Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement

The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 48; no. 13; pp. 3606 - 3615
Main Authors Martelli, Saulo, Kersh, Mariana E., Pandy, Marcus G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 15.10.2015
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2015.08.001

Cover

Abstract The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380με (R2=0.92, p<0.001) to 4064με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821με in the proximal region to 34,166με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
AbstractList The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 mu epsilon (R2=0.92, p<0.001) to 4064 mu epsilon (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 mu epsilon in the proximal region to 34,166 mu epsilon at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 mu epsilon (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380μ[epsilon] (R2=0.92,p<0.001) to 4064μ[epsilon] (R2=0.48,p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821μ[epsilon] in the proximal region to 34,166μ[epsilon] at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430μ[epsilon] (R2=0.95,p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380με (R2=0.92, p<0.001) to 4064με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821με in the proximal region to 34,166με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
Abstract The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με ( R2 =0.92, p <0.001) to 4064 με ( R2 =0.48, p <0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με ( R2 =0.95, p <0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.
Author Pandy, Marcus G.
Martelli, Saulo
Kersh, Mariana E.
Author_xml – sequence: 1
  givenname: Saulo
  orcidid: 0000-0002-0012-8122
  surname: Martelli
  fullname: Martelli, Saulo
  email: saulo.martelli@flinders.edu.au
  organization: Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, Australia
– sequence: 2
  givenname: Mariana E.
  surname: Kersh
  fullname: Kersh, Mariana E.
  organization: Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL, USA
– sequence: 3
  givenname: Marcus G.
  surname: Pandy
  fullname: Pandy, Marcus G.
  organization: Department of Mechanical Engineering, University of Melbourne, Parkville, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26315919$$D View this record in MEDLINE/PubMed
BookMark eNqNkktrGzEUhUVJaRK3fyEMdNONXb1G0kApDaEvCHSRdi1kzZ1WzkhKJY3B_76aOqbgReONtPnO0dU95xKdhRgAoSuCVwQT8Xaz2qxd9GB_rSgm7QqrFcbkGbogSrIlZQqfoQuMKVl2tMPn6DLnDcZYctm9QOdUMNJ2pLtA_g5CdsVtXdk1cWgG8DGZscklGRcaa0Y7jaa4GHJTYmOCKdE7OxP1cOFnAynFlJsK-ylXOOZ7GKFUwscexjy7-rgFD6G8RM8HM2Z49Xgv0I9PH7_ffFnefvv89eb6dmkloWXJiVxT0SrDLeNEqU62TPY9tT1mkgMVygoiOmE6zhjmPelEK7FUA6s7GAbCFujN3vchxd8T5KK9yxbG0QSIU9ZECkoIVxSfgDKqmKpznYBSIhiV3TzA6yN0E6cU6p8rJQVnLa8ZLNDVIzWtPfT6ITlv0k4f4qnAuz1gU8w5waCtK3_TmOMZNcF6boPe6EMb9NwGjZWum6hycSQ_vPCk8MNeWPODrYOks3UQLPQugS26j-5pi_dHFrbWZW7OPewg_1uHzlRjfTd3da4qaTHm9fv_Nzhlgj9TVfru
CitedBy_id crossref_primary_10_1038_s41598_021_99856_y
crossref_primary_10_1016_j_jbiomech_2019_01_057
crossref_primary_10_1177_0954411918803125
crossref_primary_10_1007_s11914_020_00592_5
crossref_primary_10_1016_j_gaitpost_2020_06_022
crossref_primary_10_1016_j_jmbbm_2024_106773
crossref_primary_10_1080_10255842_2019_1688310
crossref_primary_10_3389_fbioe_2020_603907
crossref_primary_10_1002_jor_23744
crossref_primary_10_1002_jbmr_3529
crossref_primary_10_1007_s10237_016_0792_3
crossref_primary_10_1016_j_medengphy_2018_12_001
crossref_primary_10_1123_jab_2016_0282
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_1007_s11914_023_00784_9
crossref_primary_10_1007_s10237_022_01606_0
crossref_primary_10_1007_s10439_020_02483_3
crossref_primary_10_1016_j_jbiomech_2016_05_033
crossref_primary_10_1016_j_jmbbm_2021_104817
crossref_primary_10_1115_1_4038741
Cites_doi 10.1016/j.clinbiomech.2014.08.001
10.1002/ajpa.22156
10.1016/S0021-9290(00)00155-X
10.1016/S0021-9290(99)00099-8
10.1016/j.clinbiomech.2011.09.006
10.1016/j.jbiomech.2008.09.011
10.1080/10255842.2014.930134
10.1016/j.gaitpost.2003.11.003
10.1177/0954411911425863
10.1016/j.humov.2007.01.008
10.1002/jor.1100070611
10.1016/j.jbiomech.2007.02.010
10.1016/j.gaitpost.2005.08.002
10.1359/jbmr.2003.18.10.1781
10.1016/j.jbiomech.2010.02.008
10.1016/j.gaitpost.2012.11.020
10.1016/S0021-9290(01)00040-9
10.1002/jor.1100150620
10.1115/1.1531112
10.1093/jee/39.2.269
10.1016/j.jbiomech.2012.02.023
10.1242/jeb.064527
10.1080/01621459.1967.10482916
10.1002/jmri.20805
10.1016/S0021-9290(03)00257-4
10.1016/S0021-9290(03)00071-X
10.1016/j.jbiomech.2009.03.037
10.1109/TBME.2006.879473
10.1016/j.jbiomech.2008.12.014
10.1177/0954411911399975
10.1002/jbmr.2155
10.1016/j.gaitpost.2008.05.002
10.1002/jor.21540
10.1016/S0021-9290(98)00148-1
10.1109/TBME.2007.901024
10.1016/S0021-9290(01)00222-6
10.1109/10.102791
10.1016/j.clinbiomech.2005.01.010
10.1016/j.jbiomech.2011.05.023
10.1016/j.jbiomech.2014.03.036
10.1123/jab.26.2.142
ContentType Journal Article
Copyright 2015
Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2015
Copyright_xml – notice: 2015
– notice: Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2015.08.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts
Research Library Prep

Technology Research Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 3615
ExternalDocumentID 4002525061
26315919
10_1016_j_jbiomech_2015_08_001
S0021929015004315
1_s2_0_S0021929015004315
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
ACLOT
AGQPQ
AIGII
APXCP
CITATION
~HD
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c712t-417b2658a4c3418897537dd2cd0374e268c61696a943304d19657078f3001ff13
IEDL.DBID 7X7
ISSN 0021-9290
1873-2380
IngestDate Wed Oct 01 12:56:46 EDT 2025
Sat Sep 27 18:29:14 EDT 2025
Sun Sep 28 00:54:13 EDT 2025
Wed Aug 13 07:36:32 EDT 2025
Mon Jul 21 06:05:03 EDT 2025
Wed Oct 01 01:57:23 EDT 2025
Thu Apr 24 22:56:50 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Sun Feb 23 10:20:47 EST 2025
Tue Aug 26 17:10:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Finite-element femur model
Anatomical scaling
Image-based musculoskeletal model
Subject-specific bone strain
Scaled-generic
Language English
License Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c712t-417b2658a4c3418897537dd2cd0374e268c61696a943304d19657078f3001ff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0012-8122
PMID 26315919
PQID 1776435426
PQPubID 1226346
PageCount 10
ParticipantIDs proquest_miscellaneous_1762114820
proquest_miscellaneous_1732838712
proquest_miscellaneous_1721632791
proquest_journals_1776435426
pubmed_primary_26315919
crossref_citationtrail_10_1016_j_jbiomech_2015_08_001
crossref_primary_10_1016_j_jbiomech_2015_08_001
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_08_001
elsevier_clinicalkeyesjournals_1_s2_0_S0021929015004315
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-15
PublicationDateYYYYMMDD 2015-10-15
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Lenaerts, Bartels, Gelaude, Mulier, Spaepen, Van der Perre, Jonkers (bib21) 2009; 42
Martelli, Valente, Viceconti, Taddei (bib26) 2015; 18
Trepczynski, Kutzner, Kornaropoulos, Taylor, Duda, Bergmann, Heller (bib37) 2012; 30
Lilliefors (bib22) 1967; 62
Jonkers, Lenaerts, Mulier, Van der Perre, Jaecques (bib17) 2008; 41
Taddei, Martelli, Valente, Leardini, Benedetti, Manfrini, Viceconti (bib35) 2012; 27
Lim, Lin, Pandy (bib23) 2013; 38
Abdel Fatah, Shirley, Mahfouz, Auerbach (bib2) 2012; 149
Dorn, Schache, Pandy (bib14) 2012; 215
Scheys, Loeckx, Spaepen, Suetens, Jonkers (bib30) 2009; 42
Blemker, Asakawa, Gold, Delp (bib7) 2007; 25
Cody, Gross Gary, Hou, Spencer, Goldstein, Fyhrie (bib9) 1999; 32
Martelli, Pivonka, Ebeling (bib25) 2014; 29
Stacoff, Diezi, Luder, Stüssi, Kramers-de Quervain (bib33) 2005; 21
Redl, Gfoehler, Pandy (bib28) 2007; 26
Bayraktar, Morgan, Niebur, Morris, Wong, Keaveny (bib5) 2004; 37
Martelli, Kersh, Schache, Pandy (bib24) 2014; 47
Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (bib31) 2008; 28
Cleather, Bull (bib8) 2011; 225
Van Rietbergen, Huiskes, Eckstein, Ruegsegger (bib39) 2003; 18
Xiao, Higginson (bib43) 2010; 26
Leardini, Cappozzo, Catani, Toksvig-Larsen, Petitto, Sforza, Cassanelli, Giannini (bib20) 1999; 32
Delp, Loan, Hoy, Zajac, Topp, Rosen (bib13) 1990; 37
Hazewinkel (bib15) 1994
Wilcoxon (bib41) 1946; 39
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib12) 2007; 54
Taddei, Martelli, Reggiani, Cristofolini, Viceconti (bib34) 2006; 53
Bergmann, Deuretzbacher, Heller, Graichen, Rohlmann, Strauss, Duda (bib6) 2001; 34
Kadaba, Ramakrishnan, Wootten, Gainey, Gorton, Cochran (bib18) 1989
Lang, Saeed, Streeper, Carballido-Gamio, Harnish, Frassetto, Lee, Sibonga, Keyak, Spiering, Grodsinsky, Bloomberg, Cavanagh (bib19) 2014; 29
Ackland, Lin, Pandy (bib3) 2012; 45
Anderson, Pandy (bib4) 2001; 34
Schache, Baker, Lamoreux (bib29) 2006; 24
Viceconti, Olsen, Nolte, Burton (bib40) 2005; 20
Correa, Baker, Kerr Graham, Pandy, Graham (bib10) 2011; 44
Thelen (bib36) 2003; 125
Valente, Martelli, Taddei, Farinella, Viceconti (bib38) 2012; 226
Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum, Whittle, D’Lima, Cristofolini, Witte, Schmid, Stokes (bib42) 2002; 35
Correa, Crossley, Kim, Pandy (bib11) 2010; 43
Aamodt, Lund-Larsen, Eine, Andersen, Benum, Husby (bib1) 1997; 15
Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib32) 2007; 40
Inman, Ralston, Todd (bib16) 1981
Morgan, Bayraktar, Keaveny (bib27) 2003; 36
Dorn (10.1016/j.jbiomech.2015.08.001_bib14) 2012; 215
Lilliefors (10.1016/j.jbiomech.2015.08.001_bib22) 1967; 62
Martelli (10.1016/j.jbiomech.2015.08.001_bib24) 2014; 47
Valente (10.1016/j.jbiomech.2015.08.001_bib38) 2012; 226
Bergmann (10.1016/j.jbiomech.2015.08.001_bib6) 2001; 34
Taddei (10.1016/j.jbiomech.2015.08.001_bib34) 2006; 53
Martelli (10.1016/j.jbiomech.2015.08.001_bib26) 2015; 18
Redl (10.1016/j.jbiomech.2015.08.001_bib28) 2007; 26
Trepczynski (10.1016/j.jbiomech.2015.08.001_bib37) 2012; 30
Hazewinkel (10.1016/j.jbiomech.2015.08.001_bib15) 1994
Wilcoxon (10.1016/j.jbiomech.2015.08.001_bib41) 1946; 39
Aamodt (10.1016/j.jbiomech.2015.08.001_bib1) 1997; 15
Kadaba (10.1016/j.jbiomech.2015.08.001_bib18) 1989
Blemker (10.1016/j.jbiomech.2015.08.001_bib7) 2007; 25
Correa (10.1016/j.jbiomech.2015.08.001_bib10) 2011; 44
Delp (10.1016/j.jbiomech.2015.08.001_bib12) 2007; 54
Scheys (10.1016/j.jbiomech.2015.08.001_bib30) 2009; 42
Abdel Fatah (10.1016/j.jbiomech.2015.08.001_bib2) 2012; 149
Cleather (10.1016/j.jbiomech.2015.08.001_bib8) 2011; 225
Jonkers (10.1016/j.jbiomech.2015.08.001_bib17) 2008; 41
Schache (10.1016/j.jbiomech.2015.08.001_bib29) 2006; 24
Xiao (10.1016/j.jbiomech.2015.08.001_bib43) 2010; 26
Cody (10.1016/j.jbiomech.2015.08.001_bib9) 1999; 32
Correa (10.1016/j.jbiomech.2015.08.001_bib11) 2010; 43
Stacoff (10.1016/j.jbiomech.2015.08.001_bib33) 2005; 21
Thelen (10.1016/j.jbiomech.2015.08.001_bib36) 2003; 125
Delp (10.1016/j.jbiomech.2015.08.001_bib13) 1990; 37
Anderson (10.1016/j.jbiomech.2015.08.001_bib4) 2001; 34
Morgan (10.1016/j.jbiomech.2015.08.001_bib27) 2003; 36
Taddei (10.1016/j.jbiomech.2015.08.001_bib35) 2012; 27
Lim (10.1016/j.jbiomech.2015.08.001_bib23) 2013; 38
Inman (10.1016/j.jbiomech.2015.08.001_bib16) 1981
Lang (10.1016/j.jbiomech.2015.08.001_bib19) 2014; 29
Lenaerts (10.1016/j.jbiomech.2015.08.001_bib21) 2009; 42
Ackland (10.1016/j.jbiomech.2015.08.001_bib3) 2012; 45
Bayraktar (10.1016/j.jbiomech.2015.08.001_bib5) 2004; 37
Leardini (10.1016/j.jbiomech.2015.08.001_bib20) 1999; 32
Viceconti (10.1016/j.jbiomech.2015.08.001_bib40) 2005; 20
Martelli (10.1016/j.jbiomech.2015.08.001_bib25) 2014; 29
Wu (10.1016/j.jbiomech.2015.08.001_bib42) 2002; 35
Scheys (10.1016/j.jbiomech.2015.08.001_bib31) 2008; 28
Van Rietbergen (10.1016/j.jbiomech.2015.08.001_bib39) 2003; 18
Schileo (10.1016/j.jbiomech.2015.08.001_bib32) 2007; 40
References_xml – year: 1994
  ident: bib15
  article-title: Encyclopaedia of Mathematics (set)
– volume: 42
  start-page: 565
  year: 2009
  end-page: 572
  ident: bib30
  article-title: Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study
  publication-title: J. Biomech.
– volume: 53
  start-page: 2194
  year: 2006
  end-page: 2200
  ident: bib34
  article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 226
  start-page: 161
  year: 2012
  end-page: 169
  ident: bib38
  article-title: Muscle discretization affects the loading transferred to bones in lowerlimb musculoskeletal models
  publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
– volume: 29
  start-page: 1337
  year: 2014
  end-page: 1345
  ident: bib19
  article-title: Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens
  publication-title: J. Bone Miner. Res.
– volume: 149
  start-page: 547
  year: 2012
  end-page: 559
  ident: bib2
  article-title: A three-dimensional analysis of bilateral directional asymmetry in the human clavicle
  publication-title: Am. J. Phys. Anthropol.
– volume: 21
  start-page: 24
  year: 2005
  end-page: 38
  ident: bib33
  article-title: Ground reaction forces on stairs: effects of stair inclination and age
  publication-title: Gait Posture
– volume: 35
  start-page: 543
  year: 2002
  end-page: 548
  ident: bib42
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – Part I: ankle, hip, and spine
  publication-title: J. Biomech.
– volume: 25
  start-page: 441
  year: 2007
  end-page: 451
  ident: bib7
  article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities
  publication-title: J. Magn. Reson. Imaging
– volume: 24
  start-page: 100
  year: 2006
  end-page: 109
  ident: bib29
  article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods
  publication-title: Gait Posture
– volume: 27
  start-page: 273
  year: 2012
  end-page: 280
  ident: bib35
  article-title: Femoral loads during gait in a patient with massive skeletal reconstruction
  publication-title: Clin. Biomech.
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: bib32
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J. Biomech.
– volume: 15
  start-page: 927
  year: 1997
  end-page: 931
  ident: bib1
  article-title: In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur
  publication-title: J. Orthop. Res.
– volume: 215
  start-page: 1944
  year: 2012
  end-page: 1956
  ident: bib14
  article-title: Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance
  publication-title: J. Exp. Biol.
– volume: 29
  start-page: 869
  year: 2014
  end-page: 876
  ident: bib25
  article-title: Femoral shaft strains during daily activities: implications for atypical femoral fractures
  publication-title: Clin. Biomech.
– volume: 28
  start-page: 358
  year: 2008
  end-page: 365
  ident: bib31
  article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait Posture
– volume: 20
  start-page: 451
  year: 2005
  end-page: 454
  ident: bib40
  article-title: Extracting clinically relevant data from finite element simulations
  publication-title: Clin. Biomech.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: bib13
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 30
  start-page: 408
  year: 2012
  end-page: 415
  ident: bib37
  article-title: Patellofemoral joint contact forces during activities with high knee flexion
  publication-title: J. Orthop. Res.
– volume: 32
  start-page: 99
  year: 1999
  end-page: 103
  ident: bib20
  article-title: Validation of a functional method for the estimation of hip joint centre location
  publication-title: J. Biomech.
– volume: 43
  start-page: 1618
  year: 2010
  end-page: 1622
  ident: bib11
  article-title: Contributions of individual muscles to hip joint contact force in normal walking
  publication-title: J. Biomech.
– volume: 225
  start-page: 621
  year: 2011
  end-page: 626
  ident: bib8
  article-title: Knee and hip joint forces – sensitivity to the degrees of freedom classification at the knee
  publication-title: Proc. Inst. Mech. Eng., Part H
– volume: 44
  start-page: 2096
  year: 2011
  end-page: 2105
  ident: bib10
  article-title: Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait
  publication-title: J. Biomech.
– year: 1981
  ident: bib16
  article-title: Human Walking
– volume: 34
  start-page: 859
  year: 2001
  end-page: 871
  ident: bib6
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: J. Biomech.
– volume: 18
  start-page: 1781
  year: 2003
  end-page: 1788
  ident: bib39
  article-title: Trabecular bone tissue strains in the healthy and osteoporotic human femur
  publication-title: J. Bone Miner. Res.
– volume: 38
  start-page: 253
  year: 2013
  end-page: 259
  ident: bib23
  article-title: Muscle function during gait is invariant to age when walking speed is controlled
  publication-title: Gait Posture
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: bib12
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 849
  year: 1989
  end-page: 860
  ident: bib18
  article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait
  publication-title: J. Orthop. Res.
– volume: 62
  start-page: 399
  year: 1967
  end-page: 402
  ident: bib22
  article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
– volume: 26
  start-page: 306
  year: 2007
  end-page: 319
  ident: bib28
  article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties
  publication-title: Hum. Mov. Sci.
– volume: 41
  start-page: 3405
  year: 2008
  end-page: 3413
  ident: bib17
  article-title: Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement
  publication-title: J. Biomech.
– volume: 18
  start-page: 1555
  year: 2015
  end-page: 1563
  ident: bib26
  article-title: Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 26
  start-page: 142
  year: 2010
  end-page: 149
  ident: bib43
  article-title: Sensitivity of estimated muscle force in forward simulation of normal walking
  publication-title: J. Appl. Biomech.
– volume: 32
  start-page: 1013
  year: 1999
  end-page: 1020
  ident: bib9
  article-title: Femoral strength is better predicted by finite element models than QCT and DXA
  publication-title: J. Biomech.
– volume: 42
  start-page: 1246
  year: 2009
  end-page: 1251
  ident: bib21
  article-title: Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait
  publication-title: J. Biomech.
– volume: 37
  start-page: 27
  year: 2004
  end-page: 35
  ident: bib5
  article-title: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue
  publication-title: J. Biomech.
– volume: 39
  start-page: 269
  year: 1946
  ident: bib41
  article-title: Individual comparisons of grouped data by ranking methods
  publication-title: J. Econ. Entomol.
– volume: 34
  start-page: 153
  year: 2001
  end-page: 161
  ident: bib4
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: J. Biomech.
– volume: 47
  start-page: 1784
  year: 2014
  end-page: 1791
  ident: bib24
  article-title: Strain energy in the femoral neck during exercise
  publication-title: J. Biomech.
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib27
  article-title: Trabecular bone modulus-density relationships depend on anatomic site
  publication-title: J. Biomech.
– volume: 45
  start-page: 1463
  year: 2012
  end-page: 1471
  ident: bib3
  article-title: Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis
  publication-title: J. Biomech.
– volume: 125
  start-page: 70
  year: 2003
  end-page: 77
  ident: bib36
  article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults
  publication-title: J. Biomech. Eng.
– volume: 29
  start-page: 869
  year: 2014
  ident: 10.1016/j.jbiomech.2015.08.001_bib25
  article-title: Femoral shaft strains during daily activities: implications for atypical femoral fractures
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2014.08.001
– volume: 149
  start-page: 547
  year: 2012
  ident: 10.1016/j.jbiomech.2015.08.001_bib2
  article-title: A three-dimensional analysis of bilateral directional asymmetry in the human clavicle
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/ajpa.22156
– volume: 34
  start-page: 153
  year: 2001
  ident: 10.1016/j.jbiomech.2015.08.001_bib4
  article-title: Static and dynamic optimization solutions for gait are practically equivalent
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00155-X
– volume: 32
  start-page: 1013
  year: 1999
  ident: 10.1016/j.jbiomech.2015.08.001_bib9
  article-title: Femoral strength is better predicted by finite element models than QCT and DXA
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00099-8
– volume: 27
  start-page: 273
  year: 2012
  ident: 10.1016/j.jbiomech.2015.08.001_bib35
  article-title: Femoral loads during gait in a patient with massive skeletal reconstruction
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2011.09.006
– volume: 41
  start-page: 3405
  year: 2008
  ident: 10.1016/j.jbiomech.2015.08.001_bib17
  article-title: Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.09.011
– year: 1981
  ident: 10.1016/j.jbiomech.2015.08.001_bib16
– volume: 18
  start-page: 1555
  year: 2015
  ident: 10.1016/j.jbiomech.2015.08.001_bib26
  article-title: Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2014.930134
– volume: 21
  start-page: 24
  year: 2005
  ident: 10.1016/j.jbiomech.2015.08.001_bib33
  article-title: Ground reaction forces on stairs: effects of stair inclination and age
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.11.003
– volume: 226
  start-page: 161
  year: 2012
  ident: 10.1016/j.jbiomech.2015.08.001_bib38
  article-title: Muscle discretization affects the loading transferred to bones in lowerlimb musculoskeletal models
  publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
  doi: 10.1177/0954411911425863
– year: 1994
  ident: 10.1016/j.jbiomech.2015.08.001_bib15
– volume: 26
  start-page: 306
  year: 2007
  ident: 10.1016/j.jbiomech.2015.08.001_bib28
  article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2007.01.008
– start-page: 849
  issue: 7
  year: 1989
  ident: 10.1016/j.jbiomech.2015.08.001_bib18
  article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100070611
– volume: 40
  start-page: 2982
  year: 2007
  ident: 10.1016/j.jbiomech.2015.08.001_bib32
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 24
  start-page: 100
  year: 2006
  ident: 10.1016/j.jbiomech.2015.08.001_bib29
  article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.08.002
– volume: 18
  start-page: 1781
  year: 2003
  ident: 10.1016/j.jbiomech.2015.08.001_bib39
  article-title: Trabecular bone tissue strains in the healthy and osteoporotic human femur
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2003.18.10.1781
– volume: 43
  start-page: 1618
  year: 2010
  ident: 10.1016/j.jbiomech.2015.08.001_bib11
  article-title: Contributions of individual muscles to hip joint contact force in normal walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.02.008
– volume: 38
  start-page: 253
  year: 2013
  ident: 10.1016/j.jbiomech.2015.08.001_bib23
  article-title: Muscle function during gait is invariant to age when walking speed is controlled
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.11.020
– volume: 34
  start-page: 859
  year: 2001
  ident: 10.1016/j.jbiomech.2015.08.001_bib6
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00040-9
– volume: 15
  start-page: 927
  year: 1997
  ident: 10.1016/j.jbiomech.2015.08.001_bib1
  article-title: In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100150620
– volume: 125
  start-page: 70
  year: 2003
  ident: 10.1016/j.jbiomech.2015.08.001_bib36
  article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1531112
– volume: 39
  start-page: 269
  year: 1946
  ident: 10.1016/j.jbiomech.2015.08.001_bib41
  article-title: Individual comparisons of grouped data by ranking methods
  publication-title: J. Econ. Entomol.
  doi: 10.1093/jee/39.2.269
– volume: 45
  start-page: 1463
  year: 2012
  ident: 10.1016/j.jbiomech.2015.08.001_bib3
  article-title: Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.02.023
– volume: 215
  start-page: 1944
  year: 2012
  ident: 10.1016/j.jbiomech.2015.08.001_bib14
  article-title: Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.064527
– volume: 62
  start-page: 399
  year: 1967
  ident: 10.1016/j.jbiomech.2015.08.001_bib22
  article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1967.10482916
– volume: 25
  start-page: 441
  year: 2007
  ident: 10.1016/j.jbiomech.2015.08.001_bib7
  article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20805
– volume: 37
  start-page: 27
  year: 2004
  ident: 10.1016/j.jbiomech.2015.08.001_bib5
  article-title: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00257-4
– volume: 36
  start-page: 897
  year: 2003
  ident: 10.1016/j.jbiomech.2015.08.001_bib27
  article-title: Trabecular bone modulus-density relationships depend on anatomic site
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 42
  start-page: 1246
  year: 2009
  ident: 10.1016/j.jbiomech.2015.08.001_bib21
  article-title: Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.037
– volume: 53
  start-page: 2194
  year: 2006
  ident: 10.1016/j.jbiomech.2015.08.001_bib34
  article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.879473
– volume: 42
  start-page: 565
  year: 2009
  ident: 10.1016/j.jbiomech.2015.08.001_bib30
  article-title: Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.12.014
– volume: 225
  start-page: 621
  year: 2011
  ident: 10.1016/j.jbiomech.2015.08.001_bib8
  article-title: Knee and hip joint forces – sensitivity to the degrees of freedom classification at the knee
  publication-title: Proc. Inst. Mech. Eng., Part H
  doi: 10.1177/0954411911399975
– volume: 29
  start-page: 1337
  year: 2014
  ident: 10.1016/j.jbiomech.2015.08.001_bib19
  article-title: Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2155
– volume: 28
  start-page: 358
  year: 2008
  ident: 10.1016/j.jbiomech.2015.08.001_bib31
  article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.05.002
– volume: 30
  start-page: 408
  year: 2012
  ident: 10.1016/j.jbiomech.2015.08.001_bib37
  article-title: Patellofemoral joint contact forces during activities with high knee flexion
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.21540
– volume: 32
  start-page: 99
  year: 1999
  ident: 10.1016/j.jbiomech.2015.08.001_bib20
  article-title: Validation of a functional method for the estimation of hip joint centre location
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00148-1
– volume: 54
  start-page: 1940
  year: 2007
  ident: 10.1016/j.jbiomech.2015.08.001_bib12
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 35
  start-page: 543
  year: 2002
  ident: 10.1016/j.jbiomech.2015.08.001_bib42
  article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – Part I: ankle, hip, and spine
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00222-6
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2015.08.001_bib13
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 20
  start-page: 451
  year: 2005
  ident: 10.1016/j.jbiomech.2015.08.001_bib40
  article-title: Extracting clinically relevant data from finite element simulations
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2005.01.010
– volume: 44
  start-page: 2096
  year: 2011
  ident: 10.1016/j.jbiomech.2015.08.001_bib10
  article-title: Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.05.023
– volume: 47
  start-page: 1784
  year: 2014
  ident: 10.1016/j.jbiomech.2015.08.001_bib24
  article-title: Strain energy in the femoral neck during exercise
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.03.036
– volume: 26
  start-page: 142
  year: 2010
  ident: 10.1016/j.jbiomech.2015.08.001_bib43
  article-title: Sensitivity of estimated muscle force in forward simulation of normal walking
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.26.2.142
SSID ssj0007479
Score 2.284972
Snippet The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference...
Abstract The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3606
SubjectTerms Aged
Anatomical scaling
Biomechanical Phenomena
Biomedical materials
Bones
Error detection
Errors
Female
Femur
Femur - physiopathology
Finite Element Analysis
Finite-element femur model
Gait
Hip Joint - physiopathology
Humans
Image-based musculoskeletal model
Legs
Mathematical models
Middle Aged
Models, Anatomic
Muscle, Skeletal - physiopathology
Osteoporosis - diagnosis
Osteoporosis - physiopathology
Physical Medicine and Rehabilitation
Scaled-generic
Sensitivity and Specificity
Strain
Studies
Subject-specific bone strain
Surgical implants
Walking - physiology
Weight-Bearing
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPSA4oLLlESjISIhburHjOPGxqqgqpHKBSr1ZWceWurBJtckeeuG3d8ZxtkVAQXBZaXfHk9gzHn-25wHwLpNS-FzK1PmmSKXNfVq7Rqa1Xsimcrl2mgKFzz6p03P58aK42IHjKRaG3Cqj7R9terDW8Zd5HM351eUlxfjibBNhy04ZYijQnLJ_oU4ffr9180C4HN08eErUd6KEl4fLEOMeLiV4EVJ5xuIwv1igfgdAw0J0sgePI4JkR-NLPoEd185g_6jF3fPqmr1nwaczHJbP4NGddIMzeHAWL9L3YfWZHNfHyhGs88yTwy1y7UPJCIaCs7GuV8-GjtWBO8mT9fiB3Jhbr7t1z5B4tSFn1q7_iisYQnkWiuv0xHXVhWzkw1M4P_nw5fg0jZUXUltyMaSSlwuB2KRG4UleVRR9WzaNsA2lq3FCVVZxpVWtJZ2HNJSWkNIG-RwH0HueP4PdtmvdC2C5FVbXqrCcTpisrKRvFHKpEXrqLHMJFNNwGxvTklNXv5nJ_2xpJjEZEpOhspkZT2C-bXc1Jub4Y4tykqaZwk7RUBpcO_6tpevjfO8NN70wmflJJxPQ25Y_qPVfPfVgUjlz-6CyRAxZIK5K4O32bzQJdM9Tt67bEI1AlC1Kze-jyRFY4m5Z3EejBG2XRZbA81Hlt0MtFPZOc_3yPzr4Ch7SN0ICvDiA3WG9ca8R4g2LN2EO3wD7b04f
  priority: 102
  providerName: Elsevier
Title Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015004315
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015004315
https://dx.doi.org/10.1016/j.jbiomech.2015.08.001
https://www.ncbi.nlm.nih.gov/pubmed/26315919
https://www.proquest.com/docview/1776435426
https://www.proquest.com/docview/1721632791
https://www.proquest.com/docview/1732838712
https://www.proquest.com/docview/1762114820
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9im4TggKDjIzAqIyFu2WLH-fAJFbSpgFYhYFJvVuo4h44mW9MeduFv5z3HCTtAQVzaQ-yX2M_2-_l9AryOpBRVLGVoqzIJpYmrsLClDAu1kGVuY2UVBQqfz9Lphfw4T-Ze4dZ6t8r-THQHddkY0pGf8CxD4ZmgQHl7dR1S1SiyrvoSGntwwBGq0KrO5sOFi3LDexcPHuLT6FaE8PJ46eLbnUGCJy6Npy8M8xvh9Cfw6YTQ2UN44NEjm3TsfgR3bD2Cw0mNN-fVDXvDnD-nU5SP4P6tVIMjuHvujeiHsPpKTutd1QjWVKwiZ1uk2rpyEQyZZnxNr5ZtGlY46sRL1uIPUmN2vW7WLcPGqy05sjbtJUovhPHMFdZpieqqcZnIN4_h4uz02_tp6KsuhCbjYhNKni0E4pICGSd5nlPkbVaWwpSUqsaKNDcpT1VaKEm6kJJSElLKoCrGCawqHj-B_bqp7TNgsRFGFWliOGmXjMxlVaZIpUDYqaLIBpD0062NT0lOQ_2ue9-zpe7ZpIlNmkpmRjyAk6HfVZeU4689sp6bug85xUNSo9z4v5629Xu91Vy3QkeazN60BkmFRBmLkgDU0NPDmQ6m_NNbj_olp3-9aNgCAbwaHuNxQDaeorbNltoIRNgiU3xXmxhBJd6Uxa42qaCrsogCeNot-WGqRYqjU1w93_2RL-AejYgEPU-OYH-z3tqXiOA2izHsHf_gY7dZx3Aw-fBpOsP_d6ezz19-AjZOR-k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4INgCDRQwEnBLGzvOwweEKqDa0m4vtNLeTNZxDks3KZusUP8Uv5EZ50EPsCCkXnKJPYnjycw3nhfAq0BKUYRS-rbII1-asPAzm0s_UzOZpzZUVlGi8OQkHp_JT9NougE_-lwYCqvsZaIT1Hll6Ix8jycJKs8IFcq7i28-dY0i72rfQqNliyN7-R1Ntvrt4Qfc39dCHHw8fT_2u64Cvkm4aHzJk5lAvZvhi0meppRZmuS5MDmVYrEiTk3MYxVnSpKtn1PJPSqJU4Qo0YuCh0j3BtyUeI9q9SfTwcCjWvRdSAn3EXYEVzKS57tzl0_vHCA8cmVDu0Y0v1GGfwK7Tukd3Id7HVpl-y17PYANW45ga79ES31xyd4wFz_qDuZHcPdKacMR3Jp0TvstWHymIPm2SwWrClZQcC9SrV17CoZMYroeYjVrKpY56sQ7rMYLUmN2uayWNcPBixUFzlb1V9SWaDYw18inJqqLylU-bx7C2bXsxyPYLKvSbgMLjTAqiyPD6TTLyFQWeYxUMoS5KgisB1H_ubXpSqDTUs91H-s21_02adomTS06A-7B3jDvoi0C8tcZSb-buk9xRaGsUU_930xbd7Kl1lzXQgea3OycuAwhPVVIijxQw8wOPrWw6J-eutOznP71oOGX8-DlcBvFD_mUstJWKxojENGLRPF1Y0IEsWiZi3VjYkGmuQg8eNyy_PCpRYyrU1w9Wf-SL-D2-HRyrI8PT46ewh1aHYEMHu3AZrNc2WeIHpvZc_fLMvhy3TLiJwkzfL0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLCFklLASMAtbOw4Dx8QqiirltIKCSrtzWQd57CwSbvJCvWv8euYcR70AAtC6iWX2JM4nsx843kBPA-kFEUopW-LPPKlCQs_s7n0MzWTeWpDZRUlCp-cxodn8v00mm7Ajz4XhsIqe5noBHVeGTojH_MkQeUZoUIZF11YxMeDyZvzC586SJGntW-n0bLIsb38juZb_froAPf6hRCTd5_fHvpdhwHfJFw0vuTJTKAOzvAlJU9TyjJN8lyYnMqyWBGnJuaxijMlye7PqfwelccpQpTuRcFDpHsDbiahDCmcLJkOxh7Vpe_CS7iPECS4kp08fzV3ufXOGcIjV0K0a0rzG8X4J-DrFODkLtzpkCvbb1ntHmzYcgTb-yVa7YtL9pK5WFJ3SD-C21fKHI5g66Rz4G_D4hMFzLcdK1hVsIICfZFq7VpVMGQY0_UTq1lTscxRJz5iNV6QGrPLZbWsGQ5erCiItqq_ouZEE4K5pj41UV1Urgp6cx_OrmU_HsBmWZX2IbDQCKOyODKcTraMTGWRx0glQ8irgsB6EPWfW5uuHDot9Zvu497mut8mTdukqV1nwD0YD_PO24Igf52R9Lup-3RXFNAaddb_zbR1J2dqzXUtdKDJ5c6JyxDeU7WkyAM1zOygVAuR_umpez3L6V8PGn4_D54Nt1EUkX8pK221ojEC0b1IFF83JkRAi1a6WDcmFmSmi8CDnZblh08tYlyd4mp3_Us-hS2UDvrD0enxI7hFiyO8waM92GyWK_sYgWQze-L-WAZfrltE_ARCooD4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+femoral+strain+calculations+to+anatomical+scaling+errors+in+musculoskeletal+models+of+movement&rft.jtitle=Journal+of+biomechanics&rft.au=Martelli%2C+Saulo&rft.au=Kersh%2C+Mariana+E&rft.au=Pandy%2C+Marcus+G&rft.date=2015-10-15&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=48&rft.issue=13&rft.spage=3615&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.08.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4002525061
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929015X00121%2Fcov150h.gif