An inhibitory gate for state transition in cortex

Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using flu...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 6
Main Authors Zucca, Stefano, D’Urso, Giulia, Pasquale, Valentina, Vecchia, Dania, Pica, Giuseppe, Bovetti, Serena, Moretti, Claudio, Varani, Stefano, Molano-Mazón, Manuel, Chiappalone, Michela, Panzeri, Stefano, Fellin, Tommaso
Format Journal Article
LanguageEnglish
Published England eLife Science Publications, Ltd 16.05.2017
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.26177

Cover

Abstract Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.
AbstractList Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.DOI: http://dx.doi.org/10.7554/eLife.26177.001
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI: http://dx.doi.org/10.7554/eLife.26177.001
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale.
Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are known to involve both excitatory and inhibitory cells. However, if and how inhibition regulates these activity transitions is unclear. Using fluorescence-targeted electrophysiological recording and cell-specific optogenetic manipulation in both anesthetized and non-anesthetized mice, we found that two major classes of interneurons, the parvalbumin and the somatostatin positive cells, tightly control both up-to-down and down-to-up state transitions. Inhibitory regulation of state transition was observed under both natural and optogenetically-evoked conditions. Moreover, perturbative optogenetic experiments revealed that the inhibitory control of state transition was interneuron-type specific. Finally, local manipulation of small ensembles of interneurons affected cortical populations millimetres away from the modulated region. Together, these results demonstrate that inhibition potently gates transitions between cortical activity states, and reveal the cellular mechanisms by which local inhibitory microcircuits regulate state transitions at the mesoscale. DOI:
Audience Academic
Author Molano-Mazón, Manuel
Chiappalone, Michela
Pasquale, Valentina
Zucca, Stefano
D’Urso, Giulia
Pica, Giuseppe
Bovetti, Serena
Varani, Stefano
Vecchia, Dania
Moretti, Claudio
Panzeri, Stefano
Fellin, Tommaso
Author_xml – sequence: 1
  givenname: Stefano
  surname: Zucca
  fullname: Zucca, Stefano
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
– sequence: 2
  givenname: Giulia
  surname: D’Urso
  fullname: D’Urso, Giulia
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
– sequence: 3
  givenname: Valentina
  orcidid: 0000-0002-4499-9536
  surname: Pasquale
  fullname: Pasquale, Valentina
  organization: Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
– sequence: 4
  givenname: Dania
  surname: Vecchia
  fullname: Vecchia, Dania
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
– sequence: 5
  givenname: Giuseppe
  surname: Pica
  fullname: Pica, Giuseppe
  organization: Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy, Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
– sequence: 6
  givenname: Serena
  surname: Bovetti
  fullname: Bovetti, Serena
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
– sequence: 7
  givenname: Claudio
  surname: Moretti
  fullname: Moretti, Claudio
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
– sequence: 8
  givenname: Stefano
  surname: Varani
  fullname: Varani, Stefano
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
– sequence: 9
  givenname: Manuel
  surname: Molano-Mazón
  fullname: Molano-Mazón, Manuel
  organization: Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy, Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
– sequence: 10
  givenname: Michela
  surname: Chiappalone
  fullname: Chiappalone, Michela
  organization: Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
– sequence: 11
  givenname: Stefano
  orcidid: 0000-0003-1700-8909
  surname: Panzeri
  fullname: Panzeri, Stefano
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy, Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
– sequence: 12
  givenname: Tommaso
  orcidid: 0000-0003-2718-7533
  surname: Fellin
  fullname: Fellin, Tommaso
  organization: Optical Approaches to Brain Function Laboratory, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy, Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28509666$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rHCEUhqWkNGmaq96Xhd40lN2q6-dNYAlpu7BQ6Af0ThxHJy6zmqpTmn9fZzdNMyF6oRyf83o8vi_BUYjBAvAawQWnlHywG-_sAjPE-TNwgiGFcyjIz6MH-2NwlvMW1sGJEEi-AMdYUCgZYycArcLMh2vf-BLT7azTxc5cTLNcxl1JOmRffByhmYmp2D-vwHOn-2zP7tZT8OPj1ffLz_PNl0_ry9VmbjjCZU61QNA1y6WkRlNCrGwagShuHaOQN4YShBouLNcQOuMkMXjZMi2shg1vEVyegvVBt416q26S3-l0q6L2ah-IqVM6FW96qwyGrJVNaxnnRLZac8uEwJxow4w1tGpdHLRuhmZnW2NDfVk_EZ2eBH-tuvhb1cKJhKgKvLsTSPHXYHNRO5-N7XsdbByyQkJKAjlD411vH6HbOKRQW6WQpJgjCTn_T3W6PsAHF-u9ZhRVKyKxgJDKUWvxBFVna3feVCc4X-OThPNJQmXql5VODzmr9bevU_bNw6bcd-OfOSrw_gCYFHNO1t0jCKrRfWrvPrV3X6XRI9r4aqLqnVqz75_M-QvoNto4
CitedBy_id crossref_primary_10_1093_cercor_bhz314
crossref_primary_10_1523_JNEUROSCI_0373_20_2020
crossref_primary_10_1002_cns3_20061
crossref_primary_10_1113_JP279476
crossref_primary_10_1113_JP284587
crossref_primary_10_1038_s41583_019_0223_4
crossref_primary_10_7554_eLife_27602
crossref_primary_10_7554_eLife_73827
crossref_primary_10_1073_pnas_2200621119
crossref_primary_10_3389_fnsyn_2021_812905
crossref_primary_10_1016_j_bja_2022_01_014
crossref_primary_10_7554_eLife_66960
crossref_primary_10_1016_j_brainresbull_2022_07_002
crossref_primary_10_1093_brain_awaa338
crossref_primary_10_1093_brain_awad326
crossref_primary_10_1093_cercor_bhae438
crossref_primary_10_1016_j_cophys_2020_04_005
crossref_primary_10_1016_j_neuron_2021_06_030
crossref_primary_10_1152_jn_00013_2019
crossref_primary_10_1038_s41467_020_15803_x
crossref_primary_10_1093_cercor_bhab297
crossref_primary_10_1523_JNEUROSCI_2250_20_2021
crossref_primary_10_3389_fnins_2020_579867
crossref_primary_10_1002_jnr_25156
crossref_primary_10_1016_j_cub_2020_02_004
crossref_primary_10_1016_j_celrep_2018_02_063
crossref_primary_10_1016_j_nbd_2021_105382
crossref_primary_10_3389_fnsys_2019_00075
crossref_primary_10_3390_biology10080707
crossref_primary_10_1073_pnas_2220777120
crossref_primary_10_7554_eLife_63329
crossref_primary_10_1016_j_brs_2024_07_008
crossref_primary_10_1016_j_jneumeth_2018_12_011
crossref_primary_10_1016_j_neurobiolaging_2019_02_009
crossref_primary_10_1016_j_celrep_2020_01_105
crossref_primary_10_3389_fncir_2021_660837
crossref_primary_10_3389_fnsys_2020_00022
crossref_primary_10_7554_eLife_63359
crossref_primary_10_1016_j_neuroscience_2017_11_033
crossref_primary_10_1093_cercor_bhy042
crossref_primary_10_1038_s41593_023_01284_w
crossref_primary_10_1016_j_sleep_2021_03_001
crossref_primary_10_1371_journal_pcbi_1006781
crossref_primary_10_1016_j_celrep_2019_03_102
crossref_primary_10_1038_s41593_018_0164_7
crossref_primary_10_1016_j_neuron_2019_10_038
crossref_primary_10_1016_j_cub_2019_04_007
crossref_primary_10_1038_s41592_019_0493_9
crossref_primary_10_1523_ENEURO_0073_22_2022
crossref_primary_10_1038_s41467_024_51586_1
crossref_primary_10_1016_j_neuroscience_2020_03_011
crossref_primary_10_1093_cercor_bhx261
crossref_primary_10_1016_j_brainresbull_2022_06_006
crossref_primary_10_1038_s41593_020_0625_7
crossref_primary_10_7554_eLife_53186
crossref_primary_10_1016_j_isci_2023_108327
crossref_primary_10_1101_lm_053834_123
crossref_primary_10_1016_j_tins_2024_10_003
crossref_primary_10_1038_s41467_017_02642_6
crossref_primary_10_3389_fnsys_2022_972235
crossref_primary_10_3389_fnsys_2018_00023
crossref_primary_10_1002_advs_202005027
crossref_primary_10_1083_jcb_202401041
crossref_primary_10_1038_s41467_018_06871_1
crossref_primary_10_1016_j_neuroimage_2019_01_024
crossref_primary_10_1038_s41467_020_19864_w
Cites_doi 10.1016/j.neuron.2010.01.006
10.3389/fncir.2012.00052
10.1038/nature05278
10.1126/science.1138581
10.1523/JNEUROSCI.0739-16.2016
10.1093/cercor/bhj157
10.1523/JNEUROSCI.22-19-08691.2002
10.1152/jn.00178.2010
10.1523/JNEUROSCI.13-08-03266.1993
10.1523/JNEUROSCI.1318-04.2004
10.1126/science.aag2599
10.1152/jn.01114.2006
10.1109/TAU.1967.1161901
10.1038/nn.3532
10.1016/j.neuron.2016.12.036
10.1371/journal.pone.0003971
10.1152/jn.2001.85.5.1969
10.3389/fnsys.2012.00025
10.1038/nrn2762
10.1152/jn.00923.2014
10.1016/j.cell.2014.06.025
10.1371/journal.pone.0000670
10.1007/s00429-009-0225-5
10.1038/nn.2247
10.1152/jn.00206.2010
10.1152/jn.00858.2013
10.1523/JNEUROSCI.3375-10.2011
10.1016/j.neuron.2016.10.024
10.3389/fncir.2016.00052
10.1073/pnas.041430398
10.3389/neuro.01.1.1.009.2007
10.1038/nature02663
10.1038/nn.2445
10.1093/cercor/bhr121
10.1038/nn.4209
10.1073/pnas.0712219105
10.1113/jphysiol.2012.227462
10.3389/fncir.2015.00088
10.1111/j.1460-9568.2005.03932.x
10.1016/j.neuron.2005.02.028
10.1523/JNEUROSCI.2279-14.2015
10.1523/JNEUROSCI.6162-08.2009
10.1038/nn.3306
10.1523/JNEUROSCI.5297-05.2006
10.1038/nature08935
10.1038/76656
10.1007/s10827-010-0228-5
10.1523/JNEUROSCI.2004-14.2015
10.1038/nature01616
10.1016/j.neuron.2009.08.024
10.1523/JNEUROSCI.15-01-00604.1995
10.1523/JNEUROSCI.13-08-03252.1993
10.1016/j.conb.2011.06.002
10.1073/pnas.2235811100
10.1073/pnas.0710628105
10.1038/nn.4002
10.1523/JNEUROSCI.2184-07.2007
10.1038/nn2035
10.1523/JNEUROSCI.12-12-04701.1992
10.1126/science.aaf0902
10.1016/j.neuron.2005.09.035
10.1523/JNEUROSCI.5074-14.2015
10.1088/1741-2560/4/3/S02
10.1523/JNEUROSCI.1181-12.2012
10.1038/nature11526
10.1016/j.conb.2014.09.001
10.1152/jn.00845.2002
10.1016/j.cub.2008.02.023
10.1093/cercor/bhw002
10.1038/nature11312
10.1523/JNEUROSCI.2149-05.2005
10.1038/nature08652
10.1523/JNEUROSCI.0279-06.2006
10.1523/JNEUROSCI.0011-12.2012
10.1038/nn1690
ContentType Journal Article
Copyright COPYRIGHT 2017 eLife Science Publications, Ltd.
2017, Zucca et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017, Zucca et al 2017 Zucca et al
Copyright_xml – notice: COPYRIGHT 2017 eLife Science Publications, Ltd.
– notice: 2017, Zucca et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017, Zucca et al 2017 Zucca et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.26177
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_c206d9bde67749daa7e688274ac6cec5
PMC5444901
A492800595
28509666
10_7554_eLife_26177
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U01 NS090576
– fundername: ;
  grantid: RBAP11X42L
– fundername: ;
  grantid: 699829
– fundername: ;
  grantid: NEURO-PATTERNS
– fundername: ;
  grantid: SLOW-DYN
– fundername: ;
  grantid: 1U01NS090576-01
– fundername: ;
  grantid: DESIRE
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
PMFND
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c712t-5a810fb3395ca544e9bb8152df6507bc5411b78e7a00fcf94c23d6a8ea0b7d103
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:08:11 EDT 2025
Thu Aug 21 13:56:44 EDT 2025
Thu Sep 04 18:46:15 EDT 2025
Fri Jul 25 11:58:48 EDT 2025
Tue Jun 17 21:05:30 EDT 2025
Tue Jun 10 20:48:21 EDT 2025
Fri Jun 27 04:10:03 EDT 2025
Wed Feb 19 02:42:56 EST 2025
Thu Apr 24 23:06:31 EDT 2025
Tue Jul 01 00:29:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
parvalbumin positive interneuron
up and down states
Neocortex
somatostatin positive interneuron
neuroscience
Language English
License http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c712t-5a810fb3395ca544e9bb8152df6507bc5411b78e7a00fcf94c23d6a8ea0b7d103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-1700-8909
0000-0003-2718-7533
0000-0002-4499-9536
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.26177
PMID 28509666
PQID 1952719077
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_c206d9bde67749daa7e688274ac6cec5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444901
proquest_miscellaneous_1899407615
proquest_journals_1952719077
gale_infotracmisc_A492800595
gale_infotracacademiconefile_A492800595
gale_incontextgauss_ISR_A492800595
pubmed_primary_28509666
crossref_primary_10_7554_eLife_26177
crossref_citationtrail_10_7554_eLife_26177
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-16
PublicationDateYYYYMMDD 2017-05-16
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2017
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Tan (bib69) 2008; 105
Neske (bib48) 2016; 10
Timofeev (bib70) 2001; 98
Slézia (bib63) 2011; 31
Marshall (bib39) 2006; 444
Sachidhanandam (bib57) 2013; 16
Compte (bib12) 2003; 89
Destexhe (bib20) 2011; 21
Hasenstaub (bib30) 2007; 27
Hu (bib32) 2016; 36
Fanselow (bib23) 2010; 104
Haider (bib28) 2007; 97
Lemieux (bib36) 2015; 113
Saleem (bib58) 2010; 29
Apicella (bib3) 2012; 32
Crunelli (bib17) 2015; 31
De Stasi (bib19) 2016; 26
Neske (bib46) 2015; 35
Panzeri (bib49) 2017; 93
Le Bon-Jego (bib34) 2007; 1
Puig (bib52) 2008; 105
Vyazovskiy (bib73) 2008; 11
Crunelli (bib16) 2010; 13
Diekelmann (bib21) 2010; 11
Lee (bib35) 2012; 488
MacLean (bib37) 2005; 48
Mann (bib38) 2009; 29
Miyamoto (bib42) 2016; 352
Adesnik (bib1) 2010; 464
Fogerson (bib24) 2016; 92
Haider (bib27) 2006; 26
Berndt (bib7) 2009; 12
Sanchez-Vives (bib59) 2010; 104
Reig (bib55) 2015; 35
Siapas (bib62) 2005; 46
Steriade (bib67) 2001; 85
Steriade (bib65) 1993; 13
Mukovski (bib44) 2007; 17
Reig (bib54) 2007; 2
Bazhenov (bib5) 2002; 22
Huber (bib33) 2004; 430
Montemurro (bib43) 2008; 18
Chen (bib8) 2012; 590
Ushimaru (bib71) 2015; 35
Beltramo (bib6) 2013; 16
Metherate (bib41) 1992; 12
Adesnik (bib2) 2012; 490
Sellers (bib60) 2015; 113
Welch (bib76) 1967; 15
Contreras (bib13) 1995; 15
Crochet (bib14) 2005; 21
Steriade (bib66) 1993; 13
Halassa (bib29) 2014; 158
Aravanis (bib4) 2007; 4
Muñoz (bib45) 2017; 355
Rasch (bib53) 2007; 315
Civillico (bib11) 2012; 6
Rosanova (bib56) 2005; 25
Herrera (bib31) 2016; 19
Volgushev (bib72) 2006; 26
Massimini (bib40) 2004; 24
Chow (bib10) 2010; 463
Shu (bib61) 2003; 423
Watson (bib75) 2008; 3
Eschenko (bib22) 2012; 22
Petersen (bib51) 2003; 100
Staiger (bib64) 2009; 214
Gentet (bib25) 2010; 65
Neske (bib47) 2015; 9
Vyazovskiy (bib74) 2009; 63
Tahvildari (bib68) 2012; 32
Chen (bib9) 2015; 18
Gentet (bib26) 2012; 6
Crochet (bib15) 2006; 9
Dantzker (bib18) 2000; 3
Petersen (bib50) 2003; 100
17086200 - Nature. 2006 Nov 30;444(7119):610-3
11353014 - J Neurophysiol. 2001 May;85(5):1969-85
27229145 - Science. 2016 Jun 10;352(6291):1315-8
28254942 - Science. 2017 Mar 3;355(6328):954-959
19882169 - Brain Struct Funct. 2009 Dec;214(1):1-13
8340806 - J Neurosci. 1993 Aug;13(8):3252-65
19515919 - J Neurosci. 2009 Jun 10;29(23 ):7513-8
12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704
14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43
25833839 - J Neurophysiol. 2015 Jun 1;113(10):3798-815
17409168 - J Neurophysiol. 2007 Jun;97(6):4186-202
16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45
22912602 - Front Neural Circuits. 2012 Aug 17;6:52
26834569 - Front Neural Circuits. 2016 Jan 14;9:88
18204445 - Nat Neurosci. 2008 Feb;11(2):200-8
25392176 - J Neurophysiol. 2015 Feb 1;113(3):768-79
27883901 - Neuron. 2016 Nov 23;92 (4):687-704
16547348 - Cereb Cortex. 2007 Feb;17(2):400-14
25915477 - Nat Neurosci. 2015 Jun;18(6):892-902
1361197 - J Neurosci. 1992 Dec;12(12):4701-11
20159454 - Neuron. 2010 Feb 11;65(3):422-35
12612051 - J Neurophysiol. 2003 May;89(5):2707-25
16337918 - Neuron. 2005 Dec 8;48(5):811-23
18328702 - Curr Biol. 2008 Mar 11;18(5):375-80
26691833 - Nat Neurosci. 2016 Feb;19(2):290-8
22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010
23060193 - Nature. 2012 Oct 11;490(7419):226-31
18982123 - Front Neurosci. 2007 Oct 15;1(1):123-9
25126786 - Cell. 2014 Aug 14;158(4):808-21
15820700 - Neuron. 2005 Apr 7;46(1):141-51
28182905 - Neuron. 2017 Feb 8;93(3):491-507
19966841 - Nat Neurosci. 2010 Jan;13(1):9-17
8340807 - J Neurosci. 1993 Aug;13(8):3266-83
16617340 - Nat Neurosci. 2006 May;9(5):608-10
20538767 - J Neurophysiol. 2010 Aug;104(2):596-606
17873414 - J Neural Eng. 2007 Sep;4(3):S143-56
20414303 - Nature. 2010 Apr 22;464(7292):1155-60
25673859 - J Neurosci. 2015 Feb 11;35(6):2689-702
25609625 - J Neurosci. 2015 Jan 21;35(3):1089-105
11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9
21715156 - Curr Opin Neurobiol. 2011 Oct;21(5):717-25
27358449 - J Neurosci. 2016 Jun 29;36(26):6906-16
19092994 - PLoS One. 2008;3(12):e3971
20225075 - J Comput Neurosci. 2010 Aug;29(1-2):49-62
21228169 - J Neurosci. 2011 Jan 12;31(2):607-17
17668052 - PLoS One. 2007 Aug 01;2(7):e670
15184907 - Nature. 2004 Jul 1;430(6995):78-81
17804621 - J Neurosci. 2007 Sep 5;27(36):9607-22
18245383 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2187-92
19079251 - Nat Neurosci. 2009 Feb;12(2):229-34
21670101 - Cereb Cortex. 2012 Feb;22(2):426-35
18550841 - Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8428-33
20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24
19778514 - Neuron. 2009 Sep 24;63(6):865-78
16723523 - J Neurosci. 2006 May 24;26(21):5665-72
7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22
22509158 - Front Syst Neurosci. 2012 Apr 13;6:25
25233254 - Curr Opin Neurobiol. 2015 Apr;31:72-80
26311779 - J Neurosci. 2015 Aug 26;35(34):11988-2001
20046194 - Nat Rev Neurosci. 2010 Feb;11(2):114-26
17347444 - Science. 2007 Mar 9;315 (5817):1426-9
22878719 - Nature. 2012 Aug 16;488(7411):379-83
20054397 - Nature. 2010 Jan 7;463(7277):98-102
24097038 - Nat Neurosci. 2013 Nov;16(11):1671-7
16221848 - J Neurosci. 2005 Oct 12;25(41):9398-405
15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70
22933799 - J Neurosci. 2012 Aug 29;32(35):12165-79
26819275 - Cereb Cortex. 2016 Apr;26(4):1778-94
15787708 - Eur J Neurosci. 2005 Feb;21(4):1030-44
23313909 - Nat Neurosci. 2013 Feb;16(2):227-34
12748642 - Nature. 2003 May 15;423(6937):288-93
10862703 - Nat Neurosci. 2000 Jul;3(7):701-7
22593070 - J Neurosci. 2012 May 16;32(20):7021-33
27507936 - Front Neural Circuits. 2016 Jul 26;10:52
References_xml – volume: 65
  start-page: 422
  year: 2010
  ident: bib25
  article-title: Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.01.006
– volume: 6
  start-page: 52
  year: 2012
  ident: bib26
  article-title: Functional diversity of supragranular GABAergic neurons in the barrel cortex
  publication-title: Frontiers in Neural Circuits
  doi: 10.3389/fncir.2012.00052
– volume: 444
  start-page: 610
  year: 2006
  ident: bib39
  article-title: Boosting slow oscillations during sleep potentiates memory
  publication-title: Nature
  doi: 10.1038/nature05278
– volume: 315
  start-page: 1426
  year: 2007
  ident: bib53
  article-title: Odor cues during slow-wave sleep prompt declarative memory consolidation
  publication-title: Science
  doi: 10.1126/science.1138581
– volume: 36
  start-page: 6906
  year: 2016
  ident: bib32
  article-title: Differential excitation of distally versus Proximally targeting cortical interneurons by unitary thalamocortical bursts
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0739-16.2016
– volume: 17
  start-page: 400
  year: 2007
  ident: bib44
  article-title: Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhj157
– volume: 22
  start-page: 8691
  year: 2002
  ident: bib5
  article-title: Model of thalamocortical slow-wave sleep oscillations and transitions to activated States
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.22-19-08691.2002
– volume: 104
  start-page: 1314
  year: 2010
  ident: bib59
  article-title: Inhibitory modulation of cortical up states
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00178.2010
– volume: 13
  start-page: 3266
  year: 1993
  ident: bib66
  article-title: Intracellular analysis of relations between the slow (< 1 hz) neocortical oscillation and other sleep rhythms of the electroencephalogram
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.13-08-03266.1993
– volume: 24
  start-page: 6862
  year: 2004
  ident: bib40
  article-title: The sleep slow oscillation as a traveling wave
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1318-04.2004
– volume: 355
  start-page: 954
  year: 2017
  ident: bib45
  article-title: Layer-specific modulation of neocortical dendritic inhibition during active wakefulness
  publication-title: Science
  doi: 10.1126/science.aag2599
– volume: 97
  start-page: 4186
  year: 2007
  ident: bib28
  article-title: Enhancement of visual responsiveness by spontaneous local network activity in vivo
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.01114.2006
– volume: 15
  start-page: 70
  year: 1967
  ident: bib76
  article-title: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
  publication-title: IEEE Transactions on Audio and Electroacoustics
  doi: 10.1109/TAU.1967.1161901
– volume: 16
  start-page: 1671
  year: 2013
  ident: bib57
  article-title: Membrane potential correlates of sensory perception in mouse barrel cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3532
– volume: 93
  start-page: 491
  year: 2017
  ident: bib49
  article-title: Cracking the Neural Code for Sensory perception by Combining Statistics, intervention, and behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.12.036
– volume: 3
  start-page: e3971
  year: 2008
  ident: bib75
  article-title: UP states protect ongoing cortical activity from thalamic inputs
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003971
– volume: 85
  start-page: 1969
  year: 2001
  ident: bib67
  article-title: Natural waking and sleep states: a view from inside neocortical neurons
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.85.5.1969
– volume: 6
  start-page: 25
  year: 2012
  ident: bib11
  article-title: Spatiotemporal properties of sensory responses in vivo are strongly dependent on network context
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2012.00025
– volume: 11
  start-page: 114
  year: 2010
  ident: bib21
  article-title: The memory function of sleep
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn2762
– volume: 113
  start-page: 3798
  year: 2015
  ident: bib60
  article-title: Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00923.2014
– volume: 158
  start-page: 808
  year: 2014
  ident: bib29
  article-title: State-dependent architecture of thalamic reticular subnetworks
  publication-title: Cell
  doi: 10.1016/j.cell.2014.06.025
– volume: 2
  start-page: e670
  year: 2007
  ident: bib54
  article-title: Synaptic transmission and plasticity in an active cortical network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000670
– volume: 214
  start-page: 1
  year: 2009
  ident: bib64
  article-title: Local circuits targeting parvalbumin-containing interneurons in layer IV of rat barrel cortex
  publication-title: Brain Structure & Function
  doi: 10.1007/s00429-009-0225-5
– volume: 12
  start-page: 229
  year: 2009
  ident: bib7
  article-title: Bi-stable neural state switches
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2247
– volume: 104
  start-page: 596
  year: 2010
  ident: bib23
  article-title: The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00206.2010
– volume: 113
  start-page: 768
  year: 2015
  ident: bib36
  article-title: Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00858.2013
– volume: 31
  start-page: 607
  year: 2011
  ident: bib63
  article-title: Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3375-10.2011
– volume: 92
  start-page: 687
  year: 2016
  ident: bib24
  article-title: Tapping the Brakes: cellular and synaptic mechanisms that regulate thalamic oscillations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.024
– volume: 10
  start-page: 52
  year: 2016
  ident: bib48
  article-title: Distinct roles of SOM and VIP Interneurons during Cortical up States
  publication-title: Frontiers in Neural Circuits
  doi: 10.3389/fncir.2016.00052
– volume: 98
  start-page: 1924
  year: 2001
  ident: bib70
  article-title: Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study
  publication-title: PNAS
  doi: 10.1073/pnas.041430398
– volume: 1
  start-page: 123
  year: 2007
  ident: bib34
  article-title: Persistently active, pacemaker-like neurons in neocortex
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/neuro.01.1.1.009.2007
– volume: 430
  start-page: 78
  year: 2004
  ident: bib33
  article-title: Local sleep and learning
  publication-title: Nature
  doi: 10.1038/nature02663
– volume: 13
  start-page: 9
  year: 2010
  ident: bib16
  article-title: The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2445
– volume: 22
  start-page: 426
  year: 2012
  ident: bib22
  article-title: Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhr121
– volume: 19
  start-page: 290
  year: 2016
  ident: bib31
  article-title: Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4209
– volume: 105
  start-page: 8428
  year: 2008
  ident: bib52
  article-title: Two distinct activity patterns of fast-spiking interneurons during neocortical UP states
  publication-title: PNAS
  doi: 10.1073/pnas.0712219105
– volume: 590
  start-page: 3987
  year: 2012
  ident: bib8
  article-title: Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2012.227462
– volume: 9
  start-page: 88
  year: 2015
  ident: bib47
  article-title: The Slow Oscillation in Cortical and Thalamic Networks: mechanisms and functions
  publication-title: Frontiers in Neural Circuits
  doi: 10.3389/fncir.2015.00088
– volume: 21
  start-page: 1030
  year: 2005
  ident: bib14
  article-title: Modulation of synaptic transmission in neocortex by network activities
  publication-title: The European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2005.03932.x
– volume: 46
  start-page: 141
  year: 2005
  ident: bib62
  article-title: Prefrontal phase locking to hippocampal theta oscillations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.02.028
– volume: 35
  start-page: 1089
  year: 2015
  ident: bib46
  article-title: Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2279-14.2015
– volume: 29
  start-page: 7513
  year: 2009
  ident: bib38
  article-title: Distinct roles of GABA(A) and GABA(B) receptors in balancing and terminating persistent cortical activity
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.6162-08.2009
– volume: 16
  start-page: 227
  year: 2013
  ident: bib6
  article-title: Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3306
– volume: 26
  start-page: 4535
  year: 2006
  ident: bib27
  article-title: Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5297-05.2006
– volume: 464
  start-page: 1155
  year: 2010
  ident: bib1
  article-title: Lateral competition for cortical space by layer-specific horizontal circuits
  publication-title: Nature
  doi: 10.1038/nature08935
– volume: 3
  start-page: 701
  year: 2000
  ident: bib18
  article-title: Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons
  publication-title: Nature Neuroscience
  doi: 10.1038/76656
– volume: 29
  start-page: 49
  year: 2010
  ident: bib58
  article-title: Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-010-0228-5
– volume: 35
  start-page: 2689
  year: 2015
  ident: bib55
  article-title: Gain modulation of synaptic inputs by network state in auditory cortex in vivo
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2004-14.2015
– volume: 423
  start-page: 288
  year: 2003
  ident: bib61
  article-title: Turning on and off recurrent balanced cortical activity
  publication-title: Nature
  doi: 10.1038/nature01616
– volume: 63
  start-page: 865
  year: 2009
  ident: bib74
  article-title: Cortical firing and sleep homeostasis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.08.024
– volume: 15
  start-page: 604
  year: 1995
  ident: bib13
  article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.15-01-00604.1995
– volume: 13
  start-page: 3252
  year: 1993
  ident: bib65
  article-title: A novel slow (< 1 hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.13-08-03252.1993
– volume: 21
  start-page: 717
  year: 2011
  ident: bib20
  article-title: Intracellular and computational evidence for a dominant role of internal network activity in cortical computations
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2011.06.002
– volume: 100
  start-page: 13638
  year: 2003
  ident: bib50
  article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex
  publication-title: PNAS
  doi: 10.1073/pnas.2235811100
– volume: 105
  start-page: 2187
  year: 2008
  ident: bib69
  article-title: Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons
  publication-title: PNAS
  doi: 10.1073/pnas.0710628105
– volume: 18
  start-page: 892
  year: 2015
  ident: bib9
  article-title: An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4002
– volume: 27
  start-page: 9607
  year: 2007
  ident: bib30
  article-title: State changes rapidly modulate cortical neuronal responsiveness
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2184-07.2007
– volume: 11
  start-page: 200
  year: 2008
  ident: bib73
  article-title: Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep
  publication-title: Nature Neuroscience
  doi: 10.1038/nn2035
– volume: 12
  start-page: 4701
  year: 1992
  ident: bib41
  article-title: Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.12-12-04701.1992
– volume: 352
  start-page: 1315
  year: 2016
  ident: bib42
  article-title: Top-down cortical input during NREM sleep consolidates perceptual memory
  publication-title: Science
  doi: 10.1126/science.aaf0902
– volume: 48
  start-page: 811
  year: 2005
  ident: bib37
  article-title: Internal dynamics determine the cortical response to thalamic stimulation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.09.035
– volume: 35
  start-page: 11988
  year: 2015
  ident: bib71
  article-title: Temporal structure of neuronal activity among cortical neuron subtypes during Slow Oscillations in Anesthetized Rats
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5074-14.2015
– volume: 4
  start-page: S143
  year: 2007
  ident: bib4
  article-title: An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/4/3/S02
– volume: 32
  start-page: 12165
  year: 2012
  ident: bib68
  article-title: Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1181-12.2012
– volume: 490
  start-page: 226
  year: 2012
  ident: bib2
  article-title: A neural circuit for spatial summation in visual cortex
  publication-title: Nature
  doi: 10.1038/nature11526
– volume: 31
  start-page: 72
  year: 2015
  ident: bib17
  article-title: The thalamocortical network as a single slow wave-generating unit
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2014.09.001
– volume: 89
  start-page: 2707
  year: 2003
  ident: bib12
  article-title: Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00845.2002
– volume: 18
  start-page: 375
  year: 2008
  ident: bib43
  article-title: Phase-of-firing coding of natural visual stimuli in primary visual cortex
  publication-title: Current Biology : CB
  doi: 10.1016/j.cub.2008.02.023
– volume: 26
  start-page: 1778
  year: 2016
  ident: bib19
  article-title: Unaltered Network activity and Interneuronal Firing during Spontaneous Cortical Dynamics in Vivo in a mouse Model of severe myoclonic Epilepsy of Infancy
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhw002
– volume: 488
  start-page: 379
  year: 2012
  ident: bib35
  article-title: Activation of specific interneurons improves V1 feature selectivity and visual perception
  publication-title: Nature
  doi: 10.1038/nature11312
– volume: 100
  start-page: 13638
  year: 2003
  ident: bib51
  article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex
  publication-title: PNAS
  doi: 10.1073/pnas.2235811100
– volume: 25
  start-page: 9398
  year: 2005
  ident: bib56
  article-title: Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2149-05.2005
– volume: 463
  start-page: 98
  year: 2010
  ident: bib10
  article-title: High-performance genetically targetable optical neural silencing by light-driven proton pumps
  publication-title: Nature
  doi: 10.1038/nature08652
– volume: 26
  start-page: 5665
  year: 2006
  ident: bib72
  article-title: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0279-06.2006
– volume: 32
  start-page: 7021
  year: 2012
  ident: bib3
  article-title: Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0011-12.2012
– volume: 9
  start-page: 608
  year: 2006
  ident: bib15
  article-title: Correlating whisker behavior with membrane potential in barrel cortex of awake mice
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1690
– reference: 23060193 - Nature. 2012 Oct 11;490(7419):226-31
– reference: 26311779 - J Neurosci. 2015 Aug 26;35(34):11988-2001
– reference: 17668052 - PLoS One. 2007 Aug 01;2(7):e670
– reference: 27883901 - Neuron. 2016 Nov 23;92 (4):687-704
– reference: 18245383 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2187-92
– reference: 17347444 - Science. 2007 Mar 9;315 (5817):1426-9
– reference: 25609625 - J Neurosci. 2015 Jan 21;35(3):1089-105
– reference: 27507936 - Front Neural Circuits. 2016 Jul 26;10:52
– reference: 16617340 - Nat Neurosci. 2006 May;9(5):608-10
– reference: 12612051 - J Neurophysiol. 2003 May;89(5):2707-25
– reference: 15787708 - Eur J Neurosci. 2005 Feb;21(4):1030-44
– reference: 26834569 - Front Neural Circuits. 2016 Jan 14;9:88
– reference: 25673859 - J Neurosci. 2015 Feb 11;35(6):2689-702
– reference: 14595013 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13638-43
– reference: 28254942 - Science. 2017 Mar 3;355(6328):954-959
– reference: 16723523 - J Neurosci. 2006 May 24;26(21):5665-72
– reference: 25833839 - J Neurophysiol. 2015 Jun 1;113(10):3798-815
– reference: 18328702 - Curr Biol. 2008 Mar 11;18(5):375-80
– reference: 22912602 - Front Neural Circuits. 2012 Aug 17;6:52
– reference: 18982123 - Front Neurosci. 2007 Oct 15;1(1):123-9
– reference: 21228169 - J Neurosci. 2011 Jan 12;31(2):607-17
– reference: 20046194 - Nat Rev Neurosci. 2010 Feb;11(2):114-26
– reference: 22593070 - J Neurosci. 2012 May 16;32(20):7021-33
– reference: 27358449 - J Neurosci. 2016 Jun 29;36(26):6906-16
– reference: 15295020 - J Neurosci. 2004 Aug 4;24(31):6862-70
– reference: 18550841 - Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8428-33
– reference: 21715156 - Curr Opin Neurobiol. 2011 Oct;21(5):717-25
– reference: 20225075 - J Comput Neurosci. 2010 Aug;29(1-2):49-62
– reference: 26819275 - Cereb Cortex. 2016 Apr;26(4):1778-94
– reference: 25915477 - Nat Neurosci. 2015 Jun;18(6):892-902
– reference: 16337918 - Neuron. 2005 Dec 8;48(5):811-23
– reference: 17086200 - Nature. 2006 Nov 30;444(7119):610-3
– reference: 27229145 - Science. 2016 Jun 10;352(6291):1315-8
– reference: 15820700 - Neuron. 2005 Apr 7;46(1):141-51
– reference: 16547348 - Cereb Cortex. 2007 Feb;17(2):400-14
– reference: 19882169 - Brain Struct Funct. 2009 Dec;214(1):1-13
– reference: 26691833 - Nat Neurosci. 2016 Feb;19(2):290-8
– reference: 19515919 - J Neurosci. 2009 Jun 10;29(23 ):7513-8
– reference: 20538767 - J Neurophysiol. 2010 Aug;104(2):596-606
– reference: 19092994 - PLoS One. 2008;3(12):e3971
– reference: 22509158 - Front Syst Neurosci. 2012 Apr 13;6:25
– reference: 8340806 - J Neurosci. 1993 Aug;13(8):3252-65
– reference: 11353014 - J Neurophysiol. 2001 May;85(5):1969-85
– reference: 16221848 - J Neurosci. 2005 Oct 12;25(41):9398-405
– reference: 25233254 - Curr Opin Neurobiol. 2015 Apr;31:72-80
– reference: 25126786 - Cell. 2014 Aug 14;158(4):808-21
– reference: 17409168 - J Neurophysiol. 2007 Jun;97(6):4186-202
– reference: 22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010
– reference: 1361197 - J Neurosci. 1992 Dec;12(12):4701-11
– reference: 24097038 - Nat Neurosci. 2013 Nov;16(11):1671-7
– reference: 7823167 - J Neurosci. 1995 Jan;15(1 Pt 2):604-22
– reference: 28182905 - Neuron. 2017 Feb 8;93(3):491-507
– reference: 20554835 - J Neurophysiol. 2010 Sep;104(3):1314-24
– reference: 17873414 - J Neural Eng. 2007 Sep;4(3):S143-56
– reference: 22878719 - Nature. 2012 Aug 16;488(7411):379-83
– reference: 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704
– reference: 16641233 - J Neurosci. 2006 Apr 26;26(17):4535-45
– reference: 21670101 - Cereb Cortex. 2012 Feb;22(2):426-35
– reference: 23313909 - Nat Neurosci. 2013 Feb;16(2):227-34
– reference: 10862703 - Nat Neurosci. 2000 Jul;3(7):701-7
– reference: 11172052 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1924-9
– reference: 20159454 - Neuron. 2010 Feb 11;65(3):422-35
– reference: 18204445 - Nat Neurosci. 2008 Feb;11(2):200-8
– reference: 17804621 - J Neurosci. 2007 Sep 5;27(36):9607-22
– reference: 8340807 - J Neurosci. 1993 Aug;13(8):3266-83
– reference: 19079251 - Nat Neurosci. 2009 Feb;12(2):229-34
– reference: 19778514 - Neuron. 2009 Sep 24;63(6):865-78
– reference: 15184907 - Nature. 2004 Jul 1;430(6995):78-81
– reference: 12748642 - Nature. 2003 May 15;423(6937):288-93
– reference: 20054397 - Nature. 2010 Jan 7;463(7277):98-102
– reference: 20414303 - Nature. 2010 Apr 22;464(7292):1155-60
– reference: 19966841 - Nat Neurosci. 2010 Jan;13(1):9-17
– reference: 22933799 - J Neurosci. 2012 Aug 29;32(35):12165-79
– reference: 25392176 - J Neurophysiol. 2015 Feb 1;113(3):768-79
SSID ssj0000748819
Score 2.4285235
Snippet Large scale transitions between active (up) and silent (down) states during quiet wakefulness or NREM sleep regulate fundamental cortical functions and are...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
Cerebral Cortex - physiology
Cortex
Electroencephalography
Electrophysiological recording
Interneurons
Interneurons - physiology
Laboratories
Mice
Neocortex
Neural circuitry
Neural Inhibition
Neuroscience
Neurosciences
NREM sleep
Optogenetics
Parvalbumin
parvalbumin positive interneuron
Physiological aspects
Prefrontal cortex
Sleep
Sleep and wakefulness
Somatostatin
somatostatin positive interneuron
up and down states
Wakefulness
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2yIPgifju6SpUFQajbpGk-HkdxWUV9UBf2Ldybpm5h6YgzA_rvvTftDlMUfPG1OVOac5Pek87NiRBHNWKDUENpktSllphKRAWliw40VDWqbCn08ZM5PdPvz5vzvaO-uCZstAceiTuOqjKtxzYZEiq-BbDJkCq0GqKJKWb30spXe4up_A62NDClHzfkWUqZx-lD36VX7D9uZykoO_X_-T7eS0jzYsm97HNyS9ycZGOxHB_3triWhjvi-niQ5K-7Qi6Hoh8ueuz5P_OCP40VpEaLvF2o2HA-yqVZBCoil9f-vCfOTt5-fXNaTochlNFKtSkbcLLqsK59E6HROnlER8m37UhjWYyNlhKtSxaqqoud11HVrQGXoELbyqq-Lw6G1ZAeisJE5yMCdkDEABjSjM6Zuqs1gvJttxAvr_gJcXIK5wMrLgOtGJjMkMkMmcyFONqBv48GGX-HvWaidxB2tc4XKNZhinX4V6wX4jmHKbBvxcCFMd9gu16Hd18-h6X2yvFOWgK9mEDdip46wrTPgPrOVlcz5OEMSRMrzpuvRkOYJvY6SN8oSyKKe_Rs18y_5GK1Ia22hKE1rObvQ3SLB-Pg2fVbOfbbMWYh7GxYzYiZtwz9Rbb9pqBrUm-P_geTj8UNxfqEbWjNoTjY_NimJ6SuNvg0T6TfdKUkNA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA56Ivgi_rZ6SpUDQajXpGmSPskqHqeoD-rBvoVJmt4VpD1vd0H_e2fS7HpF8bX5WtrJj_kynXzD2EHlXO2ggkIFLgvJXSicE1AYb0BCWTkRJYU-fVbHJ_LDsl6mgNsqpVVu18S4ULejpxj5IW9qodF7af36_EdBVaPo72oqoXGVXePIRKh0g17qXYwF3aNBjzcdy9PoOA_Dx74Lr0iFXM8cUdTr_3tVvuSW5imTl3zQ0S12M5HHfDH19m12JQx32PWpnOSvu4wvhrwfznrX05_znAJkOXLSPB4aytfklWKCFoJyT0m2P--xk6N3394eF6kkQuE1F-uiBsPLzlVVU3uopQyNcwZdcNsh09LO15Jzp03QUJad7xrpRdUqMAFKp1teVvfZ3jAO4SHLlTeNd-A6QMMAKGSOxqiqq6QD0bRdxl5u7WN90gunshXfLe4byJg2GtNGY2bsYAc-n2Qy_g17Q4beQUjbOl4YL05tmirWi1K1jWuDQmratAA6KNwHaAle-eDrjD2nbrKkXjFQeswpbFYr-_7rF7uQjTB0nhZBLxKoG_GtPaTTBvjtJHg1Q-7PkDi9_Lx5Oxpsmt4r-2cwZuzZrpnupJS1IYwbxOBOVlKUCB_xYBo8u-8WhlR3lMqYng2rmWHmLUN_FsW_sdMlcrhH_3-tx-yGIP5BMrNqn-2tLzbhCbKntXsap8hvDbkawA
  priority: 102
  providerName: ProQuest
Title An inhibitory gate for state transition in cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/28509666
https://www.proquest.com/docview/1952719077
https://www.proquest.com/docview/1899407615
https://pubmed.ncbi.nlm.nih.gov/PMC5444901
https://doaj.org/article/c206d9bde67749daa7e688274ac6cec5
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5UOilNH1umy5uCRQK3tqyLMmnsgkJaWlDSbuwNzGS5cQQvO0-IPn3nZG9S5zk0Ks1NtbnkeeTNPqGsYPM2txCBrH0qYhFan1sLYdYOw0CkszyICn040yeTsS3aT7dYutinB2AiwendlRPajK_Gl3_vfmCAx7560hhNPzsv9eVH5G0uNpmu2GjiHL4Op4ffskK_TQU-eBJHrRMp-1Zvbv396JTEPG__6u-Fav6eZS3AtPJU_akY5TRuHWBPbblm2fsUVtj8uY5S8dNVDeXta1pOz2iVbMIiWoUThJFSwpVIWsLjSJHmbfXL9jk5Pj30Wnc1UmInUr5Ms5Bp0lls6zIHeRC-MJajXG5rJB-KetykaZWaa8gSSpXFcLxrJSgPSRWlWmSvWQ7zazxr1kknS6cBVsBAgMgkU5qLbMqExZ4UVYD9mmNj3GdiDjVsrgyOJkgME0A0wQwB-xgY_yn1c542OyQgN6YkOB1uDCbX5hu_BjHE1kWtvQS-WpRAigvcXKgBDjpvMsH7AN9JkOSFg3lzFzAarEwX3-dm7EouKZDtmj0sTOqZvjWDrojCNh3UsHqWe73LHHMuX7z2hvM2mVNWuRcIb-iHr3fNNOdlMfW-NkKbXB6K2jpCB_xqnWeTb-5JikeKQdM9dyqB0y_pakvgyI4fnSBxO7N_4Dwlj3mRE1IgVbus53lfOXfIbFa2iHbVlM1ZLuHx2c_z4dheWIYBtI_SDokqQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL_JGBDQEBJSWOI4tvMwoQ42tayr0NikvXm242yVpnSsrWD_HH8bd2laFoF422t8iZKzz9_5cvcdwEZqbWZNaiLhEx7xxPrIWmYi5ZThJk4tqymF9oeid8S_HGfHK_BrUQtDaZWLPbHeqIuxoxj5ZpJnTCJ6Sfnx4ntEXaPo7-qihYZpWisUWzXFWFPYseevfuARbrLV_4zz_Zax3Z3DT72o6TIQOZmwaZQZlcSlTdM8cybj3OfWKkS1okTnRVqX8SSxUnlp4rh0Zc4dSwthlDexlUUSp_jcW7DKKYDSgdXtneHXg2WUBwFaIebOCwMlQvemH4xK_4F40GULCuuOAX_jwjVgbCdtXkPB3ftwr3Ffw-58vT2AFV89hNvzhpZXjyDpVuGoOhvZEf27DylEF6JXHNZlS-GUcLFOEUOh0FGa78_HcHQj6noCnWpc-WcQCqdyZ40tDSrGGIG-q1IiLVNuDcuLMoD3C_1o1zCWU-OMc40nF1KmrpWpa2UGsLEUvpgTdfxbbJsUvRQhdu36wvjyVDfGqh2LRZHbwgt0jvPCGOkFnkQkN04477IA3tA0aeLPqChB59TMJhPd_3aguzxniip6UehdI1SO8a2daeod8NuJcqslud6SRAN37eHFatDNBjPRf8whgNfLYbqTkuYqP56hDJ6lOcWp8BFP54tn-d1MEe-PEAHI1rJqKaY9Uo3OavpxnHSOXuTa_1_rFdzpHe4P9KA_3HsOdxl5Q5QFJNahM72c-Rfoy03ty8ZgQji5aRv9DY94Xjc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJhAviN8UBgQ0hIQUmjiO7TxMqGOrVjaqaTBpb97ZcbZKKB1rK9i_yF_FXeqWRSDe9hpfouR85-_s3H3H2EZmbW4hg1j6VMQitT62lkOsnQYBSWZ5Qyn0eSh3j8Sn4_x4hf1a1MJQWuViTWwW6nLs6Iy8mxY5V4heSnWrkBZxsN3_cP49pg5S9Kd10U4DQpuFcrOhGwtFHnv-8gdu5yabg22c-zec93e-ftyNQ8eB2KmUT-McdJpUNsuK3EEuhC-s1YhwZYWBjLIuF2lqlfYKkqRyVSEcz0oJ2kNiVZkmGT73BltTiPq4EVzb2hkeHC5PfBCsNeLvvEhQIYx3_f6o8u-JE121YLHpHvA3RlwByXYC5xVE7N9ld0IoG_XmtnePrfj6Prs5b255-YClvToa1WcjO6L_-BEd10UYIUdNCVM0JYxs0sVQKHKU8vvzITu6FnU9Yqv1uPZPWCSdLpwFWwEqBkBiHKu1zKpMWOBFWXXYu4V-jAvs5dRE45vBXQwp0zTKNI0yO2xjKXw-J-34t9gWKXopQkzbzYXxxakJjmscT2RZ2NJLDJSLEkB5ibsSJcBJ513eYa9pmgxxadRklacwm0zM4Muh6YmCa6ruRaG3Qaga41s7CLUP-O1Ev9WSXG9JorO79vDCGkxYbCbmj2t02KvlMN1JCXS1H89QBvfVgs6s8BGP58az_G6uiQNIyg5TLbNqKaY9Uo_OGipynHSBEeXT_7_WS3YLfdXsD4Z7z9htToER8d_KdbY6vZj55xjWTe2L4C8RO7luF_0NB6Bifg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inhibitory+gate+for+state+transition+in+cortex&rft.jtitle=eLife&rft.au=Zucca%2C+Stefano&rft.au=D%27Urso%2C+Giulia&rft.au=Pasquale%2C+Valentina&rft.au=Vecchia%2C+Dania&rft.date=2017-05-16&rft.pub=eLife+Science+Publications%2C+Ltd&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=6&rft_id=info:doi/10.7554%2FeLife.26177&rft.externalDBID=ISR&rft.externalDocID=A492800595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon