Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement
The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric...
Saved in:
Published in | Journal of biomechanics Vol. 48; no. 13; pp. 3606 - 3615 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
15.10.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2015.08.001 |
Cover
Abstract | The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380με (R2=0.92, p<0.001) to 4064με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821με in the proximal region to 34,166με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. |
---|---|
AbstractList | The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 mu epsilon (R2=0.92, p<0.001) to 4064 mu epsilon (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 mu epsilon in the proximal region to 34,166 mu epsilon at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 mu epsilon (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380μ[epsilon] (R2=0.92,p<0.001) to 4064μ[epsilon] (R2=0.48,p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821μ[epsilon] in the proximal region to 34,166μ[epsilon] at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430μ[epsilon] (R2=0.95,p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380με (R2=0.92, p<0.001) to 4064με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821με in the proximal region to 34,166με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. Abstract The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με ( R2 =0.92, p <0.001) to 4064 με ( R2 =0.48, p <0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με ( R2 =0.95, p <0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur.The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. |
Author | Pandy, Marcus G. Martelli, Saulo Kersh, Mariana E. |
Author_xml | – sequence: 1 givenname: Saulo orcidid: 0000-0002-0012-8122 surname: Martelli fullname: Martelli, Saulo email: saulo.martelli@flinders.edu.au organization: Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Bedford Park, Australia – sequence: 2 givenname: Mariana E. surname: Kersh fullname: Kersh, Mariana E. organization: Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, IL, USA – sequence: 3 givenname: Marcus G. surname: Pandy fullname: Pandy, Marcus G. organization: Department of Mechanical Engineering, University of Melbourne, Parkville, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26315919$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktrGzEUhUVJaRK3fyEMdNONXb1G0kApDaEvCHSRdi1kzZ1WzkhKJY3B_76aOqbgReONtPnO0dU95xKdhRgAoSuCVwQT8Xaz2qxd9GB_rSgm7QqrFcbkGbogSrIlZQqfoQuMKVl2tMPn6DLnDcZYctm9QOdUMNJ2pLtA_g5CdsVtXdk1cWgG8DGZscklGRcaa0Y7jaa4GHJTYmOCKdE7OxP1cOFnAynFlJsK-ylXOOZ7GKFUwscexjy7-rgFD6G8RM8HM2Z49Xgv0I9PH7_ffFnefvv89eb6dmkloWXJiVxT0SrDLeNEqU62TPY9tT1mkgMVygoiOmE6zhjmPelEK7FUA6s7GAbCFujN3vchxd8T5KK9yxbG0QSIU9ZECkoIVxSfgDKqmKpznYBSIhiV3TzA6yN0E6cU6p8rJQVnLa8ZLNDVIzWtPfT6ITlv0k4f4qnAuz1gU8w5waCtK3_TmOMZNcF6boPe6EMb9NwGjZWum6hycSQ_vPCk8MNeWPODrYOks3UQLPQugS26j-5pi_dHFrbWZW7OPewg_1uHzlRjfTd3da4qaTHm9fv_Nzhlgj9TVfru |
CitedBy_id | crossref_primary_10_1038_s41598_021_99856_y crossref_primary_10_1016_j_jbiomech_2019_01_057 crossref_primary_10_1177_0954411918803125 crossref_primary_10_1007_s11914_020_00592_5 crossref_primary_10_1016_j_gaitpost_2020_06_022 crossref_primary_10_1016_j_jmbbm_2024_106773 crossref_primary_10_1080_10255842_2019_1688310 crossref_primary_10_3389_fbioe_2020_603907 crossref_primary_10_1002_jor_23744 crossref_primary_10_1002_jbmr_3529 crossref_primary_10_1007_s10237_016_0792_3 crossref_primary_10_1016_j_medengphy_2018_12_001 crossref_primary_10_1123_jab_2016_0282 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_1007_s11914_023_00784_9 crossref_primary_10_1007_s10237_022_01606_0 crossref_primary_10_1007_s10439_020_02483_3 crossref_primary_10_1016_j_jbiomech_2016_05_033 crossref_primary_10_1016_j_jmbbm_2021_104817 crossref_primary_10_1115_1_4038741 |
Cites_doi | 10.1016/j.clinbiomech.2014.08.001 10.1002/ajpa.22156 10.1016/S0021-9290(00)00155-X 10.1016/S0021-9290(99)00099-8 10.1016/j.clinbiomech.2011.09.006 10.1016/j.jbiomech.2008.09.011 10.1080/10255842.2014.930134 10.1016/j.gaitpost.2003.11.003 10.1177/0954411911425863 10.1016/j.humov.2007.01.008 10.1002/jor.1100070611 10.1016/j.jbiomech.2007.02.010 10.1016/j.gaitpost.2005.08.002 10.1359/jbmr.2003.18.10.1781 10.1016/j.jbiomech.2010.02.008 10.1016/j.gaitpost.2012.11.020 10.1016/S0021-9290(01)00040-9 10.1002/jor.1100150620 10.1115/1.1531112 10.1093/jee/39.2.269 10.1016/j.jbiomech.2012.02.023 10.1242/jeb.064527 10.1080/01621459.1967.10482916 10.1002/jmri.20805 10.1016/S0021-9290(03)00257-4 10.1016/S0021-9290(03)00071-X 10.1016/j.jbiomech.2009.03.037 10.1109/TBME.2006.879473 10.1016/j.jbiomech.2008.12.014 10.1177/0954411911399975 10.1002/jbmr.2155 10.1016/j.gaitpost.2008.05.002 10.1002/jor.21540 10.1016/S0021-9290(98)00148-1 10.1109/TBME.2007.901024 10.1016/S0021-9290(01)00222-6 10.1109/10.102791 10.1016/j.clinbiomech.2005.01.010 10.1016/j.jbiomech.2011.05.023 10.1016/j.jbiomech.2014.03.036 10.1123/jab.26.2.142 |
ContentType | Journal Article |
Copyright | 2015 Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2015 |
Copyright_xml | – notice: 2015 – notice: Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2015.08.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts Research Library Prep Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 3615 |
ExternalDocumentID | 4002525061 26315919 10_1016_j_jbiomech_2015_08_001 S0021929015004315 1_s2_0_S0021929015004315 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX ACLOT AGQPQ AIGII APXCP CITATION ~HD AGRNS CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c712t-417b2658a4c3418897537dd2cd0374e268c61696a943304d19657078f3001ff13 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Wed Oct 01 12:56:46 EDT 2025 Sat Sep 27 18:29:14 EDT 2025 Sun Sep 28 00:54:13 EDT 2025 Wed Aug 13 07:36:32 EDT 2025 Mon Jul 21 06:05:03 EDT 2025 Wed Oct 01 01:57:23 EDT 2025 Thu Apr 24 22:56:50 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Sun Feb 23 10:20:47 EST 2025 Tue Aug 26 17:10:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Finite-element femur model Anatomical scaling Image-based musculoskeletal model Subject-specific bone strain Scaled-generic |
Language | English |
License | Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c712t-417b2658a4c3418897537dd2cd0374e268c61696a943304d19657078f3001ff13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0012-8122 |
PMID | 26315919 |
PQID | 1776435426 |
PQPubID | 1226346 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1762114820 proquest_miscellaneous_1732838712 proquest_miscellaneous_1721632791 proquest_journals_1776435426 pubmed_primary_26315919 crossref_citationtrail_10_1016_j_jbiomech_2015_08_001 crossref_primary_10_1016_j_jbiomech_2015_08_001 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2015_08_001 elsevier_clinicalkeyesjournals_1_s2_0_S0021929015004315 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2015_08_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-15 |
PublicationDateYYYYMMDD | 2015-10-15 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Lenaerts, Bartels, Gelaude, Mulier, Spaepen, Van der Perre, Jonkers (bib21) 2009; 42 Martelli, Valente, Viceconti, Taddei (bib26) 2015; 18 Trepczynski, Kutzner, Kornaropoulos, Taylor, Duda, Bergmann, Heller (bib37) 2012; 30 Lilliefors (bib22) 1967; 62 Jonkers, Lenaerts, Mulier, Van der Perre, Jaecques (bib17) 2008; 41 Taddei, Martelli, Valente, Leardini, Benedetti, Manfrini, Viceconti (bib35) 2012; 27 Lim, Lin, Pandy (bib23) 2013; 38 Abdel Fatah, Shirley, Mahfouz, Auerbach (bib2) 2012; 149 Dorn, Schache, Pandy (bib14) 2012; 215 Scheys, Loeckx, Spaepen, Suetens, Jonkers (bib30) 2009; 42 Blemker, Asakawa, Gold, Delp (bib7) 2007; 25 Cody, Gross Gary, Hou, Spencer, Goldstein, Fyhrie (bib9) 1999; 32 Martelli, Pivonka, Ebeling (bib25) 2014; 29 Stacoff, Diezi, Luder, Stüssi, Kramers-de Quervain (bib33) 2005; 21 Redl, Gfoehler, Pandy (bib28) 2007; 26 Bayraktar, Morgan, Niebur, Morris, Wong, Keaveny (bib5) 2004; 37 Martelli, Kersh, Schache, Pandy (bib24) 2014; 47 Scheys, Van Campenhout, Spaepen, Suetens, Jonkers (bib31) 2008; 28 Cleather, Bull (bib8) 2011; 225 Van Rietbergen, Huiskes, Eckstein, Ruegsegger (bib39) 2003; 18 Xiao, Higginson (bib43) 2010; 26 Leardini, Cappozzo, Catani, Toksvig-Larsen, Petitto, Sforza, Cassanelli, Giannini (bib20) 1999; 32 Delp, Loan, Hoy, Zajac, Topp, Rosen (bib13) 1990; 37 Hazewinkel (bib15) 1994 Wilcoxon (bib41) 1946; 39 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (bib12) 2007; 54 Taddei, Martelli, Reggiani, Cristofolini, Viceconti (bib34) 2006; 53 Bergmann, Deuretzbacher, Heller, Graichen, Rohlmann, Strauss, Duda (bib6) 2001; 34 Kadaba, Ramakrishnan, Wootten, Gainey, Gorton, Cochran (bib18) 1989 Lang, Saeed, Streeper, Carballido-Gamio, Harnish, Frassetto, Lee, Sibonga, Keyak, Spiering, Grodsinsky, Bloomberg, Cavanagh (bib19) 2014; 29 Ackland, Lin, Pandy (bib3) 2012; 45 Anderson, Pandy (bib4) 2001; 34 Schache, Baker, Lamoreux (bib29) 2006; 24 Viceconti, Olsen, Nolte, Burton (bib40) 2005; 20 Correa, Baker, Kerr Graham, Pandy, Graham (bib10) 2011; 44 Thelen (bib36) 2003; 125 Valente, Martelli, Taddei, Farinella, Viceconti (bib38) 2012; 226 Wu, Siegler, Allard, Kirtley, Leardini, Rosenbaum, Whittle, D’Lima, Cristofolini, Witte, Schmid, Stokes (bib42) 2002; 35 Correa, Crossley, Kim, Pandy (bib11) 2010; 43 Aamodt, Lund-Larsen, Eine, Andersen, Benum, Husby (bib1) 1997; 15 Schileo, Taddei, Malandrino, Cristofolini, Viceconti (bib32) 2007; 40 Inman, Ralston, Todd (bib16) 1981 Morgan, Bayraktar, Keaveny (bib27) 2003; 36 Dorn (10.1016/j.jbiomech.2015.08.001_bib14) 2012; 215 Lilliefors (10.1016/j.jbiomech.2015.08.001_bib22) 1967; 62 Martelli (10.1016/j.jbiomech.2015.08.001_bib24) 2014; 47 Valente (10.1016/j.jbiomech.2015.08.001_bib38) 2012; 226 Bergmann (10.1016/j.jbiomech.2015.08.001_bib6) 2001; 34 Taddei (10.1016/j.jbiomech.2015.08.001_bib34) 2006; 53 Martelli (10.1016/j.jbiomech.2015.08.001_bib26) 2015; 18 Redl (10.1016/j.jbiomech.2015.08.001_bib28) 2007; 26 Trepczynski (10.1016/j.jbiomech.2015.08.001_bib37) 2012; 30 Hazewinkel (10.1016/j.jbiomech.2015.08.001_bib15) 1994 Wilcoxon (10.1016/j.jbiomech.2015.08.001_bib41) 1946; 39 Aamodt (10.1016/j.jbiomech.2015.08.001_bib1) 1997; 15 Kadaba (10.1016/j.jbiomech.2015.08.001_bib18) 1989 Blemker (10.1016/j.jbiomech.2015.08.001_bib7) 2007; 25 Correa (10.1016/j.jbiomech.2015.08.001_bib10) 2011; 44 Delp (10.1016/j.jbiomech.2015.08.001_bib12) 2007; 54 Scheys (10.1016/j.jbiomech.2015.08.001_bib30) 2009; 42 Abdel Fatah (10.1016/j.jbiomech.2015.08.001_bib2) 2012; 149 Cleather (10.1016/j.jbiomech.2015.08.001_bib8) 2011; 225 Jonkers (10.1016/j.jbiomech.2015.08.001_bib17) 2008; 41 Schache (10.1016/j.jbiomech.2015.08.001_bib29) 2006; 24 Xiao (10.1016/j.jbiomech.2015.08.001_bib43) 2010; 26 Cody (10.1016/j.jbiomech.2015.08.001_bib9) 1999; 32 Correa (10.1016/j.jbiomech.2015.08.001_bib11) 2010; 43 Stacoff (10.1016/j.jbiomech.2015.08.001_bib33) 2005; 21 Thelen (10.1016/j.jbiomech.2015.08.001_bib36) 2003; 125 Delp (10.1016/j.jbiomech.2015.08.001_bib13) 1990; 37 Anderson (10.1016/j.jbiomech.2015.08.001_bib4) 2001; 34 Morgan (10.1016/j.jbiomech.2015.08.001_bib27) 2003; 36 Taddei (10.1016/j.jbiomech.2015.08.001_bib35) 2012; 27 Lim (10.1016/j.jbiomech.2015.08.001_bib23) 2013; 38 Inman (10.1016/j.jbiomech.2015.08.001_bib16) 1981 Lang (10.1016/j.jbiomech.2015.08.001_bib19) 2014; 29 Lenaerts (10.1016/j.jbiomech.2015.08.001_bib21) 2009; 42 Ackland (10.1016/j.jbiomech.2015.08.001_bib3) 2012; 45 Bayraktar (10.1016/j.jbiomech.2015.08.001_bib5) 2004; 37 Leardini (10.1016/j.jbiomech.2015.08.001_bib20) 1999; 32 Viceconti (10.1016/j.jbiomech.2015.08.001_bib40) 2005; 20 Martelli (10.1016/j.jbiomech.2015.08.001_bib25) 2014; 29 Wu (10.1016/j.jbiomech.2015.08.001_bib42) 2002; 35 Scheys (10.1016/j.jbiomech.2015.08.001_bib31) 2008; 28 Van Rietbergen (10.1016/j.jbiomech.2015.08.001_bib39) 2003; 18 Schileo (10.1016/j.jbiomech.2015.08.001_bib32) 2007; 40 |
References_xml | – year: 1994 ident: bib15 article-title: Encyclopaedia of Mathematics (set) – volume: 42 start-page: 565 year: 2009 end-page: 572 ident: bib30 article-title: Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study publication-title: J. Biomech. – volume: 53 start-page: 2194 year: 2006 end-page: 2200 ident: bib34 article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties publication-title: IEEE Trans. Biomed. Eng. – volume: 226 start-page: 161 year: 2012 end-page: 169 ident: bib38 article-title: Muscle discretization affects the loading transferred to bones in lowerlimb musculoskeletal models publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med. – volume: 29 start-page: 1337 year: 2014 end-page: 1345 ident: bib19 article-title: Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens publication-title: J. Bone Miner. Res. – volume: 149 start-page: 547 year: 2012 end-page: 559 ident: bib2 article-title: A three-dimensional analysis of bilateral directional asymmetry in the human clavicle publication-title: Am. J. Phys. Anthropol. – volume: 21 start-page: 24 year: 2005 end-page: 38 ident: bib33 article-title: Ground reaction forces on stairs: effects of stair inclination and age publication-title: Gait Posture – volume: 35 start-page: 543 year: 2002 end-page: 548 ident: bib42 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – Part I: ankle, hip, and spine publication-title: J. Biomech. – volume: 25 start-page: 441 year: 2007 end-page: 451 ident: bib7 article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities publication-title: J. Magn. Reson. Imaging – volume: 24 start-page: 100 year: 2006 end-page: 109 ident: bib29 article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods publication-title: Gait Posture – volume: 27 start-page: 273 year: 2012 end-page: 280 ident: bib35 article-title: Femoral loads during gait in a patient with massive skeletal reconstruction publication-title: Clin. Biomech. – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: bib32 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J. Biomech. – volume: 15 start-page: 927 year: 1997 end-page: 931 ident: bib1 article-title: In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur publication-title: J. Orthop. Res. – volume: 215 start-page: 1944 year: 2012 end-page: 1956 ident: bib14 article-title: Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance publication-title: J. Exp. Biol. – volume: 29 start-page: 869 year: 2014 end-page: 876 ident: bib25 article-title: Femoral shaft strains during daily activities: implications for atypical femoral fractures publication-title: Clin. Biomech. – volume: 28 start-page: 358 year: 2008 end-page: 365 ident: bib31 article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait Posture – volume: 20 start-page: 451 year: 2005 end-page: 454 ident: bib40 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clin. Biomech. – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: bib13 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 30 start-page: 408 year: 2012 end-page: 415 ident: bib37 article-title: Patellofemoral joint contact forces during activities with high knee flexion publication-title: J. Orthop. Res. – volume: 32 start-page: 99 year: 1999 end-page: 103 ident: bib20 article-title: Validation of a functional method for the estimation of hip joint centre location publication-title: J. Biomech. – volume: 43 start-page: 1618 year: 2010 end-page: 1622 ident: bib11 article-title: Contributions of individual muscles to hip joint contact force in normal walking publication-title: J. Biomech. – volume: 225 start-page: 621 year: 2011 end-page: 626 ident: bib8 article-title: Knee and hip joint forces – sensitivity to the degrees of freedom classification at the knee publication-title: Proc. Inst. Mech. Eng., Part H – volume: 44 start-page: 2096 year: 2011 end-page: 2105 ident: bib10 article-title: Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait publication-title: J. Biomech. – year: 1981 ident: bib16 article-title: Human Walking – volume: 34 start-page: 859 year: 2001 end-page: 871 ident: bib6 article-title: Hip contact forces and gait patterns from routine activities publication-title: J. Biomech. – volume: 18 start-page: 1781 year: 2003 end-page: 1788 ident: bib39 article-title: Trabecular bone tissue strains in the healthy and osteoporotic human femur publication-title: J. Bone Miner. Res. – volume: 38 start-page: 253 year: 2013 end-page: 259 ident: bib23 article-title: Muscle function during gait is invariant to age when walking speed is controlled publication-title: Gait Posture – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: bib12 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. – start-page: 849 year: 1989 end-page: 860 ident: bib18 article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait publication-title: J. Orthop. Res. – volume: 62 start-page: 399 year: 1967 end-page: 402 ident: bib22 article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. – volume: 26 start-page: 306 year: 2007 end-page: 319 ident: bib28 article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties publication-title: Hum. Mov. Sci. – volume: 41 start-page: 3405 year: 2008 end-page: 3413 ident: bib17 article-title: Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement publication-title: J. Biomech. – volume: 18 start-page: 1555 year: 2015 end-page: 1563 ident: bib26 article-title: Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 26 start-page: 142 year: 2010 end-page: 149 ident: bib43 article-title: Sensitivity of estimated muscle force in forward simulation of normal walking publication-title: J. Appl. Biomech. – volume: 32 start-page: 1013 year: 1999 end-page: 1020 ident: bib9 article-title: Femoral strength is better predicted by finite element models than QCT and DXA publication-title: J. Biomech. – volume: 42 start-page: 1246 year: 2009 end-page: 1251 ident: bib21 article-title: Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait publication-title: J. Biomech. – volume: 37 start-page: 27 year: 2004 end-page: 35 ident: bib5 article-title: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue publication-title: J. Biomech. – volume: 39 start-page: 269 year: 1946 ident: bib41 article-title: Individual comparisons of grouped data by ranking methods publication-title: J. Econ. Entomol. – volume: 34 start-page: 153 year: 2001 end-page: 161 ident: bib4 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: J. Biomech. – volume: 47 start-page: 1784 year: 2014 end-page: 1791 ident: bib24 article-title: Strain energy in the femoral neck during exercise publication-title: J. Biomech. – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib27 article-title: Trabecular bone modulus-density relationships depend on anatomic site publication-title: J. Biomech. – volume: 45 start-page: 1463 year: 2012 end-page: 1471 ident: bib3 article-title: Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis publication-title: J. Biomech. – volume: 125 start-page: 70 year: 2003 end-page: 77 ident: bib36 article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults publication-title: J. Biomech. Eng. – volume: 29 start-page: 869 year: 2014 ident: 10.1016/j.jbiomech.2015.08.001_bib25 article-title: Femoral shaft strains during daily activities: implications for atypical femoral fractures publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2014.08.001 – volume: 149 start-page: 547 year: 2012 ident: 10.1016/j.jbiomech.2015.08.001_bib2 article-title: A three-dimensional analysis of bilateral directional asymmetry in the human clavicle publication-title: Am. J. Phys. Anthropol. doi: 10.1002/ajpa.22156 – volume: 34 start-page: 153 year: 2001 ident: 10.1016/j.jbiomech.2015.08.001_bib4 article-title: Static and dynamic optimization solutions for gait are practically equivalent publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00155-X – volume: 32 start-page: 1013 year: 1999 ident: 10.1016/j.jbiomech.2015.08.001_bib9 article-title: Femoral strength is better predicted by finite element models than QCT and DXA publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00099-8 – volume: 27 start-page: 273 year: 2012 ident: 10.1016/j.jbiomech.2015.08.001_bib35 article-title: Femoral loads during gait in a patient with massive skeletal reconstruction publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2011.09.006 – volume: 41 start-page: 3405 year: 2008 ident: 10.1016/j.jbiomech.2015.08.001_bib17 article-title: Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.09.011 – year: 1981 ident: 10.1016/j.jbiomech.2015.08.001_bib16 – volume: 18 start-page: 1555 year: 2015 ident: 10.1016/j.jbiomech.2015.08.001_bib26 article-title: Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2014.930134 – volume: 21 start-page: 24 year: 2005 ident: 10.1016/j.jbiomech.2015.08.001_bib33 article-title: Ground reaction forces on stairs: effects of stair inclination and age publication-title: Gait Posture doi: 10.1016/j.gaitpost.2003.11.003 – volume: 226 start-page: 161 year: 2012 ident: 10.1016/j.jbiomech.2015.08.001_bib38 article-title: Muscle discretization affects the loading transferred to bones in lowerlimb musculoskeletal models publication-title: Proc. Inst. Mech. Eng., Part H: J. Eng. Med. doi: 10.1177/0954411911425863 – year: 1994 ident: 10.1016/j.jbiomech.2015.08.001_bib15 – volume: 26 start-page: 306 year: 2007 ident: 10.1016/j.jbiomech.2015.08.001_bib28 article-title: Sensitivity of muscle force estimates to variations in muscle–tendon properties publication-title: Hum. Mov. Sci. doi: 10.1016/j.humov.2007.01.008 – start-page: 849 issue: 7 year: 1989 ident: 10.1016/j.jbiomech.2015.08.001_bib18 article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait publication-title: J. Orthop. Res. doi: 10.1002/jor.1100070611 – volume: 40 start-page: 2982 year: 2007 ident: 10.1016/j.jbiomech.2015.08.001_bib32 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.02.010 – volume: 24 start-page: 100 year: 2006 ident: 10.1016/j.jbiomech.2015.08.001_bib29 article-title: Defining the knee joint flexion–extension axis for purposes of quantitative gait analysis: an evaluation of methods publication-title: Gait Posture doi: 10.1016/j.gaitpost.2005.08.002 – volume: 18 start-page: 1781 year: 2003 ident: 10.1016/j.jbiomech.2015.08.001_bib39 article-title: Trabecular bone tissue strains in the healthy and osteoporotic human femur publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2003.18.10.1781 – volume: 43 start-page: 1618 year: 2010 ident: 10.1016/j.jbiomech.2015.08.001_bib11 article-title: Contributions of individual muscles to hip joint contact force in normal walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.02.008 – volume: 38 start-page: 253 year: 2013 ident: 10.1016/j.jbiomech.2015.08.001_bib23 article-title: Muscle function during gait is invariant to age when walking speed is controlled publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.11.020 – volume: 34 start-page: 859 year: 2001 ident: 10.1016/j.jbiomech.2015.08.001_bib6 article-title: Hip contact forces and gait patterns from routine activities publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00040-9 – volume: 15 start-page: 927 year: 1997 ident: 10.1016/j.jbiomech.2015.08.001_bib1 article-title: In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur publication-title: J. Orthop. Res. doi: 10.1002/jor.1100150620 – volume: 125 start-page: 70 year: 2003 ident: 10.1016/j.jbiomech.2015.08.001_bib36 article-title: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults publication-title: J. Biomech. Eng. doi: 10.1115/1.1531112 – volume: 39 start-page: 269 year: 1946 ident: 10.1016/j.jbiomech.2015.08.001_bib41 article-title: Individual comparisons of grouped data by ranking methods publication-title: J. Econ. Entomol. doi: 10.1093/jee/39.2.269 – volume: 45 start-page: 1463 year: 2012 ident: 10.1016/j.jbiomech.2015.08.001_bib3 article-title: Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a Monte-Carlo analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.02.023 – volume: 215 start-page: 1944 year: 2012 ident: 10.1016/j.jbiomech.2015.08.001_bib14 article-title: Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance publication-title: J. Exp. Biol. doi: 10.1242/jeb.064527 – volume: 62 start-page: 399 year: 1967 ident: 10.1016/j.jbiomech.2015.08.001_bib22 article-title: On the Kolmogorov–Smirnov test for normality with mean and variance unknown publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1967.10482916 – volume: 25 start-page: 441 year: 2007 ident: 10.1016/j.jbiomech.2015.08.001_bib7 article-title: Image-based musculoskeletal modeling: applications, advances, and future opportunities publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20805 – volume: 37 start-page: 27 year: 2004 ident: 10.1016/j.jbiomech.2015.08.001_bib5 article-title: Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00257-4 – volume: 36 start-page: 897 year: 2003 ident: 10.1016/j.jbiomech.2015.08.001_bib27 article-title: Trabecular bone modulus-density relationships depend on anatomic site publication-title: J. Biomech. doi: 10.1016/S0021-9290(03)00071-X – volume: 42 start-page: 1246 year: 2009 ident: 10.1016/j.jbiomech.2015.08.001_bib21 article-title: Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.037 – volume: 53 start-page: 2194 year: 2006 ident: 10.1016/j.jbiomech.2015.08.001_bib34 article-title: Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.879473 – volume: 42 start-page: 565 year: 2009 ident: 10.1016/j.jbiomech.2015.08.001_bib30 article-title: Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.12.014 – volume: 225 start-page: 621 year: 2011 ident: 10.1016/j.jbiomech.2015.08.001_bib8 article-title: Knee and hip joint forces – sensitivity to the degrees of freedom classification at the knee publication-title: Proc. Inst. Mech. Eng., Part H doi: 10.1177/0954411911399975 – volume: 29 start-page: 1337 year: 2014 ident: 10.1016/j.jbiomech.2015.08.001_bib19 article-title: Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2155 – volume: 28 start-page: 358 year: 2008 ident: 10.1016/j.jbiomech.2015.08.001_bib31 article-title: Personalized MR-based musculoskeletal models compared to rescaled generic models in the presence of increased femoral anteversion: effect on hip moment arm lengths publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.05.002 – volume: 30 start-page: 408 year: 2012 ident: 10.1016/j.jbiomech.2015.08.001_bib37 article-title: Patellofemoral joint contact forces during activities with high knee flexion publication-title: J. Orthop. Res. doi: 10.1002/jor.21540 – volume: 32 start-page: 99 year: 1999 ident: 10.1016/j.jbiomech.2015.08.001_bib20 article-title: Validation of a functional method for the estimation of hip joint centre location publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00148-1 – volume: 54 start-page: 1940 year: 2007 ident: 10.1016/j.jbiomech.2015.08.001_bib12 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 35 start-page: 543 year: 2002 ident: 10.1016/j.jbiomech.2015.08.001_bib42 article-title: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – Part I: ankle, hip, and spine publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00222-6 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.jbiomech.2015.08.001_bib13 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 20 start-page: 451 year: 2005 ident: 10.1016/j.jbiomech.2015.08.001_bib40 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2005.01.010 – volume: 44 start-page: 2096 year: 2011 ident: 10.1016/j.jbiomech.2015.08.001_bib10 article-title: Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.05.023 – volume: 47 start-page: 1784 year: 2014 ident: 10.1016/j.jbiomech.2015.08.001_bib24 article-title: Strain energy in the femoral neck during exercise publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.03.036 – volume: 26 start-page: 142 year: 2010 ident: 10.1016/j.jbiomech.2015.08.001_bib43 article-title: Sensitivity of estimated muscle force in forward simulation of normal walking publication-title: J. Appl. Biomech. doi: 10.1123/jab.26.2.142 |
SSID | ssj0007479 |
Score | 2.284972 |
Snippet | The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference... Abstract The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3606 |
SubjectTerms | Aged Anatomical scaling Biomechanical Phenomena Biomedical materials Bones Error detection Errors Female Femur Femur - physiopathology Finite Element Analysis Finite-element femur model Gait Hip Joint - physiopathology Humans Image-based musculoskeletal model Legs Mathematical models Middle Aged Models, Anatomic Muscle, Skeletal - physiopathology Osteoporosis - diagnosis Osteoporosis - physiopathology Physical Medicine and Rehabilitation Scaled-generic Sensitivity and Specificity Strain Studies Subject-specific bone strain Surgical implants Walking - physiology Weight-Bearing |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPSA4oLLlESjISIhburHjOPGxqqgqpHKBSr1ZWceWurBJtckeeuG3d8ZxtkVAQXBZaXfHk9gzHn-25wHwLpNS-FzK1PmmSKXNfVq7Rqa1Xsimcrl2mgKFzz6p03P58aK42IHjKRaG3Cqj7R9terDW8Zd5HM351eUlxfjibBNhy04ZYijQnLJ_oU4ffr9180C4HN08eErUd6KEl4fLEOMeLiV4EVJ5xuIwv1igfgdAw0J0sgePI4JkR-NLPoEd185g_6jF3fPqmr1nwaczHJbP4NGddIMzeHAWL9L3YfWZHNfHyhGs88yTwy1y7UPJCIaCs7GuV8-GjtWBO8mT9fiB3Jhbr7t1z5B4tSFn1q7_iisYQnkWiuv0xHXVhWzkw1M4P_nw5fg0jZUXUltyMaSSlwuB2KRG4UleVRR9WzaNsA2lq3FCVVZxpVWtJZ2HNJSWkNIG-RwH0HueP4PdtmvdC2C5FVbXqrCcTpisrKRvFHKpEXrqLHMJFNNwGxvTklNXv5nJ_2xpJjEZEpOhspkZT2C-bXc1Jub4Y4tykqaZwk7RUBpcO_6tpevjfO8NN70wmflJJxPQ25Y_qPVfPfVgUjlz-6CyRAxZIK5K4O32bzQJdM9Tt67bEI1AlC1Kze-jyRFY4m5Z3EejBG2XRZbA81Hlt0MtFPZOc_3yPzr4Ch7SN0ICvDiA3WG9ca8R4g2LN2EO3wD7b04f priority: 102 providerName: Elsevier |
Title | Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929015004315 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929015004315 https://dx.doi.org/10.1016/j.jbiomech.2015.08.001 https://www.ncbi.nlm.nih.gov/pubmed/26315919 https://www.proquest.com/docview/1776435426 https://www.proquest.com/docview/1721632791 https://www.proquest.com/docview/1732838712 https://www.proquest.com/docview/1762114820 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH9im4TggKDjIzAqIyFu2WLH-fAJFbSpgFYhYFJvVuo4h44mW9MeduFv5z3HCTtAQVzaQ-yX2M_2-_l9AryOpBRVLGVoqzIJpYmrsLClDAu1kGVuY2UVBQqfz9Lphfw4T-Ze4dZ6t8r-THQHddkY0pGf8CxD4ZmgQHl7dR1S1SiyrvoSGntwwBGq0KrO5sOFi3LDexcPHuLT6FaE8PJ46eLbnUGCJy6Npy8M8xvh9Cfw6YTQ2UN44NEjm3TsfgR3bD2Cw0mNN-fVDXvDnD-nU5SP4P6tVIMjuHvujeiHsPpKTutd1QjWVKwiZ1uk2rpyEQyZZnxNr5ZtGlY46sRL1uIPUmN2vW7WLcPGqy05sjbtJUovhPHMFdZpieqqcZnIN4_h4uz02_tp6KsuhCbjYhNKni0E4pICGSd5nlPkbVaWwpSUqsaKNDcpT1VaKEm6kJJSElLKoCrGCawqHj-B_bqp7TNgsRFGFWliOGmXjMxlVaZIpUDYqaLIBpD0062NT0lOQ_2ue9-zpe7ZpIlNmkpmRjyAk6HfVZeU4689sp6bug85xUNSo9z4v5629Xu91Vy3QkeazN60BkmFRBmLkgDU0NPDmQ6m_NNbj_olp3-9aNgCAbwaHuNxQDaeorbNltoIRNgiU3xXmxhBJd6Uxa42qaCrsogCeNot-WGqRYqjU1w93_2RL-AejYgEPU-OYH-z3tqXiOA2izHsHf_gY7dZx3Aw-fBpOsP_d6ezz19-AjZOR-k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4INgCDRQwEnBLGzvOwweEKqDa0m4vtNLeTNZxDks3KZusUP8Uv5EZ50EPsCCkXnKJPYnjycw3nhfAq0BKUYRS-rbII1-asPAzm0s_UzOZpzZUVlGi8OQkHp_JT9NougE_-lwYCqvsZaIT1Hll6Ix8jycJKs8IFcq7i28-dY0i72rfQqNliyN7-R1Ntvrt4Qfc39dCHHw8fT_2u64Cvkm4aHzJk5lAvZvhi0meppRZmuS5MDmVYrEiTk3MYxVnSpKtn1PJPSqJU4Qo0YuCh0j3BtyUeI9q9SfTwcCjWvRdSAn3EXYEVzKS57tzl0_vHCA8cmVDu0Y0v1GGfwK7Tukd3Id7HVpl-y17PYANW45ga79ES31xyd4wFz_qDuZHcPdKacMR3Jp0TvstWHymIPm2SwWrClZQcC9SrV17CoZMYroeYjVrKpY56sQ7rMYLUmN2uayWNcPBixUFzlb1V9SWaDYw18inJqqLylU-bx7C2bXsxyPYLKvSbgMLjTAqiyPD6TTLyFQWeYxUMoS5KgisB1H_ubXpSqDTUs91H-s21_02adomTS06A-7B3jDvoi0C8tcZSb-buk9xRaGsUU_930xbd7Kl1lzXQgea3OycuAwhPVVIijxQw8wOPrWw6J-eutOznP71oOGX8-DlcBvFD_mUstJWKxojENGLRPF1Y0IEsWiZi3VjYkGmuQg8eNyy_PCpRYyrU1w9Wf-SL-D2-HRyrI8PT46ewh1aHYEMHu3AZrNc2WeIHpvZc_fLMvhy3TLiJwkzfL0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQLCFklLASMAtbOw4Dx8QqiirltIKCSrtzWQd57CwSbvJCvWv8euYcR70AAtC6iWX2JM4nsx843kBPA-kFEUopW-LPPKlCQs_s7n0MzWTeWpDZRUlCp-cxodn8v00mm7Ajz4XhsIqe5noBHVeGTojH_MkQeUZoUIZF11YxMeDyZvzC586SJGntW-n0bLIsb38juZb_froAPf6hRCTd5_fHvpdhwHfJFw0vuTJTKAOzvAlJU9TyjJN8lyYnMqyWBGnJuaxijMlye7PqfwelccpQpTuRcFDpHsDbiahDCmcLJkOxh7Vpe_CS7iPECS4kp08fzV3ufXOGcIjV0K0a0rzG8X4J-DrFODkLtzpkCvbb1ntHmzYcgTb-yVa7YtL9pK5WFJ3SD-C21fKHI5g66Rz4G_D4hMFzLcdK1hVsIICfZFq7VpVMGQY0_UTq1lTscxRJz5iNV6QGrPLZbWsGQ5erCiItqq_ouZEE4K5pj41UV1Urgp6cx_OrmU_HsBmWZX2IbDQCKOyODKcTraMTGWRx0glQ8irgsB6EPWfW5uuHDot9Zvu497mut8mTdukqV1nwD0YD_PO24Igf52R9Lup-3RXFNAaddb_zbR1J2dqzXUtdKDJ5c6JyxDeU7WkyAM1zOygVAuR_umpez3L6V8PGn4_D54Nt1EUkX8pK221ojEC0b1IFF83JkRAi1a6WDcmFmSmi8CDnZblh08tYlyd4mp3_Us-hS2UDvrD0enxI7hFiyO8waM92GyWK_sYgWQze-L-WAZfrltE_ARCooD4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+femoral+strain+calculations+to+anatomical+scaling+errors+in+musculoskeletal+models+of+movement&rft.jtitle=Journal+of+biomechanics&rft.au=Martelli%2C+Saulo&rft.au=Kersh%2C+Mariana+E&rft.au=Pandy%2C+Marcus+G&rft.date=2015-10-15&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=48&rft.issue=13&rft.spage=3615&rft_id=info:doi/10.1016%2Fj.jbiomech.2015.08.001&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4002525061 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929015X00121%2Fcov150h.gif |