Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC

Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically...

Full description

Saved in:
Bibliographic Details
Published inBMC biology Vol. 20; no. 1; pp. 174 - 18
Main Authors Padovani, Francesco, Mairhörmann, Benedikt, Falter-Braun, Pascal, Lengefeld, Jette, Schmoller, Kurt M.
Format Journal Article
LanguageEnglish
Published London BioMed Central 05.08.2022
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1741-7007
1741-7007
DOI10.1186/s12915-022-01372-6

Cover

Abstract Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae , histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC
AbstractList High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis.
Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae , histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC
Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC
High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed.BACKGROUNDHigh-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed.We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age.RESULTSWe present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age.Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC.CONCLUSIONSCell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC.
High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC.
Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: Keywords: Live-cell imaging, Deep-learning cell segmentation, Cell tracking, Cell cycle analysis, Bioimage analysis
Abstract Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC
ArticleNumber 174
Audience Academic
Author Lengefeld, Jette
Padovani, Francesco
Falter-Braun, Pascal
Mairhörmann, Benedikt
Schmoller, Kurt M.
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0003-2540-8240
  surname: Padovani
  fullname: Padovani, Francesco
  email: francesco.padovani@helmholtz-muenchen.de
  organization: Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich
– sequence: 2
  givenname: Benedikt
  orcidid: 0000-0001-8012-9303
  surname: Mairhörmann
  fullname: Mairhörmann, Benedikt
  organization: Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich
– sequence: 3
  givenname: Pascal
  orcidid: 0000-0003-2012-6746
  surname: Falter-Braun
  fullname: Falter-Braun, Pascal
  organization: Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University (LMU) München
– sequence: 4
  givenname: Jette
  orcidid: 0000-0001-6021-7613
  surname: Lengefeld
  fullname: Lengefeld, Jette
  organization: Institute of Biotechnology, HiLIFE, University of Helsinki, Department of Biosciences and Nutrition (BioNut), Karolinska Institutet
– sequence: 5
  givenname: Kurt M.
  orcidid: 0000-0001-5790-5204
  surname: Schmoller
  fullname: Schmoller, Kurt M.
  email: kurt.schmoller@helmholtz-muenchen.de
  organization: Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Center for Diabetes Research (DZD)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35932043$$D View this record in MEDLINE/PubMed
BookMark eNqNkltr3DAQhU1JaS7tH-hDMfSlhTrVxbKsl8KyvS0EAk1oH8WsLDlKvdbGspPuv-_septkQwnBD7ZH3zmMzsxhsteG1ibJa0qOKS2Lj5EyRUVGGMsI5ZJlxbPkgMqcZpIQuXfvez85jPGSECak5C-SfS4UZyTnB8mvM1svbNtD70P7Ie07ML99W6fQVqmxTZOalWks_kKzij6mwaWNv7bZ5swvoF7DFfSQ3vj-Ip1iOZtMP09fJs8dNNG-2r6PkvOvX86n37OT02-z6eQkM5LyPlPClYYXai4qpUwJzFgmKwHECZOTMqeScObo3DGikJznZO6MA0dyiSeUHyWz0bYKcKmXHXbUrXQArzeF0NUaut7jFXQOnBeGgaxokReiACiEKbmhuSwVpwK9-Og1tEtY3UDT3BpSoteJ6zFxjYnrTeK6QNWnUbUc5gtbGcyyg2anld2T1l_oOlxrxUWRE4UG77YGXbgabOz1wsd1vNDaMETNCqUkKVjJEH37AL0MQ4ejQQrjkJTmhN5RNeC1fevCeqprUz2RtKRCCi6ROv4PhU9lF97gojmP9R3B-x0BMr3909cwxKhnZz-ezp7-3GXf3A_wNrl_O4pAOQKmCzF21mnjx33Fjn3z-HDYA-mTJrrdg4hwW9vuLuVHVH8BesMVCA
CitedBy_id crossref_primary_10_3389_fbioe_2024_1422235
crossref_primary_10_1016_j_ceb_2023_102271
crossref_primary_10_1093_bioinformatics_btac799
crossref_primary_10_1038_s41540_024_00466_x
crossref_primary_10_1038_s41594_023_01091_8
crossref_primary_10_1016_j_bpj_2022_10_017
crossref_primary_10_1186_s12885_024_13329_9
crossref_primary_10_1016_j_bcp_2023_115696
crossref_primary_10_1038_s44318_024_00183_5
crossref_primary_10_1038_s41556_024_01512_w
crossref_primary_10_3390_mi14040826
crossref_primary_10_1016_j_celrep_2022_111656
crossref_primary_10_1016_j_tcb_2023_10_010
crossref_primary_10_1038_s41598_024_53411_7
crossref_primary_10_7554_eLife_79812
crossref_primary_10_1016_j_yexcr_2024_113993
crossref_primary_10_1038_s41594_024_01353_z
crossref_primary_10_1038_s44318_024_00227_w
crossref_primary_10_1093_jmicro_dfad059
crossref_primary_10_1016_j_compbiomed_2023_107695
crossref_primary_10_3389_fcell_2022_1036602
crossref_primary_10_1016_j_cub_2024_04_052
crossref_primary_10_3390_math12223584
crossref_primary_10_1007_s12268_023_1957_0
crossref_primary_10_1371_journal_pone_0291391
Cites_doi 10.1101/2021.10.13.464238
10.1038/s41467-021-24451-8
10.1016/j.cell.2019.01.018
10.1016/j.cels.2017.05.012
10.1371/journal.pone.0057970
10.1534/genetics.112.140145
10.3390/app11062692
10.1101/2022.05.11.491488
10.1098/rsif.2016.0705
10.1083/jcb.201004104
10.1038/s41467-020-19557-4
10.1172/JCI200112190
10.1063/5.0082799
10.1038/s41467-020-16100-3
10.1016/j.cels.2019.10.001
10.3389/fcomp.2021.734559
10.1038/s41592-019-0403-1
10.5281/zenodo.3555620
10.5281/ZENODO.6795124
10.1371/journal.pone.0206395
10.15252/msb.20145345
10.1126/science.1099892
10.1038/s41592-019-0686-2
10.1371/journal.pcbi.1003085
10.1093/bioinformatics/btx550
10.1101/gad.233221.113
10.1093/bioinformatics/btw413
10.1038/s41467-020-16764-x
10.1007/s40484-020-0213-6
10.1038/nmeth1008
10.7554/eLife.34025
10.1371/journal.pbio.2005970
10.1038/nmeth.2019
10.1002/cyto.a.20812
10.1101/2021.10.05.463175
10.1126/sciadv.abk0271
10.5281/zenodo.6685170
10.1093/bioinformatics/btr244
10.1038/s41592-020-01018-x
10.1186/s12918-017-0399-z
10.1007/s00791-012-0178-8
10.25080/majora-92bf1922-00a
10.3233/978-1-61499-649-1-87
10.1101/2020.12.08.415562
10.1371/journal.pcbi.1005177
10.1109/IEMBS.2010.5626785
10.1038/nmeth892
10.1016/j.devcel.2021.04.030
10.1016/j.ymeth.2016.09.016
10.7717/peerj.453
10.1093/bioinformatics/btz402
10.1007/978-3-030-00934-2_30
10.1073/pnas.1206810109
10.1038/s41592-020-01023-0
10.1016/j.molcel.2005.10.035
10.7554/eLife.26947
10.1109/TAES.2016.140952
10.7554/eLife.23971
10.3389/fcomp.2022.777728
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12915-022-01372-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
MEDLINE




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 18
ExternalDocumentID oai_doaj_org_article_4a336c2a7d164656aa65c83c14789315
10.1186/s12915-022-01372-6
PMC9356409
A718157537
35932043
10_1186_s12915_022_01372_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
Fiji
GeographicLocations_xml – name: Germany
– name: Fiji
GrantInformation_xml – fundername: Human Frontier Science Program
  grantid: CDA
  funderid: http://dx.doi.org/10.13039/100004412
– fundername: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) (4209)
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 431480687
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: ;
– fundername: ;
  grantid: CDA
– fundername: ;
  grantid: 431480687
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c713t-95f8c369b5d99c8a2ce27d5a0f5c408417032f1bf209f8cb40bfcfaf04770313
IEDL.DBID UNPAY
ISSN 1741-7007
IngestDate Fri Oct 03 12:51:55 EDT 2025
Sun Oct 26 04:02:16 EDT 2025
Tue Sep 30 16:56:10 EDT 2025
Thu Oct 02 04:07:23 EDT 2025
Mon Oct 06 18:22:01 EDT 2025
Mon Oct 20 21:59:17 EDT 2025
Mon Oct 20 16:04:26 EDT 2025
Thu Oct 16 15:20:39 EDT 2025
Thu Oct 16 14:53:09 EDT 2025
Mon Jul 21 06:04:27 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Wed Oct 01 03:37:35 EDT 2025
Sat Sep 06 07:28:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Live-cell imaging
Cell cycle analysis
Cell tracking
Deep-learning cell segmentation
Bioimage analysis
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c713t-95f8c369b5d99c8a2ce27d5a0f5c408417032f1bf209f8cb40bfcfaf04770313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2012-6746
0000-0003-2540-8240
0000-0001-8012-9303
0000-0001-6021-7613
0000-0001-5790-5204
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcbiol.biomedcentral.com/counter/pdf/10.1186/s12915-022-01372-6
PMID 35932043
PQID 2703711401
PQPubID 42637
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_4a336c2a7d164656aa65c83c14789315
unpaywall_primary_10_1186_s12915_022_01372_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356409
proquest_miscellaneous_2699706282
proquest_journals_2703711401
gale_infotracmisc_A718157537
gale_infotracacademiconefile_A718157537
gale_incontextgauss_ISR_A718157537
gale_incontextgauss_IOV_A718157537
pubmed_primary_35932043
crossref_citationtrail_10_1186_s12915_022_01372_6
crossref_primary_10_1186_s12915_022_01372_6
springer_journals_10_1186_s12915_022_01372_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC biology
PublicationTitleAbbrev BMC Biol
PublicationTitleAlternate BMC Biol
PublicationYear 2022
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J-Y Tinevez (1372_CR18) 2017; 115
F Piccinini (1372_CR35) 2017; 4
P Virtanen (1372_CR61) 2020; 17
D Salem (1372_CR30) 2021; 11
PR Eriksson (1372_CR54) 2012; 191
1372_CR37
T Ivanova (1372_CR44) 2020; 11
1372_CR38
1372_CR39
H Ren (1372_CR32) 2020; 8
O Ronneberger (1372_CR2) 2015; 9351
J Lengefeld (1372_CR47) 2021; 7
J Schindelin (1372_CR19) 2012; 9
C Stringer (1372_CR6) 2021; 18
F Padovani (1372_CR63) 2022
AX Lu (1372_CR29) 2019; 35
AP Cuny (1372_CR1) 2022; 3
J Uhlendorf (1372_CR28) 2012; 109
1372_CR48
1372_CR49
AD Balomenos (1372_CR16) 2017; 11
AP Feranchak (1372_CR51) 2001; 108
N Dietler (1372_CR5) 2020; 11
IV Kukhtevich (1372_CR57) 2020; 11
E Moen (1372_CR3) 2019; 16
F Padovani (1372_CR42) 2022
MB Mayhew (1372_CR10) 2011; 27
M Linkert (1372_CR40) 2010; 189
JM Bean (1372_CR11) 2006; 21
D Legland (1372_CR20) 2016; 32
J Dobbelaere (1372_CR45) 2004; 305
Z Hu (1372_CR46) 2014; 28
DA Van Valen (1372_CR4) 2016; 12
BD Knapp (1372_CR41) 2019; 9
1372_CR56
1372_CR13
1372_CR59
D Bannon (1372_CR31) 2021; 18
C McQuin (1372_CR22) 2018; 16
1372_CR9
L-F Handfield (1372_CR15) 2013; 9
1372_CR7
1372_CR8
E Bakker (1372_CR36) 2018; 34
C Tan (1372_CR52) 2021; 56
TE Buck (1372_CR17) 2009; 2009
A Doncic (1372_CR25) 2013; 8
1372_CR21
A Sigal (1372_CR14) 2006; 3
DF Crouse (1372_CR43) 2016; 52
P Dendorfer (1372_CR62) 2020
GE Neurohr (1372_CR50) 2019; 176
1372_CR26
KL Claude (1372_CR53) 2021; 12
M Arzt (1372_CR33) 2022; 4
S Van Der Walt (1372_CR58) 2014; 2014
1372_CR60
K Bredies (1372_CR27) 2011; 14
Q Wang (1372_CR23) 2010; 77
A Gordon (1372_CR34) 2007; 4
I Soifer (1372_CR12) 2014; 10
NE Wood (1372_CR24) 2019; 14
T Kluyver (1372_CR55) 2016; 2016
References_xml – ident: 1372_CR7
  doi: 10.1101/2021.10.13.464238
– volume: 12
  start-page: 1
  year: 2021
  ident: 1372_CR53
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24451-8
– volume: 176
  start-page: 1083
  year: 2019
  ident: 1372_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.018
– volume: 4
  start-page: 651
  year: 2017
  ident: 1372_CR35
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.05.012
– volume: 8
  year: 2013
  ident: 1372_CR25
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057970
– volume: 191
  start-page: 7
  year: 2012
  ident: 1372_CR54
  publication-title: Genetics
  doi: 10.1534/genetics.112.140145
– volume: 11
  start-page: 2692
  year: 2021
  ident: 1372_CR30
  publication-title: Appl Sci
  doi: 10.3390/app11062692
– ident: 1372_CR38
  doi: 10.1101/2022.05.11.491488
– ident: 1372_CR26
  doi: 10.1098/rsif.2016.0705
– volume: 189
  start-page: 777
  year: 2010
  ident: 1372_CR40
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201004104
– volume: 11
  start-page: 1
  year: 2020
  ident: 1372_CR5
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19557-4
– volume: 108
  start-page: 1495
  year: 2001
  ident: 1372_CR51
  publication-title: J Clin Invest
  doi: 10.1172/JCI200112190
– volume: 3
  start-page: 21302
  year: 2022
  ident: 1372_CR1
  publication-title: Biophys Rev
  doi: 10.1063/5.0082799
– volume: 11
  start-page: 1
  year: 2020
  ident: 1372_CR44
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16100-3
– ident: 1372_CR60
– volume: 9
  start-page: 434
  year: 2019
  ident: 1372_CR41
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2019.10.001
– ident: 1372_CR13
  doi: 10.3389/fcomp.2021.734559
– volume: 16
  start-page: 1233
  year: 2019
  ident: 1372_CR3
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0403-1
– ident: 1372_CR56
  doi: 10.5281/zenodo.3555620
– volume-title: Cell-ACDC: segmentation, tracking, annotation and quantification of microscopy imaging data (dataset)
  year: 2022
  ident: 1372_CR63
  doi: 10.5281/ZENODO.6795124
– volume: 9351
  start-page: 234
  year: 2015
  ident: 1372_CR2
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 14
  year: 2019
  ident: 1372_CR24
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0206395
– volume: 10
  start-page: 761
  year: 2014
  ident: 1372_CR12
  publication-title: Mol Syst Biol
  doi: 10.15252/msb.20145345
– volume: 305
  start-page: 393
  year: 2004
  ident: 1372_CR45
  publication-title: Science
  doi: 10.1126/science.1099892
– volume: 17
  start-page: 261
  year: 2020
  ident: 1372_CR61
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 9
  year: 2013
  ident: 1372_CR15
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003085
– volume: 34
  start-page: 88
  year: 2018
  ident: 1372_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx550
– volume: 28
  start-page: 396
  year: 2014
  ident: 1372_CR46
  publication-title: Genes Dev
  doi: 10.1101/gad.233221.113
– volume: 32
  start-page: 3532
  year: 2016
  ident: 1372_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw413
– volume: 11
  start-page: 1
  year: 2020
  ident: 1372_CR57
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16764-x
– volume: 8
  start-page: 245
  year: 2020
  ident: 1372_CR32
  publication-title: Quant Biol
  doi: 10.1007/s40484-020-0213-6
– volume: 4
  start-page: 175
  year: 2007
  ident: 1372_CR34
  publication-title: Nat Methods
  doi: 10.1038/nmeth1008
– ident: 1372_CR9
  doi: 10.7554/eLife.34025
– volume: 16
  year: 2018
  ident: 1372_CR22
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2005970
– volume: 9
  start-page: 676
  year: 2012
  ident: 1372_CR19
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2019
– volume: 77
  start-page: 101
  year: 2010
  ident: 1372_CR23
  publication-title: Cytom Part A
  doi: 10.1002/cyto.a.20812
– ident: 1372_CR37
  doi: 10.1101/2021.10.05.463175
– volume: 7
  start-page: eabk0271
  year: 2021
  ident: 1372_CR47
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abk0271
– volume-title: Cell-ACDC: segmentation, tracking, annotation and quantification of microscopy imaging data
  year: 2022
  ident: 1372_CR42
  doi: 10.5281/zenodo.6685170
– volume: 27
  year: 2011
  ident: 1372_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr244
– volume: 18
  start-page: 100
  year: 2021
  ident: 1372_CR6
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 11
  start-page: 43
  year: 2017
  ident: 1372_CR16
  publication-title: BMC Syst Biol
  doi: 10.1186/s12918-017-0399-z
– volume: 14
  start-page: 341
  year: 2011
  ident: 1372_CR27
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-012-0178-8
– ident: 1372_CR59
  doi: 10.25080/majora-92bf1922-00a
– volume: 2016
  start-page: 87
  year: 2016
  ident: 1372_CR55
  publication-title: ELPUB
  doi: 10.3233/978-1-61499-649-1-87
– ident: 1372_CR48
  doi: 10.1101/2020.12.08.415562
– volume: 12
  year: 2016
  ident: 1372_CR4
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005177
– ident: 1372_CR49
  doi: 10.1109/IEMBS.2010.5626785
– volume: 3
  start-page: 525
  year: 2006
  ident: 1372_CR14
  publication-title: Nat Methods
  doi: 10.1038/nmeth892
– volume: 2009
  start-page: 1016
  year: 2009
  ident: 1372_CR17
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf
– volume: 56
  start-page: 1756
  year: 2021
  ident: 1372_CR52
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2021.04.030
– volume: 115
  start-page: 80
  year: 2017
  ident: 1372_CR18
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 2014
  year: 2014
  ident: 1372_CR58
  publication-title: PeerJ
  doi: 10.7717/peerj.453
– volume: 35
  start-page: 4525
  year: 2019
  ident: 1372_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz402
– volume-title: MOT20: A benchmark for multi object tracking in crowded scenes
  year: 2020
  ident: 1372_CR62
– ident: 1372_CR8
  doi: 10.1007/978-3-030-00934-2_30
– volume: 109
  start-page: 14271
  year: 2012
  ident: 1372_CR28
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1206810109
– volume: 18
  start-page: 43
  year: 2021
  ident: 1372_CR31
  publication-title: Nat Methods
  doi: 10.1038/s41592-020-01023-0
– volume: 21
  start-page: 3
  year: 2006
  ident: 1372_CR11
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2005.10.035
– ident: 1372_CR39
  doi: 10.7554/eLife.26947
– volume: 52
  start-page: 1679
  year: 2016
  ident: 1372_CR43
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2016.140952
– ident: 1372_CR21
  doi: 10.7554/eLife.23971
– volume: 4
  start-page: 10
  year: 2022
  ident: 1372_CR33
  publication-title: Front Comput Sci
  doi: 10.3389/fcomp.2022.777728
SSID ssj0025773
Score 2.480477
Snippet Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of...
High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data...
Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of...
Abstract Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 174
SubjectTerms Accuracy
Algorithms
Analysis
Annotations
Automation
Bioimage analysis
Biomedical and Life Sciences
Cell culture
Cell Cycle
Cell cycle analysis
Cell division
Cell size
Cell tracking
Cell Tracking - methods
Data analysis
Deep learning
Deep-learning cell segmentation
Equipment and supplies
Graphical user interface
Hematopoietic stem cells
Histones
Image analysis
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Life Sciences
Live-cell imaging
Machine learning
Metadata
Methods
Microscopy
Neural networks
Saccharomyces cerevisiae
Software
Source code
Stem cells
Tagging
TOR protein
Tracking errors
User interface
Workflow
Yeast
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSgg4IN4YCloQEgdi1d73HkOgKkiARAv0tlqvvaVS6lQkEcq_Z8YvYhCFA8d4Z6N4ZnYem5lvCHkGEQFTXsQ0j7lJhSyy1FQWjGGpfQUOkMUC7yHfvVcHn8TbY3m8NeoLa8JaeOCWcXvCc64C87pEJCypvFcyGB5yocHVNu3lLDO2T6a6VEtqzfsWGaP2luDVcuxExjIErlmqRm6oQev_3SZvOaVfCyaHf02vkSvr-txvvvv5fMsx7d8g17uIkk7bN7lJLlX1LXK5nTG5uU2-HFYnZ12DUT2h8MUBb8epr0uKt_Y0bGAbfGzBSegi0jlYwLRZOz1rhhhRrCOleGVLZ_A4nc5eze6Qo_3XR7ODtJumkAZIRFepldEErmwhS2uD8SxUTJfSZ1EGkRmRw9lnMS8iyyxQFiIrYog-ZkIjxj2_S3bqRV3dJ1QpsNbSgqu3BqQLubkNVkfPhRawzyck73nrQoc0jgMv5q7JOIxyrTwcyMM18nAqIS-GPectzsaF1C9RZAMlYmQ3D0BzXKc57m-ak5CnKHCHKBg1ltmc-PVy6d58-Oym4LFzCGS5_hPR4ccR0fOOKC5QjL5rbQB2IbrWiHJ3RAlnOYyXe-VznS1ZOqYRVhET4YQ8GZZxJ9bH1dViDTTKWo3tsCwh91pdHZjDJcTomeAJ0SMtHnFvvFKffm2Qxi2XSmQ2IZNe33_-rIukMxnOxD8I88H_EOZDcpU1x9ukmdwlO6tv6-oRhIur4nFjGX4A-mhd9A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQ8IL4JDBQQEg80WuL4I35AqCubBhIFbQP2ZjlOXCZ1SVlbof733OVrC4iKx8bnqr1vO3e_I-QVZARUGOaCyEVJwHgaBkmuwBlm0uQQAKlL8R7y00QcfmUfT_npFpm0vTBYVtn6xMpRZ6XFO_JdKhFcDo8D7-Y_A5wahW9X2xEaphmtkL2tIMaukW2KyFgDsr23P_ly1B3BuJRx2zqTiN0FRLsIO5SxPCGWNBC98FSh-P_tq68Eqz8LKbu3qbfIjVUxN-tfZja7ErAO7pDbTabpj2rVuEu28uIeuV7PnlzfJ9-P8-l503hUDH34You35r4pMh9v8327hm3wsQYt8Uvnz8AzBtXa2Xk13MjH-lIfr3L9MTwORuP34wfk5GD_ZHwYNFMWAgsH1GWguEtsLFTKM6VsYqjNqcy4CR23LExYBIynLkodDRVQpixMnXXGhUwi9n38kAyKssgfE18I8OJcQQqgEpA6nNmVVdKZmEkG-4xHopa32jYI5DgIY6ark0gidC0PDfLQlTy08Mibbs-8xt_YSL2HIusoETu7elBeTHVjipqZOBaWGpkhthoXxghuk9hGTELyFnGPvESBa0THKLD8ZmpWi4X-8PmbHkEkjyDBjeW_iI6PekSvGyJXohhN0_IA7ELUrR7lTo8SbNz2l1vl042PWehLi_DIi24Zd2LdXJGXK6ARSklsk6UeeVTrasecmEPuHrLYI7KnxT3u9VeKsx8VArmKuWCh8siw1ffLn7VJOsPOJv5DmE82_-mn5CatDDcJQr5DBsuLVf4MEsRl-ryx-t-Kql09
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal - Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKEQIeEDeBggxC4oEaEsdH_IDQslAVpIJEW9o3y_HGS6Vttuwh2H_PTC4aKFUfE4-jaG4f8w0hzyEj4MqJwJKQZEzIPGZZYcAZjrQrIADykOM-5M5ntb0vPh3KwzXStjtqGDg_c2mH_aT2Z5NXv36s3oLBv6kMPlOv5xCzEqwzxksGqeZMXSKXIVIZbOWwI7pTBdDO6sQZkvCEaQiObRHNmd_oBaoKz_9fr30qbP19pbI7V71Ori7LE7f66SaTU6Fr6ya50eScdFAryS2yVpS3yZW6C-XqDjnYLcbHTQlSuUnhwx73z6krRxT39alfwTR4rOFL6DTQCfhIVo0dHVdtjijeNKW4qUuH8JoNhu-Hd8ne1oe94TZr-i0wD0vVBTMyZD5VJpcjY3zmuC-4HkkXB-lFnIkEvAMPSR54bIAyF3EefHAhFhpR8NN7ZL2clsUDQpUCfy4NJAMmA_nD6t14o4NLhRYwz0UkaXlrfYNFji0xJrZak2TK1vKwIA9bycOqiLzs5pzUSBznUr9DkXWUiKJdvZjOxrYxSitcmirPnR4hyppUzinps9QnQkMal8iIPEOBW8TJKPEiztgt53P78cs3O4CYnkCqm-r_Ee1-7RG9aIjCFMXomuIHYBfib_UoN3qUYO2-P9wqn22NxXKNwIu4VI7I024YZ-INurKYLoFGGaOxYJZH5H6tqx1zUglZfCzSiOieFve41x8pj75XWOQmlQosLSKbrb7_-a3zpLPZ2cQFhPnwIix-RK7xynwzFssNsr6YLYvHkDAu8ieVF_gN2CVd3w
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxLuBggxC4sBaTfyMj8tCVZAAiRbozXKcuFTaZqvurtD-e2aSbNjwqOCYeCaKPJ6XPfOZkOcQEXDtZWRZzHImVZGyvLJgDEvjK3CAPBa4D_n-g97_LN8dqaMOJgd7YTbP77Nc787BH2XYQ4wFBMJwpi-TK-CkdHMwqyd9cqWMEeummD_yDRxPg8__uxXecEO_lkj256Q3yLVlfeZX3_10uuGK9m6Rm10MScet0G-TS1V9h1xtb5Vc3SVfD6rj066lqB5R-HDA_XDq65LiPj0NK2CDxxaOhM4inYLNY83YyWlzbRHFylGKm7R0Aq_ZePJ6co8c7r05nOyz7v4EFiD1XDCrYh6EtoUqrQ2556HiplQ-jSrINJcZaDuPWRF5aoGykGkRQ_QxlQZR7cV9slXP6mqbUK3BPisLzt3mIE_Ixm2wJnohjQQ-n5BsPbcudNjieMXF1DU5Rq5dKw8H8nCNPJxOyMue56xF1riQ-hWKrKdEVOzmBSwW1ymZk14IHbg3JaKmKe29ViEXIZMGwrJMJeQZCtwh7kWNhTXHfjmfu7cfv7gx-OgMQldh_kZ08GlA9KIjijMUo--aGWC6EE9rQLkzoATtDcPh9eJznfWYO24QSBFT34Q87YeREyvi6mq2BBptrcEGWJ6QB-1a7SdHKIjKUykSYgareDB7w5H65FuDLW6F0pDyJ2S0Xu8_f-si6Yx6nfgHYT78v68_Itd5o8g5S9UO2VqcL6vHEAouiieNDfgB3F9PpQ
  priority: 102
  providerName: Springer Nature
Title Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC
URI https://link.springer.com/article/10.1186/s12915-022-01372-6
https://www.ncbi.nlm.nih.gov/pubmed/35932043
https://www.proquest.com/docview/2703711401
https://www.proquest.com/docview/2699706282
https://pubmed.ncbi.nlm.nih.gov/PMC9356409
https://bmcbiol.biomedcentral.com/counter/pdf/10.1186/s12915-022-01372-6
https://doaj.org/article/4a336c2a7d164656aa65c83c14789315
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: KQ8
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: GX1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M48
  dateStart: 20031101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: AAJSJ
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: C6C
  dateStart: 20030112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB61iRDwwH0YSmQQEg_EqY89vI9JaBWQWqq0hcDLar3xhojEiZpEqPx6Zm0n1AUqkHixZO-s4szOteuZbwBeYkQQMkWMF5gg9ghNfC9OBRrDIVcpOsDQJPYc8uCQ9U7JuwEdbEFvXQuTTLVFH2pdLD6fFLUNtndCerY7H5pC1WO2u0BvFdgKY5teEPHQY9tQZxSj8hrUTw-P2p-KesjA4-gL1zUzv51Y8Us5fP-vRvqCl7qcQbn5jHoTrq-yuTr_piaTC55q_zaM1_-xSFD52lotk5b-fgn-8X8w4Q7cKsNZt13I313YSrN7cK1ocHl-Hz4ep6NpWd2UNV38AW2P5l2VDV37ycDV5zgNbwtkFHdm3AmaXy8fG0_zDkquTWJ17Xmx28XHXrv7pvsATvb3Tro9r2zl4GncBS89QU2sIyYSOhRCxyrUaciHVPmGauLHJEDDE5ogMaEvkDIhfmK0UcYn3ALsRw-hls2y9DG4jKGroALjDBGjaKVJKLTgRkWEE5ynHAjW6yh1CXNuu21MZL7diZks-CWRXzLnl2QOvN7MmRcgH1dSd6x4bCgtQHf-YHY2kqW-S6KiiOlQ8aEFcKNMKUZ1HOmAcIwQA-rACytc0kJwZDbHZ6RWi4V8-_6DbGO4EGAUHfE_ER33K0SvSiIzs8uoyroKZJeF9qpQ7lQo0ZDo6vBa0GVpyBYy5BbT0e7CHXi-GbYzbXJels5WSMOE4LYWN3TgUaEXG-ZEFDcIPokc4BWNqXCvOpKNv-Qw5yKijPjCgeZat36-1lWr09zo318s5pN_I38KN8Jc0WLPpztQW56t0mcYlS6TBmzzAW9AvbN3eNTHuy7rNvITHrwekBiv_c7nRmmWfgC-woXi
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gxKAPxm-rqNVofICGdj-7D8TAAQH50AAqb5vttoskRw85LuT-OP83Z3ptoRqJLzxed7Z3tzM7H7szvyHkHXgEVFruo8QnacRFFkdpoUEZ5soWYACpz_AccmdXbnzlnw7F4RT51dTCYFploxMrRZ0PHJ6RL1KF4HIYDnw8_Rlh1yi8XW1aaNi6tUK-VEGM1YUdW8X4AkK44dLmKvD7PaXrawe9jajuMhA5CNDOIy186pjUmci1dqmlrqAqFzb2wvE45Ql8MfVJ5mmsgTLjceadtz7mCrHfGbz2FpnhjGuI_WZW1na_7LURn1CKNZU6qVwcgnFNsCAasyGYopHsWMOqacDfpuGKbfwzb7O9vL1LZkflqR1f2H7_in1cv0_u1Y5tuDyRxAdkqigfktuTVpfjR-T7fnF0Utc5lQshvNjhIX1oyzzEy4PQjWEafJxgpIQDH_ZBEUfV2PFJ1UspxHTWEE-Owx48jpZ7q73H5OAmlvsJmS4HZfGMhFKC0RAaPA6dgpAVGdVOK28ZVxzm2YAkzdoaVwOeY9-NvqkCn1SaCT8M8MNU_DAyIPPtnNMJ3Me11CvIspYSobqrB4OzI1PvfMMtY9JRq3KEchPSWilcylzCFfiKiQjIW2S4QTCOErN9juxoODSbn7-ZZXAcEvCnmfoX0f5eh-hDTeQHyEZbV1jAciHIV4dyrkMJKsV1hxvhM7VKG5rLDRiQN-0wzsQ0vbIYjIBGaq2wKpcG5OlEVtvFYQJChZizgKiOFHdWrztSHv-oAM81E5LHOiALjbxf_qzruLPQ7on_YObz6__0azK7cbCzbbY3d7dekDu02sRpFIs5Mn1-Nipegm96nr2qNUBIzA3rnN8hD5mP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFSK2A6IHUMBg0AcqBV7Vs8BoZBQtRQKogV6G40nnlApdUrTqMqn8Xe85yWpQURceoznjZO8_c28hZDn4BFQabmPEp-kERdZHKW5BmU4UDYHA0h9hueQH3fk5lf-fl_sr5BfTS0MplU2OrFU1IOxwzPyDlXYXA7DgY6v0yI-9zfeHP2McIIU3rQ24zQqFtnOZ6cQvk1eb_WB1i8o3Xi319uM6gkDkYPg7CTSwqeOSZ2JgdYutdTlVA2Ejb1wPE55Al9KfZJ5GmuAzHiceeetj7nCvu8MXnuBXFSMacwmVPuLWE8oxZoanVR2JmBWEyyFxjwIpmgkW3awHBfwt1E4YxX_zNicX9teI1emxZGdndrR6Ixl3LhBrtcubditePAmWcmLW-RSNeRydpt8382Hh3WFU7EewosdHs-HthiEeG0Quhlsg49Vd5Rw7MMRqOCoXDs4LKcohZjIGuKZcdiDx1G31-_dIXvngey7ZLUYF_l9EkoJ5kJo8DV0CuyVZ1Q7rbxlXHHYZwOSNLg1rm51jhM3RqYMeVJpKnoYoIcp6WFkQF7N9xxVjT6WQr9Fks0hsUl3-WB8PDS1zBtuGZOOWjXAJm5CWiuFS5lLuAIvMREBeYYEN9iGo0CGHtrpZGK2Pn0zXXAZEvCkmfoX0O6XFtDLGsiPkYy2rq0AdGF7rxbkWgsSlIlrLzfMZ2plNjEL0QvI0_ky7sQEvSIfTwFGaq2wHpcG5F7Fq3PkMAFBQsxZQFSLi1vYa68UBz_KVueaCcljHZD1ht8XP2sZddbnMvEfxHyw_E8_IZdB05gPWzvbD8lVWspwGsVijayeHE_zR-CUnmSPS_EPiTlndfMbzi2XKQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF6VVAh44D4MBRmExANx6mMP72MIVAGJgmgL5Wm1XntDROJEOYTCr2fGF3GBCiQe451Rktm5dj3zDSFPISMIuabWC2wQe5QlvhdnEpxhKnQGATC0Cd5Dvj3kwxP65pSd7pBh3QuTTA2iD_W2m88nZW8Dzk7IFvvz1JamHvP9JUSrADuMsbwgEqHHL5BdziAr75Ddk8P3_c9lP2TgCYiFdc_MbxlbcamA7__VSW9FqbMVlM1r1Cvk0jqf6803PZlsRaqDa2Rc_8eyQOVrb71Keub7GfjH_yGE6-Rqlc66_VL_bpCdLL9JLpYDLje3yKejbDStupvyrgtfYPBq3tV56uIrA9dsgA0-lsgo7sy6E3C_XrE2nhYTlFwsYnXxvtgdwGOvP3g5uE2OD14dD4ZeNcrBM3AKXnmS2dhEXCYsldLEOjRZKFKmfcsM9WMagOMJbZDY0JdAmVA_scZq61OBAPvRHdLJZ3l2j7icQ6hgEvIMGYNqZUkojRRWR1RQ4NMOCep9VKaCOcdpGxNVHHdirkp5KZCXKuSluEOeNzzzEuTjXOoXqB4NJQJ0Fw9mi5Gq7F1RHUXchFqkCODGuNacmTgyARWQIQbMIU9QuRRCcORY4zPS6-VSvX73UfUhXQggi47En4iOPrSInlVEdobbqKu-ChAXQnu1KPdalOBITHu5VnRVObKlCgViOuIp3CGPm2XkxOK8PJutgYZLKbAXN3TI3dIuGuFEDA4IPo0cIloW05JeeyUffylgzmXEOPWlQ7q1bf38WeftTrexv7_YzPv_Rv6AXA4LQ4s9n-2Rzmqxzh5CVrpKHlUO5wdkvX-m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation%2C+tracking+and+cell+cycle+analysis+of+live-cell+imaging+data+with+Cell-ACDC&rft.jtitle=BMC+biology&rft.au=Padovani%2C+Francesco&rft.au=Mairh%C3%B6rmann%2C+Benedikt&rft.au=Falter-Braun%2C+Pascal&rft.au=Lengefeld%2C+Jette&rft.date=2022-08-05&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12915-022-01372-6&rft.externalDBID=ISR&rft.externalDocID=A718157537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon