An inhibitory gate for state transition in cortex
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using flu...
Saved in:
Published in | eLife Vol. 6 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Science Publications, Ltd
16.05.2017
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2050-084X 2050-084X |
DOI | 10.7554/eLife.26177 |
Cover
Abstract | Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. |
---|---|
AbstractList | Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.DOI: http://dx.doi.org/10.7554/eLife.26177.001 Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI: http://dx.doi.org/10.7554/eLife.26177.001 Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI: |
Audience | Academic |
Author | Molano-Mazón, Manuel Chiappalone, Michela Pasquale, Valentina Zucca, Stefano D’Urso, Giulia Pica, Giuseppe Bovetti, Serena Varani, Stefano Vecchia, Dania Moretti, Claudio Panzeri, Stefano Fellin, Tommaso |
Author_xml | – sequence: 1 givenname: Stefano surname: Zucca fullname: Zucca, Stefano organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy – sequence: 2 givenname: Giulia surname: D’Urso fullname: D’Urso, Giulia organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy – sequence: 3 givenname: Valentina orcidid: 0000-0002-4499-9536 surname: Pasquale fullname: Pasquale, Valentina organization: Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy – sequence: 4 givenname: Dania surname: Vecchia fullname: Vecchia, Dania organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy – sequence: 5 givenname: Giuseppe surname: Pica fullname: Pica, Giuseppe organization: Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy, Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy – sequence: 6 givenname: Serena surname: Bovetti fullname: Bovetti, Serena organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy – sequence: 7 givenname: Claudio surname: Moretti fullname: Moretti, Claudio organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy – sequence: 8 givenname: Stefano surname: Varani fullname: Varani, Stefano organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy – sequence: 9 givenname: Manuel surname: Molano-Mazón fullname: Molano-Mazón, Manuel organization: Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy, Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy – sequence: 10 givenname: Michela surname: Chiappalone fullname: Chiappalone, Michela organization: Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy – sequence: 11 givenname: Stefano orcidid: 0000-0003-1700-8909 surname: Panzeri fullname: Panzeri, Stefano organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy, Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy – sequence: 12 givenname: Tommaso orcidid: 0000-0003-2718-7533 surname: Fellin fullname: Fellin, Tommaso organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28509666$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1rHCEUhqWkNGmaq96Xhd40lN2q6-dNYAlpu7BQ6Af0ThxHJy6zmqpTmn9fZzdNMyF6oRyf83o8vi_BUYjBAvAawQWnlHywG-_sAjPE-TNwgiGFcyjIz6MH-2NwlvMW1sGJEEi-AMdYUCgZYycArcLMh2vf-BLT7azTxc5cTLNcxl1JOmRffByhmYmp2D-vwHOn-2zP7tZT8OPj1ffLz_PNl0_ry9VmbjjCZU61QNA1y6WkRlNCrGwagShuHaOQN4YShBouLNcQOuMkMXjZMi2shg1vEVyegvVBt416q26S3-l0q6L2ah-IqVM6FW96qwyGrJVNaxnnRLZac8uEwJxow4w1tGpdHLRuhmZnW2NDfVk_EZ2eBH-tuvhb1cKJhKgKvLsTSPHXYHNRO5-N7XsdbByyQkJKAjlD411vH6HbOKRQW6WQpJgjCTn_T3W6PsAHF-u9ZhRVKyKxgJDKUWvxBFVna3feVCc4X-OThPNJQmXql5VODzmr9bevU_bNw6bcd-OfOSrw_gCYFHNO1t0jCKrRfWrvPrV3X6XRI9r4aqLqnVqz75_M-QvoNto4 |
CitedBy_id | crossref_primary_10_1093_cercor_bhz314 crossref_primary_10_1523_JNEUROSCI_0373_20_2020 crossref_primary_10_1002_cns3_20061 crossref_primary_10_1113_JP279476 crossref_primary_10_1113_JP284587 crossref_primary_10_1038_s41583_019_0223_4 crossref_primary_10_7554_eLife_27602 crossref_primary_10_7554_eLife_73827 crossref_primary_10_1073_pnas_2200621119 crossref_primary_10_3389_fnsyn_2021_812905 crossref_primary_10_1016_j_bja_2022_01_014 crossref_primary_10_7554_eLife_66960 crossref_primary_10_1016_j_brainresbull_2022_07_002 crossref_primary_10_1093_brain_awaa338 crossref_primary_10_1093_brain_awad326 crossref_primary_10_1093_cercor_bhae438 crossref_primary_10_1016_j_cophys_2020_04_005 crossref_primary_10_1016_j_neuron_2021_06_030 crossref_primary_10_1152_jn_00013_2019 crossref_primary_10_1038_s41467_020_15803_x crossref_primary_10_1093_cercor_bhab297 crossref_primary_10_1523_JNEUROSCI_2250_20_2021 crossref_primary_10_3389_fnins_2020_579867 crossref_primary_10_1002_jnr_25156 crossref_primary_10_1016_j_cub_2020_02_004 crossref_primary_10_1016_j_celrep_2018_02_063 crossref_primary_10_1016_j_nbd_2021_105382 crossref_primary_10_3389_fnsys_2019_00075 crossref_primary_10_3390_biology10080707 crossref_primary_10_1073_pnas_2220777120 crossref_primary_10_7554_eLife_63329 crossref_primary_10_1016_j_brs_2024_07_008 crossref_primary_10_1016_j_jneumeth_2018_12_011 crossref_primary_10_1016_j_neurobiolaging_2019_02_009 crossref_primary_10_1016_j_celrep_2020_01_105 crossref_primary_10_3389_fncir_2021_660837 crossref_primary_10_3389_fnsys_2020_00022 crossref_primary_10_7554_eLife_63359 crossref_primary_10_1016_j_neuroscience_2017_11_033 crossref_primary_10_1093_cercor_bhy042 crossref_primary_10_1038_s41593_023_01284_w crossref_primary_10_1016_j_sleep_2021_03_001 crossref_primary_10_1371_journal_pcbi_1006781 crossref_primary_10_1016_j_celrep_2019_03_102 crossref_primary_10_1038_s41593_018_0164_7 crossref_primary_10_1016_j_neuron_2019_10_038 crossref_primary_10_1016_j_cub_2019_04_007 crossref_primary_10_1038_s41592_019_0493_9 crossref_primary_10_1523_ENEURO_0073_22_2022 crossref_primary_10_1038_s41467_024_51586_1 crossref_primary_10_1016_j_neuroscience_2020_03_011 crossref_primary_10_1093_cercor_bhx261 crossref_primary_10_1016_j_brainresbull_2022_06_006 crossref_primary_10_1038_s41593_020_0625_7 crossref_primary_10_7554_eLife_53186 crossref_primary_10_1016_j_isci_2023_108327 crossref_primary_10_1101_lm_053834_123 crossref_primary_10_1016_j_tins_2024_10_003 crossref_primary_10_1038_s41467_017_02642_6 crossref_primary_10_3389_fnsys_2022_972235 crossref_primary_10_3389_fnsys_2018_00023 crossref_primary_10_1002_advs_202005027 crossref_primary_10_1083_jcb_202401041 crossref_primary_10_1038_s41467_018_06871_1 crossref_primary_10_1016_j_neuroimage_2019_01_024 crossref_primary_10_1038_s41467_020_19864_w |
Cites_doi | 10.1016/j.neuron.2010.01.006 10.3389/fncir.2012.00052 10.1038/nature05278 10.1126/science.1138581 10.1523/JNEUROSCI.0739-16.2016 10.1093/cercor/bhj157 10.1523/JNEUROSCI.22-19-08691.2002 10.1152/jn.00178.2010 10.1523/JNEUROSCI.13-08-03266.1993 10.1523/JNEUROSCI.1318-04.2004 10.1126/science.aag2599 10.1152/jn.01114.2006 10.1109/TAU.1967.1161901 10.1038/nn.3532 10.1016/j.neuron.2016.12.036 10.1371/journal.pone.0003971 10.1152/jn.2001.85.5.1969 10.3389/fnsys.2012.00025 10.1038/nrn2762 10.1152/jn.00923.2014 10.1016/j.cell.2014.06.025 10.1371/journal.pone.0000670 10.1007/s00429-009-0225-5 10.1038/nn.2247 10.1152/jn.00206.2010 10.1152/jn.00858.2013 10.1523/JNEUROSCI.3375-10.2011 10.1016/j.neuron.2016.10.024 10.3389/fncir.2016.00052 10.1073/pnas.041430398 10.3389/neuro.01.1.1.009.2007 10.1038/nature02663 10.1038/nn.2445 10.1093/cercor/bhr121 10.1038/nn.4209 10.1073/pnas.0712219105 10.1113/jphysiol.2012.227462 10.3389/fncir.2015.00088 10.1111/j.1460-9568.2005.03932.x 10.1016/j.neuron.2005.02.028 10.1523/JNEUROSCI.2279-14.2015 10.1523/JNEUROSCI.6162-08.2009 10.1038/nn.3306 10.1523/JNEUROSCI.5297-05.2006 10.1038/nature08935 10.1038/76656 10.1007/s10827-010-0228-5 10.1523/JNEUROSCI.2004-14.2015 10.1038/nature01616 10.1016/j.neuron.2009.08.024 10.1523/JNEUROSCI.15-01-00604.1995 10.1523/JNEUROSCI.13-08-03252.1993 10.1016/j.conb.2011.06.002 10.1073/pnas.2235811100 10.1073/pnas.0710628105 10.1038/nn.4002 10.1523/JNEUROSCI.2184-07.2007 10.1038/nn2035 10.1523/JNEUROSCI.12-12-04701.1992 10.1126/science.aaf0902 10.1016/j.neuron.2005.09.035 10.1523/JNEUROSCI.5074-14.2015 10.1088/1741-2560/4/3/S02 10.1523/JNEUROSCI.1181-12.2012 10.1038/nature11526 10.1016/j.conb.2014.09.001 10.1152/jn.00845.2002 10.1016/j.cub.2008.02.023 10.1093/cercor/bhw002 10.1038/nature11312 10.1523/JNEUROSCI.2149-05.2005 10.1038/nature08652 10.1523/JNEUROSCI.0279-06.2006 10.1523/JNEUROSCI.0011-12.2012 10.1038/nn1690 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 eLife Science Publications, Ltd. 2017, Zucca et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2017, Zucca et al 2017 Zucca et al |
Copyright_xml | – notice: COPYRIGHT 2017 eLife Science Publications, Ltd. – notice: 2017, Zucca et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2017, Zucca et al 2017 Zucca et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.26177 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_c206d9bde67749daa7e688274ac6cec5 PMC5444901 A492800595 28509666 10_7554_eLife_26177 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS090576 – fundername: ; grantid: RBAP11X42L – fundername: ; grantid: 699829 – fundername: ; grantid: NEURO-PATTERNS – fundername: ; grantid: SLOW-DYN – fundername: ; grantid: 1U01NS090576-01 – fundername: ; grantid: DESIRE |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP 3V. CGR CUY CVF ECM EIF FRP NPM RHF PMFND 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c712t-5a810fb3395ca544e9bb8152df6507bc5411b78e7a00fcf94c23d6a8ea0b7d103 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:08:11 EDT 2025 Thu Aug 21 13:56:44 EDT 2025 Thu Sep 04 18:46:15 EDT 2025 Fri Jul 25 11:58:48 EDT 2025 Tue Jun 17 21:05:30 EDT 2025 Tue Jun 10 20:48:21 EDT 2025 Fri Jun 27 04:10:03 EDT 2025 Wed Feb 19 02:42:56 EST 2025 Thu Apr 24 23:06:31 EDT 2025 Tue Jul 01 00:29:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mouse parvalbumin positive interneuron up and down states Neocortex somatostatin positive interneuron neuroscience |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c712t-5a810fb3395ca544e9bb8152df6507bc5411b78e7a00fcf94c23d6a8ea0b7d103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-1700-8909 0000-0003-2718-7533 0000-0002-4499-9536 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.26177 |
PMID | 28509666 |
PQID | 1952719077 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c206d9bde67749daa7e688274ac6cec5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444901 proquest_miscellaneous_1899407615 proquest_journals_1952719077 gale_infotracmisc_A492800595 gale_infotracacademiconefile_A492800595 gale_incontextgauss_ISR_A492800595 pubmed_primary_28509666 crossref_primary_10_7554_eLife_26177 crossref_citationtrail_10_7554_eLife_26177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-16 |
PublicationDateYYYYMMDD | 2017-05-16 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2017 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Tan (bib69) 2008; 105 Neske (bib48) 2016; 10 Timofeev (bib70) 2001; 98 Slézia (bib63) 2011; 31 Marshall (bib39) 2006; 444 Sachidhanandam (bib57) 2013; 16 Compte (bib12) 2003; 89 Destexhe (bib20) 2011; 21 Hasenstaub (bib30) 2007; 27 Hu (bib32) 2016; 36 Fanselow (bib23) 2010; 104 Haider (bib28) 2007; 97 Lemieux (bib36) 2015; 113 Saleem (bib58) 2010; 29 Apicella (bib3) 2012; 32 Crunelli (bib17) 2015; 31 De Stasi (bib19) 2016; 26 Neske (bib46) 2015; 35 Panzeri (bib49) 2017; 93 Le Bon-Jego (bib34) 2007; 1 Puig (bib52) 2008; 105 Vyazovskiy (bib73) 2008; 11 Crunelli (bib16) 2010; 13 Diekelmann (bib21) 2010; 11 Lee (bib35) 2012; 488 MacLean (bib37) 2005; 48 Mann (bib38) 2009; 29 Miyamoto (bib42) 2016; 352 Adesnik (bib1) 2010; 464 Fogerson (bib24) 2016; 92 Haider (bib27) 2006; 26 Berndt (bib7) 2009; 12 Sanchez-Vives (bib59) 2010; 104 Reig (bib55) 2015; 35 Siapas (bib62) 2005; 46 Steriade (bib67) 2001; 85 Steriade (bib65) 1993; 13 Mukovski (bib44) 2007; 17 Reig (bib54) 2007; 2 Bazhenov (bib5) 2002; 22 Huber (bib33) 2004; 430 Montemurro (bib43) 2008; 18 Chen (bib8) 2012; 590 Ushimaru (bib71) 2015; 35 Beltramo (bib6) 2013; 16 Metherate (bib41) 1992; 12 Adesnik (bib2) 2012; 490 Sellers (bib60) 2015; 113 Welch (bib76) 1967; 15 Contreras (bib13) 1995; 15 Crochet (bib14) 2005; 21 Steriade (bib66) 1993; 13 Halassa (bib29) 2014; 158 Aravanis (bib4) 2007; 4 Muñoz (bib45) 2017; 355 Rasch (bib53) 2007; 315 Civillico (bib11) 2012; 6 Rosanova (bib56) 2005; 25 Herrera (bib31) 2016; 19 Volgushev (bib72) 2006; 26 Massimini (bib40) 2004; 24 Chow (bib10) 2010; 463 Shu (bib61) 2003; 423 Watson (bib75) 2008; 3 Eschenko (bib22) 2012; 22 Petersen (bib51) 2003; 100 Staiger (bib64) 2009; 214 Gentet (bib25) 2010; 65 Neske (bib47) 2015; 9 Vyazovskiy (bib74) 2009; 63 Tahvildari (bib68) 2012; 32 Chen (bib9) 2015; 18 Gentet (bib26) 2012; 6 Crochet (bib15) 2006; 9 Dantzker (bib18) 2000; 3 Petersen (bib50) 2003; 100 17086200 - Nature. 2006 Nov 30;444(7119):610-3 11353014 - J Neurophysiol. 2001 May;85(5):1969-85 27229145 - Science. 2016 Jun 10;352(6291):1315-8 28254942 - Science. 2017 Mar 3;355(6328):954-959 19882169 - Brain Struct Funct. 2009 Dec;214(1):1-13 8340806 - J Neurosci. 1993 Aug;13(8):3252-65 19515919 - J Neurosci. 2009 Jun 10;29(23 ):7513-8 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704 14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43 25833839 - J Neurophysiol. 2015 Jun 1;113(10):3798-815 17409168 - J Neurophysiol. 2007 Jun;97(6):4186-202 16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45 22912602 - Front Neural Circuits. 2012 Aug 17;6:52 26834569 - Front Neural Circuits. 2016 Jan 14;9:88 18204445 - Nat Neurosci. 2008 Feb;11(2):200-8 25392176 - J Neurophysiol. 2015 Feb 1;113(3):768-79 27883901 - Neuron. 2016 Nov 23;92 (4):687-704 16547348 - Cereb Cortex. 2007 Feb;17(2):400-14 25915477 - Nat Neurosci. 2015 Jun;18(6):892-902 1361197 - J Neurosci. 1992 Dec;12(12):4701-11 20159454 - Neuron. 2010 Feb 11;65(3):422-35 12612051 - J Neurophysiol. 2003 May;89(5):2707-25 16337918 - Neuron. 2005 Dec 8;48(5):811-23 18328702 - Curr Biol. 2008 Mar 11;18(5):375-80 26691833 - Nat Neurosci. 2016 Feb;19(2):290-8 22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010 23060193 - Nature. 2012 Oct 11;490(7419):226-31 18982123 - Front Neurosci. 2007 Oct 15;1(1):123-9 25126786 - Cell. 2014 Aug 14;158(4):808-21 15820700 - Neuron. 2005 Apr 7;46(1):141-51 28182905 - Neuron. 2017 Feb 8;93(3):491-507 19966841 - Nat Neurosci. 2010 Jan;13(1):9-17 8340807 - J Neurosci. 1993 Aug;13(8):3266-83 16617340 - Nat Neurosci. 2006 May;9(5):608-10 20538767 - J Neurophysiol. 2010 Aug;104(2):596-606 17873414 - J Neural Eng. 2007 Sep;4(3):S143-56 20414303 - Nature. 2010 Apr 22;464(7292):1155-60 25673859 - J Neurosci. 2015 Feb 11;35(6):2689-702 25609625 - J Neurosci. 2015 Jan 21;35(3):1089-105 11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9 21715156 - Curr Opin Neurobiol. 2011 Oct;21(5):717-25 27358449 - J Neurosci. 2016 Jun 29;36(26):6906-16 19092994 - PLoS One. 2008;3(12):e3971 20225075 - J Comput Neurosci. 2010 Aug;29(1-2):49-62 21228169 - J Neurosci. 2011 Jan 12;31(2):607-17 17668052 - PLoS One. 2007 Aug 01;2(7):e670 15184907 - Nature. 2004 Jul 1;430(6995):78-81 17804621 - J Neurosci. 2007 Sep 5;27(36):9607-22 18245383 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2187-92 19079251 - Nat Neurosci. 2009 Feb;12(2):229-34 21670101 - Cereb Cortex. 2012 Feb;22(2):426-35 18550841 - Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8428-33 20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24 19778514 - Neuron. 2009 Sep 24;63(6):865-78 16723523 - J Neurosci. 2006 May 24;26(21):5665-72 7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22 22509158 - Front Syst Neurosci. 2012 Apr 13;6:25 25233254 - Curr Opin Neurobiol. 2015 Apr;31:72-80 26311779 - J Neurosci. 2015 Aug 26;35(34):11988-2001 20046194 - Nat Rev Neurosci. 2010 Feb;11(2):114-26 17347444 - Science. 2007 Mar 9;315 (5817):1426-9 22878719 - Nature. 2012 Aug 16;488(7411):379-83 20054397 - Nature. 2010 Jan 7;463(7277):98-102 24097038 - Nat Neurosci. 2013 Nov;16(11):1671-7 16221848 - J Neurosci. 2005 Oct 12;25(41):9398-405 15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70 22933799 - J Neurosci. 2012 Aug 29;32(35):12165-79 26819275 - Cereb Cortex. 2016 Apr;26(4):1778-94 15787708 - Eur J Neurosci. 2005 Feb;21(4):1030-44 23313909 - Nat Neurosci. 2013 Feb;16(2):227-34 12748642 - Nature. 2003 May 15;423(6937):288-93 10862703 - Nat Neurosci. 2000 Jul;3(7):701-7 22593070 - J Neurosci. 2012 May 16;32(20):7021-33 27507936 - Front Neural Circuits. 2016 Jul 26;10:52 |
References_xml | – volume: 65 start-page: 422 year: 2010 ident: bib25 article-title: Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice publication-title: Neuron doi: 10.1016/j.neuron.2010.01.006 – volume: 6 start-page: 52 year: 2012 ident: bib26 article-title: Functional diversity of supragranular GABAergic neurons in the barrel cortex publication-title: Frontiers in Neural Circuits doi: 10.3389/fncir.2012.00052 – volume: 444 start-page: 610 year: 2006 ident: bib39 article-title: Boosting slow oscillations during sleep potentiates memory publication-title: Nature doi: 10.1038/nature05278 – volume: 315 start-page: 1426 year: 2007 ident: bib53 article-title: Odor cues during slow-wave sleep prompt declarative memory consolidation publication-title: Science doi: 10.1126/science.1138581 – volume: 36 start-page: 6906 year: 2016 ident: bib32 article-title: Differential excitation of distally versus Proximally targeting cortical interneurons by unitary thalamocortical bursts publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0739-16.2016 – volume: 17 start-page: 400 year: 2007 ident: bib44 article-title: Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep publication-title: Cerebral Cortex doi: 10.1093/cercor/bhj157 – volume: 22 start-page: 8691 year: 2002 ident: bib5 article-title: Model of thalamocortical slow-wave sleep oscillations and transitions to activated States publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.22-19-08691.2002 – volume: 104 start-page: 1314 year: 2010 ident: bib59 article-title: Inhibitory modulation of cortical up states publication-title: Journal of Neurophysiology doi: 10.1152/jn.00178.2010 – volume: 13 start-page: 3266 year: 1993 ident: bib66 article-title: Intracellular analysis of relations between the slow (< 1 hz) neocortical oscillation and other sleep rhythms of the electroencephalogram publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.13-08-03266.1993 – volume: 24 start-page: 6862 year: 2004 ident: bib40 article-title: The sleep slow oscillation as a traveling wave publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1318-04.2004 – volume: 355 start-page: 954 year: 2017 ident: bib45 article-title: Layer-specific modulation of neocortical dendritic inhibition during active wakefulness publication-title: Science doi: 10.1126/science.aag2599 – volume: 97 start-page: 4186 year: 2007 ident: bib28 article-title: Enhancement of visual responsiveness by spontaneous local network activity in vivo publication-title: Journal of Neurophysiology doi: 10.1152/jn.01114.2006 – volume: 15 start-page: 70 year: 1967 ident: bib76 article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms publication-title: IEEE Transactions on Audio and Electroacoustics doi: 10.1109/TAU.1967.1161901 – volume: 16 start-page: 1671 year: 2013 ident: bib57 article-title: Membrane potential correlates of sensory perception in mouse barrel cortex publication-title: Nature Neuroscience doi: 10.1038/nn.3532 – volume: 93 start-page: 491 year: 2017 ident: bib49 article-title: Cracking the Neural Code for Sensory perception by Combining Statistics, intervention, and behavior publication-title: Neuron doi: 10.1016/j.neuron.2016.12.036 – volume: 3 start-page: e3971 year: 2008 ident: bib75 article-title: UP states protect ongoing cortical activity from thalamic inputs publication-title: PLoS One doi: 10.1371/journal.pone.0003971 – volume: 85 start-page: 1969 year: 2001 ident: bib67 article-title: Natural waking and sleep states: a view from inside neocortical neurons publication-title: Journal of Neurophysiology doi: 10.1152/jn.2001.85.5.1969 – volume: 6 start-page: 25 year: 2012 ident: bib11 article-title: Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context publication-title: Frontiers in Systems Neuroscience doi: 10.3389/fnsys.2012.00025 – volume: 11 start-page: 114 year: 2010 ident: bib21 article-title: The memory function of sleep publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn2762 – volume: 113 start-page: 3798 year: 2015 ident: bib60 article-title: Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas publication-title: Journal of Neurophysiology doi: 10.1152/jn.00923.2014 – volume: 158 start-page: 808 year: 2014 ident: bib29 article-title: State-dependent architecture of thalamic reticular subnetworks publication-title: Cell doi: 10.1016/j.cell.2014.06.025 – volume: 2 start-page: e670 year: 2007 ident: bib54 article-title: Synaptic transmission and plasticity in an active cortical network publication-title: PLoS One doi: 10.1371/journal.pone.0000670 – volume: 214 start-page: 1 year: 2009 ident: bib64 article-title: Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex publication-title: Brain Structure & Function doi: 10.1007/s00429-009-0225-5 – volume: 12 start-page: 229 year: 2009 ident: bib7 article-title: Bi-stable neural state switches publication-title: Nature Neuroscience doi: 10.1038/nn.2247 – volume: 104 start-page: 596 year: 2010 ident: bib23 article-title: The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex publication-title: Journal of Neurophysiology doi: 10.1152/jn.00206.2010 – volume: 113 start-page: 768 year: 2015 ident: bib36 article-title: Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation publication-title: Journal of Neurophysiology doi: 10.1152/jn.00858.2013 – volume: 31 start-page: 607 year: 2011 ident: bib63 article-title: Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3375-10.2011 – volume: 92 start-page: 687 year: 2016 ident: bib24 article-title: Tapping the Brakes: cellular and synaptic mechanisms that regulate thalamic oscillations publication-title: Neuron doi: 10.1016/j.neuron.2016.10.024 – volume: 10 start-page: 52 year: 2016 ident: bib48 article-title: Distinct roles of SOM and VIP Interneurons during Cortical up States publication-title: Frontiers in Neural Circuits doi: 10.3389/fncir.2016.00052 – volume: 98 start-page: 1924 year: 2001 ident: bib70 article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study publication-title: PNAS doi: 10.1073/pnas.041430398 – volume: 1 start-page: 123 year: 2007 ident: bib34 article-title: Persistently active, pacemaker-like neurons in neocortex publication-title: Frontiers in Neuroscience doi: 10.3389/neuro.01.1.1.009.2007 – volume: 430 start-page: 78 year: 2004 ident: bib33 article-title: Local sleep and learning publication-title: Nature doi: 10.1038/nature02663 – volume: 13 start-page: 9 year: 2010 ident: bib16 article-title: The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators publication-title: Nature Neuroscience doi: 10.1038/nn.2445 – volume: 22 start-page: 426 year: 2012 ident: bib22 article-title: Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep publication-title: Cerebral Cortex doi: 10.1093/cercor/bhr121 – volume: 19 start-page: 290 year: 2016 ident: bib31 article-title: Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness publication-title: Nature Neuroscience doi: 10.1038/nn.4209 – volume: 105 start-page: 8428 year: 2008 ident: bib52 article-title: Two distinct activity patterns of fast-spiking interneurons during neocortical UP states publication-title: PNAS doi: 10.1073/pnas.0712219105 – volume: 590 start-page: 3987 year: 2012 ident: bib8 article-title: Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2012.227462 – volume: 9 start-page: 88 year: 2015 ident: bib47 article-title: The Slow Oscillation in Cortical and Thalamic Networks: mechanisms and functions publication-title: Frontiers in Neural Circuits doi: 10.3389/fncir.2015.00088 – volume: 21 start-page: 1030 year: 2005 ident: bib14 article-title: Modulation of synaptic transmission in neocortex by network activities publication-title: The European Journal of Neuroscience doi: 10.1111/j.1460-9568.2005.03932.x – volume: 46 start-page: 141 year: 2005 ident: bib62 article-title: Prefrontal phase locking to hippocampal theta oscillations publication-title: Neuron doi: 10.1016/j.neuron.2005.02.028 – volume: 35 start-page: 1089 year: 2015 ident: bib46 article-title: Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2279-14.2015 – volume: 29 start-page: 7513 year: 2009 ident: bib38 article-title: Distinct roles of GABA(A) and GABA(B) receptors in balancing and terminating persistent cortical activity publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.6162-08.2009 – volume: 16 start-page: 227 year: 2013 ident: bib6 article-title: Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex publication-title: Nature Neuroscience doi: 10.1038/nn.3306 – volume: 26 start-page: 4535 year: 2006 ident: bib27 article-title: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5297-05.2006 – volume: 464 start-page: 1155 year: 2010 ident: bib1 article-title: Lateral competition for cortical space by layer-specific horizontal circuits publication-title: Nature doi: 10.1038/nature08935 – volume: 3 start-page: 701 year: 2000 ident: bib18 article-title: Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons publication-title: Nature Neuroscience doi: 10.1038/76656 – volume: 29 start-page: 49 year: 2010 ident: bib58 article-title: Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-010-0228-5 – volume: 35 start-page: 2689 year: 2015 ident: bib55 article-title: Gain modulation of synaptic inputs by network state in auditory cortex in vivo publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2004-14.2015 – volume: 423 start-page: 288 year: 2003 ident: bib61 article-title: Turning on and off recurrent balanced cortical activity publication-title: Nature doi: 10.1038/nature01616 – volume: 63 start-page: 865 year: 2009 ident: bib74 article-title: Cortical firing and sleep homeostasis publication-title: Neuron doi: 10.1016/j.neuron.2009.08.024 – volume: 15 start-page: 604 year: 1995 ident: bib13 article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.15-01-00604.1995 – volume: 13 start-page: 3252 year: 1993 ident: bib65 article-title: A novel slow (< 1 hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.13-08-03252.1993 – volume: 21 start-page: 717 year: 2011 ident: bib20 article-title: Intracellular and computational evidence for a dominant role of internal network activity in cortical computations publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2011.06.002 – volume: 100 start-page: 13638 year: 2003 ident: bib50 article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex publication-title: PNAS doi: 10.1073/pnas.2235811100 – volume: 105 start-page: 2187 year: 2008 ident: bib69 article-title: Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons publication-title: PNAS doi: 10.1073/pnas.0710628105 – volume: 18 start-page: 892 year: 2015 ident: bib9 article-title: An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity publication-title: Nature Neuroscience doi: 10.1038/nn.4002 – volume: 27 start-page: 9607 year: 2007 ident: bib30 article-title: State changes rapidly modulate cortical neuronal responsiveness publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2184-07.2007 – volume: 11 start-page: 200 year: 2008 ident: bib73 article-title: Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep publication-title: Nature Neuroscience doi: 10.1038/nn2035 – volume: 12 start-page: 4701 year: 1992 ident: bib41 article-title: Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.12-12-04701.1992 – volume: 352 start-page: 1315 year: 2016 ident: bib42 article-title: Top-down cortical input during NREM sleep consolidates perceptual memory publication-title: Science doi: 10.1126/science.aaf0902 – volume: 48 start-page: 811 year: 2005 ident: bib37 article-title: Internal dynamics determine the cortical response to thalamic stimulation publication-title: Neuron doi: 10.1016/j.neuron.2005.09.035 – volume: 35 start-page: 11988 year: 2015 ident: bib71 article-title: Temporal structure of neuronal activity among cortical neuron subtypes during Slow Oscillations in Anesthetized Rats publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5074-14.2015 – volume: 4 start-page: S143 year: 2007 ident: bib4 article-title: An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/4/3/S02 – volume: 32 start-page: 12165 year: 2012 ident: bib68 article-title: Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.1181-12.2012 – volume: 490 start-page: 226 year: 2012 ident: bib2 article-title: A neural circuit for spatial summation in visual cortex publication-title: Nature doi: 10.1038/nature11526 – volume: 31 start-page: 72 year: 2015 ident: bib17 article-title: The thalamocortical network as a single slow wave-generating unit publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2014.09.001 – volume: 89 start-page: 2707 year: 2003 ident: bib12 article-title: Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model publication-title: Journal of Neurophysiology doi: 10.1152/jn.00845.2002 – volume: 18 start-page: 375 year: 2008 ident: bib43 article-title: Phase-of-firing coding of natural visual stimuli in primary visual cortex publication-title: Current Biology : CB doi: 10.1016/j.cub.2008.02.023 – volume: 26 start-page: 1778 year: 2016 ident: bib19 article-title: Unaltered Network activity and Interneuronal Firing during Spontaneous Cortical Dynamics in Vivo in a mouse Model of severe myoclonic Epilepsy of Infancy publication-title: Cerebral Cortex doi: 10.1093/cercor/bhw002 – volume: 488 start-page: 379 year: 2012 ident: bib35 article-title: Activation of specific interneurons improves V1 feature selectivity and visual perception publication-title: Nature doi: 10.1038/nature11312 – volume: 100 start-page: 13638 year: 2003 ident: bib51 article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex publication-title: PNAS doi: 10.1073/pnas.2235811100 – volume: 25 start-page: 9398 year: 2005 ident: bib56 article-title: Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2149-05.2005 – volume: 463 start-page: 98 year: 2010 ident: bib10 article-title: High-performance genetically targetable optical neural silencing by light-driven proton pumps publication-title: Nature doi: 10.1038/nature08652 – volume: 26 start-page: 5665 year: 2006 ident: bib72 article-title: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected] publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0279-06.2006 – volume: 32 start-page: 7021 year: 2012 ident: bib3 article-title: Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0011-12.2012 – volume: 9 start-page: 608 year: 2006 ident: bib15 article-title: Correlating whisker behavior with membrane potential in barrel cortex of awake mice publication-title: Nature Neuroscience doi: 10.1038/nn1690 – reference: 23060193 - Nature. 2012 Oct 11;490(7419):226-31 – reference: 26311779 - J Neurosci. 2015 Aug 26;35(34):11988-2001 – reference: 17668052 - PLoS One. 2007 Aug 01;2(7):e670 – reference: 27883901 - Neuron. 2016 Nov 23;92 (4):687-704 – reference: 18245383 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2187-92 – reference: 17347444 - Science. 2007 Mar 9;315 (5817):1426-9 – reference: 25609625 - J Neurosci. 2015 Jan 21;35(3):1089-105 – reference: 27507936 - Front Neural Circuits. 2016 Jul 26;10:52 – reference: 16617340 - Nat Neurosci. 2006 May;9(5):608-10 – reference: 12612051 - J Neurophysiol. 2003 May;89(5):2707-25 – reference: 15787708 - Eur J Neurosci. 2005 Feb;21(4):1030-44 – reference: 26834569 - Front Neural Circuits. 2016 Jan 14;9:88 – reference: 25673859 - J Neurosci. 2015 Feb 11;35(6):2689-702 – reference: 14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43 – reference: 28254942 - Science. 2017 Mar 3;355(6328):954-959 – reference: 16723523 - J Neurosci. 2006 May 24;26(21):5665-72 – reference: 25833839 - J Neurophysiol. 2015 Jun 1;113(10):3798-815 – reference: 18328702 - Curr Biol. 2008 Mar 11;18(5):375-80 – reference: 22912602 - Front Neural Circuits. 2012 Aug 17;6:52 – reference: 18982123 - Front Neurosci. 2007 Oct 15;1(1):123-9 – reference: 21228169 - J Neurosci. 2011 Jan 12;31(2):607-17 – reference: 20046194 - Nat Rev Neurosci. 2010 Feb;11(2):114-26 – reference: 22593070 - J Neurosci. 2012 May 16;32(20):7021-33 – reference: 27358449 - J Neurosci. 2016 Jun 29;36(26):6906-16 – reference: 15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70 – reference: 18550841 - Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8428-33 – reference: 21715156 - Curr Opin Neurobiol. 2011 Oct;21(5):717-25 – reference: 20225075 - J Comput Neurosci. 2010 Aug;29(1-2):49-62 – reference: 26819275 - Cereb Cortex. 2016 Apr;26(4):1778-94 – reference: 25915477 - Nat Neurosci. 2015 Jun;18(6):892-902 – reference: 16337918 - Neuron. 2005 Dec 8;48(5):811-23 – reference: 17086200 - Nature. 2006 Nov 30;444(7119):610-3 – reference: 27229145 - Science. 2016 Jun 10;352(6291):1315-8 – reference: 15820700 - Neuron. 2005 Apr 7;46(1):141-51 – reference: 16547348 - Cereb Cortex. 2007 Feb;17(2):400-14 – reference: 19882169 - Brain Struct Funct. 2009 Dec;214(1):1-13 – reference: 26691833 - Nat Neurosci. 2016 Feb;19(2):290-8 – reference: 19515919 - J Neurosci. 2009 Jun 10;29(23 ):7513-8 – reference: 20538767 - J Neurophysiol. 2010 Aug;104(2):596-606 – reference: 19092994 - PLoS One. 2008;3(12):e3971 – reference: 22509158 - Front Syst Neurosci. 2012 Apr 13;6:25 – reference: 8340806 - J Neurosci. 1993 Aug;13(8):3252-65 – reference: 11353014 - J Neurophysiol. 2001 May;85(5):1969-85 – reference: 16221848 - J Neurosci. 2005 Oct 12;25(41):9398-405 – reference: 25233254 - Curr Opin Neurobiol. 2015 Apr;31:72-80 – reference: 25126786 - Cell. 2014 Aug 14;158(4):808-21 – reference: 17409168 - J Neurophysiol. 2007 Jun;97(6):4186-202 – reference: 22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010 – reference: 1361197 - J Neurosci. 1992 Dec;12(12):4701-11 – reference: 24097038 - Nat Neurosci. 2013 Nov;16(11):1671-7 – reference: 7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22 – reference: 28182905 - Neuron. 2017 Feb 8;93(3):491-507 – reference: 20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24 – reference: 17873414 - J Neural Eng. 2007 Sep;4(3):S143-56 – reference: 22878719 - Nature. 2012 Aug 16;488(7411):379-83 – reference: 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704 – reference: 16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45 – reference: 21670101 - Cereb Cortex. 2012 Feb;22(2):426-35 – reference: 23313909 - Nat Neurosci. 2013 Feb;16(2):227-34 – reference: 10862703 - Nat Neurosci. 2000 Jul;3(7):701-7 – reference: 11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9 – reference: 20159454 - Neuron. 2010 Feb 11;65(3):422-35 – reference: 18204445 - Nat Neurosci. 2008 Feb;11(2):200-8 – reference: 17804621 - J Neurosci. 2007 Sep 5;27(36):9607-22 – reference: 8340807 - J Neurosci. 1993 Aug;13(8):3266-83 – reference: 19079251 - Nat Neurosci. 2009 Feb;12(2):229-34 – reference: 19778514 - Neuron. 2009 Sep 24;63(6):865-78 – reference: 15184907 - Nature. 2004 Jul 1;430(6995):78-81 – reference: 12748642 - Nature. 2003 May 15;423(6937):288-93 – reference: 20054397 - Nature. 2010 Jan 7;463(7277):98-102 – reference: 20414303 - Nature. 2010 Apr 22;464(7292):1155-60 – reference: 19966841 - Nat Neurosci. 2010 Jan;13(1):9-17 – reference: 22933799 - J Neurosci. 2012 Aug 29;32(35):12165-79 – reference: 25392176 - J Neurophysiol. 2015 Feb 1;113(3):768-79 |
SSID | ssj0000748819 |
Score | 2.4285235 |
Snippet | Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals Cerebral Cortex - physiology Cortex Electroencephalography Electrophysiological recording Interneurons Interneurons - physiology Laboratories Mice Neocortex Neural circuitry Neural Inhibition Neuroscience Neurosciences NREM sleep Optogenetics Parvalbumin parvalbumin positive interneuron Physiological aspects Prefrontal cortex Sleep Sleep and wakefulness Somatostatin somatostatin positive interneuron up and down states Wakefulness |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2yIPgifju6SpUFQajbpGk-HkdxWUV9UBf2Ldybpm5h6YgzA_rvvTftDlMUfPG1OVOac5Pek87NiRBHNWKDUENpktSllphKRAWliw40VDWqbCn08ZM5PdPvz5vzvaO-uCZstAceiTuOqjKtxzYZEiq-BbDJkCq0GqKJKWb30spXe4up_A62NDClHzfkWUqZx-lD36VX7D9uZykoO_X_-T7eS0jzYsm97HNyS9ycZGOxHB_3triWhjvi-niQ5K-7Qi6Hoh8ueuz5P_OCP40VpEaLvF2o2HA-yqVZBCoil9f-vCfOTt5-fXNaTochlNFKtSkbcLLqsK59E6HROnlER8m37UhjWYyNlhKtSxaqqoud11HVrQGXoELbyqq-Lw6G1ZAeisJE5yMCdkDEABjSjM6Zuqs1gvJttxAvr_gJcXIK5wMrLgOtGJjMkMkMmcyFONqBv48GGX-HvWaidxB2tc4XKNZhinX4V6wX4jmHKbBvxcCFMd9gu16Hd18-h6X2yvFOWgK9mEDdip46wrTPgPrOVlcz5OEMSRMrzpuvRkOYJvY6SN8oSyKKe_Rs18y_5GK1Ia22hKE1rObvQ3SLB-Pg2fVbOfbbMWYh7GxYzYiZtwz9Rbb9pqBrUm-P_geTj8UNxfqEbWjNoTjY_NimJ6SuNvg0T6TfdKUkNA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56Ivgi_rZ6SpUDQajXpGmSPskqHqeoD-rBvoVJmt4VpD1vd0H_e2fS7HpF8bX5WtrJj_kynXzD2EHlXO2ggkIFLgvJXSicE1AYb0BCWTkRJYU-fVbHJ_LDsl6mgNsqpVVu18S4ULejpxj5IW9qodF7af36_EdBVaPo72oqoXGVXePIRKh0g17qXYwF3aNBjzcdy9PoOA_Dx74Lr0iFXM8cUdTr_3tVvuSW5imTl3zQ0S12M5HHfDH19m12JQx32PWpnOSvu4wvhrwfznrX05_znAJkOXLSPB4aytfklWKCFoJyT0m2P--xk6N3394eF6kkQuE1F-uiBsPLzlVVU3uopQyNcwZdcNsh09LO15Jzp03QUJad7xrpRdUqMAFKp1teVvfZ3jAO4SHLlTeNd-A6QMMAKGSOxqiqq6QD0bRdxl5u7WN90gunshXfLe4byJg2GtNGY2bsYAc-n2Qy_g17Q4beQUjbOl4YL05tmirWi1K1jWuDQmratAA6KNwHaAle-eDrjD2nbrKkXjFQeswpbFYr-_7rF7uQjTB0nhZBLxKoG_GtPaTTBvjtJHg1Q-7PkDi9_Lx5Oxpsmt4r-2cwZuzZrpnupJS1IYwbxOBOVlKUCB_xYBo8u-8WhlR3lMqYng2rmWHmLUN_FsW_sdMlcrhH_3-tx-yGIP5BMrNqn-2tLzbhCbKntXsap8hvDbkawA priority: 102 providerName: ProQuest |
Title | An inhibitory gate for state transition in cortex |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28509666 https://www.proquest.com/docview/1952719077 https://www.proquest.com/docview/1899407615 https://pubmed.ncbi.nlm.nih.gov/PMC5444901 https://doaj.org/article/c206d9bde67749daa7e688274ac6cec5 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5UOilNH1umy5uCRQK3tqyLMmnsgkJaWlDSbuwNzGS5cQQvO0-IPn3nZG9S5zk0Ks1NtbnkeeTNPqGsYPM2txCBrH0qYhFan1sLYdYOw0CkszyICn040yeTsS3aT7dYutinB2AiwendlRPajK_Gl3_vfmCAx7560hhNPzsv9eVH5G0uNpmu2GjiHL4Op4ffskK_TQU-eBJHrRMp-1Zvbv396JTEPG__6u-Fav6eZS3AtPJU_akY5TRuHWBPbblm2fsUVtj8uY5S8dNVDeXta1pOz2iVbMIiWoUThJFSwpVIWsLjSJHmbfXL9jk5Pj30Wnc1UmInUr5Ms5Bp0lls6zIHeRC-MJajXG5rJB-KetykaZWaa8gSSpXFcLxrJSgPSRWlWmSvWQ7zazxr1kknS6cBVsBAgMgkU5qLbMqExZ4UVYD9mmNj3GdiDjVsrgyOJkgME0A0wQwB-xgY_yn1c542OyQgN6YkOB1uDCbX5hu_BjHE1kWtvQS-WpRAigvcXKgBDjpvMsH7AN9JkOSFg3lzFzAarEwX3-dm7EouKZDtmj0sTOqZvjWDrojCNh3UsHqWe73LHHMuX7z2hvM2mVNWuRcIb-iHr3fNNOdlMfW-NkKbXB6K2jpCB_xqnWeTb-5JikeKQdM9dyqB0y_pakvgyI4fnSBxO7N_4Dwlj3mRE1IgVbus53lfOXfIbFa2iHbVlM1ZLuHx2c_z4dheWIYBtI_SDokqQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL_JGBDQEBJSWOI4tvMwoQ42tayr0NikvXm242yVpnSsrWD_HH8bd2laFoF422t8iZKzz9_5cvcdwEZqbWZNaiLhEx7xxPrIWmYi5ZThJk4tqymF9oeid8S_HGfHK_BrUQtDaZWLPbHeqIuxoxj5ZpJnTCJ6Sfnx4ntEXaPo7-qihYZpWisUWzXFWFPYseevfuARbrLV_4zz_Zax3Z3DT72o6TIQOZmwaZQZlcSlTdM8cybj3OfWKkS1okTnRVqX8SSxUnlp4rh0Zc4dSwthlDexlUUSp_jcW7DKKYDSgdXtneHXg2WUBwFaIebOCwMlQvemH4xK_4F40GULCuuOAX_jwjVgbCdtXkPB3ftwr3Ffw-58vT2AFV89hNvzhpZXjyDpVuGoOhvZEf27DylEF6JXHNZlS-GUcLFOEUOh0FGa78_HcHQj6noCnWpc-WcQCqdyZ40tDSrGGIG-q1IiLVNuDcuLMoD3C_1o1zCWU-OMc40nF1KmrpWpa2UGsLEUvpgTdfxbbJsUvRQhdu36wvjyVDfGqh2LRZHbwgt0jvPCGOkFnkQkN04477IA3tA0aeLPqChB59TMJhPd_3aguzxniip6UehdI1SO8a2daeod8NuJcqslud6SRAN37eHFatDNBjPRf8whgNfLYbqTkuYqP56hDJ6lOcWp8BFP54tn-d1MEe-PEAHI1rJqKaY9Uo3OavpxnHSOXuTa_1_rFdzpHe4P9KA_3HsOdxl5Q5QFJNahM72c-Rfoy03ty8ZgQji5aRv9DY94Xjc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJhAviN8UBgQ0hIQUmjiO7TxMqGOrVjaqaTBpb97ZcbZKKB1rK9i_yF_FXeqWRSDe9hpfouR85-_s3H3H2EZmbW4hg1j6VMQitT62lkOsnQYBSWZ5Qyn0eSh3j8Sn4_x4hf1a1MJQWuViTWwW6nLs6Iy8mxY5V4heSnWrkBZxsN3_cP49pg5S9Kd10U4DQpuFcrOhGwtFHnv-8gdu5yabg22c-zec93e-ftyNQ8eB2KmUT-McdJpUNsuK3EEuhC-s1YhwZYWBjLIuF2lqlfYKkqRyVSEcz0oJ2kNiVZkmGT73BltTiPq4EVzb2hkeHC5PfBCsNeLvvEhQIYx3_f6o8u-JE121YLHpHvA3RlwByXYC5xVE7N9ld0IoG_XmtnePrfj6Prs5b255-YClvToa1WcjO6L_-BEd10UYIUdNCVM0JYxs0sVQKHKU8vvzITu6FnU9Yqv1uPZPWCSdLpwFWwEqBkBiHKu1zKpMWOBFWXXYu4V-jAvs5dRE45vBXQwp0zTKNI0yO2xjKXw-J-34t9gWKXopQkzbzYXxxakJjmscT2RZ2NJLDJSLEkB5ibsSJcBJ513eYa9pmgxxadRklacwm0zM4Muh6YmCa6ruRaG3Qaga41s7CLUP-O1Ev9WSXG9JorO79vDCGkxYbCbmj2t02KvlMN1JCXS1H89QBvfVgs6s8BGP58az_G6uiQNIyg5TLbNqKaY9Uo_OGipynHSBEeXT_7_WS3YLfdXsD4Z7z9htToER8d_KdbY6vZj55xjWTe2L4C8RO7luF_0NB6Bifg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inhibitory+gate+for+state+transition+in+cortex&rft.jtitle=eLife&rft.au=Zucca%2C+Stefano&rft.au=D%27Urso%2C+Giulia&rft.au=Pasquale%2C+Valentina&rft.au=Vecchia%2C+Dania&rft.date=2017-05-16&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=6&rft_id=info:doi/10.7554%2FeLife.26177&rft.externalDBID=ISR&rft.externalDocID=A492800595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |