Regional power grid carbon emission hierarchical optimization model based on power flow calculation and BP neural network

After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to red...

Full description

Saved in:
Bibliographic Details
Published inR.A.I.R.O. Recherche opérationnelle
Main Authors Ma, Rui, Zhu, Dongge, Sha, Jiangbo, Kang, Wenni, Liu, Jia
Format Journal Article
LanguageEnglish
Published 01.10.2025
Online AccessGet full text
ISSN0399-0559
2804-7303
2804-7303
DOI10.1051/ro/2025134

Cover

Abstract After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to reduce the carbon emissions of the regional power grid and mitigate the impact of power flow variations. A hierarchical optimization model for the grid’s carbon emissions is developed. The upper-level model predicts the carbon emissions of the regional power grid using the BP neural network, while the lower-level model incorporates the carbon emission prediction results and power flow characteristics to formulate an optimization objective function. This function aims to minimize the average carbon emissions, reduce the disparity in regional average carbon emissions, and lower the power flow cost. Subject to predefined constraints, the improved mayfly algorithm is employed to solve the objective function and obtain the optimal solution set. A logistic membership function is introduced to evaluate the satisfaction level of the objective function, enabling the selection of the most favorable compromise solution from the set. The test results show that the model has good carbon emission prediction performance, with correlation coefficients all above 0.927. It can provide a non-dominated solution set for each objective function, reducing carbon emissions in the regional power grid. The average prediction error of carbon emissions in the regional power grid is 0.08 tons; the maximum average carbon emission difference across regions is only 212.2 tons, indicating better stratified optimization effects.
AbstractList After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its operational status and carbon emissions. To address this, a combined approach of power flow calculation and a BP neural network is proposed to reduce the carbon emissions of the regional power grid and mitigate the impact of power flow variations. A hierarchical optimization model for the grid’s carbon emissions is developed. The upper-level model predicts the carbon emissions of the regional power grid using the BP neural network, while the lower-level model incorporates the carbon emission prediction results and power flow characteristics to formulate an optimization objective function. This function aims to minimize the average carbon emissions, reduce the disparity in regional average carbon emissions, and lower the power flow cost. Subject to predefined constraints, the improved mayfly algorithm is employed to solve the objective function and obtain the optimal solution set. A logistic membership function is introduced to evaluate the satisfaction level of the objective function, enabling the selection of the most favorable compromise solution from the set. The test results show that the model has good carbon emission prediction performance, with correlation coefficients all above 0.927. It can provide a non-dominated solution set for each objective function, reducing carbon emissions in the regional power grid. The average prediction error of carbon emissions in the regional power grid is 0.08 tons; the maximum average carbon emission difference across regions is only 212.2 tons, indicating better stratified optimization effects.
Author Zhu, Dongge
Sha, Jiangbo
Kang, Wenni
Liu, Jia
Ma, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Ma
  fullname: Ma, Rui
– sequence: 2
  givenname: Dongge
  surname: Zhu
  fullname: Zhu, Dongge
– sequence: 3
  givenname: Jiangbo
  surname: Sha
  fullname: Sha, Jiangbo
– sequence: 4
  givenname: Wenni
  surname: Kang
  fullname: Kang, Wenni
– sequence: 5
  givenname: Jia
  surname: Liu
  fullname: Liu, Jia
BookMark eNp90E1LAzEQBuAgFay1F39BzsraZLPJ7h61-AUFRXpfpslsG8wmJduy1F9vZHv2NDPMw3t4r8nEB4-E3HL2wJnkixgWOcslF8UFmeYVK7JSMDEhUybqOmNS1ldk3vd2k3ClVM3klJy-cGuDB0f3YcBIt9EaqiFugqfY2aTTsrMYIeqd1cmF_cF29gcOf58uGHR0Az0ams4xo3VhSBlOH92owBv69Ek9HmMK8HgYQvy-IZctuB7n5zkj65fn9fItW328vi8fV5kueZFJYRRAgbUppWo1yytsK9RclaUyeYEVkzVUErU2WoDi0oDQyHOsW6aqAsSM3I-xR7-H0wDONftoO4inhrPmr7cmhubcW9J3o9Yx9H3E9j_8C5r_cug
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1051/ro/2025134
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2804-7303
ExternalDocumentID 10.1051/ro/2025134
10_1051_ro_2025134
GroupedDBID -E.
.FH
0E1
123
4.4
74X
74Y
7~V
8FE
8FG
AADXX
AAFWJ
AAYXX
ABKKG
ABNSH
ACGFS
ACIMK
ACIWK
ACZPN
AEMTW
AFAYI
AFHSK
AFUTZ
ALMA_UNASSIGNED_HOLDINGS
ARABE
ASPBG
AVWKF
AZPVJ
BPHCQ
C0O
CITATION
CS3
EBS
HG-
HST
HZ~
I-F
I.6
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
M-V
NIF
O9-
OAV
P62
PQQKQ
PROAC
RCA
RR0
S6-
WQ3
WXU
ADTOC
M~E
UNPAY
ID FETCH-LOGICAL-c714-53d6aa4e9d756fc028ef8ec16776d24e8059a85eccdc3a615da3ce12e9f0684a3
IEDL.DBID UNPAY
ISSN 0399-0559
2804-7303
IngestDate Fri Oct 03 06:13:57 EDT 2025
Thu Oct 09 00:38:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c714-53d6aa4e9d756fc028ef8ec16776d24e8059a85eccdc3a615da3ce12e9f0684a3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1051/ro/2025134
ParticipantIDs unpaywall_primary_10_1051_ro_2025134
crossref_primary_10_1051_ro_2025134
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationTitle R.A.I.R.O. Recherche opérationnelle
PublicationYear 2025
SSID ssib051866905
ssib051327486
ssj0003353
ssib050921426
Score 2.3534086
Snippet After multiple energy sources are integrated into the grid, the power flow distribution of the regional power system undergoes changes, which affects its...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Regional power grid carbon emission hierarchical optimization model based on power flow calculation and BP neural network
URI https://doi.org/10.1051/ro/2025134
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051327486
  issn: 0399-0559
  databaseCode: AMVHM
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050921426
  issn: 0399-0559
  databaseCode: GI~
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib051866905
  issn: 0399-0559
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2804-7303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003353
  issn: 0399-0559
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5dDp5cUFHRErTXqTPNMpljLS1FaCnSQj0N2aaI40wZWko9-NtNZhHroXgMJC8hX8j7kpe8D4A214ZHdJVBQGBzQEGYOSKIkBOgiLuIUabyCP54Qkdz_Lwgixq4r_7C7MXvifeYpfZ4TjyE66BJieHbDdCcT6a9V6sax1zsmCWKqryjew32PM3RJlnx3ZbH8S_3MTwB_arj4tXIe2ezFh35-Scn4-GRnYLjkj3CXgH3Gajp5BzsXvQyv9CDKyt5BpfZm4KSZyJNoFVzs_dh0Epe50EDgwlMzT7xUX7AhLkWDrTeTEFTLGxEcbo1NmJZqntBnij4NIU2_aUxkBSPxy_AbDiY9UdOqajgSN_DDkGKco51oHxCI2mohY6Ylh71faq6WDPDtTgjBlUlETdcR3EktdfVQeRShjm6BI0kTfQVgFJw4eFIEeVxTJhghFgghEbCVYrRa_BQTX64KvJmhHm8m3hhloblzF2D9g8uB6rd_K_aLWiss42-MyxhLVqgPv4atMrF8g183b9E
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA21XbjygYoVlaDdTp00j8ksa7EUwVKkhboa8poijjNlaCn1603mIdZFcRlIbkJOyD3JTe4BoCOM5RE9bRGQxB5QMOGeDGPshTgWPuaM6yKC_zJmoxl5ntN5A9zVf2F24vcUPeSZO55ThMkBaDFq-XYTtGbjSf_NqcZxn3h2ieI67-hOgx1Pc7hOl2K7EUnyy30Mj8Gg7rh8NfLRXa9kV339ycm4f2Qn4Khij7Bfwn0KGiY9A9tXsygu9ODSSZ7BRf6uoRK5zFLo1NzcfRh0ktdF0MBiAjO7T3xWHzBhoYUDnTfT0BZLG3GSbayNRFXqXlCkGj5OoEt_aQ2k5ePxczAdPk0HI69SVPBUgIhHsWZCEBPqgLJYWWphYm4UYkHAdI8YbrmW4NSiqhUWlutogZVBPRPGPuNE4AvQTLPUXAKopJCIxJpqJAjlklPqgJAGS19rztrgvp78aFnmzYiKeDdFUZ5F1cy1QecHlz3Vrv5X7Ro0V_na3FiWsJK31TL5BgXfvhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+power+grid+carbon+emission+hierarchical+optimization+model+based+on+power+flow+calculation+and+BP+neural+network&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Ma%2C+Rui&rft.au=Zhu%2C+Dongge&rft.au=Sha%2C+Jiangbo&rft.au=Kang%2C+Wenni&rft.date=2025-10-01&rft.issn=0399-0559&rft.eissn=2804-7303&rft_id=info:doi/10.1051%2Fro%2F2025134&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2025134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon