Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC
Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically...
Saved in:
| Published in | BMC biology Vol. 20; no. 1; pp. 174 - 18 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
05.08.2022
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-7007 1741-7007 |
| DOI | 10.1186/s12915-022-01372-6 |
Cover
| Abstract | Background
High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed.
Results
We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in
S. cerevisiae
, histone Htb1 concentrations decrease with replicative age.
Conclusions
Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis.
Source code:
https://github.com/SchmollerLab/Cell_ACDC |
|---|---|
| AbstractList | High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae , histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed.BACKGROUNDHigh-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed.We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age.RESULTSWe present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age.Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC.CONCLUSIONSCell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC. High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC. Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: Keywords: Live-cell imaging, Deep-learning cell segmentation, Cell tracking, Cell cycle analysis, Bioimage analysis Abstract Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data analysis, due to the large amount of data generated and limitations of analytical pipelines. Recent progress on deep learning dramatically improved cell segmentation and tracking. Nevertheless, manual data validation and correction is typically still required and tools spanning the complete range of image analysis are still needed. Results We present Cell-ACDC, an open-source user-friendly GUI-based framework written in Python, for segmentation, tracking and cell cycle annotations. We included state-of-the-art deep learning models for single-cell segmentation of mammalian and yeast cells alongside cell tracking methods and an intuitive, semi-automated workflow for cell cycle annotation of single cells. Using Cell-ACDC, we found that mTOR activity in hematopoietic stem cells is largely independent of cell volume. By contrast, smaller cells exhibit higher p38 activity, consistent with a role of p38 in regulation of cell size. Additionally, we show that, in S. cerevisiae, histone Htb1 concentrations decrease with replicative age. Conclusions Cell-ACDC provides a framework for the application of state-of-the-art deep learning models to the analysis of live cell imaging data without programming knowledge. Furthermore, it allows for visualization and correction of segmentation and tracking errors as well as annotation of cell cycle stages. We embedded several smart algorithms that make the correction and annotation process fast and intuitive. Finally, the open-source and modularized nature of Cell-ACDC will enable simple and fast integration of new deep learning-based and traditional methods for cell segmentation, tracking, and downstream image analysis. Source code: https://github.com/SchmollerLab/Cell_ACDC |
| ArticleNumber | 174 |
| Audience | Academic |
| Author | Lengefeld, Jette Padovani, Francesco Falter-Braun, Pascal Mairhörmann, Benedikt Schmoller, Kurt M. |
| Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0003-2540-8240 surname: Padovani fullname: Padovani, Francesco email: francesco.padovani@helmholtz-muenchen.de organization: Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich – sequence: 2 givenname: Benedikt orcidid: 0000-0001-8012-9303 surname: Mairhörmann fullname: Mairhörmann, Benedikt organization: Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich – sequence: 3 givenname: Pascal orcidid: 0000-0003-2012-6746 surname: Falter-Braun fullname: Falter-Braun, Pascal organization: Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-University (LMU) München – sequence: 4 givenname: Jette orcidid: 0000-0001-6021-7613 surname: Lengefeld fullname: Lengefeld, Jette organization: Institute of Biotechnology, HiLIFE, University of Helsinki, Department of Biosciences and Nutrition (BioNut), Karolinska Institutet – sequence: 5 givenname: Kurt M. orcidid: 0000-0001-5790-5204 surname: Schmoller fullname: Schmoller, Kurt M. email: kurt.schmoller@helmholtz-muenchen.de organization: Institute of Functional Epigenetics (IFE), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Center for Diabetes Research (DZD) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35932043$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkltr3DAQhU1JaS7tH-hDMfSlhTrVxbKsl8KyvS0EAk1oH8WsLDlKvdbGspPuv-_septkQwnBD7ZH3zmMzsxhsteG1ibJa0qOKS2Lj5EyRUVGGMsI5ZJlxbPkgMqcZpIQuXfvez85jPGSECak5C-SfS4UZyTnB8mvM1svbNtD70P7Ie07ML99W6fQVqmxTZOalWks_kKzij6mwaWNv7bZ5swvoF7DFfSQ3vj-Ip1iOZtMP09fJs8dNNG-2r6PkvOvX86n37OT02-z6eQkM5LyPlPClYYXai4qpUwJzFgmKwHECZOTMqeScObo3DGikJznZO6MA0dyiSeUHyWz0bYKcKmXHXbUrXQArzeF0NUaut7jFXQOnBeGgaxokReiACiEKbmhuSwVpwK9-Og1tEtY3UDT3BpSoteJ6zFxjYnrTeK6QNWnUbUc5gtbGcyyg2anld2T1l_oOlxrxUWRE4UG77YGXbgabOz1wsd1vNDaMETNCqUkKVjJEH37AL0MQ4ejQQrjkJTmhN5RNeC1fevCeqprUz2RtKRCCi6ROv4PhU9lF97gojmP9R3B-x0BMr3909cwxKhnZz-ezp7-3GXf3A_wNrl_O4pAOQKmCzF21mnjx33Fjn3z-HDYA-mTJrrdg4hwW9vuLuVHVH8BesMVCA |
| CitedBy_id | crossref_primary_10_3389_fbioe_2024_1422235 crossref_primary_10_1016_j_ceb_2023_102271 crossref_primary_10_1093_bioinformatics_btac799 crossref_primary_10_1038_s41540_024_00466_x crossref_primary_10_1038_s41594_023_01091_8 crossref_primary_10_1016_j_bpj_2022_10_017 crossref_primary_10_1186_s12885_024_13329_9 crossref_primary_10_1016_j_bcp_2023_115696 crossref_primary_10_1038_s44318_024_00183_5 crossref_primary_10_1038_s41556_024_01512_w crossref_primary_10_3390_mi14040826 crossref_primary_10_1016_j_celrep_2022_111656 crossref_primary_10_1016_j_tcb_2023_10_010 crossref_primary_10_1038_s41598_024_53411_7 crossref_primary_10_7554_eLife_79812 crossref_primary_10_1016_j_yexcr_2024_113993 crossref_primary_10_1038_s41594_024_01353_z crossref_primary_10_1038_s44318_024_00227_w crossref_primary_10_1093_jmicro_dfad059 crossref_primary_10_1016_j_compbiomed_2023_107695 crossref_primary_10_3389_fcell_2022_1036602 crossref_primary_10_1016_j_cub_2024_04_052 crossref_primary_10_3390_math12223584 crossref_primary_10_1007_s12268_023_1957_0 crossref_primary_10_1371_journal_pone_0291391 |
| Cites_doi | 10.1101/2021.10.13.464238 10.1038/s41467-021-24451-8 10.1016/j.cell.2019.01.018 10.1016/j.cels.2017.05.012 10.1371/journal.pone.0057970 10.1534/genetics.112.140145 10.3390/app11062692 10.1101/2022.05.11.491488 10.1098/rsif.2016.0705 10.1083/jcb.201004104 10.1038/s41467-020-19557-4 10.1172/JCI200112190 10.1063/5.0082799 10.1038/s41467-020-16100-3 10.1016/j.cels.2019.10.001 10.3389/fcomp.2021.734559 10.1038/s41592-019-0403-1 10.5281/zenodo.3555620 10.5281/ZENODO.6795124 10.1371/journal.pone.0206395 10.15252/msb.20145345 10.1126/science.1099892 10.1038/s41592-019-0686-2 10.1371/journal.pcbi.1003085 10.1093/bioinformatics/btx550 10.1101/gad.233221.113 10.1093/bioinformatics/btw413 10.1038/s41467-020-16764-x 10.1007/s40484-020-0213-6 10.1038/nmeth1008 10.7554/eLife.34025 10.1371/journal.pbio.2005970 10.1038/nmeth.2019 10.1002/cyto.a.20812 10.1101/2021.10.05.463175 10.1126/sciadv.abk0271 10.5281/zenodo.6685170 10.1093/bioinformatics/btr244 10.1038/s41592-020-01018-x 10.1186/s12918-017-0399-z 10.1007/s00791-012-0178-8 10.25080/majora-92bf1922-00a 10.3233/978-1-61499-649-1-87 10.1101/2020.12.08.415562 10.1371/journal.pcbi.1005177 10.1109/IEMBS.2010.5626785 10.1038/nmeth892 10.1016/j.devcel.2021.04.030 10.1016/j.ymeth.2016.09.016 10.7717/peerj.453 10.1093/bioinformatics/btz402 10.1007/978-3-030-00934-2_30 10.1073/pnas.1206810109 10.1038/s41592-020-01023-0 10.1016/j.molcel.2005.10.035 10.7554/eLife.26947 10.1109/TAES.2016.140952 10.7554/eLife.23971 10.3389/fcomp.2022.777728 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PADUT PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12915-022-01372-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) University Readers Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Research Library China Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Research Library China ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1741-7007 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_4a336c2a7d164656aa65c83c14789315 10.1186/s12915-022-01372-6 PMC9356409 A718157537 35932043 10_1186_s12915_022_01372_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Germany Fiji |
| GeographicLocations_xml | – name: Germany – name: Fiji |
| GrantInformation_xml | – fundername: Human Frontier Science Program grantid: CDA funderid: http://dx.doi.org/10.13039/100004412 – fundername: Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) (4209) – fundername: Deutsche Forschungsgemeinschaft grantid: 431480687 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: ; – fundername: ; grantid: CDA – fundername: ; grantid: 431480687 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8FE 8FH 8FI 8FJ 8G5 AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR IOV ISE ISR ITC KQ8 LK8 M1P M2O M48 M7P M~E O5R O5S OK1 OVT P2P PADUT PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 4U- 7QG 7QP 7QR 7SN 7SS 7TK 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c713t-95f8c369b5d99c8a2ce27d5a0f5c408417032f1bf209f8cb40bfcfaf04770313 |
| IEDL.DBID | UNPAY |
| ISSN | 1741-7007 |
| IngestDate | Fri Oct 03 12:51:55 EDT 2025 Sun Oct 26 04:02:16 EDT 2025 Tue Sep 30 16:56:10 EDT 2025 Thu Oct 02 04:07:23 EDT 2025 Mon Oct 06 18:22:01 EDT 2025 Mon Oct 20 21:59:17 EDT 2025 Mon Oct 20 16:04:26 EDT 2025 Thu Oct 16 15:20:39 EDT 2025 Thu Oct 16 14:53:09 EDT 2025 Mon Jul 21 06:04:27 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Wed Oct 01 03:37:35 EDT 2025 Sat Sep 06 07:28:52 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Live-cell imaging Cell cycle analysis Cell tracking Deep-learning cell segmentation Bioimage analysis |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c713t-95f8c369b5d99c8a2ce27d5a0f5c408417032f1bf209f8cb40bfcfaf04770313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2012-6746 0000-0003-2540-8240 0000-0001-8012-9303 0000-0001-6021-7613 0000-0001-5790-5204 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcbiol.biomedcentral.com/counter/pdf/10.1186/s12915-022-01372-6 |
| PMID | 35932043 |
| PQID | 2703711401 |
| PQPubID | 42637 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4a336c2a7d164656aa65c83c14789315 unpaywall_primary_10_1186_s12915_022_01372_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356409 proquest_miscellaneous_2699706282 proquest_journals_2703711401 gale_infotracmisc_A718157537 gale_infotracacademiconefile_A718157537 gale_incontextgauss_ISR_A718157537 gale_incontextgauss_IOV_A718157537 pubmed_primary_35932043 crossref_citationtrail_10_1186_s12915_022_01372_6 crossref_primary_10_1186_s12915_022_01372_6 springer_journals_10_1186_s12915_022_01372_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-05 |
| PublicationDateYYYYMMDD | 2022-08-05 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC biology |
| PublicationTitleAbbrev | BMC Biol |
| PublicationTitleAlternate | BMC Biol |
| PublicationYear | 2022 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | J-Y Tinevez (1372_CR18) 2017; 115 F Piccinini (1372_CR35) 2017; 4 P Virtanen (1372_CR61) 2020; 17 D Salem (1372_CR30) 2021; 11 PR Eriksson (1372_CR54) 2012; 191 1372_CR37 T Ivanova (1372_CR44) 2020; 11 1372_CR38 1372_CR39 H Ren (1372_CR32) 2020; 8 O Ronneberger (1372_CR2) 2015; 9351 J Lengefeld (1372_CR47) 2021; 7 J Schindelin (1372_CR19) 2012; 9 C Stringer (1372_CR6) 2021; 18 F Padovani (1372_CR63) 2022 AX Lu (1372_CR29) 2019; 35 AP Cuny (1372_CR1) 2022; 3 J Uhlendorf (1372_CR28) 2012; 109 1372_CR48 1372_CR49 AD Balomenos (1372_CR16) 2017; 11 AP Feranchak (1372_CR51) 2001; 108 N Dietler (1372_CR5) 2020; 11 IV Kukhtevich (1372_CR57) 2020; 11 E Moen (1372_CR3) 2019; 16 F Padovani (1372_CR42) 2022 MB Mayhew (1372_CR10) 2011; 27 M Linkert (1372_CR40) 2010; 189 JM Bean (1372_CR11) 2006; 21 D Legland (1372_CR20) 2016; 32 J Dobbelaere (1372_CR45) 2004; 305 Z Hu (1372_CR46) 2014; 28 DA Van Valen (1372_CR4) 2016; 12 BD Knapp (1372_CR41) 2019; 9 1372_CR56 1372_CR13 1372_CR59 D Bannon (1372_CR31) 2021; 18 C McQuin (1372_CR22) 2018; 16 1372_CR9 L-F Handfield (1372_CR15) 2013; 9 1372_CR7 1372_CR8 E Bakker (1372_CR36) 2018; 34 C Tan (1372_CR52) 2021; 56 TE Buck (1372_CR17) 2009; 2009 A Doncic (1372_CR25) 2013; 8 1372_CR21 A Sigal (1372_CR14) 2006; 3 DF Crouse (1372_CR43) 2016; 52 P Dendorfer (1372_CR62) 2020 GE Neurohr (1372_CR50) 2019; 176 1372_CR26 KL Claude (1372_CR53) 2021; 12 M Arzt (1372_CR33) 2022; 4 S Van Der Walt (1372_CR58) 2014; 2014 1372_CR60 K Bredies (1372_CR27) 2011; 14 Q Wang (1372_CR23) 2010; 77 A Gordon (1372_CR34) 2007; 4 I Soifer (1372_CR12) 2014; 10 NE Wood (1372_CR24) 2019; 14 T Kluyver (1372_CR55) 2016; 2016 |
| References_xml | – ident: 1372_CR7 doi: 10.1101/2021.10.13.464238 – volume: 12 start-page: 1 year: 2021 ident: 1372_CR53 publication-title: Nat Commun doi: 10.1038/s41467-021-24451-8 – volume: 176 start-page: 1083 year: 2019 ident: 1372_CR50 publication-title: Cell doi: 10.1016/j.cell.2019.01.018 – volume: 4 start-page: 651 year: 2017 ident: 1372_CR35 publication-title: Cell Syst doi: 10.1016/j.cels.2017.05.012 – volume: 8 year: 2013 ident: 1372_CR25 publication-title: PLoS One doi: 10.1371/journal.pone.0057970 – volume: 191 start-page: 7 year: 2012 ident: 1372_CR54 publication-title: Genetics doi: 10.1534/genetics.112.140145 – volume: 11 start-page: 2692 year: 2021 ident: 1372_CR30 publication-title: Appl Sci doi: 10.3390/app11062692 – ident: 1372_CR38 doi: 10.1101/2022.05.11.491488 – ident: 1372_CR26 doi: 10.1098/rsif.2016.0705 – volume: 189 start-page: 777 year: 2010 ident: 1372_CR40 publication-title: J Cell Biol doi: 10.1083/jcb.201004104 – volume: 11 start-page: 1 year: 2020 ident: 1372_CR5 publication-title: Nat Commun doi: 10.1038/s41467-020-19557-4 – volume: 108 start-page: 1495 year: 2001 ident: 1372_CR51 publication-title: J Clin Invest doi: 10.1172/JCI200112190 – volume: 3 start-page: 21302 year: 2022 ident: 1372_CR1 publication-title: Biophys Rev doi: 10.1063/5.0082799 – volume: 11 start-page: 1 year: 2020 ident: 1372_CR44 publication-title: Nat Commun doi: 10.1038/s41467-020-16100-3 – ident: 1372_CR60 – volume: 9 start-page: 434 year: 2019 ident: 1372_CR41 publication-title: Cell Syst doi: 10.1016/j.cels.2019.10.001 – ident: 1372_CR13 doi: 10.3389/fcomp.2021.734559 – volume: 16 start-page: 1233 year: 2019 ident: 1372_CR3 publication-title: Nat Methods doi: 10.1038/s41592-019-0403-1 – ident: 1372_CR56 doi: 10.5281/zenodo.3555620 – volume-title: Cell-ACDC: segmentation, tracking, annotation and quantification of microscopy imaging data (dataset) year: 2022 ident: 1372_CR63 doi: 10.5281/ZENODO.6795124 – volume: 9351 start-page: 234 year: 2015 ident: 1372_CR2 publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) – volume: 14 year: 2019 ident: 1372_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0206395 – volume: 10 start-page: 761 year: 2014 ident: 1372_CR12 publication-title: Mol Syst Biol doi: 10.15252/msb.20145345 – volume: 305 start-page: 393 year: 2004 ident: 1372_CR45 publication-title: Science doi: 10.1126/science.1099892 – volume: 17 start-page: 261 year: 2020 ident: 1372_CR61 publication-title: Nat Methods doi: 10.1038/s41592-019-0686-2 – volume: 9 year: 2013 ident: 1372_CR15 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003085 – volume: 34 start-page: 88 year: 2018 ident: 1372_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx550 – volume: 28 start-page: 396 year: 2014 ident: 1372_CR46 publication-title: Genes Dev doi: 10.1101/gad.233221.113 – volume: 32 start-page: 3532 year: 2016 ident: 1372_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw413 – volume: 11 start-page: 1 year: 2020 ident: 1372_CR57 publication-title: Nat Commun doi: 10.1038/s41467-020-16764-x – volume: 8 start-page: 245 year: 2020 ident: 1372_CR32 publication-title: Quant Biol doi: 10.1007/s40484-020-0213-6 – volume: 4 start-page: 175 year: 2007 ident: 1372_CR34 publication-title: Nat Methods doi: 10.1038/nmeth1008 – ident: 1372_CR9 doi: 10.7554/eLife.34025 – volume: 16 year: 2018 ident: 1372_CR22 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2005970 – volume: 9 start-page: 676 year: 2012 ident: 1372_CR19 publication-title: Nat Methods doi: 10.1038/nmeth.2019 – volume: 77 start-page: 101 year: 2010 ident: 1372_CR23 publication-title: Cytom Part A doi: 10.1002/cyto.a.20812 – ident: 1372_CR37 doi: 10.1101/2021.10.05.463175 – volume: 7 start-page: eabk0271 year: 2021 ident: 1372_CR47 publication-title: Sci Adv doi: 10.1126/sciadv.abk0271 – volume-title: Cell-ACDC: segmentation, tracking, annotation and quantification of microscopy imaging data year: 2022 ident: 1372_CR42 doi: 10.5281/zenodo.6685170 – volume: 27 year: 2011 ident: 1372_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr244 – volume: 18 start-page: 100 year: 2021 ident: 1372_CR6 publication-title: Nat Methods doi: 10.1038/s41592-020-01018-x – volume: 11 start-page: 43 year: 2017 ident: 1372_CR16 publication-title: BMC Syst Biol doi: 10.1186/s12918-017-0399-z – volume: 14 start-page: 341 year: 2011 ident: 1372_CR27 publication-title: Comput Vis Sci doi: 10.1007/s00791-012-0178-8 – ident: 1372_CR59 doi: 10.25080/majora-92bf1922-00a – volume: 2016 start-page: 87 year: 2016 ident: 1372_CR55 publication-title: ELPUB doi: 10.3233/978-1-61499-649-1-87 – ident: 1372_CR48 doi: 10.1101/2020.12.08.415562 – volume: 12 year: 2016 ident: 1372_CR4 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005177 – ident: 1372_CR49 doi: 10.1109/IEMBS.2010.5626785 – volume: 3 start-page: 525 year: 2006 ident: 1372_CR14 publication-title: Nat Methods doi: 10.1038/nmeth892 – volume: 2009 start-page: 1016 year: 2009 ident: 1372_CR17 publication-title: Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf – volume: 56 start-page: 1756 year: 2021 ident: 1372_CR52 publication-title: Dev Cell doi: 10.1016/j.devcel.2021.04.030 – volume: 115 start-page: 80 year: 2017 ident: 1372_CR18 publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 2014 year: 2014 ident: 1372_CR58 publication-title: PeerJ doi: 10.7717/peerj.453 – volume: 35 start-page: 4525 year: 2019 ident: 1372_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz402 – volume-title: MOT20: A benchmark for multi object tracking in crowded scenes year: 2020 ident: 1372_CR62 – ident: 1372_CR8 doi: 10.1007/978-3-030-00934-2_30 – volume: 109 start-page: 14271 year: 2012 ident: 1372_CR28 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1206810109 – volume: 18 start-page: 43 year: 2021 ident: 1372_CR31 publication-title: Nat Methods doi: 10.1038/s41592-020-01023-0 – volume: 21 start-page: 3 year: 2006 ident: 1372_CR11 publication-title: Mol Cell doi: 10.1016/j.molcel.2005.10.035 – ident: 1372_CR39 doi: 10.7554/eLife.26947 – volume: 52 start-page: 1679 year: 2016 ident: 1372_CR43 publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2016.140952 – ident: 1372_CR21 doi: 10.7554/eLife.23971 – volume: 4 start-page: 10 year: 2022 ident: 1372_CR33 publication-title: Front Comput Sci doi: 10.3389/fcomp.2022.777728 |
| SSID | ssj0025773 |
| Score | 2.480477 |
| Snippet | Background
High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of... High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of data... Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the stage of... Abstract Background High-throughput live-cell imaging is a powerful tool to study dynamic cellular processes in single cells but creates a bottleneck at the... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 174 |
| SubjectTerms | Accuracy Algorithms Analysis Annotations Automation Bioimage analysis Biomedical and Life Sciences Cell culture Cell Cycle Cell cycle analysis Cell division Cell size Cell tracking Cell Tracking - methods Data analysis Deep learning Deep-learning cell segmentation Equipment and supplies Graphical user interface Hematopoietic stem cells Histones Image analysis Image processing Image Processing, Computer-Assisted - methods Image segmentation Life Sciences Live-cell imaging Machine learning Metadata Methods Microscopy Neural networks Saccharomyces cerevisiae Software Source code Stem cells Tagging TOR protein Tracking errors User interface Workflow Yeast |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hSgg4IN4YCloQEgdi1d73HkOgKkiARAv0tlqvvaVS6lQkEcq_Z8YvYhCFA8d4Z6N4ZnYem5lvCHkGEQFTXsQ0j7lJhSyy1FQWjGGpfQUOkMUC7yHfvVcHn8TbY3m8NeoLa8JaeOCWcXvCc64C87pEJCypvFcyGB5yocHVNu3lLDO2T6a6VEtqzfsWGaP2luDVcuxExjIErlmqRm6oQev_3SZvOaVfCyaHf02vkSvr-txvvvv5fMsx7d8g17uIkk7bN7lJLlX1LXK5nTG5uU2-HFYnZ12DUT2h8MUBb8epr0uKt_Y0bGAbfGzBSegi0jlYwLRZOz1rhhhRrCOleGVLZ_A4nc5eze6Qo_3XR7ODtJumkAZIRFepldEErmwhS2uD8SxUTJfSZ1EGkRmRw9lnMS8iyyxQFiIrYog-ZkIjxj2_S3bqRV3dJ1QpsNbSgqu3BqQLubkNVkfPhRawzyck73nrQoc0jgMv5q7JOIxyrTwcyMM18nAqIS-GPectzsaF1C9RZAMlYmQ3D0BzXKc57m-ak5CnKHCHKBg1ltmc-PVy6d58-Oym4LFzCGS5_hPR4ccR0fOOKC5QjL5rbQB2IbrWiHJ3RAlnOYyXe-VznS1ZOqYRVhET4YQ8GZZxJ9bH1dViDTTKWo3tsCwh91pdHZjDJcTomeAJ0SMtHnFvvFKffm2Qxi2XSmQ2IZNe33_-rIukMxnOxD8I88H_EOZDcpU1x9ukmdwlO6tv6-oRhIur4nFjGX4A-mhd9A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdGJwQ8IL4JDBQQEg80WuL4I35AqCubBhIFbQP2ZjlOXCZ1SVlbof733OVrC4iKx8bnqr1vO3e_I-QVZARUGOaCyEVJwHgaBkmuwBlm0uQQAKlL8R7y00QcfmUfT_npFpm0vTBYVtn6xMpRZ6XFO_JdKhFcDo8D7-Y_A5wahW9X2xEaphmtkL2tIMaukW2KyFgDsr23P_ly1B3BuJRx2zqTiN0FRLsIO5SxPCGWNBC98FSh-P_tq68Eqz8LKbu3qbfIjVUxN-tfZja7ErAO7pDbTabpj2rVuEu28uIeuV7PnlzfJ9-P8-l503hUDH34You35r4pMh9v8327hm3wsQYt8Uvnz8AzBtXa2Xk13MjH-lIfr3L9MTwORuP34wfk5GD_ZHwYNFMWAgsH1GWguEtsLFTKM6VsYqjNqcy4CR23LExYBIynLkodDRVQpixMnXXGhUwi9n38kAyKssgfE18I8OJcQQqgEpA6nNmVVdKZmEkG-4xHopa32jYI5DgIY6ark0gidC0PDfLQlTy08Mibbs-8xt_YSL2HIusoETu7elBeTHVjipqZOBaWGpkhthoXxghuk9hGTELyFnGPvESBa0THKLD8ZmpWi4X-8PmbHkEkjyDBjeW_iI6PekSvGyJXohhN0_IA7ELUrR7lTo8SbNz2l1vl042PWehLi_DIi24Zd2LdXJGXK6ARSklsk6UeeVTrasecmEPuHrLYI7KnxT3u9VeKsx8VArmKuWCh8siw1ffLn7VJOsPOJv5DmE82_-mn5CatDDcJQr5DBsuLVf4MEsRl-ryx-t-Kql09 priority: 102 providerName: ProQuest – databaseName: Scholars Portal - Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZKEQIeEDeBggxC4oEaEsdH_IDQslAVpIJEW9o3y_HGS6Vttuwh2H_PTC4aKFUfE4-jaG4f8w0hzyEj4MqJwJKQZEzIPGZZYcAZjrQrIADykOM-5M5ntb0vPh3KwzXStjtqGDg_c2mH_aT2Z5NXv36s3oLBv6kMPlOv5xCzEqwzxksGqeZMXSKXIVIZbOWwI7pTBdDO6sQZkvCEaQiObRHNmd_oBaoKz_9fr30qbP19pbI7V71Ori7LE7f66SaTU6Fr6ya50eScdFAryS2yVpS3yZW6C-XqDjnYLcbHTQlSuUnhwx73z6krRxT39alfwTR4rOFL6DTQCfhIVo0dHVdtjijeNKW4qUuH8JoNhu-Hd8ne1oe94TZr-i0wD0vVBTMyZD5VJpcjY3zmuC-4HkkXB-lFnIkEvAMPSR54bIAyF3EefHAhFhpR8NN7ZL2clsUDQpUCfy4NJAMmA_nD6t14o4NLhRYwz0UkaXlrfYNFji0xJrZak2TK1vKwIA9bycOqiLzs5pzUSBznUr9DkXWUiKJdvZjOxrYxSitcmirPnR4hyppUzinps9QnQkMal8iIPEOBW8TJKPEiztgt53P78cs3O4CYnkCqm-r_Ee1-7RG9aIjCFMXomuIHYBfib_UoN3qUYO2-P9wqn22NxXKNwIu4VI7I024YZ-INurKYLoFGGaOxYJZH5H6tqx1zUglZfCzSiOieFve41x8pj75XWOQmlQosLSKbrb7_-a3zpLPZ2cQFhPnwIix-RK7xynwzFssNsr6YLYvHkDAu8ieVF_gN2CVd3w priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxLuBggxC4sBaTfyMj8tCVZAAiRbozXKcuFTaZqvurtD-e2aSbNjwqOCYeCaKPJ6XPfOZkOcQEXDtZWRZzHImVZGyvLJgDEvjK3CAPBa4D_n-g97_LN8dqaMOJgd7YTbP77Nc787BH2XYQ4wFBMJwpi-TK-CkdHMwqyd9cqWMEeummD_yDRxPg8__uxXecEO_lkj256Q3yLVlfeZX3_10uuGK9m6Rm10MScet0G-TS1V9h1xtb5Vc3SVfD6rj066lqB5R-HDA_XDq65LiPj0NK2CDxxaOhM4inYLNY83YyWlzbRHFylGKm7R0Aq_ZePJ6co8c7r05nOyz7v4EFiD1XDCrYh6EtoUqrQ2556HiplQ-jSrINJcZaDuPWRF5aoGykGkRQ_QxlQZR7cV9slXP6mqbUK3BPisLzt3mIE_Ixm2wJnohjQQ-n5BsPbcudNjieMXF1DU5Rq5dKw8H8nCNPJxOyMue56xF1riQ-hWKrKdEVOzmBSwW1ymZk14IHbg3JaKmKe29ViEXIZMGwrJMJeQZCtwh7kWNhTXHfjmfu7cfv7gx-OgMQldh_kZ08GlA9KIjijMUo--aGWC6EE9rQLkzoATtDcPh9eJznfWYO24QSBFT34Q87YeREyvi6mq2BBptrcEGWJ6QB-1a7SdHKIjKUykSYgareDB7w5H65FuDLW6F0pDyJ2S0Xu8_f-si6Yx6nfgHYT78v68_Itd5o8g5S9UO2VqcL6vHEAouiieNDfgB3F9PpQ priority: 102 providerName: Springer Nature |
| Title | Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC |
| URI | https://link.springer.com/article/10.1186/s12915-022-01372-6 https://www.ncbi.nlm.nih.gov/pubmed/35932043 https://www.proquest.com/docview/2703711401 https://www.proquest.com/docview/2699706282 https://pubmed.ncbi.nlm.nih.gov/PMC9356409 https://bmcbiol.biomedcentral.com/counter/pdf/10.1186/s12915-022-01372-6 https://doaj.org/article/4a336c2a7d164656aa65c83c14789315 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: RBZ dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: KQ8 dateStart: 20031101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: DOA dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: GX1 dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1741-7007 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: M48 dateStart: 20031101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: AAJSJ dateStart: 20031201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1741-7007 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025773 issn: 1741-7007 databaseCode: C6C dateStart: 20030112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEB61iRDwwH0YSmQQEg_EqY89vI9JaBWQWqq0hcDLar3xhojEiZpEqPx6Zm0n1AUqkHixZO-s4szOteuZbwBeYkQQMkWMF5gg9ghNfC9OBRrDIVcpOsDQJPYc8uCQ9U7JuwEdbEFvXQuTTLVFH2pdLD6fFLUNtndCerY7H5pC1WO2u0BvFdgKY5teEPHQY9tQZxSj8hrUTw-P2p-KesjA4-gL1zUzv51Y8Us5fP-vRvqCl7qcQbn5jHoTrq-yuTr_piaTC55q_zaM1_-xSFD52lotk5b-fgn-8X8w4Q7cKsNZt13I313YSrN7cK1ocHl-Hz4ep6NpWd2UNV38AW2P5l2VDV37ycDV5zgNbwtkFHdm3AmaXy8fG0_zDkquTWJ17Xmx28XHXrv7pvsATvb3Tro9r2zl4GncBS89QU2sIyYSOhRCxyrUaciHVPmGauLHJEDDE5ogMaEvkDIhfmK0UcYn3ALsRw-hls2y9DG4jKGroALjDBGjaKVJKLTgRkWEE5ynHAjW6yh1CXNuu21MZL7diZks-CWRXzLnl2QOvN7MmRcgH1dSd6x4bCgtQHf-YHY2kqW-S6KiiOlQ8aEFcKNMKUZ1HOmAcIwQA-rACytc0kJwZDbHZ6RWi4V8-_6DbGO4EGAUHfE_ER33K0SvSiIzs8uoyroKZJeF9qpQ7lQo0ZDo6vBa0GVpyBYy5BbT0e7CHXi-GbYzbXJels5WSMOE4LYWN3TgUaEXG-ZEFDcIPokc4BWNqXCvOpKNv-Qw5yKijPjCgeZat36-1lWr09zo318s5pN_I38KN8Jc0WLPpztQW56t0mcYlS6TBmzzAW9AvbN3eNTHuy7rNvITHrwekBiv_c7nRmmWfgC-woXi |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEN8gxKAPxm-rqNVofICGdj-7D8TAAQH50AAqb5vttoskRw85LuT-OP83Z3ptoRqJLzxed7Z3tzM7H7szvyHkHXgEVFruo8QnacRFFkdpoUEZ5soWYACpz_AccmdXbnzlnw7F4RT51dTCYFploxMrRZ0PHJ6RL1KF4HIYDnw8_Rlh1yi8XW1aaNi6tUK-VEGM1YUdW8X4AkK44dLmKvD7PaXrawe9jajuMhA5CNDOIy186pjUmci1dqmlrqAqFzb2wvE45Ql8MfVJ5mmsgTLjceadtz7mCrHfGbz2FpnhjGuI_WZW1na_7LURn1CKNZU6qVwcgnFNsCAasyGYopHsWMOqacDfpuGKbfwzb7O9vL1LZkflqR1f2H7_in1cv0_u1Y5tuDyRxAdkqigfktuTVpfjR-T7fnF0Utc5lQshvNjhIX1oyzzEy4PQjWEafJxgpIQDH_ZBEUfV2PFJ1UspxHTWEE-Owx48jpZ7q73H5OAmlvsJmS4HZfGMhFKC0RAaPA6dgpAVGdVOK28ZVxzm2YAkzdoaVwOeY9-NvqkCn1SaCT8M8MNU_DAyIPPtnNMJ3Me11CvIspYSobqrB4OzI1PvfMMtY9JRq3KEchPSWilcylzCFfiKiQjIW2S4QTCOErN9juxoODSbn7-ZZXAcEvCnmfoX0f5eh-hDTeQHyEZbV1jAciHIV4dyrkMJKsV1hxvhM7VKG5rLDRiQN-0wzsQ0vbIYjIBGaq2wKpcG5OlEVtvFYQJChZizgKiOFHdWrztSHv-oAM81E5LHOiALjbxf_qzruLPQ7on_YObz6__0azK7cbCzbbY3d7dekDu02sRpFIs5Mn1-Nipegm96nr2qNUBIzA3rnN8hD5mP |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFSK2A6IHUMBg0AcqBV7Vs8BoZBQtRQKogV6G40nnlApdUrTqMqn8Xe85yWpQURceoznjZO8_c28hZDn4BFQabmPEp-kERdZHKW5BmU4UDYHA0h9hueQH3fk5lf-fl_sr5BfTS0MplU2OrFU1IOxwzPyDlXYXA7DgY6v0yI-9zfeHP2McIIU3rQ24zQqFtnOZ6cQvk1eb_WB1i8o3Xi319uM6gkDkYPg7CTSwqeOSZ2JgdYutdTlVA2Ejb1wPE55Al9KfZJ5GmuAzHiceeetj7nCvu8MXnuBXFSMacwmVPuLWE8oxZoanVR2JmBWEyyFxjwIpmgkW3awHBfwt1E4YxX_zNicX9teI1emxZGdndrR6Ixl3LhBrtcubditePAmWcmLW-RSNeRydpt8382Hh3WFU7EewosdHs-HthiEeG0Quhlsg49Vd5Rw7MMRqOCoXDs4LKcohZjIGuKZcdiDx1G31-_dIXvngey7ZLUYF_l9EkoJ5kJo8DV0CuyVZ1Q7rbxlXHHYZwOSNLg1rm51jhM3RqYMeVJpKnoYoIcp6WFkQF7N9xxVjT6WQr9Fks0hsUl3-WB8PDS1zBtuGZOOWjXAJm5CWiuFS5lLuAIvMREBeYYEN9iGo0CGHtrpZGK2Pn0zXXAZEvCkmfoX0O6XFtDLGsiPkYy2rq0AdGF7rxbkWgsSlIlrLzfMZ2plNjEL0QvI0_ky7sQEvSIfTwFGaq2wHpcG5F7Fq3PkMAFBQsxZQFSLi1vYa68UBz_KVueaCcljHZD1ht8XP2sZddbnMvEfxHyw_E8_IZdB05gPWzvbD8lVWspwGsVijayeHE_zR-CUnmSPS_EPiTlndfMbzi2XKQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF6VVAh44D4MBRmExANx6mMP72MIVAGJgmgL5Wm1XntDROJEOYTCr2fGF3GBCiQe451Rktm5dj3zDSFPISMIuabWC2wQe5QlvhdnEpxhKnQGATC0Cd5Dvj3kwxP65pSd7pBh3QuTTA2iD_W2m88nZW8Dzk7IFvvz1JamHvP9JUSrADuMsbwgEqHHL5BdziAr75Ddk8P3_c9lP2TgCYiFdc_MbxlbcamA7__VSW9FqbMVlM1r1Cvk0jqf6803PZlsRaqDa2Rc_8eyQOVrb71Keub7GfjH_yGE6-Rqlc66_VL_bpCdLL9JLpYDLje3yKejbDStupvyrgtfYPBq3tV56uIrA9dsgA0-lsgo7sy6E3C_XrE2nhYTlFwsYnXxvtgdwGOvP3g5uE2OD14dD4ZeNcrBM3AKXnmS2dhEXCYsldLEOjRZKFKmfcsM9WMagOMJbZDY0JdAmVA_scZq61OBAPvRHdLJZ3l2j7icQ6hgEvIMGYNqZUkojRRWR1RQ4NMOCep9VKaCOcdpGxNVHHdirkp5KZCXKuSluEOeNzzzEuTjXOoXqB4NJQJ0Fw9mi5Gq7F1RHUXchFqkCODGuNacmTgyARWQIQbMIU9QuRRCcORY4zPS6-VSvX73UfUhXQggi47En4iOPrSInlVEdobbqKu-ChAXQnu1KPdalOBITHu5VnRVObKlCgViOuIp3CGPm2XkxOK8PJutgYZLKbAXN3TI3dIuGuFEDA4IPo0cIloW05JeeyUffylgzmXEOPWlQ7q1bf38WeftTrexv7_YzPv_Rv6AXA4LQ4s9n-2Rzmqxzh5CVrpKHlUO5wdkvX-m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation%2C+tracking+and+cell+cycle+analysis+of+live-cell+imaging+data+with+Cell-ACDC&rft.jtitle=BMC+biology&rft.au=Padovani%2C+Francesco&rft.au=Mairh%C3%B6rmann%2C+Benedikt&rft.au=Falter-Braun%2C+Pascal&rft.au=Lengefeld%2C+Jette&rft.date=2022-08-05&rft.pub=BioMed+Central+Ltd&rft.issn=1741-7007&rft.eissn=1741-7007&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12915-022-01372-6&rft.externalDBID=ISR&rft.externalDocID=A718157537 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon |