Energy metabolism of follicular environment during oocyte growth and maturation
Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental co...
Saved in:
Published in | Journal of Reproduction and Development Vol. 66; no. 1; pp. 1 - 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Japan
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
2020
Japan Science and Technology Agency The Society for Reproduction and Development |
Subjects | |
Online Access | Get full text |
ISSN | 0916-8818 1348-4400 |
DOI | 10.1262/jrd.2019-102 |
Cover
Abstract | Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental competence. Therefore homeostasis between metabolism of glucose and fatty acids in the oocyte is being widely described nowadays. This review aims to discuss the follicular (in vivo) or maturation media (in vitro) environments with regard to glucose and fatty acid metabolism, as the main sources of the energy for the oocyte. A great emphasis is given on the balance between those two metabolic pathways and its further impact on female fertility. |
---|---|
AbstractList | Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental competence. Therefore homeostasis between metabolism of glucose and fatty acids in the oocyte is being widely described nowadays. This review aims to discuss the follicular (in vivo) or maturation media (in vitro) environments with regard to glucose and fatty acid metabolism, as the main sources of the energy for the oocyte. A great emphasis is given on the balance between those two metabolic pathways and its further impact on female fertility. |
Author | WARZYCH, Ewelina LIPINSKA, Paulina |
Author_xml | – sequence: 1 fullname: LIPINSKA, Paulina organization: Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan 60-637, Poland – sequence: 1 fullname: WARZYCH, Ewelina organization: Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan 60-637, Poland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31787727$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJaTZpbz0XQ691OvqwZF8KbUjSQCCX5CxkSfbK2FIqyyn731ebzS5NIBcJZt78HjPvBB354C1CnzGcYcLJ9yGaMwK4KTGQd2iFKatLxgCO0AoazMu6xvUxOpnnAYCSirMP6JhiUQtBxArdXngb-00x2aTaMLp5KkJXdGEcnV5GFQvrH10MfrI-FWaJzvdFCHqTbNHH8DetC-VNMam0RJVc8B_R-06Ns_30_J-i-8uLu_Pf5c3t1fX5z5tSC4xTyVRbWUxaLrCqq5ZQaqjhYEXDTIVrbaEhuoKOEMaN4JgIDJRBi2vRQVW39BRd77gmqEE-RDepuJFBOflUCLGXKianRyuFFcwANwrzhmlrlcp2gmnWtBQI4Zn1Y8d6WNrJGp1XjWp8AX3Z8W4t-_AoBTAgUGXA12dADH8WOyc5hCX6vL8klDcVrSjDWfXlf5sDfx9GFpCdQMcwz9F2Urv0dNXs6kaJQW4TlzlxuU08F0ge-vZqaM99Q_5rJx_mpHp7EO-PtRVzLvH22Q8dmnqtorSe_gP8pMQ2 |
CitedBy_id | crossref_primary_10_3390_ani11113200 crossref_primary_10_1016_j_semcdb_2024_01_007 crossref_primary_10_3389_fgene_2024_1416283 crossref_primary_10_1016_j_gene_2024_148979 crossref_primary_10_3390_ijms25105349 crossref_primary_10_1186_s12917_024_04129_1 crossref_primary_10_3390_ijms25189898 crossref_primary_10_1016_j_jsbmb_2024_106547 crossref_primary_10_1016_j_livsci_2024_105557 crossref_primary_10_3390_ijms23084141 crossref_primary_10_1016_j_heliyon_2024_e37639 crossref_primary_10_1186_s12958_021_00823_z crossref_primary_10_1007_s43032_021_00505_6 crossref_primary_10_1017_S0967199424000145 crossref_primary_10_1016_j_ecoenv_2024_117084 crossref_primary_10_2147_SCCAA_S513982 crossref_primary_10_3389_fcell_2023_1239154 crossref_primary_10_1096_fj_202400574R crossref_primary_10_3168_jds_2022_21919 crossref_primary_10_1186_s13048_024_01408_1 crossref_primary_10_1016_j_theriogenology_2024_09_009 crossref_primary_10_1055_a_1882_3967 crossref_primary_10_1210_endocr_bqae023 crossref_primary_10_1371_journal_pone_0305912 crossref_primary_10_1007_s11033_025_10233_8 crossref_primary_10_14202_vetworld_2021_2512_2517 crossref_primary_10_1080_15569543_2022_2120897 crossref_primary_10_1016_j_anireprosci_2025_107782 crossref_primary_10_1080_1828051X_2021_1899855 crossref_primary_10_3390_ani13182892 crossref_primary_10_3724_abbs_2024003 crossref_primary_10_2139_ssrn_4184561 crossref_primary_10_1093_molehr_gaac019 crossref_primary_10_3390_ijms252313144 crossref_primary_10_1071_RD21249 crossref_primary_10_3390_cells13181592 crossref_primary_10_1016_j_freeradbiomed_2024_10_312 crossref_primary_10_1080_15548627_2022_2063005 crossref_primary_10_1093_biolre_ioae182 crossref_primary_10_1186_s12958_024_01215_9 crossref_primary_10_1016_j_fct_2021_112435 crossref_primary_10_1016_j_jnutbio_2023_109548 crossref_primary_10_1016_j_jsbmb_2023_106449 crossref_primary_10_3390_ijms252212197 crossref_primary_10_3390_ijms21207589 crossref_primary_10_17221_128_2024_CJAS crossref_primary_10_1002_mrd_23763 crossref_primary_10_1038_s42003_022_04362_0 crossref_primary_10_3390_genes12060838 crossref_primary_10_1016_j_envint_2024_108710 crossref_primary_10_3390_metabo11090623 crossref_primary_10_1016_j_ydbio_2024_02_004 crossref_primary_10_1016_j_arr_2023_102158 crossref_primary_10_1016_j_theriogenology_2024_07_002 crossref_primary_10_1080_15592294_2023_2241010 crossref_primary_10_3390_antiox11040745 crossref_primary_10_3390_ani13132085 crossref_primary_10_5653_cerm_2022_05659 crossref_primary_10_1186_s12864_024_10234_0 crossref_primary_10_3390_nu14204341 crossref_primary_10_1016_j_heliyon_2024_e38551 crossref_primary_10_3390_biom13010047 crossref_primary_10_1016_j_heliyon_2023_e20104 crossref_primary_10_3390_nu13020490 crossref_primary_10_3390_ani14213118 crossref_primary_10_3390_ijms24076837 crossref_primary_10_3390_ijms242216247 crossref_primary_10_3389_fcell_2023_1280998 crossref_primary_10_1016_j_ijbiomac_2023_125307 crossref_primary_10_2478_aoas_2020_0040 crossref_primary_10_1016_j_rvsc_2022_10_026 crossref_primary_10_1186_s13048_025_01633_2 crossref_primary_10_1080_10495398_2022_2114084 crossref_primary_10_1016_j_anireprosci_2024_107578 crossref_primary_10_1186_s13048_023_01296_x crossref_primary_10_3389_fendo_2022_1022044 crossref_primary_10_3389_fendo_2024_1464171 crossref_primary_10_1097_MD_0000000000036851 crossref_primary_10_1038_s41598_024_76893_x crossref_primary_10_1016_j_repbio_2024_100898 crossref_primary_10_3390_cells11203270 |
Cites_doi | 10.1016/j.rbmo.2009.12.006 10.1095/biolreprod61.3.731 10.1016/j.theriogenology.2009.04.015 10.1016/j.theriogenology.2016.08.007 10.1186/s13048-014-0102-6 10.1530/REP-09-0345 10.1016/j.ydbio.2004.11.027 10.1371/journal.pone.0023183 10.1071/RD04135 10.1210/me.2014-1049 10.1016/j.anireprosci.2006.10.006 10.1126/science.123.3191.309 10.1071/RD12397 10.1530/rep.0.1210447 10.1530/jrf.0.1180163 10.1095/biolreprod.105.041483 10.1152/ajpendo.00469.2012 10.1095/biolreprod.116.146159 10.1071/RD13263 10.1071/RD14363 10.1530/rep.0.1240675 10.1262/jrd.2013-086 10.1016/j.fertnstert.2014.11.015 10.3390/ijms19103261 10.1530/REP-06-0073 10.1530/REP-14-0015 10.1095/biolreprod.110.084145 10.1146/annurev-animal-022114-110822 10.1016/S0378-4320(03)00173-8 10.3168/jds.2013-7278 10.1071/RD16474 10.1095/biolreprod.110.088815 10.1074/jbc.273.17.10609 10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C 10.1055/s-0028-1108008 10.1530/rep.0.1260027 10.1530/rep.1.00835 10.1016/j.theriogenology.2007.08.036 10.1016/j.theriogenology.2005.01.004 10.1038/s41598-018-33550-4 10.1095/biolreprod.114.120634 10.1002/mrd.21047 10.1002/mrd.20222 10.1111/j.1439-0531.2009.01402.x 10.1095/biolreprod.112.106062 10.1002/mrd.22037 10.1095/biolreprod.115.131862 10.1095/biolreprod.113.108548 10.1071/RD06134 10.1016/j.theriogenology.2012.07.023 10.1095/biolreprod60.4.973 10.1016/j.theriogenology.2011.06.029 10.1071/RD12275 10.1095/biolreprod60.6.1446 10.1530/REP-10-0068 10.1006/dbio.1995.1044 |
ContentType | Journal Article |
Copyright | 2020 Society for Reproduction and Development 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Society for Reproduction and Development 2020 |
Copyright_xml | – notice: 2020 Society for Reproduction and Development – notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Society for Reproduction and Development 2020 |
DBID | AAYXX CITATION NPM 7T5 7TK H94 K9. 5PM DOA |
DOI | 10.1262/jrd.2019-102 |
DatabaseName | CrossRef PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1348-4400 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_7e74d06da1694ceeaa23374c49b30226 PMC7040205 31787727 10_1262_jrd_2019_102 article_jrd_66_1_66_2019_102_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 XSB AAYXX CITATION NPM 7T5 7TK H94 K9. 5PM |
ID | FETCH-LOGICAL-c711t-4ab5e12b671a85b233d3d60e794d518ce092c50f2246d7612710340b187f058b3 |
IEDL.DBID | M48 |
ISSN | 0916-8818 |
IngestDate | Wed Aug 27 01:29:00 EDT 2025 Tue Sep 30 16:00:47 EDT 2025 Sat Sep 20 14:12:06 EDT 2025 Thu Jan 02 22:59:29 EST 2025 Tue Jul 01 02:55:20 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Wed Sep 03 06:13:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Glucose Fatty acids Energetic homeostasis Oocyte maturation Oocyte quality |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c711t-4ab5e12b671a85b233d3d60e794d518ce092c50f2246d7612710340b187f058b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2019-102 |
PMID | 31787727 |
PQID | 2369535341 |
PQPubID | 2048441 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e74d06da1694ceeaa23374c49b30226 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7040205 proquest_journals_2369535341 pubmed_primary_31787727 crossref_citationtrail_10_1262_jrd_2019_102 crossref_primary_10_1262_jrd_2019_102 jstage_primary_article_jrd_66_1_66_2019_102_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-00-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Reproduction and Development |
PublicationTitleAlternate | J. Reprod. Dev. |
PublicationYear | 2020 |
Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT Japan Science and Technology Agency The Society for Reproduction and Development |
Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT – name: Japan Science and Technology Agency – name: The Society for Reproduction and Development |
References | 6. Moore SG, Fair T, Lonergan P, Butler ST. Genetic merit for fertility traits in Holstein cows: IV. Transition period, uterine health, and resumption of cyclicity. J Dairy Sci 2014; 97: 2740–2752. 22. Urner F, Sakkas D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev 2005; 70: 494–503. 17. Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 1999; 61: 731–740. 23. Gutnisky C, Dalvit GC, Thompson JG, Cetica PD. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Reprod Fertil Dev 2014; 26: 931–942. 54. Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 2014; 148: 429–439. 35. Silva RC, Báo SN, Jivago JL, Lucci CM. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology 2011; 76: 1647–1657. 1. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14: 263–283. 27. Frank LA, Sutton-McDowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev 2013; 25: 1095–1104. 7. Warzych E, Cieslak A, Madeja ZE, Pawlak P, Wolc A, Lechniak D. Multifactorial analysis of the follicular environment is predictive of oocyte morphology in cattle. J Reprod Dev 2014; 60: 1–8. 32. Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 2006; 132: 829–837. 41. McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 2000; 118: 163–170. 34. Paulini F, Silva RC, Rôlo JL, Lucci CM. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J Ovarian Res 2014; 7: 102. 52. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6: e23183. 20. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 1998; 273: 10609–10617. 36. Adamiak SJ, Mackie K, Watt RG, Webb R, Sinclair KD. Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol Reprod 2005; 73: 918–926. 10. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139: 685–695. 12. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 2009; 27: 32–42. 18. Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction 2006; 131: 289–298. 53. Van Hoeck V, Rizos D, Gutierrez-Adan A, Pintelon I, Jorssen E, Dufort I, Sirard MA, Verlaet A, Hermans N, Bols PE, Leroy JL. Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod Fertil Dev 2015; 27: 372–384. 39. Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 2011; 85: 62–69. 15. Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol 1995; 167: 502–512. 28. Bertevello PS, Teixeira-Gomes AP, Seyer A, Vitorino Carvalho A, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci 2018; 19: 19. 33. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 2010; 83: 909–918. 46. Aardema H, van Tol HTA, Wubbolts RW, Brouwers JFHM, Gadella BM, Roelen BAJ. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod 2017; 96: 982–992. 5. Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod 2015; 92: 16. 14. Bermejo-Alvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 2010; 20: 341–349. 25. Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PS. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology 2008; 69: 186–196. 26. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005; 64: 992–1006. 50. Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, MacMillan KL, Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol Reprod 2016; 94: 23. 3. Leroy JL, Valckx SD, Jordaens L, De Bie J, Desmet KL, Van Hoeck V, Britt JH, Marei WF, Bols PE. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2015; 27: 693–703. 2. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 103: 303–316. 40. Pawlak P, Warzych E, Cieslak A, Malyszka N, Maciejewska E, Madeja ZE, Lechniak D. The consequences of porcine IVM medium supplementation with follicular fluid become reflected in embryo quality, yield and gene expression patterns. Sci Rep 2018; 8: 15306. 8. Sutton ML, Cetica PD, Beconi MT, Kind KL, Gilchrist RB, Thompson JG. Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 2003; 126: 27–34. 30. Pawlak P, Cieslak A, Warzych E, Zejden Z, Szumacher-Strabel M, Molinska-Glura M, Lechniak D. No single way to explain cytoplasmic maturation of oocytes from prepubertal and cyclic gilts. Theriogenology 2012; 78: 2020–2030. 45. Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 2013; 88: 111. 51. De Bie J, Marei WFA, Maillo V, Jordaens L, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod Fertil Dev 2017; 29: 2284–2300. 55. Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, Kwon TH, Kong IK. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 2009; 72: 584–589. 21. Sutton-McDowall ML, Gilchrist RB, Thompson JG. Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium. Reprod Fertil Dev 2005; 17: 407–415. 31. Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 2001; 121: 447–454. 29. Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 2010; 139: 1047–1055. 19. Urner F, Sakkas D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod 1999; 60: 973–978. 56. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314. 13. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod 1999; 60: 1446–1452. 47. Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab 2013; 304: E599–E613. 4. Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, Roelen BA, Vos PL, Helms JB, Gadella BM. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 2013; 88: 164. 42. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 2009; 44(Suppl 3): 50–58. 44. Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 2009; 76: 844–853. 43. Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, Desmarchais A, Papillier P, Monget P, Uzbekova S. Fatty acid syn 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 42. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 2009; 44(Suppl 3): 50–58. – reference: 53. Van Hoeck V, Rizos D, Gutierrez-Adan A, Pintelon I, Jorssen E, Dufort I, Sirard MA, Verlaet A, Hermans N, Bols PE, Leroy JL. Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod Fertil Dev 2015; 27: 372–384. – reference: 15. Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol 1995; 167: 502–512. – reference: 29. Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 2010; 139: 1047–1055. – reference: 11. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 2005; 279: 20–30. – reference: 26. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005; 64: 992–1006. – reference: 4. Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, Roelen BA, Vos PL, Helms JB, Gadella BM. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 2013; 88: 164. – reference: 23. Gutnisky C, Dalvit GC, Thompson JG, Cetica PD. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Reprod Fertil Dev 2014; 26: 931–942. – reference: 31. Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 2001; 121: 447–454. – reference: 48. Lonergan P, Fair T. Maturation of Oocytes in Vitro. Annu Rev Anim Biosci 2016; 4: 255–268. – reference: 3. Leroy JL, Valckx SD, Jordaens L, De Bie J, Desmet KL, Van Hoeck V, Britt JH, Marei WF, Bols PE. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2015; 27: 693–703. – reference: 6. Moore SG, Fair T, Lonergan P, Butler ST. Genetic merit for fertility traits in Holstein cows: IV. Transition period, uterine health, and resumption of cyclicity. J Dairy Sci 2014; 97: 2740–2752. – reference: 51. De Bie J, Marei WFA, Maillo V, Jordaens L, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod Fertil Dev 2017; 29: 2284–2300. – reference: 46. Aardema H, van Tol HTA, Wubbolts RW, Brouwers JFHM, Gadella BM, Roelen BAJ. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod 2017; 96: 982–992. – reference: 54. Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 2014; 148: 429–439. – reference: 16. Krisher RL, Brad AM, Herrick JR, Sparman ML, Swain JE. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci 2007; 98: 72–96. – reference: 25. Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PS. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology 2008; 69: 186–196. – reference: 50. Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, MacMillan KL, Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol Reprod 2016; 94: 23. – reference: 17. Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 1999; 61: 731–740. – reference: 30. Pawlak P, Cieslak A, Warzych E, Zejden Z, Szumacher-Strabel M, Molinska-Glura M, Lechniak D. No single way to explain cytoplasmic maturation of oocytes from prepubertal and cyclic gilts. Theriogenology 2012; 78: 2020–2030. – reference: 47. Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab 2013; 304: E599–E613. – reference: 40. Pawlak P, Warzych E, Cieslak A, Malyszka N, Maciejewska E, Madeja ZE, Lechniak D. The consequences of porcine IVM medium supplementation with follicular fluid become reflected in embryo quality, yield and gene expression patterns. Sci Rep 2018; 8: 15306. – reference: 12. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 2009; 27: 32–42. – reference: 27. Frank LA, Sutton-McDowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev 2013; 25: 1095–1104. – reference: 35. Silva RC, Báo SN, Jivago JL, Lucci CM. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology 2011; 76: 1647–1657. – reference: 18. Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction 2006; 131: 289–298. – reference: 33. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 2010; 83: 909–918. – reference: 41. McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 2000; 118: 163–170. – reference: 39. Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 2011; 85: 62–69. – reference: 5. Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod 2015; 92: 16. – reference: 55. Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, Kwon TH, Kong IK. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 2009; 72: 584–589. – reference: 52. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6: e23183. – reference: 36. Adamiak SJ, Mackie K, Watt RG, Webb R, Sinclair KD. Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol Reprod 2005; 73: 918–926. – reference: 37. Leroy JL, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, de Kruif A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci 2004; 80: 201–211. – reference: 44. Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 2009; 76: 844–853. – reference: 32. Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 2006; 132: 829–837. – reference: 20. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 1998; 273: 10609–10617. – reference: 14. Bermejo-Alvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 2010; 20: 341–349. – reference: 56. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314. – reference: 38. Warzych E, Pawlak P, Pszczola M, Cieslak A, Lechniak D. Prepubertal heifers versus cows-The differences in the follicular environment. Theriogenology 2017; 87: 36–47. – reference: 45. Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 2013; 88: 111. – reference: 2. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 103: 303–316. – reference: 7. Warzych E, Cieslak A, Madeja ZE, Pawlak P, Wolc A, Lechniak D. Multifactorial analysis of the follicular environment is predictive of oocyte morphology in cattle. J Reprod Dev 2014; 60: 1–8. – reference: 9. Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 2002; 124: 675–681. – reference: 34. Paulini F, Silva RC, Rôlo JL, Lucci CM. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J Ovarian Res 2014; 7: 102. – reference: 19. Urner F, Sakkas D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod 1999; 60: 973–978. – reference: 57. Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev 2012; 79: 311–320. – reference: 8. Sutton ML, Cetica PD, Beconi MT, Kind KL, Gilchrist RB, Thompson JG. Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 2003; 126: 27–34. – reference: 21. Sutton-McDowall ML, Gilchrist RB, Thompson JG. Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium. Reprod Fertil Dev 2005; 17: 407–415. – reference: 43. Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, Desmarchais A, Papillier P, Monget P, Uzbekova S. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol Endocrinol 2014; 28: 1502–1521. – reference: 13. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod 1999; 60: 1446–1452. – reference: 10. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139: 685–695. – reference: 22. Urner F, Sakkas D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev 2005; 70: 494–503. – reference: 28. Bertevello PS, Teixeira-Gomes AP, Seyer A, Vitorino Carvalho A, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci 2018; 19: 19. – reference: 49. Britt JH. Impact of early postpartum metabolism on follicular development and fertility. The Bovine Proceedings 1992; 24: 39–43. – reference: 1. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14: 263–283. – reference: 24. Gutnisky C, Dalvit GC, Pintos LN, Thompson JG, Beconi MT, Cetica PD. Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in vitro maturation, fertilisation and embryo development. Reprod Fertil Dev 2007; 19: 488–497. – ident: 14 doi: 10.1016/j.rbmo.2009.12.006 – ident: 17 doi: 10.1095/biolreprod61.3.731 – ident: 55 doi: 10.1016/j.theriogenology.2009.04.015 – ident: 38 doi: 10.1016/j.theriogenology.2016.08.007 – ident: 34 doi: 10.1186/s13048-014-0102-6 – ident: 10 doi: 10.1530/REP-09-0345 – ident: 11 doi: 10.1016/j.ydbio.2004.11.027 – ident: 52 doi: 10.1371/journal.pone.0023183 – ident: 21 doi: 10.1071/RD04135 – ident: 43 doi: 10.1210/me.2014-1049 – ident: 16 doi: 10.1016/j.anireprosci.2006.10.006 – ident: 49 – ident: 56 doi: 10.1126/science.123.3191.309 – ident: 23 doi: 10.1071/RD12397 – ident: 31 doi: 10.1530/rep.0.1210447 – ident: 41 doi: 10.1530/jrf.0.1180163 – ident: 36 doi: 10.1095/biolreprod.105.041483 – ident: 47 doi: 10.1152/ajpendo.00469.2012 – ident: 46 doi: 10.1095/biolreprod.116.146159 – ident: 53 doi: 10.1071/RD13263 – ident: 3 doi: 10.1071/RD14363 – ident: 9 doi: 10.1530/rep.0.1240675 – ident: 7 doi: 10.1262/jrd.2013-086 – ident: 2 doi: 10.1016/j.fertnstert.2014.11.015 – ident: 28 doi: 10.3390/ijms19103261 – ident: 32 doi: 10.1530/REP-06-0073 – ident: 54 doi: 10.1530/REP-14-0015 – ident: 33 doi: 10.1095/biolreprod.110.084145 – ident: 48 doi: 10.1146/annurev-animal-022114-110822 – ident: 37 doi: 10.1016/S0378-4320(03)00173-8 – ident: 6 doi: 10.3168/jds.2013-7278 – ident: 51 doi: 10.1071/RD16474 – ident: 39 doi: 10.1095/biolreprod.110.088815 – ident: 20 doi: 10.1074/jbc.273.17.10609 – ident: 1 doi: 10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C – ident: 12 doi: 10.1055/s-0028-1108008 – ident: 8 doi: 10.1530/rep.0.1260027 – ident: 18 doi: 10.1530/rep.1.00835 – ident: 25 doi: 10.1016/j.theriogenology.2007.08.036 – ident: 26 doi: 10.1016/j.theriogenology.2005.01.004 – ident: 40 doi: 10.1038/s41598-018-33550-4 – ident: 5 doi: 10.1095/biolreprod.114.120634 – ident: 44 doi: 10.1002/mrd.21047 – ident: 22 doi: 10.1002/mrd.20222 – ident: 42 doi: 10.1111/j.1439-0531.2009.01402.x – ident: 4 doi: 10.1095/biolreprod.112.106062 – ident: 57 doi: 10.1002/mrd.22037 – ident: 50 doi: 10.1095/biolreprod.115.131862 – ident: 45 doi: 10.1095/biolreprod.113.108548 – ident: 24 doi: 10.1071/RD06134 – ident: 30 doi: 10.1016/j.theriogenology.2012.07.023 – ident: 19 doi: 10.1095/biolreprod60.4.973 – ident: 35 doi: 10.1016/j.theriogenology.2011.06.029 – ident: 27 doi: 10.1071/RD12275 – ident: 13 doi: 10.1095/biolreprod60.6.1446 – ident: 29 doi: 10.1530/REP-10-0068 – ident: 15 doi: 10.1006/dbio.1995.1044 |
SSID | ssj0032564 |
Score | 2.5101156 |
SecondaryResourceType | review_article |
Snippet | Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte... |
SourceID | doaj pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Energetic homeostasis Energy metabolism Fatty acids Fertility Glucose Glucose metabolism Homeostasis Maturation Metabolic pathways Metabolism Oocyte maturation Oocyte quality Oxidation Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_b9UwED6hSiAWBKWFlII8wISixnZsJ2IC1Kqq1LJQqZvlOE5_qC-vatOh_z13dhK9h6i6sGRIHCe5O99355w_A3zuAuZbCr1fTfU4pfZlXivD8xaxSnSo9RCJ549P9OFpeXSmzla2-qKasEQPnAS3Z7CzttCt47ou0aM7J6Q0pS_rRiL-RLJthLEpmUo-WCKQR-IoDH7yCjFpLHkXWuxd3RJBKK_RAYk1MIqc_QhEVxiWnYd_RZx_F06uINHBa3g1hpDse3r1N_As9JvwPG0q-bAJL47H3-Vv4dd-XNnHFmFAXV9f3i3YsmMd8XDH8lO2ssyNpQWLbLn0D0Ng55ieDxfM9S1bEPdnVOAWnB7s__55mI87KOTecD7kpWtU4KLRhrtKNSi5Vra6CDgIW8UrH4paeFV0xCrXGgx2MN6QZdHwyqCeqkZuw0a_7MN7YMZ0vhLSu5o7bIEgFrgkerTCYVbifAZfJ1FaP9KL0y4X15bSDBS8RcFbEjyeEBl8mVvfJFqNR9r9IK3MbYgMO55AE7GjidinTCSDb0mnczfTnfQorS2nw_TI-SIte0PfkcHuZAh2HN93VkhdK6kwBMjgXbKJuXO08gpzFpOBWbOWtY9Yv9JfXkRmb1NQOq92_sdXf4CXguYG4nTRLmwMt_fhIwZQQ_MpjpU_BUoWDA priority: 102 providerName: Directory of Open Access Journals |
Title | Energy metabolism of follicular environment during oocyte growth and maturation |
URI | https://www.jstage.jst.go.jp/article/jrd/66/1/66_2019-102/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31787727 https://www.proquest.com/docview/2369535341 https://pubmed.ncbi.nlm.nih.gov/PMC7040205 https://doaj.org/article/7e74d06da1694ceeaa23374c49b30226 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Reproduction and Development, 2020, Vol.66(1), pp.1-7 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: KQ8 dateStart: 19920101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: DIK dateStart: 19920101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1348-4400 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1348-4400 dateEnd: 20250630 omitProxy: true ssIdentifier: ssj0032564 issn: 0916-8818 databaseCode: M48 dateStart: 20130201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRSAuiJZHA-3KBzihQPxOhFBVUKsC2sKBlXqLHMfZttpNYBsk9t8zdh7qVkXikoPjhzIz9nzj2N8AvKocxlsSV7_Mn8cRyoo4k5rGJfoqVqHWXSCen56p05n4ci7Pt2DINtoL8PrO0M7nk5qtFm___Fof4oT_ELgRFHt3tfKUnzTDJQUX43vok5i376kY_ydwdOyBSArBUJyij-qPwN9uveGcAoc_OqYrhGlzdxcCvX2Q8oZnOnkMj3pISY46G9iBLVfvwv0uyeR6Fx5M-9_nT-DbcbjpR5auRd0vLq-XpKlI5Xm5w3FUcuPaG-kuMJKmsevWkTmG6-0FMXVJlp4LNCj0KcxOjn98Oo37jAqx1ZS2sTCFdJQVSlOTyoJxXvJSJQ4nZSlpal2SMSuTyrPMlRrBD-IPLpKCphr1lhb8GWzXTe32gGhd2ZRxazJqsAY6NUe5p0tLDEYpxkbwZhBlbnu6cZ_1YpH7sAMFn6Pgcy94LGARvB5r_-xoNv5R76PXyljHk2OHgmY1z_u5lmu0vzJRpaEqEwgCjMEP1cKKrOAIWVQE7zudjt0MLf1QSuXUP4Yhx5f-GhyuJRHsD4aQD-aaM64yySVCggiedzYxdo5Wn2IMoyPQG9ay8RGbb-rLi8D0rRMf3ssX_ymdl_CQ-e2AsEO0D9vt6rc7QMzUFhOMFj5_nYQdh0mYGvg8-z79C1WqFfE |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+metabolism+of+follicular+environment+during+oocyte+growth+and+maturation&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=WARZYCH%2C+Ewelina&rft.au=LIPINSKA%2C+Paulina&rft.date=2020&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=66&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1262%2Fjrd.2019-102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1262_jrd_2019_102 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |