Metis: a python-based user interface to collect expert feedback for generative chemistry models
One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle e...
Saved in:
| Published in | Journal of cheminformatics Vol. 16; no. 1; pp. 100 - 9 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
14.08.2024
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1758-2946 1758-2946 |
| DOI | 10.1186/s13321-024-00892-3 |
Cover
| Abstract | One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.
Scientific contribution
We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. |
|---|---|
| AbstractList | One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.Scientific contributionWe introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.Scientific contributionWe introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule.One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models.Scientific contributionWe introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists' implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists' detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist's implicit knowledge and preferences. This knowledge is crucial to align the chemist's idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the "machine" by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist's ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. Keywords: De novo drug design, Preference learning, Human-in-the-loop, Machine learning, User interface Abstract One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical applications. Tailoring models to better align with chemists’ implicit knowledge, expectation and preferences is key to overcoming this obstacle effectively. While interest in preference-based and human-in-the-loop machine learning in chemistry is continuously increasing, no tool currently exists that enables the collection of standardized and chemistry-specific feedback. Metis is a Python-based open-source graphical user interface (GUI), designed to solve this and enable the collection of chemists’ detailed feedback on molecular structures. The GUI enables chemists to explore and evaluate molecules, offering a user-friendly interface for annotating preferences and specifying desired or undesired structural features. By providing chemists the opportunity to give detailed feedback, allows researchers to capture more efficiently the chemist’s implicit knowledge and preferences. This knowledge is crucial to align the chemist’s idea with the de novo design agents. The GUI aims to enhance this collaboration between the human and the “machine” by providing an intuitive platform where chemists can interactively provide feedback on molecular structures, aiding in preference learning and refining de novo design strategies. Metis integrates with the existing de novo framework REINVENT, creating a closed-loop system where human expertise can continuously inform and refine the generative models. Scientific contribution We introduce a novel Graphical User Interface, that allows chemists/researchers to give detailed feedback on substructures and properties of small molecules. This tool can be used to learn the preferences of chemists in order to align de novo drug design models with the chemist’s ideas. The GUI can be customized to fit different needs and projects and enables direct integration into de novo REINVENT runs. We believe that Metis can facilitate the discussion and development of novel ways to integrate human feedback that goes beyond binary decisions of liking or disliking a molecule. |
| ArticleNumber | 100 |
| Audience | Academic |
| Author | Nahal, Yasmine Engkvist, Ola Bjerrum, Esben Jannik Menke, Janosch Kaski, Samuel Kabeshov, Mikhail |
| Author_xml | – sequence: 1 givenname: Janosch surname: Menke fullname: Menke, Janosch email: janosch.menke.research@proton.me organization: Department of Computer Science and Engineering, Chalmers University of Technology – sequence: 2 givenname: Yasmine surname: Nahal fullname: Nahal, Yasmine organization: Department of Computer Science, Aalto University – sequence: 3 givenname: Esben Jannik surname: Bjerrum fullname: Bjerrum, Esben Jannik organization: Cheminformania Consulting – sequence: 4 givenname: Mikhail surname: Kabeshov fullname: Kabeshov, Mikhail organization: Molecular AI, Discovery Sciences AstraZeneca R &D – sequence: 5 givenname: Samuel surname: Kaski fullname: Kaski, Samuel organization: Department of Computer Science, Aalto University, Department of Computer Science, University of Manchester – sequence: 6 givenname: Ola surname: Engkvist fullname: Engkvist, Ola organization: Department of Computer Science and Engineering, Chalmers University of Technology, Molecular AI, Discovery Sciences AstraZeneca R &D |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39143631$$D View this record in MEDLINE/PubMed https://research.chalmers.se/publication/542473$$DView record from Swedish Publication Index |
| BookMark | eNqNkktv1DAUhSNURB_wB1igSGxgkeJH4jhsUFXxqFSERGFt3dxcz6Rk4qnttJ1_j6dTSqdCFcoi0c05x_bns5_tjG6kLHvJ2SHnWr0LXErBCybKgjHdiEI-yfZ4XelCNKXaufe9m-2HcM6YqmpWP8t2ZcNLqSTfy8xXin14n0O-XMW5G4sWAnX5FMjn_RjJW0DKo8vRDQNhzOl6ST7mlqhrAX_l1vl8RiN5iP0l5TinRR-iX-UL19EQnmdPLQyBXty-D7Kfnz7-OP5SnH77fHJ8dFpgzXUsULSVkh012HW65lVLBFZglU5QIlDbgUBiTKialMVGMVIV1KUgqC2rKi0PspNNbufg3Cx9vwC_Mg56czNwfmbAxx4HMtBxkG0JWAldqkY0LA0QtGg7kjWKlCU3WdO4hNUVDMNdIGdmjd5s0JuE3tygNzK5zjaucEXLqd3ag6dA4HFucA7DgnwwgQzXrawsB1Mq3pqSqDS6LsmUoraWAUql1-f6sElNkQvqkMboYdgK3_4z9nMzc5dpm1JIqauU8OY2wbuLiUI06YKQhgFGclMwkjWS1yJBT9LXD6TnbvJjure1SjRKK31PNYNEsx-tSwvjOtQcaaZFte5ZUh3-Q5WeLhUEU5Ftn-ZbhrdbhqSJdB1nMIVgTs6-b2tf3adyh-NPr5NAbAToXQie7P_doH5gwj6mWrs12X543HpbmZDWGWfk_5J7xPUb_4gqzw |
| CitedBy_id | crossref_primary_10_1021_acs_jmedchem_4c03066 crossref_primary_10_1186_s13321_024_00924_y |
| Cites_doi | 10.1038/nrd.2017.232 10.1038/s42004-022-00733-0 10.1038/nature16961 10.1007/s10462-022-10246-w 10.1016/j.drudis.2021.05.019 10.1038/s41586-019-1724-z 10.1145/3054912 10.1021/acs.jcim.0c00915 10.1186/s13321-024-00812-5 10.1186/1758-2946-5-43 10.1038/s41467-023-42242-1 10.1186/s13321-022-00667-8 10.26434/chemrxiv-2023-fzqwd 10.1016/j.artint.2021.103500 10.24963/ijcai.2018/687 10.26434/chemrxiv-2024-jfhmw |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). COPYRIGHT 2024 BioMed Central Ltd. The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: COPYRIGHT 2024 BioMed Central Ltd. – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM ISR 3V. 7QO 7X7 7XB 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P P5Z P62 P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM ABBSD ADTPV AOWAS D8T F1S ZZAVC ADTOC UNPAY DOA |
| DOI | 10.1186/s13321-024-00892-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1758-2946 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_ad1a3b4ac528469290d1aca82bde37c2 10.1186/s13321-024-00892-3 oai_research_chalmers_se_18b35f1a_461b_4ee4_874e_427ff0ac3688 PMC11323385 A808250065 39143631 10_1186_s13321_024_00892_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 956832 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: Chalmers University of Technology – fundername: Finnish Center for Artificial Intelligence funderid: http://dx.doi.org/10.13039/501100023293 – fundername: Wallenberg AI, Autonomous Systems and Software Program – fundername: UKRI Turing AI World-Leading Researcher Fellowship grantid: EP/W002973/ – fundername: National Academic Infrastructure for Supercomputing in Sweden grantid: 2022-06725 – fundername: Horizon 2020 grantid: 956832 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 29K 2WC 3V. 4.4 40G 53G 5VS 7X7 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABJCF ABUWG ACACY ACGFS ACIHN ACIWK ACPRK ACUHS ACULB ADBBV ADINQ ADRAZ ADUKV AEAQA AENEX AEUYN AFGXO AFKRA AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU D-I D1I DIK E3Z EBLON EBS ESX F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IGS IHR ISR ITC KB. KQ8 LK8 M48 M7P MK0 M~E O5R O5S OK1 P62 PDBOC PGMZT PIMPY PQQKQ PROAC RBZ RNS RPM RSV RVI SOJ SPH TR2 TUS U2A UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PQGLB PUEGO NPM 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM 2VQ ABBSD ADTPV AHSBF AOWAS D8T EJD F1S H13 IPNFZ RIG ROL ZZAVC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c718t-c2b563de9cdd8715beeaf2c51754caebda2ce00267e6fc960e65a742ea7f05583 |
| IEDL.DBID | M48 |
| ISSN | 1758-2946 |
| IngestDate | Tue Oct 14 19:08:07 EDT 2025 Sun Oct 26 03:51:31 EDT 2025 Tue Sep 09 23:30:51 EDT 2025 Tue Sep 30 17:08:17 EDT 2025 Fri Sep 05 10:07:45 EDT 2025 Sat Oct 18 23:51:57 EDT 2025 Mon Oct 20 22:49:31 EDT 2025 Mon Oct 20 16:59:11 EDT 2025 Thu Oct 16 16:21:28 EDT 2025 Wed Feb 19 02:02:34 EST 2025 Wed Oct 01 04:27:26 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Fri Feb 21 02:38:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | De novo drug design Preference learning User interface Machine learning Human-in-the-loop |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c718t-c2b563de9cdd8715beeaf2c51754caebda2ce00267e6fc960e65a742ea7f05583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13321-024-00892-3 |
| PMID | 39143631 |
| PQID | 3092968685 |
| PQPubID | 54992 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ad1a3b4ac528469290d1aca82bde37c2 unpaywall_primary_10_1186_s13321_024_00892_3 swepub_primary_oai_research_chalmers_se_18b35f1a_461b_4ee4_874e_427ff0ac3688 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11323385 proquest_miscellaneous_3093172715 proquest_journals_3092968685 gale_infotracmisc_A808250065 gale_infotracacademiconefile_A808250065 gale_incontextgauss_ISR_A808250065 pubmed_primary_39143631 crossref_primary_10_1186_s13321_024_00892_3 crossref_citationtrail_10_1186_s13321_024_00892_3 springer_journals_10_1186_s13321_024_00892_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-14 |
| PublicationDateYYYYMMDD | 2024-08-14 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: England – name: London |
| PublicationTitle | Journal of cheminformatics |
| PublicationTitleAbbrev | J Cheminform |
| PublicationTitleAlternate | J Cheminform |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: Springer International Publishing – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | Choung, Vianello, Segler, Stiefl, Jiménez-Luna (CR17) 2023; 14 Loeffler, He, Tibo, Janet, Voronov, Mervin, Engkvist (CR25) 2024; 16 CR15 Riniker, Landrum (CR22) 2013; 5 CR14 CR13 CR12 Sundin, Voronov, Xiao, Papadopoulos, Bjerrum, Heinonen, Patronov, Kaski, Engkvist (CR18) 2022; 14 Blaschke, Arús-Pous, Chen, Margreitter, Tyrchan, Engkvist, Papadopoulos, Patronov (CR19) 2020; 60 Schneider (CR1) 2018; 17 Meyers, Fabian, De (CR16) 2021; 26 CR4 CR3 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (CR5) 2016; 529 CR7 Mosqueira-Rey, Hernández-Pereira, Alonso-Ríos, Bobes-Bascarán, Fernández-Leal (CR10) 2023; 56 CR9 Vinyals, Babuschkin, Czarnecki, Mathieu, Dudzik, Chung, Choi, Powell, Ewalds, Georgiev (CR6) 2019; 575 CR26 CR24 Hussein, Gaber, Elyan, Jayne (CR11) 2017; 50 CR23 CR21 Pedregosa (CR20) 2011; 12 Korshunova, Huang, Capuzzi, Radchenko, Savych, Moroz, Wells, Willson, Tropsha, Isayev (CR2) 2022; 5 Skalse, Howe, Krasheninnikov, Krueger (CR8) 2022; 35 I Sundin (892_CR18) 2022; 14 A Hussein (892_CR11) 2017; 50 892_CR13 892_CR12 892_CR26 M Korshunova (892_CR2) 2022; 5 E Mosqueira-Rey (892_CR10) 2023; 56 S Riniker (892_CR22) 2013; 5 J Meyers (892_CR16) 2021; 26 J Skalse (892_CR8) 2022; 35 892_CR21 892_CR24 O Vinyals (892_CR6) 2019; 575 892_CR23 892_CR15 O-H Choung (892_CR17) 2023; 14 D Silver (892_CR5) 2016; 529 892_CR9 892_CR14 HH Loeffler (892_CR25) 2024; 16 F Pedregosa (892_CR20) 2011; 12 G Schneider (892_CR1) 2018; 17 892_CR7 T Blaschke (892_CR19) 2020; 60 892_CR4 892_CR3 |
| References_xml | – volume: 17 start-page: 97 year: 2018 end-page: 113 ident: CR1 article-title: Automating drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.232 – volume: 5 start-page: 129 year: 2022 ident: CR2 article-title: Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds publication-title: Commun Chem doi: 10.1038/s42004-022-00733-0 – volume: 35 start-page: 9460 year: 2022 end-page: 9471 ident: CR8 article-title: Defining and characterizing reward gaming publication-title: Adv Neural Info Process Syst – ident: CR4 – ident: CR14 – ident: CR12 – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: CR5 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 56 start-page: 3005 year: 2023 end-page: 3054 ident: CR10 article-title: Human-in-the-loop machine learning: a state of the art publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10246-w – volume: 26 start-page: 2707 year: 2021 end-page: 2715 ident: CR16 article-title: Novo molecular design and generative models publication-title: Drug Discov Today doi: 10.1016/j.drudis.2021.05.019 – volume: 575 start-page: 350 year: 2019 end-page: 354 ident: CR6 article-title: Grandmaster level in starCraft II using multi-agent reinforcement learning publication-title: Nature doi: 10.1038/s41586-019-1724-z – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR20 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 50 start-page: 1 year: 2017 end-page: 35 ident: CR11 article-title: Imitation learning: a survey of learning methods publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3054912 – ident: CR23 – ident: CR21 – volume: 60 start-page: 5918 year: 2020 end-page: 5922 ident: CR19 article-title: REINVENT 2.0: an AI tool for de novo drug design publication-title: J Chem Info Model doi: 10.1021/acs.jcim.0c00915 – ident: CR3 – ident: CR15 – volume: 16 start-page: 20 year: 2024 ident: CR25 article-title: Reinvent 4: modern AI-driven generative molecule design publication-title: J Cheminf doi: 10.1186/s13321-024-00812-5 – ident: CR13 – volume: 5 start-page: 1 year: 2013 end-page: 7 ident: CR22 article-title: Similarity maps -a visualization strategy for molecular fingerprints and machine-learning methods publication-title: J Cheminf doi: 10.1186/1758-2946-5-43 – ident: CR9 – volume: 14 start-page: 6651 year: 2023 ident: CR17 article-title: Extracting medicinal chemistry intuition via preference machine learning publication-title: Nat Commun doi: 10.1038/s41467-023-42242-1 – volume: 14 start-page: 86 year: 2022 ident: CR18 article-title: Human-in-the-loop assisted de novo molecular design publication-title: J Cheminf doi: 10.1186/s13321-022-00667-8 – ident: CR7 – ident: CR26 – ident: CR24 – volume: 17 start-page: 97 year: 2018 ident: 892_CR1 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.232 – volume: 14 start-page: 86 year: 2022 ident: 892_CR18 publication-title: J Cheminf doi: 10.1186/s13321-022-00667-8 – volume: 529 start-page: 484 year: 2016 ident: 892_CR5 publication-title: Nature doi: 10.1038/nature16961 – volume: 60 start-page: 5918 year: 2020 ident: 892_CR19 publication-title: J Chem Info Model doi: 10.1021/acs.jcim.0c00915 – ident: 892_CR21 – ident: 892_CR24 – ident: 892_CR4 – volume: 50 start-page: 1 year: 2017 ident: 892_CR11 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3054912 – volume: 5 start-page: 1 year: 2013 ident: 892_CR22 publication-title: J Cheminf doi: 10.1186/1758-2946-5-43 – volume: 35 start-page: 9460 year: 2022 ident: 892_CR8 publication-title: Adv Neural Info Process Syst – volume: 575 start-page: 350 year: 2019 ident: 892_CR6 publication-title: Nature doi: 10.1038/s41586-019-1724-z – ident: 892_CR26 doi: 10.26434/chemrxiv-2023-fzqwd – ident: 892_CR15 – ident: 892_CR13 doi: 10.1016/j.artint.2021.103500 – ident: 892_CR12 doi: 10.24963/ijcai.2018/687 – volume: 26 start-page: 2707 year: 2021 ident: 892_CR16 publication-title: Drug Discov Today doi: 10.1016/j.drudis.2021.05.019 – ident: 892_CR9 – volume: 16 start-page: 20 year: 2024 ident: 892_CR25 publication-title: J Cheminf doi: 10.1186/s13321-024-00812-5 – ident: 892_CR3 – volume: 12 start-page: 2825 year: 2011 ident: 892_CR20 publication-title: J Mach Learn Res – ident: 892_CR7 – volume: 14 start-page: 6651 year: 2023 ident: 892_CR17 publication-title: Nat Commun doi: 10.1038/s41467-023-42242-1 – volume: 56 start-page: 3005 year: 2023 ident: 892_CR10 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10246-w – volume: 5 start-page: 129 year: 2022 ident: 892_CR2 publication-title: Commun Chem doi: 10.1038/s42004-022-00733-0 – ident: 892_CR14 – ident: 892_CR23 doi: 10.26434/chemrxiv-2024-jfhmw |
| SSID | ssj0065707 |
| Score | 2.3475344 |
| Snippet | One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in practical... One challenge that current de novo drug design models face is a disparity between the user's expectations and the actual output of the model in practical... Abstract One challenge that current de novo drug design models face is a disparity between the user’s expectations and the actual output of the model in... |
| SourceID | doaj unpaywall swepub pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 100 |
| SubjectTerms | Chemistry Chemistry and Materials Science Chemists Closed loops Computational Biology/Bioinformatics Computer Applications in Chemistry De novo drug design Design Documentation and Information in Chemistry Drug development Feedback Feedback control Graphical user interface Human-in-the-loop Improving Reproducibility and Reusability in the Journal of Cheminformatics Learning algorithms Machine learning Molecular modelling Molecular structure Preference learning Preferences Python Snakes Software Theoretical and Computational Chemistry User interface |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL4UD4s3SggxC4gBR49hxHG6loiqIcgAq9WbZjt2tusqumqyq_ntmnAcbkAoHrvE4jmcm80jG3xDyuhQ-WGFEYlVRJBD_u6RUwSbWsdwHiCiyeELu-Ks8OhGfT_PTjVZfWBPWwQN3jNszFTMc7uZyMKQSnHkKF5xRma08L1y0vqkqh2Sqs8FYz1EMR2SU3GsgE8sgbc5EAj6vzBI-cUMRrf9Pm7zhlH4vmBz_mo4Io3fI9rpemesrs1hseKjDe-RuH1rS_W5L98ktXz8g2wdDR7eHRB_79rx5Tw1dXSNkQIIurKL4nYIibMRlMM7TdklROcAQ0gj_39IAHs4ad0EhwKVnEacajSR1w61p7KfTPCInhx9_HBwlfYOFxIFLahOX2VzyypeuqiBxyq33JmQuh5BCOONtZTLnMUsrvAwOch0vcwO5tDdFSPNc8cdkq17W_imhaTBWWo_RmcGfpYqrvLQsFMIYAUZsRtjAb-169HFsgrHQMQtRUncy0iAjHWWk-Yy8HeesOuyNG6k_oBhHSsTNjhdAm3SvTfpv2jQjr1AJNCJj1Fh6c2bWTaM_ff-m9xVm06hbM_KmJwpL2IMz_UkG4ASCaU0odyeUIBQ3HR50Tfemo9E8hceSSioYfjkO40wsh6v9ch1pOEaeDGiedKo57puXEAJLzmZETZR2wpjpSH0-j8DijPGMc1z43aDfv57rJs5_6d6ByRI9WNVcu3nsBNToxmumLM8DM1pIZrXwXmhVCK9FVoSQGselUrD6-Cb9g9yf_Q-575DbWbQOKmFil2y1l2v_HKLN1r6IhuUnDvx5Pg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG9zB4QHxTGMggJB4gWmM7jouE0DZtGohVaDBpb5bt2O1ElZamFdp_z52bZAtIFa_xJU7u-2L7d4S8GQofrDAisSrPE8j_XTJUwSbWpZkPkFGweELudCRPzsWXi-xii4yaszC4rbLxidFRFzOH_8j3-AACuVRSZZ_mvxLsGoWrq00LDVO3Vig-RoixW2SbITJWj2wfHI2-nTW-Gfd55M3RGSX3KqjQGJTTTCQQC4cs4Z3wFFH8__XVN4LV3xsp29XUFnn0DtlZlXNz9dtMpzci1_E9crdOOen-Wkfuky1fPiA7h02nt4dEn_rlZfWBGjq_QiiBBENbQfH_BUU4iUUwztPljKLSgIOksS3AkgaIfNa4nxQSXzqO-NXoPKlrHk1jn53qETk_PvpxeJLUjRcSB6FqmThmM8kLP3RFAQVVZr03gbkMUg3hjLeFYc5j9ZZ7GRzUQF5mBmpsb_IwyDLFH5NeOSv9U0IHwVhpPWZtBhdRFVfZ0KYhF8YIcG59kjb81q5GJcfmGFMdqxMl9VpGGmSko4w075N37T3zNSbHRuoDFGNLiXja8cJsMda1eWpTpIaDzroMwrUETRvABWcUs4XnuWN98hqVQCNiRolbcsZmVVX68_czva-wykbd6pO3NVGYwTc4U59wAE4gyFaHcrdDCUJx3eFG13TtUip9bQB98qodxjtxm1zpZ6tIwzEjTYHmyVo12-_mQ0iNJU_7RHWUtsOY7kh5OYmA42nKGec48ftGv6_faxPnv65toDNFDWI10W4SOwRVuvI6VZZnITVayNRq4b3QKhdeC5aHMDCOS6Vg9taS_kPuzzYz8Tm5zaLdqyQVu6S3XKz8C8gvl_Zl7TT-AIHqdqk priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHAoHxJuFggxC4gAR60cch1upqAqiHIBKvVm2Y-9WrLKrTVao_54ZbxIaQBVc4_E68Yxnvlnb3xDyopQhOmll5nRRZID_fVbq6DLnWR4iIAqebsgdf1ZHJ_LjaX7aXQpr-tPu_ZZk8tRpWWv1poFsikPqy2UGcavkmbhKrgH-4Fiw4QDvOGz9L57lKPrrMX_tNwpBian_T398ISD9flhy2DEd2EVvkN1NvbLnP-xicSE6Hd4iNztYSfe3dnCbXAn1HbJ70Fdzu0vMcWjPmrfU0tU50gVkGL4qiv9RUKSMWEfrA22XFA0DnCBN1P8tjRDdnPXfKYBbOksc1eggqe9_mqZaOs09cnL4_tvBUdYVV8g8hKM289zlSlSh9FUFSVPuQrCR-xzghPQ2uMpyHzBDK4KKHvKcoHILeXSwRZzmuRb3yU69rMNDQqfROuUCIjOLG6Va6Lx0LBbSWgkObEJYP9_Gd8zjWABjYVIGopXZ6siAjkzSkRET8mros9ryblwq_Q7VOEgiZ3Z6sFzPTLcEja2YFWCXPoeQrAAWTuGBt5q7KojC8wl5jkZgkBWjxmM3M7tpGvPh6xezrzGTRtuakJedUFzCN3jb3WKAmUAirZHk3kgSlOLHzb2tmc5tNEZM4bWUVhqanw3N2BOPwtVhuUkyAlEnA5kHW9McvluUAH-VYBOiR0Y7mphxS302T6TijAkuBA78urfvX-912cx_2q6B0RAdUdXc-HmqAtSYJhimncgjs0Yq5owMQRpdyGAkL2KcWi-U1jD6sJL-Qe-P_u9lH5PrPPkBnTG5R3ba9SY8AUzZuqfJhfwEtF1stA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPRQOvB8LBRmExAHSbuJHvNxKRVUQrRBQqZws27Hb0lV2tckKlV_PjPOgAVSBxDWebOKxZ-abjecbQp5NuA-WG55YlecJ4H-XTFSwiXWp8AEQRRYr5Pb25e4Bf3coDltKoSpy_mKdfBk2zlefT5viBmye4Beb8yI0tq7kZgUpVgb5cMYTCGaTLGGXyaoUAMtXyOrB_oetL7EgUmClAZdd0cwfbxwEpsjf_7uXPhemfj1C2X9H7TlHr5K1ZTk3Z9_MdHouZu1cJ1-72TZHVU43lrXdcN9_IYL8L-q4Qa61yJZuNVvxJrnky1tkbbtrKHeb6D1fn1SvqKHzM2QsSDCCFhT_JqHIWrEIxnlazyjuTfDDNHYfqGmAAGuNO6WAr-lRpMlGH01d99M0tvOp7pCDnTeft3eTtr9D4iAi1onLrJCs8BNXFJC3Ceu9CZkTsF7cGW8LkzmPSWLuZXCwpl4KA6m8N3kYC6HYXbJSzkp_n9BxMFZaj-DQ4LdaxZSY2DTk3BgOPnRE0m5xtWvJz7EHx1THJEhJ3ahOg-p0VJ1mI_Kiv2feUH9cKP0a90wvibTd8cJscaRbL6BNkRoGpuEEoAIJyHQMF5xRmS08y102Ik9xx2kk5ijx5M-RWVaVfvvpo95SmMwjYhyR561QmMEcnGkLKUATyOU1kFwfSMKiuOFwt7F167kqzcbwWlJJBcNP-mG8E0_jlX62jDIMgW8KMvcaO-jnzSaAwCVLR0QNLGSgmOFIeXIcec3TlGWM4YNfdsb0870u0vz7xuAGj2i5so61O46NiCpdeZ0qy0RIjeYytZp7z7XKudc8y0MYG8ekUvD03mz_Yt0f_Jv4Q3Ili-apkpSvk5V6sfSPANbW9nHrsH4ANwaZtQ priority: 102 providerName: Unpaywall |
| Title | Metis: a python-based user interface to collect expert feedback for generative chemistry models |
| URI | https://link.springer.com/article/10.1186/s13321-024-00892-3 https://www.ncbi.nlm.nih.gov/pubmed/39143631 https://www.proquest.com/docview/3092968685 https://www.proquest.com/docview/3093172715 https://pubmed.ncbi.nlm.nih.gov/PMC11323385 https://research.chalmers.se/publication/542473 https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00892-3 https://doaj.org/article/ad1a3b4ac528469290d1aca82bde37c2 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: HH5 dateStart: 20090101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: RBZ dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: ABDBF dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Open Access) customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: 7X7 dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1758-2946 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: M48 dateStart: 20090701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: AAJSJ dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: C24 dateStart: 20090112 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: C6C dateStart: 20090112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: 40G dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1758-2946 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065707 issn: 1758-2946 databaseCode: U2A dateStart: 20091201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf28TB4QHxTGJNBSDxAoP6I4yAhtFX7ALFpGlQqT5bt2N1ElY6mFey_5-wmYYFp4sVq7UucnO98d7H9O4Re5Nx5wzVPjMyyBPx_m-TSm8RYkjoPHgWNJ-QOj8TBkH8apaMV1KQ7qhlYXRnahXxSw9nkza8fFx9A4d9HhZfibQVxFoWgmPIELFpOE7aK1sFS5SGVwyFvVxXCLo-YbAV85ITmXDSHaK68R8dQRTz_f2ftS2br7y2V7bpqi0F6E20synN98VNPJpds2N5tdKt2PvH2UlruoBVX3kUbgybn2z2kDt38rHqHNT6_CKACSTByBQ5fMnAAlph5bR2eT3EQH5gqcUwQMMcebKDR9jsGFxiPI5J1mEaxbW6NY8ad6j4a7u1-HRwkdQqGxILRmieWmlSwwuW2KCC0So1z2lObAgu51c4UmloX4rjMCW8hGnIi1RBtO535fppK9gCtldPSPUK477URxgX_TYflVMlkmhviM641h2muh0jDb2VrfPKQJmOiYpwihVqOkYIxUnGMFOuhV-0150t0jmupd8IwtpQBWTtWTGdjVSuq0gXRDKTXpmC4BTiPfaiwWlJTOJZZ2kPPgxCogJ1Rhs05Y72oKvXxy4naliHeDnLWQy9rIj-Fd7C6PusAnAhwWx3KzQ4lDIrtNjeyphrdUKwPjyWkkND8rG0OV4YNc6WbLiINC74pAZqHS9Fs35vl4CQLRnpIdoS2w5huS3l2GqHHCWGUsdDx60a-_zzXdZz_vNSBThc1nNWpsqcxV1ClKqeINCz1RCsuiFHcOa5kxp3iNPO-ry0TUkLvrSb9x7g_vp7HT9ANGvVeJoRvorX5bOGegqc5N1tolff3ocxGGZRyD36v7-weHZ_AvwHloRSDrfgdB8r9EdmKEw6UQwo168Oj4-1vvwEp1X8a |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORQOiDcLBQwCcYCoG9txvEgIlULV0scBWmlvxnbsbsUquzS7qvqn-I3MeJO0Aani0ms8iRPPOx5_Q8irgfDBCiMSq_I8gfjfJQMVbGJdmvkAEQWLJ-T29uXWofg6zIZL5HdzFgbLKhubGA11MXH4j3yN98GRSyVV9nH6K8GuUbi72rTQWIjFjj87hZSt-rD9Gfj7mrHNLwcbW0ndVSBxYIdniWM2k7zwA1cUkC1k1nsTmMvAjwpnvC0Mcx5Tk9zL4CDA9zIzkEB6k4d-likOz71GrgsONKA_-bBN8LCKJG8O5ii5VkH-xyBZZyIBTztgCe84v9gj4F9PcMEV_l2m2e7VtrimN8nKvJyas1MzHl_wi5u3ya06oKXrCwm8Q5Z8eZesbDR95O4Rvednx9V7auj0DIEKEnScBcW_IxTBKk6CcZ7OJhRFEswvjU0HZjSAX7XG_aQQVtOjiI6Nppm65tE0dvGp7pPDK2HAA7JcTkr_iNB-MFZajzGhwS1axVU2sGnIhTECTGePpM16a1djnmPrjbGOuY-SesEjDTzSkUea98jb9p7pAvHjUupPyMaWEtG644XJyZGulV-bIjUcNMJlEAxIkOM-XHBGMVt4njvWIy9RCDTicZRY8HNk5lWlt79_0-sKc3iUrR55UxOFCXyDM_X5CVgJhPDqUK52KIEprjvcyJquDValz9WrR160w3gnFuGVfjKPNBzj3RRoHi5Es_1uPoDAW_K0R1RHaDsL0x0pj0cRzjxNOeMcJ37XyPf5e1228rsLHehMUUNkjbQbxf5Dla68TpXlWUiNFjK1WngvtMqF14LlIfSN41IpmL3VpP_g--PLF_E5Wdk62NvVu9v7O0_IDRZtgEpSsUqWZydz_xQi2Zl9Fs0HJT-u2l79AT92rqQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDI_GkBg8IL45GBAQiAeodk3SNEVCaGxMG_sQAibtLSRpsk1MvWO907R_jb8OO9d2K0gTL3tt3Ka1nZ_txrEJeVkIH6wwIrEqzxPw_11SqGAT69LMB_AoWDwht70j13fF571sb478bs_CYFpli4kRqMuRw3_kS3wIhlwqqbKl0KRFfFld-zD-lWAHKdxpbdtpzFRk05-eQPhWv99YBVm_Ymzt0_eV9aTpMJA4wORJ4pjNJC994coSIofMem8CcxnYVOGMt6VhzmOYknsZHDj7XmYGgklv8jDMMsXhuVfI1ZzzAtMJ870u2MOMkrw9pKPkUg2xIIPAnYkErG7BEt4zhLFfwL9W4ZxZ_Dtls9u37Wqc3iAL02psTk_M0dE5G7l2i9xsnFu6PNPG22TOV3fIwkrbU-4u0dt-cli_o4aOT7FoQYJGtKT4p4Ri4YrjYJynkxFF9QQoprEBwYQGsLHWuJ8UXGy6HytlI0xT1z6axo4-9T2yeykCuE_mq1HlHxI6DMZK69E_NLhdq7jKCpuGXBgjAEYHJG35rV1T_xzbcBzpGAcpqWcy0iAjHWWk-YC86e4Zz6p_XEj9EcXYUWLl7nhhdLyvGyDQpkwNh9XhMnAMJOj0EC44o5gtPc8dG5AXqAQaa3NUqOX7ZlrXeuPbV72sMJ5H3RqQ1w1RGME3ONOcpQBOYDmvHuVijxKE4vrDra7pBrxqfbbUBuR5N4x3YkJe5UfTSMPR902B5sFMNbvv5gU44ZKnA6J6SttjTH-kOjyIpc3TlDPOceK3rX6fvddFnN-arYHeFE25rAPtDmIvolrXXqfK8iykRguZWi28F1rlwmvB8hCGxnGpFMzeraT_kPuji5n4jFwDpNJbGzubj8l1FiFAJalYJPOT46l_Ak7txD6N6EHJj8uGqz_sYbLn |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPRQOvB8LBRmExAHSbuJHvNxKRVUQrRBQqZws27Hb0lV2tckKlV_PjPOgAVSBxDWebOKxZ-abjecbQp5NuA-WG55YlecJ4H-XTFSwiXWp8AEQRRYr5Pb25e4Bf3coDltKoSpy_mKdfBk2zlefT5viBmye4Beb8yI0tq7kZgUpVgb5cMYTCGaTLGGXyaoUAMtXyOrB_oetL7EgUmClAZdd0cwfbxwEpsjf_7uXPhemfj1C2X9H7TlHr5K1ZTk3Z9_MdHouZu1cJ1-72TZHVU43lrXdcN9_IYL8L-q4Qa61yJZuNVvxJrnky1tkbbtrKHeb6D1fn1SvqKHzM2QsSDCCFhT_JqHIWrEIxnlazyjuTfDDNHYfqGmAAGuNO6WAr-lRpMlGH01d99M0tvOp7pCDnTeft3eTtr9D4iAi1onLrJCs8BNXFJC3Ceu9CZkTsF7cGW8LkzmPSWLuZXCwpl4KA6m8N3kYC6HYXbJSzkp_n9BxMFZaj-DQ4LdaxZSY2DTk3BgOPnRE0m5xtWvJz7EHx1THJEhJ3ahOg-p0VJ1mI_Kiv2feUH9cKP0a90wvibTd8cJscaRbL6BNkRoGpuEEoAIJyHQMF5xRmS08y102Ik9xx2kk5ijx5M-RWVaVfvvpo95SmMwjYhyR561QmMEcnGkLKUATyOU1kFwfSMKiuOFwt7F167kqzcbwWlJJBcNP-mG8E0_jlX62jDIMgW8KMvcaO-jnzSaAwCVLR0QNLGSgmOFIeXIcec3TlGWM4YNfdsb0870u0vz7xuAGj2i5so61O46NiCpdeZ0qy0RIjeYytZp7z7XKudc8y0MYG8ekUvD03mz_Yt0f_Jv4Q3Ili-apkpSvk5V6sfSPANbW9nHrsH4ANwaZtQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metis%3A+a+python-based+user+interface+to+collect+expert+feedback+for+generative+chemistry+models&rft.jtitle=Journal+of+cheminformatics&rft.au=Menke%2C+Janosch&rft.au=Nahal%2C+Yasmine&rft.au=Bjerrum%2C+Esben+Jannik&rft.au=Kabeshov%2C+Mikhail&rft.date=2024-08-14&rft.pub=BioMed+Central+Ltd&rft.issn=1758-2946&rft.eissn=1758-2946&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs13321-024-00892-3&rft.externalDocID=A808250065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2946&client=summon |