SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance o...
Saved in:
| Published in | BMC bioinformatics Vol. 19; no. 1; pp. 432 - 18 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
19.11.2018
BioMed Central Ltd BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-018-2451-4 |
Cover
| Abstract | Background
Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis.
Results
The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios.
Conclusions
The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. |
|---|---|
| AbstractList | Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis.
The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios.
The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis. Results The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios. Conclusions The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis.BACKGROUNDSupport vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis.The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios.RESULTSThe proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios.The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data.CONCLUSIONSThe proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis. The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios. The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis. Results The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios. Conclusions The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. Keywords: Support vector machines, Relevant variables, Recursive feature elimination, Kernel methods Abstract Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis. Results The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios. Conclusions The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations. However, originally, application of SVM to analyze biomedical data was limited because SVM was not designed to evaluate importance of predictor variables. Creating predictor models based on only the most relevant variables is essential in biomedical research. Currently, substantial work has been done to allow assessment of variable importance in SVM models but this work has focused on SVM implemented with linear kernels. The power of SVM as a prediction model is associated with the flexibility generated by use of non-linear kernels. Moreover, SVM has been extended to model survival outcomes. This paper extends the Recursive Feature Elimination (RFE) algorithm by proposing three approaches to rank variables based on non-linear SVM and SVM for survival analysis. Results The proposed algorithms allows visualization of each one the RFE iterations, and hence, identification of the most relevant predictors of the response variable. Using simulation studies based on time-to-event outcomes and three real datasets, we evaluate the three methods, based on pseudo-samples and kernel principal component analysis, and compare them with the original SVM-RFE algorithm for non-linear kernels. The three algorithms we proposed performed generally better than the gold standard RFE for non-linear kernels, when comparing the truly most relevant variables with the variable ranks produced by each algorithm in simulation studies. Generally, the RFE-pseudo-samples outperformed the other three methods, even when variables were assumed to be correlated in all tested scenarios. Conclusions The proposed approaches can be implemented with accuracy to select variables and assess direction and strength of associations in analysis of biomedical data using SVM for categorical or time-to-event responses. Conducting variable selection and interpreting direction and strength of associations between predictors and outcomes with the proposed approaches, particularly with the RFE-pseudo-samples approach can be implemented with accuracy when analyzing biomedical data. These approaches, perform better than the classical RFE of Guyon for realistic scenarios about the structure of biomedical data. |
| ArticleNumber | 432 |
| Audience | Academic |
| Author | Reverter, Ferran Vegas, Esteban Oller, Josep M. Valim, Clarissa Sanz, Hector |
| Author_xml | – sequence: 1 givenname: Hector orcidid: 0000-0001-6540-8427 surname: Sanz fullname: Sanz, Hector email: hsrodenas@gmail.com organization: Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona – sequence: 2 givenname: Clarissa surname: Valim fullname: Valim, Clarissa organization: Department of Osteopathic Medical Specialties, Michigan State University, Department of Immunology and Infectious Diseases, Harvard T.H. Chen School of Public Health – sequence: 3 givenname: Esteban surname: Vegas fullname: Vegas, Esteban organization: Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona – sequence: 4 givenname: Josep M. surname: Oller fullname: Oller, Josep M. organization: Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona – sequence: 5 givenname: Ferran surname: Reverter fullname: Reverter, Ferran organization: Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30453885$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl1v0zAUjdAQ-4AfwAuKxAs8ZNjOhxMekKZpg0pDSNvEG7JunOvWJbU72ymMX4_TjqpFaEKRleT6nHOPj-9xcmCswSR5SckppXX1zlNWl01GaJ2xoqRZ8SQ5ogWnGaOkPNj5PkyOvZ8TQnlNymfJYU6KMq_r8ij5dvP1c3Z9efE-9dijDNqaFEyXrrQfoNe_YF2xKg0zTBfWh9RF3ApMSBVCGBz6uOXsMJ2l0V3Wa4Pg0u_oDPb-efJUQe_xxcP7JLm9vLg9_5Rdffk4OT-7yiSnPGRQ8Q7iKZSCpiI1SlIAQgs5Y0XFFVSMdihZThvGQBW0UI1UwCDviGwU5CfJZCPbWZiLpdMLcPfCghbrgnVTAS5o2aNoSdvWVUFRlrygtGjbllVVxfIOeWxTRC220RrMEu5_QN9vBSkRY-xiE7uIhsUYuxhJHzak5dAusJNogoN-z8n-jtEzMbUrUUWBhpEoQDcC0g9SOJToJIQ1cfszLkY4E3nJWc0j581DU2fvBvRBLLSX2Pdg0A5eMJpXpOQ5HaGvN9ApxAy0UTa6kCNcnJUVq1kTDxNRp_9AxafDhZZx9JSO9T3C2z1CxAT8GaYweC8mN9f72Fe7EW2z-TOKOxE4671D9V-58784Uof1yEbnun-U-XDNPnYxU3Ribgdn4pA-QvoNHQsQPg |
| CitedBy_id | crossref_primary_10_3389_fgene_2023_1154839 crossref_primary_10_1016_j_intimp_2024_112766 crossref_primary_10_2147_PRBM_S460283 crossref_primary_10_1007_s42979_022_01500_7 crossref_primary_10_3389_fnagi_2023_1169620 crossref_primary_10_3390_diagnostics11030574 crossref_primary_10_1097_MD_0000000000038917 crossref_primary_10_3390_diagnostics12071771 crossref_primary_10_3724_abbs_2024014 crossref_primary_10_1109_TCBB_2024_3421228 crossref_primary_10_1038_s41598_020_76334_5 crossref_primary_10_1017_dce_2024_60 crossref_primary_10_3389_fimmu_2023_1158379 crossref_primary_10_1155_2022_3439010 crossref_primary_10_1007_s00432_023_04903_y crossref_primary_10_1007_s10142_023_01270_2 crossref_primary_10_1016_j_waojou_2024_100964 crossref_primary_10_3389_fonc_2023_1179897 crossref_primary_10_3389_fmicb_2023_1191004 crossref_primary_10_1016_j_diii_2020_10_004 crossref_primary_10_1016_j_eswa_2025_126612 crossref_primary_10_1109_ACCESS_2020_3043715 crossref_primary_10_1109_JSTARS_2024_3357520 crossref_primary_10_3389_fimmu_2022_974935 crossref_primary_10_1177_03000605231213781 crossref_primary_10_3389_fgene_2021_622683 crossref_primary_10_3389_fimmu_2025_1486961 crossref_primary_10_1016_j_agrformet_2021_108698 crossref_primary_10_1016_j_foodchem_2023_137940 crossref_primary_10_1007_s12035_024_04461_5 crossref_primary_10_1186_s12967_024_05934_w crossref_primary_10_4103_1673_5374_391306 crossref_primary_10_1016_j_cor_2023_106485 crossref_primary_10_3390_jimaging11030086 crossref_primary_10_1038_s41598_024_72979_8 crossref_primary_10_1186_s12891_021_04109_8 crossref_primary_10_1016_j_heliyon_2025_e41831 crossref_primary_10_3389_fendo_2022_957010 crossref_primary_10_1080_07391102_2021_1970628 crossref_primary_10_3389_fmed_2024_1309510 crossref_primary_10_3390_biom13010039 crossref_primary_10_1007_s11165_019_9835_y crossref_primary_10_3389_fendo_2022_955630 crossref_primary_10_3389_fmicb_2024_1349374 crossref_primary_10_1155_2022_5475313 crossref_primary_10_1016_j_acra_2024_12_041 crossref_primary_10_1080_07391102_2024_2440651 crossref_primary_10_3389_fonc_2022_1030335 crossref_primary_10_1016_j_bbrc_2023_149180 crossref_primary_10_1109_TLT_2023_3281056 crossref_primary_10_1109_ACCESS_2022_3232307 crossref_primary_10_3390_math10091480 crossref_primary_10_3389_fmicb_2025_1528865 crossref_primary_10_1007_s10753_023_01851_0 crossref_primary_10_1007_s12672_025_01869_w crossref_primary_10_1155_2022_2373694 crossref_primary_10_1155_2022_6732780 crossref_primary_10_1007_s11064_025_04352_8 crossref_primary_10_1093_bioinformatics_btab074 crossref_primary_10_3389_fmed_2023_1158166 crossref_primary_10_1016_j_heliyon_2024_e35511 crossref_primary_10_3389_fendo_2024_1372221 crossref_primary_10_47992_IJMTS_2581_6012_0206 crossref_primary_10_3389_fneur_2024_1354062 crossref_primary_10_1080_21655979_2021_1933743 crossref_primary_10_1038_s41598_024_81844_7 crossref_primary_10_3390_biom14010013 crossref_primary_10_1186_s13018_024_04590_6 crossref_primary_10_1016_j_jmoldx_2024_03_003 crossref_primary_10_1038_s41598_024_74409_1 crossref_primary_10_1016_j_eswa_2024_125126 crossref_primary_10_1016_j_cellsig_2025_111705 crossref_primary_10_3389_fmed_2024_1382004 crossref_primary_10_3389_fgene_2022_1078790 crossref_primary_10_3389_fimmu_2022_906889 crossref_primary_10_3389_fimmu_2024_1388690 crossref_primary_10_1093_bfgp_elac025 crossref_primary_10_3389_fimmu_2024_1424259 crossref_primary_10_3390_rs14133153 crossref_primary_10_3389_fimmu_2024_1374465 crossref_primary_10_1016_j_heliyon_2024_e35408 crossref_primary_10_1016_j_comptc_2024_114551 crossref_primary_10_1016_j_heliyon_2023_e21071 crossref_primary_10_3389_fonc_2024_1411214 crossref_primary_10_3389_fphar_2022_865624 crossref_primary_10_1016_j_atmosenv_2020_117971 crossref_primary_10_1109_ACCESS_2024_3412655 crossref_primary_10_3389_fimmu_2024_1429817 crossref_primary_10_1007_s00262_022_03343_w crossref_primary_10_17537_2020_15_4 crossref_primary_10_1186_s40001_024_01988_0 crossref_primary_10_3389_fendo_2023_1203120 crossref_primary_10_3389_fmicb_2023_1261889 crossref_primary_10_1038_s41598_025_90578_z crossref_primary_10_1016_j_intimp_2025_114220 crossref_primary_10_1007_s00262_022_03221_5 crossref_primary_10_1080_10255842_2023_2236744 crossref_primary_10_3389_fimmu_2024_1329009 crossref_primary_10_3389_fmed_2023_1132676 crossref_primary_10_1016_j_bbrc_2024_150674 crossref_primary_10_1097_CIN_0000000000000765 crossref_primary_10_1186_s13019_024_03199_4 crossref_primary_10_18632_aging_203962 crossref_primary_10_3892_etm_2024_12695 crossref_primary_10_1111_cns_13196 crossref_primary_10_1016_j_heliyon_2024_e30209 crossref_primary_10_1016_j_acra_2024_08_038 crossref_primary_10_3892_etm_2022_11500 crossref_primary_10_1155_2023_5199810 crossref_primary_10_1007_s10278_024_01231_6 crossref_primary_10_1155_2022_4407541 crossref_primary_10_1002_hbm_26395 crossref_primary_10_1007_s11042_023_17825_1 crossref_primary_10_3389_fgene_2021_758103 crossref_primary_10_1007_s00432_023_05287_9 crossref_primary_10_1007_s10115_023_01915_5 crossref_primary_10_1007_s00430_023_00767_8 crossref_primary_10_2174_18741207_v16_e2208300 crossref_primary_10_3389_fcvm_2023_1268675 crossref_primary_10_32604_biocell_2023_043864 crossref_primary_10_1007_s10462_021_10088_y crossref_primary_10_3389_fimmu_2023_1305025 crossref_primary_10_1111_andr_13238 crossref_primary_10_2147_JIR_S452608 crossref_primary_10_1080_0886022X_2022_2081579 crossref_primary_10_1186_s41065_024_00354_8 crossref_primary_10_1016_j_molimm_2024_07_015 crossref_primary_10_1038_s41598_022_26345_1 crossref_primary_10_2147_IJGM_S351168 crossref_primary_10_3390_ph17040429 crossref_primary_10_1007_s12672_025_01955_z crossref_primary_10_1016_j_heliyon_2024_e38022 crossref_primary_10_1007_s00382_022_06646_x crossref_primary_10_1016_j_heliyon_2024_e28935 crossref_primary_10_1016_j_imbio_2024_152841 crossref_primary_10_3389_fimmu_2023_1142215 crossref_primary_10_1002_hbm_25095 crossref_primary_10_1016_j_heliyon_2025_e41872 crossref_primary_10_4037_ajcc2025349 crossref_primary_10_3389_fmolb_2024_1425143 crossref_primary_10_3390_jcm11092310 crossref_primary_10_1007_s00170_020_06129_5 crossref_primary_10_3389_fcvm_2022_848840 crossref_primary_10_1038_s41598_025_91376_3 crossref_primary_10_1111_jog_15720 crossref_primary_10_3390_su12187365 crossref_primary_10_1016_j_heliyon_2024_e37612 crossref_primary_10_1186_s12891_025_08528_9 crossref_primary_10_1016_j_heliyon_2025_e42956 crossref_primary_10_1007_s00011_023_01849_2 crossref_primary_10_3389_fcell_2024_1486170 crossref_primary_10_3389_fendo_2022_1056310 crossref_primary_10_3389_fimmu_2022_952708 crossref_primary_10_3389_fimmu_2023_1286203 crossref_primary_10_3389_fimmu_2024_1416297 crossref_primary_10_1080_21691401_2025_2471762 crossref_primary_10_1016_j_ajpath_2024_03_013 crossref_primary_10_1038_s41598_024_74862_y crossref_primary_10_3389_fimmu_2023_1304165 crossref_primary_10_3233_IDT_210227 crossref_primary_10_2147_IJGM_S478146 crossref_primary_10_3389_fendo_2023_1134325 crossref_primary_10_3389_fimmu_2022_1007326 crossref_primary_10_1007_s12033_023_01026_0 crossref_primary_10_1016_j_euf_2021_05_005 crossref_primary_10_1016_j_intimp_2023_110968 crossref_primary_10_1186_s12931_024_02845_8 crossref_primary_10_1002_jsp2_70050 crossref_primary_10_1186_s12887_024_04555_y crossref_primary_10_1016_j_energy_2021_121543 crossref_primary_10_1186_s12891_023_06303_2 crossref_primary_10_1186_s13048_024_01375_7 crossref_primary_10_1186_s12865_023_00581_0 crossref_primary_10_18632_aging_202713 crossref_primary_10_2147_VHRM_S429535 crossref_primary_10_3389_fimmu_2023_1251750 crossref_primary_10_2174_0115672050339307241108101528 crossref_primary_10_7717_peerj_17011 crossref_primary_10_1038_s41598_023_48990_w crossref_primary_10_1016_j_arabjc_2023_105485 crossref_primary_10_1016_j_jocn_2021_05_015 crossref_primary_10_1515_jib_2019_0110 crossref_primary_10_1016_j_procs_2024_10_127 crossref_primary_10_1080_15412555_2024_2379811 crossref_primary_10_1155_2022_2069756 crossref_primary_10_3389_fonc_2023_1047377 crossref_primary_10_2147_JIR_S493889 crossref_primary_10_3389_fmed_2024_1322102 crossref_primary_10_1109_TAFFC_2019_2943551 crossref_primary_10_1109_ACCESS_2023_3275967 crossref_primary_10_1016_j_humgen_2024_201258 crossref_primary_10_1016_j_ygeno_2020_06_014 crossref_primary_10_3389_fendo_2024_1440436 crossref_primary_10_3233_IDT_220077 crossref_primary_10_3390_genes13101916 crossref_primary_10_1016_j_bspc_2024_106503 crossref_primary_10_1089_omi_2023_0015 crossref_primary_10_18632_aging_203378 crossref_primary_10_1038_s41598_024_68890_x crossref_primary_10_1016_j_ijbiomac_2025_140793 crossref_primary_10_1186_s41065_025_00390_y crossref_primary_10_2147_IJGM_S352330 crossref_primary_10_1007_s11042_024_18793_w crossref_primary_10_1080_21655979_2021_1950258 crossref_primary_10_1093_sexmed_qfae090 crossref_primary_10_1093_rheumatology_keaf134 crossref_primary_10_1109_JBHI_2022_3221639 crossref_primary_10_1016_j_geoderma_2024_117026 crossref_primary_10_2147_JIR_S489847 crossref_primary_10_3390_diagnostics13061203 crossref_primary_10_1186_s40001_025_02454_1 crossref_primary_10_3389_fdmed_2024_1480346 crossref_primary_10_1111_iwj_14815 crossref_primary_10_3390_app13148289 crossref_primary_10_31083_j_fbl2812343 crossref_primary_10_1002_jcb_29376 crossref_primary_10_1016_j_compbiomed_2022_106413 crossref_primary_10_3389_fimmu_2024_1396221 crossref_primary_10_3390_app131810076 crossref_primary_10_1155_2021_6633563 crossref_primary_10_3389_fimmu_2024_1460431 crossref_primary_10_4018_IJSI_303582 crossref_primary_10_1007_s10528_023_10449_y crossref_primary_10_1186_s40164_022_00335_5 crossref_primary_10_1016_j_patrec_2022_11_013 crossref_primary_10_3389_fonc_2021_757111 crossref_primary_10_1155_2022_3140370 crossref_primary_10_1186_s12885_022_09540_1 crossref_primary_10_3389_fimmu_2022_1015436 crossref_primary_10_1016_j_asoc_2019_105538 crossref_primary_10_1016_j_compbiomed_2023_107220 crossref_primary_10_3389_fcvm_2024_1478827 crossref_primary_10_1016_j_intimp_2024_111809 crossref_primary_10_12998_wjcc_v12_i20_4091 crossref_primary_10_1038_s41598_024_73441_5 crossref_primary_10_3389_fgene_2022_814264 crossref_primary_10_3389_fonc_2022_889833 crossref_primary_10_3389_fimmu_2023_1177968 crossref_primary_10_1007_s12035_024_04647_x crossref_primary_10_1115_1_4066923 crossref_primary_10_1016_j_heliyon_2024_e40151 crossref_primary_10_1038_s41598_024_77409_3 crossref_primary_10_7717_peerj_18310 crossref_primary_10_1109_ACCESS_2025_3547813 crossref_primary_10_1002_iid3_70137 crossref_primary_10_3389_fgene_2022_1037520 crossref_primary_10_1186_s12859_023_05404_y crossref_primary_10_3389_fimmu_2023_1164667 crossref_primary_10_1186_s41065_024_00350_y crossref_primary_10_3389_fsurg_2022_891984 crossref_primary_10_3390_antiox12010186 crossref_primary_10_2147_JIR_S459819 crossref_primary_10_3390_mi14112047 crossref_primary_10_1155_2022_9043300 crossref_primary_10_1186_s40659_021_00334_6 crossref_primary_10_1016_j_lfs_2020_118248 crossref_primary_10_1186_s41065_024_00335_x crossref_primary_10_1186_s13287_025_04247_z crossref_primary_10_3389_fgene_2021_762136 crossref_primary_10_1016_j_ijbiomac_2025_142277 crossref_primary_10_3389_fpls_2021_777028 crossref_primary_10_3934_mbe_2022402 crossref_primary_10_1016_j_burns_2025_107413 crossref_primary_10_1186_s13048_023_01338_4 crossref_primary_10_1109_ACCESS_2025_3538278 crossref_primary_10_3389_fimmu_2022_1042484 crossref_primary_10_3389_fimmu_2022_1053819 crossref_primary_10_3390_buildings14051471 crossref_primary_10_15212_CVIA_2024_0011 crossref_primary_10_1016_j_intimp_2024_113256 crossref_primary_10_1097_MD_0000000000034918 crossref_primary_10_3389_fneur_2024_1387477 crossref_primary_10_2174_1874120702115010001 crossref_primary_10_1016_j_heliyon_2024_e28997 crossref_primary_10_3389_fimmu_2024_1456083 crossref_primary_10_3390_brainsci12101349 crossref_primary_10_1007_s10142_024_01415_x crossref_primary_10_1038_s41598_022_19027_5 crossref_primary_10_3389_fimmu_2023_1114870 crossref_primary_10_1097_MD_0000000000038721 crossref_primary_10_1155_2021_5582920 crossref_primary_10_3389_fgene_2021_720888 crossref_primary_10_1186_s12859_024_05899_z crossref_primary_10_1109_ACCESS_2019_2926377 crossref_primary_10_1002_cam4_70016 crossref_primary_10_1016_j_ygyno_2021_07_015 crossref_primary_10_1038_s41598_023_31797_0 crossref_primary_10_3389_fgene_2022_1010361 crossref_primary_10_3389_fendo_2022_957742 crossref_primary_10_1186_s41065_023_00295_8 crossref_primary_10_12677_acm_2024_1472093 crossref_primary_10_1155_2022_1425032 crossref_primary_10_1186_s12958_019_0556_x crossref_primary_10_1016_j_compbiomed_2023_107818 crossref_primary_10_1111_exsy_70002 crossref_primary_10_2147_DMSO_S445341 crossref_primary_10_3389_fimmu_2024_1370647 crossref_primary_10_1016_j_ijbiomac_2025_139775 crossref_primary_10_1111_jcmm_70323 crossref_primary_10_1038_s41598_024_77033_1 crossref_primary_10_1002_jmv_28706 crossref_primary_10_3389_fgene_2022_1032010 crossref_primary_10_1080_07391102_2023_2233021 crossref_primary_10_3233_JAD_201254 crossref_primary_10_1016_j_jad_2025_03_057 crossref_primary_10_3389_fendo_2025_1512503 crossref_primary_10_1016_j_chbr_2022_100267 crossref_primary_10_18632_aging_205875 crossref_primary_10_3389_fmolb_2025_1506961 crossref_primary_10_3390_cimb46090619 crossref_primary_10_3390_ijms21197271 crossref_primary_10_1155_2022_6934744 crossref_primary_10_1038_s41598_024_81681_8 crossref_primary_10_1016_j_csbj_2024_04_024 crossref_primary_10_1371_journal_pone_0259475 crossref_primary_10_1016_j_heliyon_2024_e36158 crossref_primary_10_1007_s10044_025_01411_2 crossref_primary_10_1186_s13062_024_00461_6 crossref_primary_10_1007_s00477_022_02330_y crossref_primary_10_18632_aging_205199 crossref_primary_10_1186_s13020_024_01018_5 crossref_primary_10_2174_1386207323666200428120310 crossref_primary_10_1016_j_aca_2021_339352 crossref_primary_10_1097_MD_0000000000034371 crossref_primary_10_1007_s00261_024_04641_w crossref_primary_10_1038_s41598_024_77642_w crossref_primary_10_1038_s41598_024_59907_6 crossref_primary_10_3390_genes15060676 crossref_primary_10_3389_fimmu_2023_1147501 crossref_primary_10_1016_j_eti_2024_103998 crossref_primary_10_1186_s13062_024_00529_3 crossref_primary_10_3389_fimmu_2022_905921 crossref_primary_10_1080_07853890_2024_2397572 crossref_primary_10_1186_s12888_025_06542_8 crossref_primary_10_1093_gigascience_giad083 crossref_primary_10_1111_jcmm_70107 crossref_primary_10_1016_j_heliyon_2024_e30269 crossref_primary_10_1186_s12883_024_03533_2 crossref_primary_10_18632_aging_205961 crossref_primary_10_1016_j_heliyon_2024_e29860 crossref_primary_10_1186_s40001_023_01622_5 crossref_primary_10_2147_NDT_S511671 crossref_primary_10_1002_iid3_1058 crossref_primary_10_1186_s13036_024_00466_9 crossref_primary_10_1186_s12859_019_2754_0 crossref_primary_10_3390_diagnostics11020347 crossref_primary_10_1007_s12665_022_10578_4 crossref_primary_10_3389_fcvm_2022_1053697 crossref_primary_10_3389_fgene_2022_1065297 crossref_primary_10_1038_s41598_024_52094_4 crossref_primary_10_1186_s40360_025_00844_z crossref_primary_10_3390_metabo12111058 crossref_primary_10_1016_j_heliyon_2023_e17454 crossref_primary_10_1007_s12035_025_04819_3 crossref_primary_10_1016_j_jocs_2020_101238 crossref_primary_10_3389_fgene_2023_1136783 crossref_primary_10_1002_iid3_70059 crossref_primary_10_1007_s00330_022_08830_3 crossref_primary_10_3389_fgene_2023_1264873 crossref_primary_10_1016_j_ejphar_2023_175568 crossref_primary_10_3389_fcell_2022_901207 crossref_primary_10_3389_fimmu_2022_1001070 crossref_primary_10_1016_j_ejro_2024_100615 crossref_primary_10_1097_MD_0000000000037862 crossref_primary_10_3389_fcvm_2023_1058834 crossref_primary_10_7717_peerj_18591 crossref_primary_10_1002_iid3_70170 crossref_primary_10_1038_s41598_025_89252_1 crossref_primary_10_1016_j_heliyon_2024_e28085 crossref_primary_10_1038_s41598_024_81129_z |
| Cites_doi | 10.1007/978-3-540-35488-8_13 10.1016/j.eswa.2011.08.051 10.1016/j.ins.2009.02.014 10.1007/978-1-4419-7787-8 10.7551/mitpress/4175.001.0001 10.1186/1471-2105-12-138 10.1093/bioinformatics/btp286 10.1002/sim.2059 10.1023/A:1012487302797 10.1007/BF01386316 10.1109/72.788641 10.1007/s10462-011-9205-2 10.1016/j.jesp.2013.03.013 10.1093/bioinformatics/btm344 10.1021/ac101338y 10.1186/1752-0509-8-S2-S6 10.1016/j.ejor.2015.01.006 10.1016/j.aca.2011.04.025 |
| ContentType | Journal Article |
| Contributor | Universitat de Barcelona |
| Contributor_xml | – sequence: 1 fullname: Universitat de Barcelona |
| Copyright | The Author(s). 2018 COPYRIGHT 2018 BioMed Central Ltd. cc-by (c) Sanz, Hector et al., 2018 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/es |
| Copyright_xml | – notice: The Author(s). 2018 – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: cc-by (c) Sanz, Hector et al., 2018 info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by/3.0/es">http://creativecommons.org/licenses/by/3.0/es</a> |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 XX2 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-018-2451-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Recercat PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_b0bb8641ec574114bbb266623de76214 10.1186/s12859-018-2451-4 PMC6245920 oai_recercat_cat_2072_357287 A562829018 30453885 10_1186_s12859_018_2451_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: MINECO/FEDER grantid: MTM2015-64465-C2-1-R; MTM2015-64465-C2-1-R – fundername: MINECO/FEDER grantid: MTM2015-64465-C2-1-R – fundername: ; grantid: MTM2015-64465-C2-1-R; MTM2015-64465-C2-1-R |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF M0N NPM 7X8 XX2 5PM 123 2VQ 4.4 ADTOC AFFHD AHSBF C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c717t-a67da018ffa9608ec04aeaba322467fa621dec231922af414f9cfa2a3d0c9fa3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:33:43 EDT 2025 Wed Oct 29 12:03:38 EDT 2025 Tue Sep 30 16:41:21 EDT 2025 Sat Oct 18 15:20:05 EDT 2025 Thu Sep 04 20:31:19 EDT 2025 Mon Oct 20 21:58:02 EDT 2025 Mon Oct 20 16:29:40 EDT 2025 Thu Oct 16 14:21:26 EDT 2025 Wed Feb 19 02:36:33 EST 2025 Wed Oct 01 04:15:31 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Sat Sep 06 07:27:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Support vector machines Kernel methods Recursive feature elimination Relevant variables |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c717t-a67da018ffa9608ec04aeaba322467fa621dec231922af414f9cfa2a3d0c9fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6540-8427 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2451-4 |
| PMID | 30453885 |
| PQID | 2136057317 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b0bb8641ec574114bbb266623de76214 unpaywall_primary_10_1186_s12859_018_2451_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6245920 csuc_recercat_oai_recercat_cat_2072_357287 proquest_miscellaneous_2136057317 gale_infotracmisc_A562829018 gale_infotracacademiconefile_A562829018 gale_incontextgauss_ISR_A562829018 pubmed_primary_30453885 crossref_primary_10_1186_s12859_018_2451_4 crossref_citationtrail_10_1186_s12859_018_2451_4 springer_journals_10_1186_s12859_018_2451_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-19 |
| PublicationDateYYYYMMDD | 2018-11-19 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-19 day: 19 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2018 |
| Publisher | BioMed Central BioMed Central Ltd BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
| References | N Becker (2451_CR8) 2011; 12 JF Benders (2451_CR6) 1962; 4 F Reverter (2451_CR16) 2014; 8 H-T Shiao (2451_CR20) 2013 PWT Krooshof (2451_CR12) 2010; 82 2451_CR17 S Maldonado (2451_CR3) 2009; 179 2451_CR5 2451_CR2 I Guyon (2451_CR1) 2002; 46 H Aytug (2451_CR4) 2015; 244 Q Liu (2451_CR10) 2011; 36 E Niaf (2451_CR21) 2011 GJ Postma (2451_CR13) 2011; 705 Y Saeys (2451_CR9) 2007; 23 B Scholkopf (2451_CR18) 1999; 10 F Alonso-Atienza (2451_CR11) 2012; 39 N Becker (2451_CR7) 2009; 25 C Leys (2451_CR15) 2013; 49 R Bender (2451_CR19) 2005; 24 David Ruppert (2451_CR14) 2011 |
| References_xml | – ident: 2451_CR2 doi: 10.1007/978-3-540-35488-8_13 – volume: 39 start-page: 1956 year: 2012 ident: 2451_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.051 – volume: 179 start-page: 2208 year: 2009 ident: 2451_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2009.02.014 – volume-title: Statistics and Data Analysis for Financial Engineering year: 2011 ident: 2451_CR14 doi: 10.1007/978-1-4419-7787-8 – ident: 2451_CR17 doi: 10.7551/mitpress/4175.001.0001 – volume: 12 start-page: 138 issue: 1 year: 2011 ident: 2451_CR8 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-138 – volume: 25 start-page: 1711 year: 2009 ident: 2451_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp286 – volume: 24 start-page: 1713 year: 2005 ident: 2451_CR19 publication-title: Stat Med doi: 10.1002/sim.2059 – start-page: 1 volume-title: In Proceedings of the International Conference on Data Mining (DMIN) year: 2013 ident: 2451_CR20 – ident: 2451_CR5 – volume: 46 start-page: 389 year: 2002 ident: 2451_CR1 publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 4 start-page: 238 year: 1962 ident: 2451_CR6 publication-title: Numer Math doi: 10.1007/BF01386316 – volume: 10 start-page: 1000 year: 1999 ident: 2451_CR18 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.788641 – volume: 36 start-page: 99 year: 2011 ident: 2451_CR10 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9205-2 – volume: 49 start-page: 764 year: 2013 ident: 2451_CR15 publication-title: J Exp Soc Psychol doi: 10.1016/j.jesp.2013.03.013 – volume: 23 start-page: 2507 year: 2007 ident: 2451_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 82 start-page: 7000 year: 2010 ident: 2451_CR12 publication-title: Anal Chem doi: 10.1021/ac101338y – volume: 8 start-page: S6 issue: 2 year: 2014 ident: 2451_CR16 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-8-S2-S6 – start-page: 757 volume-title: Statistical Signal Processing Workshop (SSP) year: 2011 ident: 2451_CR21 – volume: 244 start-page: 210 year: 2015 ident: 2451_CR4 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2015.01.006 – volume: 705 start-page: 123 year: 2011 ident: 2451_CR13 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2011.04.025 |
| SSID | ssj0017805 |
| Score | 2.6891632 |
| Snippet | Background
Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of... Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of observations.... Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number of... Abstract Background Support vector machines (SVM) are a powerful tool to analyze data with a number of predictors approximately equal or larger than the number... |
| SourceID | doaj unpaywall pubmedcentral csuc proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 432 |
| SubjectTerms | Algorismes Algorithms Analysis Anàlisi vectorial Bioinformatics Biomarkers, Tumor - genetics Biomedical and Life Sciences Biometria Biometry Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Graphics Humans Imports Kernel methods Knowledge-based analysis Laws, regulations, etc Life Sciences Liver Cirrhosis, Biliary - genetics Liver Cirrhosis, Biliary - mortality Lung Neoplasms - genetics Lung Neoplasms - mortality Lymphoma, Large B-Cell, Diffuse - genetics Lymphoma, Large B-Cell, Diffuse - mortality Methodology Methodology Article Methods Microarrays Recursive feature elimination Recursive functions Relevant variables Support Vector Machine Support vector machines Survival Rate Vector analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF_kQNSH4rfRKqsIgiU0m2ySjW9VelShPrRV-iLLfmrxmpRLTul_70yyFy4K7YsP93C3e5fbmdmd3zA7vyHkNQMQaoUrYl8xG3POK2zzwmINUKLIUm9tjsXJh5-Lgy_802l-utHqC--EDfTAg-B2daK1KDhzJgfnx7jWGnwKOG3rYB_3LazTRFTrYCrkD5CpP-QwmSh2W4Y8bRA2g1XwHIKmiReamXZlAmf_vyfzhmv6-9rkmDu9Q26t6gt1-VstFhvuaX6XbAVcSfeG9dwjN1x9n9wcOk1ePiDfjr8exkfz_Xe07RvfgDaoqi39ddZiVeVQi0kbTwEP0vOm7Sg2UwGU3VHveu7PloaWPrRu6hjBqVrSn25Zg3N9SE7m-ycfDuLQWSE2EL51sSpKq0Aa3iuIYIQzCVdOaZUhvVzpFQjWOgPQr0pT5TnjvjJepSqziam8yh6RGTzLPSEUfT4zxnBTWA5QUwMgcBrLTlQudJlFJFkLWprAOo7NLxayjz5EIQfdSPg3EnUjeUTejl-5GCg3rp4M2pPgHtzSqE4iXfb4Bl9pUqYyy0sIDSPyHnU8_irO7T8Ag5PB4OR1BheRV2ghEskzaryd812t2lZ-PD6SewAm-8S0iMibMMk3sFyjQrEDCA35tiYztyczYXebyfDLtSFKHMIrcbVrVq1MWVYgmyWDZT0eDHNcGKa_MyHyiJQTk52sfDpSn_3oycULkGuVJhHZWRu3DKdae5UWdkb7v15nT_-HGp6R2ynuZ7yRWW2TWbdcueeADzv9oj8K_gCRlFzE priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagCAEPiN8EBjIICYkpIk4cJ-FtTKsG0njYBtoLsmzHhomSTHUK2n_PXeJGDaAhHvrQ-pLUvnPuO53vO0JeMAChdWlF7CpWx5zzCtu8sFgDlBBZ6uo6x-Lkgw9i_yN_f5KfBLJorIXZzN-zUrz2DBnWIOAFffIcwp3L5Ar4KNHnZcXumDBAav6QtPzrZRO3MzN-ZQJJ_5-v4g1f9Ps5yTFZeoNcWzVn6vynWiw2_NH8FrkZgCTdGTR_m1yyzR1ydWgteX6XfD76dBAfzvfeUN93uoHlp6qp6Y9Tj2WUQ_ElbR0FAEi_t76j2D0FYHVHne3JPj0NPXxo0zYxolG1pN_ssgFveo8cz_eOd_fj0EohNhCvdbESRa1gNZxTELKU1iRcWaVVhnxyhVMiZbU1gPWqNFWOM-4q41SqsjoxlVPZfTKDZ9mHhKKTZ8YYbkTNAVtqQABWY52JyktdZBFJ1gstTaAZx24XC9mHG6WQg24k_BuJupE8Iq_GS84Gjo2LhUF7EvyBXRrVSeTHHr_gJ02KVGZ5AbFgRN6ijse7omz_A5iYDFtT6kTrUnBmTQ7winGtNaAWgIW1BU_B4InP0UIksmU0eBzni1p5L98dHcodQI99JrqMyMsg5FqYrlGhugEWDQm2JpJbE0nYzmYy_GxtiBKH8AxcY9uVlynLBNJXMpjWg8Ewx4lhvjsryzwixcRkJzOfjjSnX3s2cQHrWqVJRLbXxi3Da8xfpIXt0f7_rbNH_3Xvx-R6ihsXz1pWW2TWLVf2CSC_Tj_t9_wvkqlNgw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0oDGQQEhJTujhxXnwraNNA2kB7oPEBWbZjj6pdUjUJaPz13CVp1Aw0hMSHSm19edi-8_1O9v2OkJcMQGgam9CxCUsdznmCZV6YowBKhL5n0zTA5OS9_XD3mH84CU7WyMdlLow602qSt6ShSFQ8Wk1Dn9VrN3zR0615ahuTj8OtgiEPG4TFMOs8gKDoClkPAwDnA7J-vP9p_KXOMYqYAwFO0O5t_vG6nnca6KLSLZf_7yv2isu6eJyy21O9Qa5V2Vye_5Cz2Yrb2rlF5ssON6dVpqOqVCP98wIX5H8ckdvkZgtx6bjRyTtkzWR3ydWm6OX5PfL18POec7Cz_YYWdQ0eUAwqs5R-nxSY4NmkhdLcUoCm9CwvSop1XQDwl9Samoa0oG11IZrlmYM4WS7o1Cwy8PP3ydHO9tG7Xact8uBoiCRLR4ZRKuE1rZUwX7HRLpdGKukj011kZeix1GhAoYnnScsZt4m20pN-6urESv8BGcCzzCNCEX4wrTXXYcoB9SrAJkZhBowMYhX5Q-Iu51bolgAd63DMRB0IxaFoBk3A2wgcNMGH5HV3ybxh_7hcGBRGgKcyCy1Lgczd3Q_8eG7kCT-IIEodkreoVt1dUbb-I1-cinbREMpVKg45MzoA4Me4UgrwFADW1IAPY_DEF6iUAnk8MjwodCqrohDvDw_EGHBtvUceD8mrVsjmqCeyzbuAQUPqr57kRk8SFhrda36-1H2BTXg6LzN5VQiP-SESazLo1sPGFrqO4U68H8fBkEQ9K-n1vN-STb7VPOchjGviuUOyubQn0S6wxWWzsNmZ3N_n7PE_ST8h1z20KDwFmmyQQbmozFPApKV61q4zvwDp6IP5 priority: 102 providerName: Unpaywall |
| Title | SVM-RFE: selection and visualization of the most relevant features through non-linear kernels |
| URI | https://link.springer.com/article/10.1186/s12859-018-2451-4 https://www.ncbi.nlm.nih.gov/pubmed/30453885 https://www.proquest.com/docview/2136057317 https://recercat.cat/handle/2072/357287 https://pubmed.ncbi.nlm.nih.gov/PMC6245920 https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-018-2451-4 https://doaj.org/article/b0bb8641ec574114bbb266623de76214 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELa2Tgj4gHinMCqDkJCYAnHivCEh1FUto1Krqd1Q-YAsx3HGRElGkgL999wlaVhgGnxoq8ZOUvvucs_VvucIecYAhEa-do04YJHBOQ-wzAszQoASrm3FUeRgcvJk6h4c8_HCWWyRTXmregLzC0M7rCd1nC1f_vy2fgsG_6Y0eN99lTNkYYOgGGTOHQiJtskOOKoAKzlM-O9FBaTvL5ONPGZApOPUi5wXXqLlpjoqX6ma1P_vR_c53_XnvspmcfU6ubpKzuT6h1wuz_mv0U1yowaetF9pyi2ypZPb5EpVinJ9h3yaf5gYs9HwNc3LyjggLiqTiH4_zTHtskrWpGlMATDSr2leUKy2AjC8oLEuyUFzWtf8oUmaGIheZUa_6CwB73uXHI2GR4MDoy69YCiI7wpDul4kYTbiWEKI42tlcqllKG3kn_Ni6Vos0gqwYWBZMuaMx4GKpSXtyFRBLO17pAP30g8IRVDAlFJcuREHLBoCYtAh5qVIxw89u0vMzUQLVdOSY3WMpSjDE98VlWwE_BqBshG8S140p5xVnByXdwbpCfAfOlOyEMin3XzBl2V6lrAdD2LHLtlHGTdXxb7lgTQ7EbUpi9AMQ9_lTCsH4BjjYRgCygEYGWnwLAzu-BQ1RCC7RoLbd07kKs_F-_lM9AFtlivXfpc8rzvFKQxXyTobAiYNCblaPXdbPcH8Vav5yUYRBTbhnrlEp6tcWMx2ke6SwbDuV4rZDAzXx23fd7rEa6lsa-TtluT0c8k-7sK8BpbZJXsb5RYbq71MCnuN_v9bZg__e3IekWsWGi3uywx2SafIVvoxoMQi7JFtb-HBuz961yM7_f54PobP_eH0cAZHB-6gV_7_0iufEdByPD3sf_wFMAVmaQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegExo8IL4JDDAICYkpIk6cL94KWtWVdQ9rQXuZLNuxx0RJpiYF7b_nLnWjBdAQD31o4yS17-z7ne7ud4S8ZgBCi8wkvs1Z4XPOc2zzwnwFUCKJQlsUMRYnTw-T8Wc-OY6PXR13vcl234Qk25O63dZZ8q5myLUGri9Ilsfg-FwnW5hjBbtxaziczCZd8ABp-l0A86839kzQQNcr7Qj7_zyWL9ml33Mmu8DpLbK9Ks_lxU-5WFyyTaM75LYDlXS41oK75Jop75Eb6zaTF_fJyezL1D8a7b2nddv1BkRBZVnQH2c1llSuCzFpZSmAQfq9qhuKnVQAYjfUmpb4s6aunw8tq9JHZCqX9JtZlmBZH5D5aG_-cey7tgq-Bt-t8WWSFhJWw1oJ7ktmdMClkUpGyC2XWpmErDAacF8ehtJyxm2urQxlVAQ6tzJ6SAbwLvOYUDT4TGvNdVJwwJkK0IBRWHMi40ylkUeCzUIL7SjHsfPFQrSuR5aItWwE_BuBshHcI2-7W87XfBtXDwbpCbANZqllI5Aru_uCnzBIQxHFKfiFHvmAMu6eimPbH6rlqXDbVKhAqSzhzOgYoBbjSilAMAARCwNWg8EbX6GGCGTOKDE151Su6lrsz47EEJBkG5XOPPLGDbIVTFdLV-kAi4ZkW72RO72RsLV17_LLjSIKvIT5cKWpVrUIWZQglSWDaT1aK2Y3MYx9R1kWeyTtqWxv5v0r5dnXllk8gXXNw8AjuxvlFu5Iq6-Swm6n__-W2ZP_evYLsj2eTw_Ewf7hp6fkZoibGHMw8x0yaJYr8wwQYaOeuxPgF6o9Vdw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegiK8HxDeBAQYhITFFixPHSXgbZdUGbELbQHtBlu3YY6IkVZKC9t9zl6TRAmiIhz60dpLad879Tnf3O0JeMACheWqF7zKW-5zzDNu8MF8DlBBR6PI8xuLk3T2x_Ym_O4qP-j6n9SrbfRWS7GoakKWpaDYWueuOeCo2aoa8a-AGg5R5DE7QRXKJg3HDFgZTMR3CCEjY34cy_3rZyBhNTL00PXX_ny_oMxbq9-zJIYR6nVxdFgt1-lPN52es1OwmudHDS7rZ6cMtcsEWt8nlruHk6R3y5eDzrr8_23pN67b_DQiFqiKnP05qLK7sSjJp6SjAQvq9rBuKPVUAbDfU2ZYCtKZ9Zx9alIWPGFVV9JutCrCxd8nhbOtwuu33DRZ8A15c4yuR5Ap2wzkFjkxqTcCVVVpFyDKXOCVCllsDCDALQ-U44y4zToUqygOTORXdIxN4ln1AKJp-ZozhRuQcEKcGXGA1Vp-oONVJ5JFgtdHS9OTj2ANjLlsnJBWyk42EfyNRNpJ75NVwyaJj3jh_MkhPgpWwlVGNRNbs4Qt-wiAJZRQn4CF65A3KeLgrzm1_KKtj2R9YqQOtU8GZNTGALsa11oBlACzmFuwHgyc-Rw2RyKFRYJLOsVrWtdw52JebgCnb-HTqkZf9JFfCco3qax5g05B2azRzbTQTDrkZDT9bKaLEIcyMK2y5rGXIIoGklgyWdb9TzGFhGAWP0jT2SDJS2dHKxyPFydeWY1zAvmZh4JH1lXLL_uVWnyeF9UH__y2zh_9176fkyse3M_lhZ-_9I3ItxDOMyZjZGpk01dI-BmjY6Cft8f8F4opYuQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rb9MwELdGJwR84P0oDGQQEhJTujhxXnwraNNA2kB7oPEBWbZjj6pdUjUJaPz13CVp1Aw0hMSHSm19edi-8_1O9v2OkJcMQGgam9CxCUsdznmCZV6YowBKhL5n0zTA5OS9_XD3mH84CU7WyMdlLow602qSt6ShSFQ8Wk1Dn9VrN3zR0615ahuTj8OtgiEPG4TFMOs8gKDoClkPAwDnA7J-vP9p_KXOMYqYAwFO0O5t_vG6nnca6KLSLZf_7yv2isu6eJyy21O9Qa5V2Vye_5Cz2Yrb2rlF5ssON6dVpqOqVCP98wIX5H8ckdvkZgtx6bjRyTtkzWR3ydWm6OX5PfL18POec7Cz_YYWdQ0eUAwqs5R-nxSY4NmkhdLcUoCm9CwvSop1XQDwl9Samoa0oG11IZrlmYM4WS7o1Cwy8PP3ydHO9tG7Xact8uBoiCRLR4ZRKuE1rZUwX7HRLpdGKukj011kZeix1GhAoYnnScsZt4m20pN-6urESv8BGcCzzCNCEX4wrTXXYcoB9SrAJkZhBowMYhX5Q-Iu51bolgAd63DMRB0IxaFoBk3A2wgcNMGH5HV3ybxh_7hcGBRGgKcyCy1Lgczd3Q_8eG7kCT-IIEodkreoVt1dUbb-I1-cinbREMpVKg45MzoA4Me4UgrwFADW1IAPY_DEF6iUAnk8MjwodCqrohDvDw_EGHBtvUceD8mrVsjmqCeyzbuAQUPqr57kRk8SFhrda36-1H2BTXg6LzN5VQiP-SESazLo1sPGFrqO4U68H8fBkEQ9K-n1vN-STb7VPOchjGviuUOyubQn0S6wxWWzsNmZ3N_n7PE_ST8h1z20KDwFmmyQQbmozFPApKV61q4zvwDp6IP5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVM-RFE%3A+selection+and+visualization+of+the+most+relevant+features+through+non-linear+kernels&rft.jtitle=BMC+bioinformatics&rft.au=Sanz%2C+Hector&rft.au=Valim%2C+Clarissa&rft.au=Vegas%2C+Esteban&rft.au=Oller%2C+Josep+M&rft.date=2018-11-19&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-018-2451-4&rft.externalDocID=A562829018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |