Narrowing the distribution of ultrasound image quality using machine learning and deep learning

Ultrasound image quality varies substantially across different subjects. In some cases, this means ultrasound images are non-diagnostic. Overcoming these non-diagnostic exams is a common goal for advanced ultrasound beamforming algorithms. Recently, new beamforming approaches using machine learning...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Acoustical Society of America Vol. 152; no. 4; p. A74
Main Authors Khan, Christopher, Pan, Ying-Chun, Byram, Brett
Format Journal Article
LanguageEnglish
Published 01.10.2022
Online AccessGet full text
ISSN0001-4966
1520-8524
DOI10.1121/10.0015593

Cover

Abstract Ultrasound image quality varies substantially across different subjects. In some cases, this means ultrasound images are non-diagnostic. Overcoming these non-diagnostic exams is a common goal for advanced ultrasound beamforming algorithms. Recently, new beamforming approaches using machine learning and deep learning have been proposed by a number of groups to overcome ultrasound’s image quality issues. Our group has proposed several methods relying on both machine learning and deep learning approaches. We will also show how physics-based machine learning methods can lead directly to deep learning methods, and we can use the development and performance of these methods to generate insight into the underlying structure of ultrasound data. We will also show that rather than leading to artificial gains, deep learning methods can be used to actually increase the available information in the form of improved dynamic range compared to delay and sum beamforming. The improvement is 15–20 dB, and we can achieve this improvement in both clean and highly cluttered data. Finally, we will show that ultrasound beamformers can be trained with unlabeled in vivo data in order to learn the underlying distribution of clutter in particular in vivo scenarios (e.g. echocardiography). This leads to improvements in imaging performance and can be used to generate insight into the interaction of different sources of image degradation in vivo.
AbstractList Ultrasound image quality varies substantially across different subjects. In some cases, this means ultrasound images are non-diagnostic. Overcoming these non-diagnostic exams is a common goal for advanced ultrasound beamforming algorithms. Recently, new beamforming approaches using machine learning and deep learning have been proposed by a number of groups to overcome ultrasound’s image quality issues. Our group has proposed several methods relying on both machine learning and deep learning approaches. We will also show how physics-based machine learning methods can lead directly to deep learning methods, and we can use the development and performance of these methods to generate insight into the underlying structure of ultrasound data. We will also show that rather than leading to artificial gains, deep learning methods can be used to actually increase the available information in the form of improved dynamic range compared to delay and sum beamforming. The improvement is 15–20 dB, and we can achieve this improvement in both clean and highly cluttered data. Finally, we will show that ultrasound beamformers can be trained with unlabeled in vivo data in order to learn the underlying distribution of clutter in particular in vivo scenarios (e.g. echocardiography). This leads to improvements in imaging performance and can be used to generate insight into the interaction of different sources of image degradation in vivo.
Author Khan, Christopher
Pan, Ying-Chun
Byram, Brett
Author_xml – sequence: 1
  givenname: Christopher
  surname: Khan
  fullname: Khan, Christopher
  organization: Vanderbilt Univ., Nashville, TN
– sequence: 2
  givenname: Ying-Chun
  surname: Pan
  fullname: Pan, Ying-Chun
  organization: Biomedical Eng., Vanderbilt Univ., Nashville, TN
– sequence: 3
  givenname: Brett
  surname: Byram
  fullname: Byram, Brett
  organization: Vanderbilt Univ., 2301 Vanderbilt Pl, Nashville, TN 37235, brett.c.byram@vanderbilt.edu
BookMark eNp9kE9PwzAMxSM0JLbBhU-QM6iQNEmbHNHEP2mCy-6V07pbUJeOpBXatyfVJo7Ihyc__WzZb0FmvvdIyC1nD5zn_DEpY1wpIy7InKucZVrlckbmLNmZNEVxRRYxfqVWaWHmpPqAEPof57d02CFtXByCs-Pgek_7lo7dECD2o2-o28MW6fcInRuOdIzTyB7qnfNIO4TgJwMS2CAe_pxrctlCF_HmrEuyeXnerN6y9efr--ppndUlF5nRqRQwacAyWSIyzSQiFoBl0QhrOZSoDZgGVFMwbSQaa7UFLlCIQooluTutrUMfY8C2OoR0cDhWnFVTMpOek0nw_QmOtRtgevU_-he94Waq
CODEN JASMAN
ContentType Journal Article
Copyright Acoustical Society of America
Copyright_xml – notice: Acoustical Society of America
DBID AAYXX
CITATION
DOI 10.1121/10.0015593
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage A74
ExternalDocumentID 10_1121_10_0015593
jasa
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
ID FETCH-LOGICAL-c713-989895a049ab047ee0804eee6ae76d3bb1a7e89a9da5d60894e9bb8ba13e33643
ISSN 0001-4966
IngestDate Wed Oct 01 01:48:12 EDT 2025
Fri Jun 21 00:13:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c713-989895a049ab047ee0804eee6ae76d3bb1a7e89a9da5d60894e9bb8ba13e33643
PageCount 1
ParticipantIDs scitation_primary_10_1121_10_0015593
crossref_primary_10_1121_10_0015593
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationTitle The Journal of the Acoustical Society of America
PublicationYear 2022
SSID ssj0005839
Score 2.3923845
Snippet Ultrasound image quality varies substantially across different subjects. In some cases, this means ultrasound images are non-diagnostic. Overcoming these...
SourceID crossref
scitation
SourceType Index Database
Publisher
StartPage A74
Title Narrowing the distribution of ultrasound image quality using machine learning and deep learning
URI http://dx.doi.org/10.1121/10.0015593
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1520-8524
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0005839
  issn: 0001-4966
  databaseCode: ADMLS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qi-hFfOKbBb2VaPPeHOuLIurFCnoKu8kUBW2lNgf9F_5jZx_ZxCqiXkK7bTYk8zH5ZvebGUL2BwzCiMltd5eHTuCKxGGDXLYE9CLI4hxZhExOvryKejfB-W1422i811RLxUQcZG_f5pX8x6o4hnaVWbJ_sKydFAfwM9oXj2hhPP7KxleqgmKZ8JTLGrimfZXkgMXjZMxfZNuk9sOTlOboBMrXdqHWB56UjBLKvhE6VTEHeLYjdeJapZA9lrKCbjZSrcBkPRGj_ZS0Vm8BWUd-z4dTRQyqXSv1yx1eyTm-LyxKj17HGqVHUkRcX5bAiLYUuFWuFoPTJDJ1ro13xViVhTpp2rrf0KvhLEhVN9NK9qP9ale38jGvaPPtq_f3XL0QoZig7rz4ucT21KvPChJVKOS5qSuLpapzZ0jLwxdFp0la3ZPLi-tKN8R8E1Pp-zM1b_Hsw-rKn1jOHJIZrauoUZf-IlkwZqNdDaAl0oDhMplV2t_sZYWkFkYUzUrrMKKjAa1gRBWMqIERVTCiBka0BA1FGFEJIzuySvpnp_3jnmP6bjhZ7PqO6igacgwduegEMQAGFQEARBziKPeFcHkMLOFJzsM86rAkgEQIJrhcUPeR4a6R5nA0hHVCw4EveBCLgAmGgTwknSzO_NzNPJwWmeIG2SsfU_qsq6ukX02xQfbtE_zhb5u_mmyLzFdw3SbNybiAHeSVE7FrLP0BcpZ6UA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Narrowing+the+distribution+of+ultrasound+image+quality+using+machine+learning+and+deep+learning&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Khan%2C+Christopher&rft.au=Pan%2C+Ying-Chun&rft.au=Byram%2C+Brett&rft.date=2022-10-01&rft.issn=0001-4966&rft.eissn=1520-8524&rft.volume=152&rft.issue=4_Supplement&rft.spage=A74&rft.epage=A74&rft_id=info:doi/10.1121%2F10.0015593&rft.externalDBID=n%2Fa&rft.externalDocID=10_1121_10_0015593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon