Metis: a python-based user interface to collect expert feedback for generative chemistry models

One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle e...

Full description

Saved in:
Bibliographic Details
Published inJournal of cheminformatics Vol. 16; no. 1; pp. 100 - 9
Main Authors Menke, Janosch, Nahal, Yasmine, Bjerrum, Esben Jannik, Kabeshov, Mikhail, Kaski, Samuel, Engkvist, Ola
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 14.08.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1758-2946
1758-2946
DOI10.1186/s13321-024-00892-3

Cover

Abstract One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
AbstractList One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.Scientific contributionWe introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.Scientific contributionWe introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.Scientific contributionWe introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.
One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. Keywords: De novo drug design, Preference learning, Human-in-the-loop, Machine learning, User interface
Abstract One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.
ArticleNumber 100
Audience Academic
Author Nahal, Yasmine
Engkvist, Ola
Bjerrum, Esben Jannik
Menke, Janosch
Kaski, Samuel
Kabeshov, Mikhail
Author_xml – sequence: 1
  givenname: Janosch
  surname: Menke
  fullname: Menke, Janosch
  email: janosch.menke.research@proton.me
  organization: Department of Computer Science and Engineering, Chalmers University of Technology
– sequence: 2
  givenname: Yasmine
  surname: Nahal
  fullname: Nahal, Yasmine
  organization: Department of Computer Science, Aalto University
– sequence: 3
  givenname: Esben Jannik
  surname: Bjerrum
  fullname: Bjerrum, Esben Jannik
  organization: Cheminformania Consulting
– sequence: 4
  givenname: Mikhail
  surname: Kabeshov
  fullname: Kabeshov, Mikhail
  organization: Molecular AI, Discovery Sciences AstraZeneca R &D
– sequence: 5
  givenname: Samuel
  surname: Kaski
  fullname: Kaski, Samuel
  organization: Department of Computer Science, Aalto University, Department of Computer Science, University of Manchester
– sequence: 6
  givenname: Ola
  surname: Engkvist
  fullname: Engkvist, Ola
  organization: Department of Computer Science and Engineering, Chalmers University of Technology, Molecular AI, Discovery Sciences AstraZeneca R &D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39143631$$D View this record in MEDLINE/PubMed
https://research.chalmers.se/publication/542473$$DView record from Swedish Publication Index
BookMark eNqNkktv1DAUhSNURB_wB1igSGxgkeJH4jhsUFXxqFSERGFt3dxcz6Rk4qnttJ1_j6dTSqdCFcoi0c05x_bns5_tjG6kLHvJ2SHnWr0LXErBCybKgjHdiEI-yfZ4XelCNKXaufe9m-2HcM6YqmpWP8t2ZcNLqSTfy8xXin14n0O-XMW5G4sWAnX5FMjn_RjJW0DKo8vRDQNhzOl6ST7mlqhrAX_l1vl8RiN5iP0l5TinRR-iX-UL19EQnmdPLQyBXty-D7Kfnz7-OP5SnH77fHJ8dFpgzXUsULSVkh012HW65lVLBFZglU5QIlDbgUBiTKialMVGMVIV1KUgqC2rKi0PspNNbufg3Cx9vwC_Mg56czNwfmbAxx4HMtBxkG0JWAldqkY0LA0QtGg7kjWKlCU3WdO4hNUVDMNdIGdmjd5s0JuE3tygNzK5zjaucEXLqd3ag6dA4HFucA7DgnwwgQzXrawsB1Mq3pqSqDS6LsmUoraWAUql1-f6sElNkQvqkMboYdgK3_4z9nMzc5dpm1JIqauU8OY2wbuLiUI06YKQhgFGclMwkjWS1yJBT9LXD6TnbvJjure1SjRKK31PNYNEsx-tSwvjOtQcaaZFte5ZUh3-Q5WeLhUEU5Ftn-ZbhrdbhqSJdB1nMIVgTs6-b2tf3adyh-NPr5NAbAToXQie7P_doH5gwj6mWrs12X543HpbmZDWGWfk_5J7xPUb_4gqzw
CitedBy_id crossref_primary_10_1021_acs_jmedchem_4c03066
crossref_primary_10_1186_s13321_024_00924_y
Cites_doi 10.1038/nrd.2017.232
10.1038/s42004-022-00733-0
10.1038/nature16961
10.1007/s10462-022-10246-w
10.1016/j.drudis.2021.05.019
10.1038/s41586-019-1724-z
10.1145/3054912
10.1021/acs.jcim.0c00915
10.1186/s13321-024-00812-5
10.1186/1758-2946-5-43
10.1038/s41467-023-42242-1
10.1186/s13321-022-00667-8
10.26434/chemrxiv-2023-fzqwd
10.1016/j.artint.2021.103500
10.24963/ijcai.2018/687
10.26434/chemrxiv-2024-jfhmw
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7X7
7XB
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ADTOC
UNPAY
DOA
DOI 10.1186/s13321-024-00892-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database



CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1758-2946
EndPage 9
ExternalDocumentID oai_doaj_org_article_ad1a3b4ac528469290d1aca82bde37c2
10.1186/s13321-024-00892-3
oai_research_chalmers_se_18b35f1a_461b_4ee4_874e_427ff0ac3688
PMC11323385
A808250065
39143631
10_1186_s13321_024_00892_3
Genre Journal Article
GrantInformation_xml – fundername: Horizon 2020
  grantid: 956832
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: Chalmers University of Technology
– fundername: Finnish Center for Artificial Intelligence
  funderid: http://dx.doi.org/10.13039/501100023293
– fundername: Wallenberg AI, Autonomous Systems and Software Program
– fundername: UKRI Turing AI World-Leading Researcher Fellowship
  grantid: EP/W002973/
– fundername: National Academic Infrastructure for Supercomputing in Sweden
  grantid: 2022-06725
– fundername: Horizon 2020
  grantid: 956832
GroupedDBID -5F
-5G
-A0
-BR
0R~
29K
2WC
3V.
4.4
40G
53G
5VS
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
D-I
D1I
DIK
E3Z
EBLON
EBS
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KB.
KQ8
LK8
M48
M7P
MK0
M~E
O5R
O5S
OK1
P62
PDBOC
PGMZT
PIMPY
PQQKQ
PROAC
RBZ
RNS
RPM
RSV
RVI
SOJ
SPH
TR2
TUS
U2A
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
2VQ
ABBSD
ADTPV
AHSBF
AOWAS
D8T
EJD
F1S
H13
IPNFZ
RIG
ROL
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c718t-c2b563de9cdd8715beeaf2c51754caebda2ce00267e6fc960e65a742ea7f05583
IEDL.DBID M48
ISSN 1758-2946
IngestDate Tue Oct 14 19:08:07 EDT 2025
Sun Oct 26 03:51:31 EDT 2025
Tue Sep 09 23:30:51 EDT 2025
Tue Sep 30 17:08:17 EDT 2025
Fri Sep 05 10:07:45 EDT 2025
Sat Oct 18 23:51:57 EDT 2025
Mon Oct 20 22:49:31 EDT 2025
Mon Oct 20 16:59:11 EDT 2025
Thu Oct 16 16:21:28 EDT 2025
Wed Feb 19 02:02:34 EST 2025
Wed Oct 01 04:27:26 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Fri Feb 21 02:38:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords De novo drug design
Preference learning
User interface
Machine learning
Human-in-the-loop
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c718t-c2b563de9cdd8715beeaf2c51754caebda2ce00267e6fc960e65a742ea7f05583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13321-024-00892-3
PMID 39143631
PQID 3092968685
PQPubID 54992
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_ad1a3b4ac528469290d1aca82bde37c2
unpaywall_primary_10_1186_s13321_024_00892_3
swepub_primary_oai_research_chalmers_se_18b35f1a_461b_4ee4_874e_427ff0ac3688
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11323385
proquest_miscellaneous_3093172715
proquest_journals_3092968685
gale_infotracmisc_A808250065
gale_infotracacademiconefile_A808250065
gale_incontextgauss_ISR_A808250065
pubmed_primary_39143631
crossref_primary_10_1186_s13321_024_00892_3
crossref_citationtrail_10_1186_s13321_024_00892_3
springer_journals_10_1186_s13321_024_00892_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-14
PublicationDateYYYYMMDD 2024-08-14
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-14
  day: 14
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Journal of cheminformatics
PublicationTitleAbbrev J Cheminform
PublicationTitleAlternate J Cheminform
PublicationYear 2024
Publisher Springer International Publishing
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Choung, Vianello, Segler, Stiefl, Jiménez-Luna (CR17) 2023; 14
Loeffler, He, Tibo, Janet, Voronov, Mervin, Engkvist (CR25) 2024; 16
CR15
Riniker, Landrum (CR22) 2013; 5
CR14
CR13
CR12
Sundin, Voronov, Xiao, Papadopoulos, Bjerrum, Heinonen, Patronov, Kaski, Engkvist (CR18) 2022; 14
Blaschke, Arús-Pous, Chen, Margreitter, Tyrchan, Engkvist, Papadopoulos, Patronov (CR19) 2020; 60
Schneider (CR1) 2018; 17
Meyers, Fabian, De (CR16) 2021; 26
CR4
CR3
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (CR5) 2016; 529
CR7
Mosqueira-Rey, Hernández-Pereira, Alonso-Ríos, Bobes-Bascarán, Fernández-Leal (CR10) 2023; 56
CR9
Vinyals, Babuschkin, Czarnecki, Mathieu, Dudzik, Chung, Choi, Powell, Ewalds, Georgiev (CR6) 2019; 575
CR26
CR24
Hussein, Gaber, Elyan, Jayne (CR11) 2017; 50
CR23
CR21
Pedregosa (CR20) 2011; 12
Korshunova, Huang, Capuzzi, Radchenko, Savych, Moroz, Wells, Willson, Tropsha, Isayev (CR2) 2022; 5
Skalse, Howe, Krasheninnikov, Krueger (CR8) 2022; 35
I Sundin (892_CR18) 2022; 14
A Hussein (892_CR11) 2017; 50
892_CR13
892_CR12
892_CR26
M Korshunova (892_CR2) 2022; 5
E Mosqueira-Rey (892_CR10) 2023; 56
S Riniker (892_CR22) 2013; 5
J Meyers (892_CR16) 2021; 26
J Skalse (892_CR8) 2022; 35
892_CR21
892_CR24
O Vinyals (892_CR6) 2019; 575
892_CR23
892_CR15
O-H Choung (892_CR17) 2023; 14
D Silver (892_CR5) 2016; 529
892_CR9
892_CR14
HH Loeffler (892_CR25) 2024; 16
F Pedregosa (892_CR20) 2011; 12
G Schneider (892_CR1) 2018; 17
892_CR7
T Blaschke (892_CR19) 2020; 60
892_CR4
892_CR3
References_xml – volume: 17
  start-page: 97
  year: 2018
  end-page: 113
  ident: CR1
  article-title: Automating drug discovery
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2017.232
– volume: 5
  start-page: 129
  year: 2022
  ident: CR2
  article-title: Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
  publication-title: Commun Chem
  doi: 10.1038/s42004-022-00733-0
– volume: 35
  start-page: 9460
  year: 2022
  end-page: 9471
  ident: CR8
  article-title: Defining and characterizing reward gaming
  publication-title: Adv Neural Info Process Syst
– ident: CR4
– ident: CR14
– ident: CR12
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: CR5
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 56
  start-page: 3005
  year: 2023
  end-page: 3054
  ident: CR10
  article-title: Human-in-the-loop machine learning: a state of the art
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10246-w
– volume: 26
  start-page: 2707
  year: 2021
  end-page: 2715
  ident: CR16
  article-title: Novo molecular design and generative models
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2021.05.019
– volume: 575
  start-page: 350
  year: 2019
  end-page: 354
  ident: CR6
  article-title: Grandmaster level in starCraft II using multi-agent reinforcement learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1724-z
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR20
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 50
  start-page: 1
  year: 2017
  end-page: 35
  ident: CR11
  article-title: Imitation learning: a survey of learning methods
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3054912
– ident: CR23
– ident: CR21
– volume: 60
  start-page: 5918
  year: 2020
  end-page: 5922
  ident: CR19
  article-title: REINVENT 2.0: an AI tool for de novo drug design
  publication-title: J Chem Info Model
  doi: 10.1021/acs.jcim.0c00915
– ident: CR3
– ident: CR15
– volume: 16
  start-page: 20
  year: 2024
  ident: CR25
  article-title: Reinvent 4: modern AI-driven generative molecule design
  publication-title: J Cheminf
  doi: 10.1186/s13321-024-00812-5
– ident: CR13
– volume: 5
  start-page: 1
  year: 2013
  end-page: 7
  ident: CR22
  article-title: Similarity maps -a visualization strategy for molecular fingerprints and machine-learning methods
  publication-title: J Cheminf
  doi: 10.1186/1758-2946-5-43
– ident: CR9
– volume: 14
  start-page: 6651
  year: 2023
  ident: CR17
  article-title: Extracting medicinal chemistry intuition via preference machine learning
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-42242-1
– volume: 14
  start-page: 86
  year: 2022
  ident: CR18
  article-title: Human-in-the-loop assisted de novo molecular design
  publication-title: J Cheminf
  doi: 10.1186/s13321-022-00667-8
– ident: CR7
– ident: CR26
– ident: CR24
– volume: 17
  start-page: 97
  year: 2018
  ident: 892_CR1
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2017.232
– volume: 14
  start-page: 86
  year: 2022
  ident: 892_CR18
  publication-title: J Cheminf
  doi: 10.1186/s13321-022-00667-8
– volume: 529
  start-page: 484
  year: 2016
  ident: 892_CR5
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 60
  start-page: 5918
  year: 2020
  ident: 892_CR19
  publication-title: J Chem Info Model
  doi: 10.1021/acs.jcim.0c00915
– ident: 892_CR21
– ident: 892_CR24
– ident: 892_CR4
– volume: 50
  start-page: 1
  year: 2017
  ident: 892_CR11
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3054912
– volume: 5
  start-page: 1
  year: 2013
  ident: 892_CR22
  publication-title: J Cheminf
  doi: 10.1186/1758-2946-5-43
– volume: 35
  start-page: 9460
  year: 2022
  ident: 892_CR8
  publication-title: Adv Neural Info Process Syst
– volume: 575
  start-page: 350
  year: 2019
  ident: 892_CR6
  publication-title: Nature
  doi: 10.1038/s41586-019-1724-z
– ident: 892_CR26
  doi: 10.26434/chemrxiv-2023-fzqwd
– ident: 892_CR15
– ident: 892_CR13
  doi: 10.1016/j.artint.2021.103500
– ident: 892_CR12
  doi: 10.24963/ijcai.2018/687
– volume: 26
  start-page: 2707
  year: 2021
  ident: 892_CR16
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2021.05.019
– ident: 892_CR9
– volume: 16
  start-page: 20
  year: 2024
  ident: 892_CR25
  publication-title: J Cheminf
  doi: 10.1186/s13321-024-00812-5
– ident: 892_CR3
– volume: 12
  start-page: 2825
  year: 2011
  ident: 892_CR20
  publication-title: J Mach Learn Res
– ident: 892_CR7
– volume: 14
  start-page: 6651
  year: 2023
  ident: 892_CR17
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-42242-1
– volume: 56
  start-page: 3005
  year: 2023
  ident: 892_CR10
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10246-w
– volume: 5
  start-page: 129
  year: 2022
  ident: 892_CR2
  publication-title: Commun Chem
  doi: 10.1038/s42004-022-00733-0
– ident: 892_CR14
– ident: 892_CR23
  doi: 10.26434/chemrxiv-2024-jfhmw
SSID ssj0065707
Score 2.3475344
Snippet One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical...
One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical...
Abstract One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in...
SourceID doaj
unpaywall
swepub
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100
SubjectTerms Chemistry
Chemistry and Materials Science
Chemists
Closed loops
Computational Biology/Bioinformatics
Computer Applications in Chemistry
De novo drug design
Design
Documentation and Information in Chemistry
Drug development
Feedback
Feedback control
Graphical user interface
Human-in-the-loop
Improving Reproducibility and Reusability in the Journal of Cheminformatics
Learning algorithms
Machine learning
Molecular modelling
Molecular structure
Preference learning
Preferences
Python
Snakes
Software
Theoretical and Computational Chemistry
User interface
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UD4s3SggxC4gBR49hxHG6loiqIcgAq9WbZjt2tusqumqyq_ntmnAcbkAoHrvE4jmcm80jG3xDyuhQ-WGFEYlVRJBD_u6RUwSbWsdwHiCiyeELu-Ks8OhGfT_PTjVZfWBPWwQN3jNszFTMc7uZyMKQSnHkKF5xRma08L1y0vqkqh2Sqs8FYz1EMR2SU3GsgE8sgbc5EAj6vzBI-cUMRrf9Pm7zhlH4vmBz_mo4Io3fI9rpemesrs1hseKjDe-RuH1rS_W5L98ktXz8g2wdDR7eHRB_79rx5Tw1dXSNkQIIurKL4nYIibMRlMM7TdklROcAQ0gj_39IAHs4ad0EhwKVnEacajSR1w61p7KfTPCInhx9_HBwlfYOFxIFLahOX2VzyypeuqiBxyq33JmQuh5BCOONtZTLnMUsrvAwOch0vcwO5tDdFSPNc8cdkq17W_imhaTBWWo_RmcGfpYqrvLQsFMIYAUZsRtjAb-169HFsgrHQMQtRUncy0iAjHWWk-Yy8HeesOuyNG6k_oBhHSsTNjhdAm3SvTfpv2jQjr1AJNCJj1Fh6c2bWTaM_ff-m9xVm06hbM_KmJwpL2IMz_UkG4ASCaU0odyeUIBQ3HR50Tfemo9E8hceSSioYfjkO40wsh6v9ch1pOEaeDGiedKo57puXEAJLzmZETZR2wpjpSH0-j8DijPGMc1z43aDfv57rJs5_6d6ByRI9WNVcu3nsBNToxmumLM8DM1pIZrXwXmhVCK9FVoSQGselUrD6-Cb9g9yf_Q-575DbWbQOKmFil2y1l2v_HKLN1r6IhuUnDvx5Pg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9zB4QHxTGMggJB4gWmM7jouE0DZtGohVaDBpb5bt2O1ElZamFdp_z52bZAtIFa_xJU7u-2L7d4S8GQofrDAisSrPE8j_XTJUwSbWpZkPkFGweELudCRPzsWXi-xii4yaszC4rbLxidFRFzOH_8j3-AACuVRSZZ_mvxLsGoWrq00LDVO3Vig-RoixW2SbITJWj2wfHI2-nTW-Gfd55M3RGSX3KqjQGJTTTCQQC4cs4Z3wFFH8__XVN4LV3xsp29XUFnn0DtlZlXNz9dtMpzci1_E9crdOOen-Wkfuky1fPiA7h02nt4dEn_rlZfWBGjq_QiiBBENbQfH_BUU4iUUwztPljKLSgIOksS3AkgaIfNa4nxQSXzqO-NXoPKlrHk1jn53qETk_PvpxeJLUjRcSB6FqmThmM8kLP3RFAQVVZr03gbkMUg3hjLeFYc5j9ZZ7GRzUQF5mBmpsb_IwyDLFH5NeOSv9U0IHwVhpPWZtBhdRFVfZ0KYhF8YIcG59kjb81q5GJcfmGFMdqxMl9VpGGmSko4w075N37T3zNSbHRuoDFGNLiXja8cJsMda1eWpTpIaDzroMwrUETRvABWcUs4XnuWN98hqVQCNiRolbcsZmVVX68_czva-wykbd6pO3NVGYwTc4U59wAE4gyFaHcrdDCUJx3eFG13TtUip9bQB98qodxjtxm1zpZ6tIwzEjTYHmyVo12-_mQ0iNJU_7RHWUtsOY7kh5OYmA42nKGec48ftGv6_faxPnv65toDNFDWI10W4SOwRVuvI6VZZnITVayNRq4b3QKhdeC5aHMDCOS6Vg9taS_kPuzzYz8Tm5zaLdqyQVu6S3XKz8C8gvl_Zl7TT-AIHqdqk
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHAoHxJuFggxC4gAR60cch1upqAqiHIBKvVm2Y-9WrLKrTVao_54ZbxIaQBVc4_E68Yxnvlnb3xDyopQhOmll5nRRZID_fVbq6DLnWR4iIAqebsgdf1ZHJ_LjaX7aXQpr-tPu_ZZk8tRpWWv1poFsikPqy2UGcavkmbhKrgH-4Fiw4QDvOGz9L57lKPrrMX_tNwpBian_T398ISD9flhy2DEd2EVvkN1NvbLnP-xicSE6Hd4iNztYSfe3dnCbXAn1HbJ70Fdzu0vMcWjPmrfU0tU50gVkGL4qiv9RUKSMWEfrA22XFA0DnCBN1P8tjRDdnPXfKYBbOksc1eggqe9_mqZaOs09cnL4_tvBUdYVV8g8hKM289zlSlSh9FUFSVPuQrCR-xzghPQ2uMpyHzBDK4KKHvKcoHILeXSwRZzmuRb3yU69rMNDQqfROuUCIjOLG6Va6Lx0LBbSWgkObEJYP9_Gd8zjWABjYVIGopXZ6siAjkzSkRET8mros9ryblwq_Q7VOEgiZ3Z6sFzPTLcEja2YFWCXPoeQrAAWTuGBt5q7KojC8wl5jkZgkBWjxmM3M7tpGvPh6xezrzGTRtuakJedUFzCN3jb3WKAmUAirZHk3kgSlOLHzb2tmc5tNEZM4bWUVhqanw3N2BOPwtVhuUkyAlEnA5kHW9McvluUAH-VYBOiR0Y7mphxS302T6TijAkuBA78urfvX-912cx_2q6B0RAdUdXc-HmqAtSYJhimncgjs0Yq5owMQRpdyGAkL2KcWi-U1jD6sJL-Qe-P_u9lH5PrPPkBnTG5R3ba9SY8AUzZuqfJhfwEtF1stA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPRQOvB8LBRmExAHSbuJHvNxKRVUQrRBQqZws27Hb0lV2tckKlV_PjPOgAVSBxDWebOKxZ-abjecbQp5NuA-WG55YlecJ4H-XTFSwiXWp8AEQRRYr5Pb25e4Bf3coDltKoSpy_mKdfBk2zlefT5viBmye4Beb8yI0tq7kZgUpVgb5cMYTCGaTLGGXyaoUAMtXyOrB_oetL7EgUmClAZdd0cwfbxwEpsjf_7uXPhemfj1C2X9H7TlHr5K1ZTk3Z9_MdHouZu1cJ1-72TZHVU43lrXdcN9_IYL8L-q4Qa61yJZuNVvxJrnky1tkbbtrKHeb6D1fn1SvqKHzM2QsSDCCFhT_JqHIWrEIxnlazyjuTfDDNHYfqGmAAGuNO6WAr-lRpMlGH01d99M0tvOp7pCDnTeft3eTtr9D4iAi1onLrJCs8BNXFJC3Ceu9CZkTsF7cGW8LkzmPSWLuZXCwpl4KA6m8N3kYC6HYXbJSzkp_n9BxMFZaj-DQ4LdaxZSY2DTk3BgOPnRE0m5xtWvJz7EHx1THJEhJ3ahOg-p0VJ1mI_Kiv2feUH9cKP0a90wvibTd8cJscaRbL6BNkRoGpuEEoAIJyHQMF5xRmS08y102Ik9xx2kk5ijx5M-RWVaVfvvpo95SmMwjYhyR561QmMEcnGkLKUATyOU1kFwfSMKiuOFwt7F167kqzcbwWlJJBcNP-mG8E0_jlX62jDIMgW8KMvcaO-jnzSaAwCVLR0QNLGSgmOFIeXIcec3TlGWM4YNfdsb0870u0vz7xuAGj2i5so61O46NiCpdeZ0qy0RIjeYytZp7z7XKudc8y0MYG8ekUvD03mz_Yt0f_Jv4Q3Ili-apkpSvk5V6sfSPANbW9nHrsH4ANwaZtQ
  priority: 102
  providerName: Unpaywall
Title Metis: a python-based user interface to collect expert feedback for generative chemistry models
URI https://link.springer.com/article/10.1186/s13321-024-00892-3
https://www.ncbi.nlm.nih.gov/pubmed/39143631
https://www.proquest.com/docview/3092968685
https://www.proquest.com/docview/3093172715
https://pubmed.ncbi.nlm.nih.gov/PMC11323385
https://research.chalmers.se/publication/542473
https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00892-3
https://doaj.org/article/ad1a3b4ac528469290d1aca82bde37c2
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RBZ
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Open Access)
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 7X7
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: M48
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: AAJSJ
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C24
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: C6C
  dateStart: 20090112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: 40G
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1758-2946
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065707
  issn: 1758-2946
  databaseCode: U2A
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28TB4QHxTGJNBSDxAoP6I4yAhtFX7ALFpGlQqT5bt2N1ElY6mFey_5-wmYYFp4sVq7UucnO98d7H9O4Re5Nx5wzVPjMyyBPx_m-TSm8RYkjoPHgWNJ-QOj8TBkH8apaMV1KQ7qhlYXRnahXxSw9nkza8fFx9A4d9HhZfibQVxFoWgmPIELFpOE7aK1sFS5SGVwyFvVxXCLo-YbAV85ITmXDSHaK68R8dQRTz_f2ftS2br7y2V7bpqi0F6E20synN98VNPJpds2N5tdKt2PvH2UlruoBVX3kUbgybn2z2kDt38rHqHNT6_CKACSTByBQ5fMnAAlph5bR2eT3EQH5gqcUwQMMcebKDR9jsGFxiPI5J1mEaxbW6NY8ad6j4a7u1-HRwkdQqGxILRmieWmlSwwuW2KCC0So1z2lObAgu51c4UmloX4rjMCW8hGnIi1RBtO535fppK9gCtldPSPUK477URxgX_TYflVMlkmhviM641h2muh0jDb2VrfPKQJmOiYpwihVqOkYIxUnGMFOuhV-0150t0jmupd8IwtpQBWTtWTGdjVSuq0gXRDKTXpmC4BTiPfaiwWlJTOJZZ2kPPgxCogJ1Rhs05Y72oKvXxy4naliHeDnLWQy9rIj-Fd7C6PusAnAhwWx3KzQ4lDIrtNjeyphrdUKwPjyWkkND8rG0OV4YNc6WbLiINC74pAZqHS9Fs35vl4CQLRnpIdoS2w5huS3l2GqHHCWGUsdDx60a-_zzXdZz_vNSBThc1nNWpsqcxV1ClKqeINCz1RCsuiFHcOa5kxp3iNPO-ry0TUkLvrSb9x7g_vp7HT9ANGvVeJoRvorX5bOGegqc5N1tolff3ocxGGZRyD36v7-weHZ_AvwHloRSDrfgdB8r9EdmKEw6UQwo168Oj4-1vvwEp1X8a
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOiDcLBQwCcYCoG9txvEgIlULV0scBWmlvxnbsbsUquzS7qvqn-I3MeJO0Aani0ms8iRPPOx5_Q8irgfDBCiMSq_I8gfjfJQMVbGJdmvkAEQWLJ-T29uXWofg6zIZL5HdzFgbLKhubGA11MXH4j3yN98GRSyVV9nH6K8GuUbi72rTQWIjFjj87hZSt-rD9Gfj7mrHNLwcbW0ndVSBxYIdniWM2k7zwA1cUkC1k1nsTmMvAjwpnvC0Mcx5Tk9zL4CDA9zIzkEB6k4d-likOz71GrgsONKA_-bBN8LCKJG8O5ii5VkH-xyBZZyIBTztgCe84v9gj4F9PcMEV_l2m2e7VtrimN8nKvJyas1MzHl_wi5u3ya06oKXrCwm8Q5Z8eZesbDR95O4Rvednx9V7auj0DIEKEnScBcW_IxTBKk6CcZ7OJhRFEswvjU0HZjSAX7XG_aQQVtOjiI6Nppm65tE0dvGp7pPDK2HAA7JcTkr_iNB-MFZajzGhwS1axVU2sGnIhTECTGePpM16a1djnmPrjbGOuY-SesEjDTzSkUea98jb9p7pAvHjUupPyMaWEtG644XJyZGulV-bIjUcNMJlEAxIkOM-XHBGMVt4njvWIy9RCDTicZRY8HNk5lWlt79_0-sKc3iUrR55UxOFCXyDM_X5CVgJhPDqUK52KIEprjvcyJquDValz9WrR160w3gnFuGVfjKPNBzj3RRoHi5Es_1uPoDAW_K0R1RHaDsL0x0pj0cRzjxNOeMcJ37XyPf5e1228rsLHehMUUNkjbQbxf5Dla68TpXlWUiNFjK1WngvtMqF14LlIfSN41IpmL3VpP_g--PLF_E5Wdk62NvVu9v7O0_IDRZtgEpSsUqWZydz_xQi2Zl9Fs0HJT-u2l79AT92rqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDI_GkBg8IL45GBAQiAeodk3SNEVCaGxMG_sQAibtLSRpsk1MvWO907R_jb8OO9d2K0gTL3tt3Ka1nZ_txrEJeVkIH6wwIrEqzxPw_11SqGAT69LMB_AoWDwht70j13fF571sb478bs_CYFpli4kRqMuRw3_kS3wIhlwqqbKl0KRFfFld-zD-lWAHKdxpbdtpzFRk05-eQPhWv99YBVm_Ymzt0_eV9aTpMJA4wORJ4pjNJC994coSIofMem8CcxnYVOGMt6VhzmOYknsZHDj7XmYGgklv8jDMMsXhuVfI1ZzzAtMJ870u2MOMkrw9pKPkUg2xIIPAnYkErG7BEt4zhLFfwL9W4ZxZ_Dtls9u37Wqc3iAL02psTk_M0dE5G7l2i9xsnFu6PNPG22TOV3fIwkrbU-4u0dt-cli_o4aOT7FoQYJGtKT4p4Ri4YrjYJynkxFF9QQoprEBwYQGsLHWuJ8UXGy6HytlI0xT1z6axo4-9T2yeykCuE_mq1HlHxI6DMZK69E_NLhdq7jKCpuGXBgjAEYHJG35rV1T_xzbcBzpGAcpqWcy0iAjHWWk-YC86e4Zz6p_XEj9EcXYUWLl7nhhdLyvGyDQpkwNh9XhMnAMJOj0EC44o5gtPc8dG5AXqAQaa3NUqOX7ZlrXeuPbV72sMJ5H3RqQ1w1RGME3ONOcpQBOYDmvHuVijxKE4vrDra7pBrxqfbbUBuR5N4x3YkJe5UfTSMPR902B5sFMNbvv5gU44ZKnA6J6SttjTH-kOjyIpc3TlDPOceK3rX6fvddFnN-arYHeFE25rAPtDmIvolrXXqfK8iykRguZWi28F1rlwmvB8hCGxnGpFMzeraT_kPuji5n4jFwDpNJbGzubj8l1FiFAJalYJPOT46l_Ak7txD6N6EHJj8uGqz_sYbLn
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPRQOvB8LBRmExAHSbuJHvNxKRVUQrRBQqZws27Hb0lV2tckKlV_PjPOgAVSBxDWebOKxZ-abjecbQp5NuA-WG55YlecJ4H-XTFSwiXWp8AEQRRYr5Pb25e4Bf3coDltKoSpy_mKdfBk2zlefT5viBmye4Beb8yI0tq7kZgUpVgb5cMYTCGaTLGGXyaoUAMtXyOrB_oetL7EgUmClAZdd0cwfbxwEpsjf_7uXPhemfj1C2X9H7TlHr5K1ZTk3Z9_MdHouZu1cJ1-72TZHVU43lrXdcN9_IYL8L-q4Qa61yJZuNVvxJrnky1tkbbtrKHeb6D1fn1SvqKHzM2QsSDCCFhT_JqHIWrEIxnlazyjuTfDDNHYfqGmAAGuNO6WAr-lRpMlGH01d99M0tvOp7pCDnTeft3eTtr9D4iAi1onLrJCs8BNXFJC3Ceu9CZkTsF7cGW8LkzmPSWLuZXCwpl4KA6m8N3kYC6HYXbJSzkp_n9BxMFZaj-DQ4LdaxZSY2DTk3BgOPnRE0m5xtWvJz7EHx1THJEhJ3ahOg-p0VJ1mI_Kiv2feUH9cKP0a90wvibTd8cJscaRbL6BNkRoGpuEEoAIJyHQMF5xRmS08y102Ik9xx2kk5ijx5M-RWVaVfvvpo95SmMwjYhyR561QmMEcnGkLKUATyOU1kFwfSMKiuOFwt7F167kqzcbwWlJJBcNP-mG8E0_jlX62jDIMgW8KMvcaO-jnzSaAwCVLR0QNLGSgmOFIeXIcec3TlGWM4YNfdsb0870u0vz7xuAGj2i5so61O46NiCpdeZ0qy0RIjeYytZp7z7XKudc8y0MYG8ekUvD03mz_Yt0f_Jv4Q3Ili-apkpSvk5V6sfSPANbW9nHrsH4ANwaZtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metis%3A+a+python-based+user+interface+to+collect+expert+feedback+for+generative+chemistry+models&rft.jtitle=Journal+of+cheminformatics&rft.au=Menke%2C+Janosch&rft.au=Nahal%2C+Yasmine&rft.au=Bjerrum%2C+Esben+Jannik&rft.au=Kabeshov%2C+Mikhail&rft.date=2024-08-14&rft.pub=BioMed+Central+Ltd&rft.issn=1758-2946&rft.eissn=1758-2946&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs13321-024-00892-3&rft.externalDocID=A808250065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon