots that can adapt like animals
URI https://link.springer.com/article/10.1038/nature14422
https://www.ncbi.nlm.nih.gov/pubmed/26017452
https://www.proquest.com/docview/1684954951
https://www.proquest.com/docview/1684430738
https://hal.science/hal-01158243
Volume 521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1476-4687
  dateEnd: 20151119
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: ABDBF
  dateStart: 19970605
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20151119
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: A8Z
  dateStart: 19970605
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8FG
  dateStart: 19900104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfWTki8IDa-ysYUqvEpRUscO3EeECrTSkFQocKkai9RYjtbxUg6kvL3c9c4XUKr8uKH-HJxnPP5Lnf-HSHHOtWhUL5jKyUcmwUOt0UqXFCGIYMN35U-xcPJX8f-6Jx9nvLpDhnXZ2EwrbLWiUtFrXKJ_8hPXF8wDElx9_38xsaqURhdrUtoxKa0gnq3hBjrkF2KyFhdsvvhbPxtcpv08Q8uszmx53jipALSBP-C0tYeZTR15woTJdet0LUI6nJjGt4n94xFaQ0qEdgjOzrbJ3eWmZ2y2Cd7ZvUW1msDMf3mAelP8iQvC6u8iksLJteKVTwvrevZT23F2ewXyORDcj48-3E6sk21BFsG1Clt7enU46FywD0OpQ9uQ6BkKv2UsxScHKopT5wEnE9XSBHSmCKymK9SBj5NKnXoPSLdLM_0E2J5gdIy8CRLVMBYGgqXcZZI8C1CV_tJ3CNv6_mJpIESx4oW19EypO2JqDGZPXK8Ip5XCBqbyfo40RFiUmSY9HIZL4oi-vR9Eg3Q6PE91-fbiHwOpi6GlXvklSFKcxiVjM1BA3g3xLpqsfsPZYPnQYtSzmc3UYPPht7GvS9bvZfVx940nO2EDY6HLULQCLLFZ1N34-4-yPLqWyC--GjwJcJr6B8Iyrw_LvCoRT0yWq2IbtdgjzxfdSN7zNTLdL6oaBhuHKJHHldLZPUohK8LGIcRvKjXTIP5ukw83T6IA3IXzFeOuRxUHJJu-Xuhn4GJWCZHpBNMA2jFqYvt8CO0A3FxZPTBX3LuYao
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZX2YBQbXxJ0RLHdpwHhCpgalm3h7FJfTOJ42wVI-lICuKf4m_krkm6hFblaa_x5eLa55_veuefCdkxiQlkLBw7jqVjM9_htkykC2AYMNjwXS0oHk4-PBL9U_Z5xEdr5E99FgbLKmtMnAF1nGn8j3zPFZJhSoq77yeXNt4ahdnV-gqN0iwOzO9fELLl7wYfYX53Kd3_dPKhb1e3Ctjap05hG88kHg9iB8LIQAtwr_1YJ1oknCUQDFBDeeREEKS5UsuAhhQZuEScMPD9E22QfAkg_ybzAEtg_fgj_6qk5B_W5-o8oOPJvZKmE6IXSls7YLUP3DjHMsxFH3chPzvb9vbvkbuVv2r1SgPbIGsm3SS3ZnWjOt8kGxU25NbrisD6zX3SPc6irMit4jwsLJg6K4zDSWFdjL8ZK0zH38HiH5DTaxm1h2Q9zVLzmFieHxvte5pFsc9YEkiXcRZpiFwC14go7JC39fgoXRGV430ZF2qWMPekagxmh-zMhSclP8dysS4OtELGixRLas7CaZ6rwZdj1UOXSniu4KuEBAdHGpPWHfKqEkoy6JUOq2MM8NuQSaul7j-SDZ1bLUk9GV-qhp4lrY13X7Zaz8rJXtad1YINjdstQcAb3dKzrLnxdhdseT4XyF7e7w0VPsPoQ1Lm_XRBR23qqsLMXF2t8A55MW9G9VgHmJpsWsow3JZkhzwql8j8U0iO5zMOPdit10xD-aJNPFndiefkdv_kcKiGg6ODLXIHHGWOVSNUbpP14sfUPAVntIiezRDAIl-vG3L-AgDNk_M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2YAwbXxJURPHcZwHhCpG1bIxocGkvpnEsbeKkXQkBfGv8ddx1yRdQqvytNf4cnHt8893vfPPhOxqo0ORcMdOEuHYLHB8WxjhAhiGDDZ8V3GKh5M_HvHBCfsw8kdr5E99FgbLKmtMnAF1kin8j7zrcsEwJeW7XVOVRXza77-dXNh4gxRmWuvrNEoTOdC_f0H4lr8Z7sNc71Haf__l3cCubhiwVUCdwtaeNp4fJg6ElKHi4GoHiTKKG58ZCAyopn7sxBCwuUKJkEYU2bh4YhjEAUZpJGIC-L8eeF6I5YTBKLgsL_mHAbo6G-h4oltSdkIkQ2lrN6z2hGtnWJK56O8u5GpnW2D_Drld-a5WrzS2DbKm001yY1ZDqvJNslHhRG69rMisX90lO8dZnBW5VZxFhQXTaEVJNCms8_E3bUXp-DtY_z1yciWjdp-sp1mqHxLLCxKtAk-xOAkYM6Fwmc9iBVFM6GoeRx3yuh4fqSrScrw741zOkueekI3B7JDdufCk5OpYLraDAy2R_SJFOzqNpnkuh5-PZQ_dK-653F8lxH1wqjGB3SEvKiGTQa9UVB1pgN-GrFotdf-RbOjcakmqyfhCNvQsaW28-7zVelpO9rLurBZsaNxuCQL2qJaeZc2Nt3fAludzgUzmg96hxGcYiQjKvJ8u6KhNXVb4mcvL1d4hz-bNqB5rAlOdTUsZhluU6JAH5RKZfwqJ8gLmQw_26jXTUL5oE49Wd-IpuQlgIw-HRwdb5Bb4zD4WkFCxTdaLH1P9GPzSIn4yAwCLfL1qxPkLpguYNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robots+that+can+adapt+like+animals&rft.jtitle=Nature+%28London%29&rft.au=Cully%2C+Antoine&rft.au=Clune%2C+Jeff&rft.au=Tarapore%2C+Danesh&rft.au=Mouret%2C+Jean-Baptiste&rft.date=2015-05-28&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=521&rft.issue=7553&rft.spage=503&rft.epage=507&rft_id=info:doi/10.1038%2Fnature14422&rft.externalDocID=10_1038_nature14422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon