Energy metabolism of follicular environment during oocyte growth and maturation

Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental co...

Full description

Saved in:
Bibliographic Details
Published inJournal of Reproduction and Development Vol. 66; no. 1; pp. 1 - 7
Main Authors LIPINSKA, Paulina, WARZYCH, Ewelina
Format Journal Article
LanguageEnglish
Published Japan THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT 2020
Japan Science and Technology Agency
The Society for Reproduction and Development
Subjects
Online AccessGet full text
ISSN0916-8818
1348-4400
DOI10.1262/jrd.2019-102

Cover

Abstract Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental competence. Therefore homeostasis between metabolism of glucose and fatty acids in the oocyte is being widely described nowadays. This review aims to discuss the follicular (in vivo) or maturation media (in vitro) environments with regard to glucose and fatty acid metabolism, as the main sources of the energy for the oocyte. A great emphasis is given on the balance between those two metabolic pathways and its further impact on female fertility.
AbstractList Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte energy metabolism has a significant impact on several elements of cytoplasmic and nuclear maturation as well as further embryo developmental competence. Therefore homeostasis between metabolism of glucose and fatty acids in the oocyte is being widely described nowadays. This review aims to discuss the follicular (in vivo) or maturation media (in vitro) environments with regard to glucose and fatty acid metabolism, as the main sources of the energy for the oocyte. A great emphasis is given on the balance between those two metabolic pathways and its further impact on female fertility.
Author WARZYCH, Ewelina
LIPINSKA, Paulina
Author_xml – sequence: 1
  fullname: LIPINSKA, Paulina
  organization: Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan 60-637, Poland
– sequence: 1
  fullname: WARZYCH, Ewelina
  organization: Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan 60-637, Poland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31787727$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJaTZpbz0XQ691OvqwZF8KbUjSQCCX5CxkSfbK2FIqyyn731ebzS5NIBcJZt78HjPvBB354C1CnzGcYcLJ9yGaMwK4KTGQd2iFKatLxgCO0AoazMu6xvUxOpnnAYCSirMP6JhiUQtBxArdXngb-00x2aTaMLp5KkJXdGEcnV5GFQvrH10MfrI-FWaJzvdFCHqTbNHH8DetC-VNMam0RJVc8B_R-06Ns_30_J-i-8uLu_Pf5c3t1fX5z5tSC4xTyVRbWUxaLrCqq5ZQaqjhYEXDTIVrbaEhuoKOEMaN4JgIDJRBi2vRQVW39BRd77gmqEE-RDepuJFBOflUCLGXKianRyuFFcwANwrzhmlrlcp2gmnWtBQI4Zn1Y8d6WNrJGp1XjWp8AX3Z8W4t-_AoBTAgUGXA12dADH8WOyc5hCX6vL8klDcVrSjDWfXlf5sDfx9GFpCdQMcwz9F2Urv0dNXs6kaJQW4TlzlxuU08F0ge-vZqaM99Q_5rJx_mpHp7EO-PtRVzLvH22Q8dmnqtorSe_gP8pMQ2
CitedBy_id crossref_primary_10_3390_ani11113200
crossref_primary_10_1016_j_semcdb_2024_01_007
crossref_primary_10_3389_fgene_2024_1416283
crossref_primary_10_1016_j_gene_2024_148979
crossref_primary_10_3390_ijms25105349
crossref_primary_10_1186_s12917_024_04129_1
crossref_primary_10_3390_ijms25189898
crossref_primary_10_1016_j_jsbmb_2024_106547
crossref_primary_10_1016_j_livsci_2024_105557
crossref_primary_10_3390_ijms23084141
crossref_primary_10_1016_j_heliyon_2024_e37639
crossref_primary_10_1186_s12958_021_00823_z
crossref_primary_10_1007_s43032_021_00505_6
crossref_primary_10_1017_S0967199424000145
crossref_primary_10_1016_j_ecoenv_2024_117084
crossref_primary_10_2147_SCCAA_S513982
crossref_primary_10_3389_fcell_2023_1239154
crossref_primary_10_1096_fj_202400574R
crossref_primary_10_3168_jds_2022_21919
crossref_primary_10_1186_s13048_024_01408_1
crossref_primary_10_1016_j_theriogenology_2024_09_009
crossref_primary_10_1055_a_1882_3967
crossref_primary_10_1210_endocr_bqae023
crossref_primary_10_1371_journal_pone_0305912
crossref_primary_10_1007_s11033_025_10233_8
crossref_primary_10_14202_vetworld_2021_2512_2517
crossref_primary_10_1080_15569543_2022_2120897
crossref_primary_10_1016_j_anireprosci_2025_107782
crossref_primary_10_1080_1828051X_2021_1899855
crossref_primary_10_3390_ani13182892
crossref_primary_10_3724_abbs_2024003
crossref_primary_10_2139_ssrn_4184561
crossref_primary_10_1093_molehr_gaac019
crossref_primary_10_3390_ijms252313144
crossref_primary_10_1071_RD21249
crossref_primary_10_3390_cells13181592
crossref_primary_10_1016_j_freeradbiomed_2024_10_312
crossref_primary_10_1080_15548627_2022_2063005
crossref_primary_10_1093_biolre_ioae182
crossref_primary_10_1186_s12958_024_01215_9
crossref_primary_10_1016_j_fct_2021_112435
crossref_primary_10_1016_j_jnutbio_2023_109548
crossref_primary_10_1016_j_jsbmb_2023_106449
crossref_primary_10_3390_ijms252212197
crossref_primary_10_3390_ijms21207589
crossref_primary_10_17221_128_2024_CJAS
crossref_primary_10_1002_mrd_23763
crossref_primary_10_1038_s42003_022_04362_0
crossref_primary_10_3390_genes12060838
crossref_primary_10_1016_j_envint_2024_108710
crossref_primary_10_3390_metabo11090623
crossref_primary_10_1016_j_ydbio_2024_02_004
crossref_primary_10_1016_j_arr_2023_102158
crossref_primary_10_1016_j_theriogenology_2024_07_002
crossref_primary_10_1080_15592294_2023_2241010
crossref_primary_10_3390_antiox11040745
crossref_primary_10_3390_ani13132085
crossref_primary_10_5653_cerm_2022_05659
crossref_primary_10_1186_s12864_024_10234_0
crossref_primary_10_3390_nu14204341
crossref_primary_10_1016_j_heliyon_2024_e38551
crossref_primary_10_3390_biom13010047
crossref_primary_10_1016_j_heliyon_2023_e20104
crossref_primary_10_3390_nu13020490
crossref_primary_10_3390_ani14213118
crossref_primary_10_3390_ijms24076837
crossref_primary_10_3390_ijms242216247
crossref_primary_10_3389_fcell_2023_1280998
crossref_primary_10_1016_j_ijbiomac_2023_125307
crossref_primary_10_2478_aoas_2020_0040
crossref_primary_10_1016_j_rvsc_2022_10_026
crossref_primary_10_1186_s13048_025_01633_2
crossref_primary_10_1080_10495398_2022_2114084
crossref_primary_10_1016_j_anireprosci_2024_107578
crossref_primary_10_1186_s13048_023_01296_x
crossref_primary_10_3389_fendo_2022_1022044
crossref_primary_10_3389_fendo_2024_1464171
crossref_primary_10_1097_MD_0000000000036851
crossref_primary_10_1038_s41598_024_76893_x
crossref_primary_10_1016_j_repbio_2024_100898
crossref_primary_10_3390_cells11203270
Cites_doi 10.1016/j.rbmo.2009.12.006
10.1095/biolreprod61.3.731
10.1016/j.theriogenology.2009.04.015
10.1016/j.theriogenology.2016.08.007
10.1186/s13048-014-0102-6
10.1530/REP-09-0345
10.1016/j.ydbio.2004.11.027
10.1371/journal.pone.0023183
10.1071/RD04135
10.1210/me.2014-1049
10.1016/j.anireprosci.2006.10.006
10.1126/science.123.3191.309
10.1071/RD12397
10.1530/rep.0.1210447
10.1530/jrf.0.1180163
10.1095/biolreprod.105.041483
10.1152/ajpendo.00469.2012
10.1095/biolreprod.116.146159
10.1071/RD13263
10.1071/RD14363
10.1530/rep.0.1240675
10.1262/jrd.2013-086
10.1016/j.fertnstert.2014.11.015
10.3390/ijms19103261
10.1530/REP-06-0073
10.1530/REP-14-0015
10.1095/biolreprod.110.084145
10.1146/annurev-animal-022114-110822
10.1016/S0378-4320(03)00173-8
10.3168/jds.2013-7278
10.1071/RD16474
10.1095/biolreprod.110.088815
10.1074/jbc.273.17.10609
10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C
10.1055/s-0028-1108008
10.1530/rep.0.1260027
10.1530/rep.1.00835
10.1016/j.theriogenology.2007.08.036
10.1016/j.theriogenology.2005.01.004
10.1038/s41598-018-33550-4
10.1095/biolreprod.114.120634
10.1002/mrd.21047
10.1002/mrd.20222
10.1111/j.1439-0531.2009.01402.x
10.1095/biolreprod.112.106062
10.1002/mrd.22037
10.1095/biolreprod.115.131862
10.1095/biolreprod.113.108548
10.1071/RD06134
10.1016/j.theriogenology.2012.07.023
10.1095/biolreprod60.4.973
10.1016/j.theriogenology.2011.06.029
10.1071/RD12275
10.1095/biolreprod60.6.1446
10.1530/REP-10-0068
10.1006/dbio.1995.1044
ContentType Journal Article
Copyright 2020 Society for Reproduction and Development
2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Society for Reproduction and Development 2020
Copyright_xml – notice: 2020 Society for Reproduction and Development
– notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Society for Reproduction and Development 2020
DBID AAYXX
CITATION
NPM
7T5
7TK
H94
K9.
5PM
DOA
DOI 10.1262/jrd.2019-102
DatabaseName CrossRef
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Neurosciences Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts



PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1348-4400
EndPage 7
ExternalDocumentID oai_doaj_org_article_7e74d06da1694ceeaa23374c49b30226
PMC7040205
31787727
10_1262_jrd_2019_102
article_jrd_66_1_66_2019_102_article_char_en
Genre Journal Article
GroupedDBID ---
29L
2WC
53G
5GY
ACGFO
ACPRK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
XSB
AAYXX
CITATION
NPM
7T5
7TK
H94
K9.
5PM
ID FETCH-LOGICAL-c711t-4ab5e12b671a85b233d3d60e794d518ce092c50f2246d7612710340b187f058b3
IEDL.DBID M48
ISSN 0916-8818
IngestDate Wed Aug 27 01:29:00 EDT 2025
Tue Sep 30 16:00:47 EDT 2025
Sat Sep 20 14:12:06 EDT 2025
Thu Jan 02 22:59:29 EST 2025
Tue Jul 01 02:55:20 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Wed Sep 03 06:13:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Glucose
Fatty acids
Energetic homeostasis
Oocyte maturation
Oocyte quality
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c711t-4ab5e12b671a85b233d3d60e794d518ce092c50f2246d7612710340b187f058b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2019-102
PMID 31787727
PQID 2369535341
PQPubID 2048441
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_7e74d06da1694ceeaa23374c49b30226
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7040205
proquest_journals_2369535341
pubmed_primary_31787727
crossref_citationtrail_10_1262_jrd_2019_102
crossref_primary_10_1262_jrd_2019_102
jstage_primary_article_jrd_66_1_66_2019_102_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Reproduction and Development
PublicationTitleAlternate J. Reprod. Dev.
PublicationYear 2020
Publisher THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
Japan Science and Technology Agency
The Society for Reproduction and Development
Publisher_xml – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
– name: Japan Science and Technology Agency
– name: The Society for Reproduction and Development
References 6. Moore SG, Fair T, Lonergan P, Butler ST. Genetic merit for fertility traits in Holstein cows: IV. Transition period, uterine health, and resumption of cyclicity. J Dairy Sci 2014; 97: 2740–2752.
22. Urner F, Sakkas D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev 2005; 70: 494–503.
17. Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 1999; 61: 731–740.
23. Gutnisky C, Dalvit GC, Thompson JG, Cetica PD. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Reprod Fertil Dev 2014; 26: 931–942.
54. Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 2014; 148: 429–439.
35. Silva RC, Báo SN, Jivago JL, Lucci CM. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology 2011; 76: 1647–1657.
1. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14: 263–283.
27. Frank LA, Sutton-McDowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev 2013; 25: 1095–1104.
7. Warzych E, Cieslak A, Madeja ZE, Pawlak P, Wolc A, Lechniak D. Multifactorial analysis of the follicular environment is predictive of oocyte morphology in cattle. J Reprod Dev 2014; 60: 1–8.
32. Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 2006; 132: 829–837.
41. McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 2000; 118: 163–170.
34. Paulini F, Silva RC, Rôlo JL, Lucci CM. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J Ovarian Res 2014; 7: 102.
52. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6: e23183.
20. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 1998; 273: 10609–10617.
36. Adamiak SJ, Mackie K, Watt RG, Webb R, Sinclair KD. Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol Reprod 2005; 73: 918–926.
10. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139: 685–695.
12. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 2009; 27: 32–42.
18. Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction 2006; 131: 289–298.
53. Van Hoeck V, Rizos D, Gutierrez-Adan A, Pintelon I, Jorssen E, Dufort I, Sirard MA, Verlaet A, Hermans N, Bols PE, Leroy JL. Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod Fertil Dev 2015; 27: 372–384.
39. Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 2011; 85: 62–69.
15. Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol 1995; 167: 502–512.
28. Bertevello PS, Teixeira-Gomes AP, Seyer A, Vitorino Carvalho A, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci 2018; 19: 19.
33. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 2010; 83: 909–918.
46. Aardema H, van Tol HTA, Wubbolts RW, Brouwers JFHM, Gadella BM, Roelen BAJ. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod 2017; 96: 982–992.
5. Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod 2015; 92: 16.
14. Bermejo-Alvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 2010; 20: 341–349.
25. Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PS. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology 2008; 69: 186–196.
26. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005; 64: 992–1006.
50. Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, MacMillan KL, Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol Reprod 2016; 94: 23.
3. Leroy JL, Valckx SD, Jordaens L, De Bie J, Desmet KL, Van Hoeck V, Britt JH, Marei WF, Bols PE. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2015; 27: 693–703.
2. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 103: 303–316.
40. Pawlak P, Warzych E, Cieslak A, Malyszka N, Maciejewska E, Madeja ZE, Lechniak D. The consequences of porcine IVM medium supplementation with follicular fluid become reflected in embryo quality, yield and gene expression patterns. Sci Rep 2018; 8: 15306.
8. Sutton ML, Cetica PD, Beconi MT, Kind KL, Gilchrist RB, Thompson JG. Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 2003; 126: 27–34.
30. Pawlak P, Cieslak A, Warzych E, Zejden Z, Szumacher-Strabel M, Molinska-Glura M, Lechniak D. No single way to explain cytoplasmic maturation of oocytes from prepubertal and cyclic gilts. Theriogenology 2012; 78: 2020–2030.
45. Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 2013; 88: 111.
51. De Bie J, Marei WFA, Maillo V, Jordaens L, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod Fertil Dev 2017; 29: 2284–2300.
55. Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, Kwon TH, Kong IK. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 2009; 72: 584–589.
21. Sutton-McDowall ML, Gilchrist RB, Thompson JG. Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium. Reprod Fertil Dev 2005; 17: 407–415.
31. Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 2001; 121: 447–454.
29. Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 2010; 139: 1047–1055.
19. Urner F, Sakkas D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod 1999; 60: 973–978.
56. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314.
13. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod 1999; 60: 1446–1452.
47. Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab 2013; 304: E599–E613.
4. Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, Roelen BA, Vos PL, Helms JB, Gadella BM. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 2013; 88: 164.
42. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 2009; 44(Suppl 3): 50–58.
44. Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 2009; 76: 844–853.
43. Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, Desmarchais A, Papillier P, Monget P, Uzbekova S. Fatty acid syn
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 42. Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim 2009; 44(Suppl 3): 50–58.
– reference: 53. Van Hoeck V, Rizos D, Gutierrez-Adan A, Pintelon I, Jorssen E, Dufort I, Sirard MA, Verlaet A, Hermans N, Bols PE, Leroy JL. Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod Fertil Dev 2015; 27: 372–384.
– reference: 15. Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol 1995; 167: 502–512.
– reference: 29. Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular fluid may explain differences in fertility between heifers and lactating cows. Reproduction 2010; 139: 1047–1055.
– reference: 11. Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol 2005; 279: 20–30.
– reference: 26. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005; 64: 992–1006.
– reference: 4. Aardema H, Lolicato F, van de Lest CH, Brouwers JF, Vaandrager AB, van Tol HT, Roelen BA, Vos PL, Helms JB, Gadella BM. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 2013; 88: 164.
– reference: 23. Gutnisky C, Dalvit GC, Thompson JG, Cetica PD. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Reprod Fertil Dev 2014; 26: 931–942.
– reference: 31. Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal changes in bovine fertility: relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 2001; 121: 447–454.
– reference: 48. Lonergan P, Fair T. Maturation of Oocytes in Vitro. Annu Rev Anim Biosci 2016; 4: 255–268.
– reference: 3. Leroy JL, Valckx SD, Jordaens L, De Bie J, Desmet KL, Van Hoeck V, Britt JH, Marei WF, Bols PE. Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod Fertil Dev 2015; 27: 693–703.
– reference: 6. Moore SG, Fair T, Lonergan P, Butler ST. Genetic merit for fertility traits in Holstein cows: IV. Transition period, uterine health, and resumption of cyclicity. J Dairy Sci 2014; 97: 2740–2752.
– reference: 51. De Bie J, Marei WFA, Maillo V, Jordaens L, Gutierrez-Adan A, Bols PEJ, Leroy JLMR. Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod Fertil Dev 2017; 29: 2284–2300.
– reference: 46. Aardema H, van Tol HTA, Wubbolts RW, Brouwers JFHM, Gadella BM, Roelen BAJ. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol Reprod 2017; 96: 982–992.
– reference: 54. Paczkowski M, Schoolcraft WB, Krisher RL. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 2014; 148: 429–439.
– reference: 16. Krisher RL, Brad AM, Herrick JR, Sparman ML, Swain JE. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim Reprod Sci 2007; 98: 72–96.
– reference: 25. Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PS. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology 2008; 69: 186–196.
– reference: 50. Sutton-McDowall ML, Wu LL, Purdey M, Abell AD, Goldys EM, MacMillan KL, Thompson JG, Robker RL. Nonesterified fatty acid-induced endoplasmic reticulum stress in cattle cumulus oocyte complexes alters cell metabolism and developmental competence. Biol Reprod 2016; 94: 23.
– reference: 17. Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 1999; 61: 731–740.
– reference: 30. Pawlak P, Cieslak A, Warzych E, Zejden Z, Szumacher-Strabel M, Molinska-Glura M, Lechniak D. No single way to explain cytoplasmic maturation of oocytes from prepubertal and cyclic gilts. Theriogenology 2012; 78: 2020–2030.
– reference: 47. Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab 2013; 304: E599–E613.
– reference: 40. Pawlak P, Warzych E, Cieslak A, Malyszka N, Maciejewska E, Madeja ZE, Lechniak D. The consequences of porcine IVM medium supplementation with follicular fluid become reflected in embryo quality, yield and gene expression patterns. Sci Rep 2018; 8: 15306.
– reference: 12. Su YQ, Sugiura K, Eppig JJ. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med 2009; 27: 32–42.
– reference: 27. Frank LA, Sutton-McDowall ML, Russell DL, Wang X, Feil DK, Gilchrist RB, Thompson JG. Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod Fertil Dev 2013; 25: 1095–1104.
– reference: 35. Silva RC, Báo SN, Jivago JL, Lucci CM. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution. Theriogenology 2011; 76: 1647–1657.
– reference: 18. Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction 2006; 131: 289–298.
– reference: 33. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 2010; 83: 909–918.
– reference: 41. McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil 2000; 118: 163–170.
– reference: 39. Aardema H, Vos PL, Lolicato F, Roelen BA, Knijn HM, Vaandrager AB, Helms JB, Gadella BM. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod 2011; 85: 62–69.
– reference: 5. Lolicato F, Brouwers JF, de Lest CH, Wubbolts R, Aardema H, Priore P, Roelen BA, Helms JB, Gadella BM. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol Reprod 2015; 92: 16.
– reference: 55. Jeong WJ, Cho SJ, Lee HS, Deb GK, Lee YS, Kwon TH, Kong IK. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology 2009; 72: 584–589.
– reference: 52. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 2011; 6: e23183.
– reference: 36. Adamiak SJ, Mackie K, Watt RG, Webb R, Sinclair KD. Impact of nutrition on oocyte quality: cumulative effects of body composition and diet leading to hyperinsulinemia in cattle. Biol Reprod 2005; 73: 918–926.
– reference: 37. Leroy JL, Vanholder T, Delanghe JR, Opsomer G, Van Soom A, Bols PE, de Kruif A. Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim Reprod Sci 2004; 80: 201–211.
– reference: 44. Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev 2009; 76: 844–853.
– reference: 32. Sturmey RG, O’Toole PJ, Leese HJ. Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 2006; 132: 829–837.
– reference: 20. Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X, Stanton RC. Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem 1998; 273: 10609–10617.
– reference: 14. Bermejo-Alvarez P, Lonergan P, Rizos D, Gutiérrez-Adan A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod Biomed Online 2010; 20: 341–349.
– reference: 56. Warburg O. On the origin of cancer cells. Science 1956; 123: 309–314.
– reference: 38. Warzych E, Pawlak P, Pszczola M, Cieslak A, Lechniak D. Prepubertal heifers versus cows-The differences in the follicular environment. Theriogenology 2017; 87: 36–47.
– reference: 45. Paczkowski M, Silva E, Schoolcraft WB, Krisher RL. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol Reprod 2013; 88: 111.
– reference: 2. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 2015; 103: 303–316.
– reference: 7. Warzych E, Cieslak A, Madeja ZE, Pawlak P, Wolc A, Lechniak D. Multifactorial analysis of the follicular environment is predictive of oocyte morphology in cattle. J Reprod Dev 2014; 60: 1–8.
– reference: 9. Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 2002; 124: 675–681.
– reference: 34. Paulini F, Silva RC, Rôlo JL, Lucci CM. Ultrastructural changes in oocytes during folliculogenesis in domestic mammals. J Ovarian Res 2014; 7: 102.
– reference: 19. Urner F, Sakkas D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Biol Reprod 1999; 60: 973–978.
– reference: 57. Krisher RL, Prather RS. A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol Reprod Dev 2012; 79: 311–320.
– reference: 8. Sutton ML, Cetica PD, Beconi MT, Kind KL, Gilchrist RB, Thompson JG. Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 2003; 126: 27–34.
– reference: 21. Sutton-McDowall ML, Gilchrist RB, Thompson JG. Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium. Reprod Fertil Dev 2005; 17: 407–415.
– reference: 43. Sanchez-Lazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, Desmarchais A, Papillier P, Monget P, Uzbekova S. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine. Mol Endocrinol 2014; 28: 1502–1521.
– reference: 13. Downs SM, Utecht AM. Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes. Biol Reprod 1999; 60: 1446–1452.
– reference: 10. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139: 685–695.
– reference: 22. Urner F, Sakkas D. Involvement of the pentose phosphate pathway and redox regulation in fertilization in the mouse. Mol Reprod Dev 2005; 70: 494–503.
– reference: 28. Bertevello PS, Teixeira-Gomes AP, Seyer A, Vitorino Carvalho A, Labas V, Blache MC, Banliat C, Cordeiro LAV, Duranthon V, Papillier P, Maillard V, Elis S, Uzbekova S. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int J Mol Sci 2018; 19: 19.
– reference: 49. Britt JH. Impact of early postpartum metabolism on follicular development and fertility. The Bovine Proceedings 1992; 24: 39–43.
– reference: 1. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 1998; 14: 263–283.
– reference: 24. Gutnisky C, Dalvit GC, Pintos LN, Thompson JG, Beconi MT, Cetica PD. Influence of hyaluronic acid synthesis and cumulus mucification on bovine oocyte in vitro maturation, fertilisation and embryo development. Reprod Fertil Dev 2007; 19: 488–497.
– ident: 14
  doi: 10.1016/j.rbmo.2009.12.006
– ident: 17
  doi: 10.1095/biolreprod61.3.731
– ident: 55
  doi: 10.1016/j.theriogenology.2009.04.015
– ident: 38
  doi: 10.1016/j.theriogenology.2016.08.007
– ident: 34
  doi: 10.1186/s13048-014-0102-6
– ident: 10
  doi: 10.1530/REP-09-0345
– ident: 11
  doi: 10.1016/j.ydbio.2004.11.027
– ident: 52
  doi: 10.1371/journal.pone.0023183
– ident: 21
  doi: 10.1071/RD04135
– ident: 43
  doi: 10.1210/me.2014-1049
– ident: 16
  doi: 10.1016/j.anireprosci.2006.10.006
– ident: 49
– ident: 56
  doi: 10.1126/science.123.3191.309
– ident: 23
  doi: 10.1071/RD12397
– ident: 31
  doi: 10.1530/rep.0.1210447
– ident: 41
  doi: 10.1530/jrf.0.1180163
– ident: 36
  doi: 10.1095/biolreprod.105.041483
– ident: 47
  doi: 10.1152/ajpendo.00469.2012
– ident: 46
  doi: 10.1095/biolreprod.116.146159
– ident: 53
  doi: 10.1071/RD13263
– ident: 3
  doi: 10.1071/RD14363
– ident: 9
  doi: 10.1530/rep.0.1240675
– ident: 7
  doi: 10.1262/jrd.2013-086
– ident: 2
  doi: 10.1016/j.fertnstert.2014.11.015
– ident: 28
  doi: 10.3390/ijms19103261
– ident: 32
  doi: 10.1530/REP-06-0073
– ident: 54
  doi: 10.1530/REP-14-0015
– ident: 33
  doi: 10.1095/biolreprod.110.084145
– ident: 48
  doi: 10.1146/annurev-animal-022114-110822
– ident: 37
  doi: 10.1016/S0378-4320(03)00173-8
– ident: 6
  doi: 10.3168/jds.2013-7278
– ident: 51
  doi: 10.1071/RD16474
– ident: 39
  doi: 10.1095/biolreprod.110.088815
– ident: 20
  doi: 10.1074/jbc.273.17.10609
– ident: 1
  doi: 10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C
– ident: 12
  doi: 10.1055/s-0028-1108008
– ident: 8
  doi: 10.1530/rep.0.1260027
– ident: 18
  doi: 10.1530/rep.1.00835
– ident: 25
  doi: 10.1016/j.theriogenology.2007.08.036
– ident: 26
  doi: 10.1016/j.theriogenology.2005.01.004
– ident: 40
  doi: 10.1038/s41598-018-33550-4
– ident: 5
  doi: 10.1095/biolreprod.114.120634
– ident: 44
  doi: 10.1002/mrd.21047
– ident: 22
  doi: 10.1002/mrd.20222
– ident: 42
  doi: 10.1111/j.1439-0531.2009.01402.x
– ident: 4
  doi: 10.1095/biolreprod.112.106062
– ident: 57
  doi: 10.1002/mrd.22037
– ident: 50
  doi: 10.1095/biolreprod.115.131862
– ident: 45
  doi: 10.1095/biolreprod.113.108548
– ident: 24
  doi: 10.1071/RD06134
– ident: 30
  doi: 10.1016/j.theriogenology.2012.07.023
– ident: 19
  doi: 10.1095/biolreprod60.4.973
– ident: 35
  doi: 10.1016/j.theriogenology.2011.06.029
– ident: 27
  doi: 10.1071/RD12275
– ident: 13
  doi: 10.1095/biolreprod60.6.1446
– ident: 29
  doi: 10.1530/REP-10-0068
– ident: 15
  doi: 10.1006/dbio.1995.1044
SSID ssj0032564
Score 2.5101156
SecondaryResourceType review_article
Snippet Oocyte quality is affected by many factors, among which the environment of growth and maturation seems to be crucial. Studies show that well balanced oocyte...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Energetic homeostasis
Energy metabolism
Fatty acids
Fertility
Glucose
Glucose metabolism
Homeostasis
Maturation
Metabolic pathways
Metabolism
Oocyte maturation
Oocyte quality
Oxidation
Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_b9UwED6hSiAWBKWFlII8wISixnZsJ2IC1Kqq1LJQqZvlOE5_qC-vatOh_z13dhK9h6i6sGRIHCe5O99355w_A3zuAuZbCr1fTfU4pfZlXivD8xaxSnSo9RCJ549P9OFpeXSmzla2-qKasEQPnAS3Z7CzttCt47ou0aM7J6Q0pS_rRiL-RLJthLEpmUo-WCKQR-IoDH7yCjFpLHkXWuxd3RJBKK_RAYk1MIqc_QhEVxiWnYd_RZx_F06uINHBa3g1hpDse3r1N_As9JvwPG0q-bAJL47H3-Vv4dd-XNnHFmFAXV9f3i3YsmMd8XDH8lO2ssyNpQWLbLn0D0Ng55ieDxfM9S1bEPdnVOAWnB7s__55mI87KOTecD7kpWtU4KLRhrtKNSi5Vra6CDgIW8UrH4paeFV0xCrXGgx2MN6QZdHwyqCeqkZuw0a_7MN7YMZ0vhLSu5o7bIEgFrgkerTCYVbifAZfJ1FaP9KL0y4X15bSDBS8RcFbEjyeEBl8mVvfJFqNR9r9IK3MbYgMO55AE7GjidinTCSDb0mnczfTnfQorS2nw_TI-SIte0PfkcHuZAh2HN93VkhdK6kwBMjgXbKJuXO08gpzFpOBWbOWtY9Yv9JfXkRmb1NQOq92_sdXf4CXguYG4nTRLmwMt_fhIwZQQ_MpjpU_BUoWDA
  priority: 102
  providerName: Directory of Open Access Journals
Title Energy metabolism of follicular environment during oocyte growth and maturation
URI https://www.jstage.jst.go.jp/article/jrd/66/1/66_2019-102/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31787727
https://www.proquest.com/docview/2369535341
https://pubmed.ncbi.nlm.nih.gov/PMC7040205
https://doaj.org/article/7e74d06da1694ceeaa23374c49b30226
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Reproduction and Development, 2020, Vol.66(1), pp.1-7
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: KQ8
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: DIK
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1348-4400
  dateEnd: 20250630
  omitProxy: true
  ssIdentifier: ssj0032564
  issn: 0916-8818
  databaseCode: M48
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRSAuiJZHA-3KBzihQPxOhFBVUKsC2sKBlXqLHMfZttpNYBsk9t8zdh7qVkXikoPjhzIz9nzj2N8AvKocxlsSV7_Mn8cRyoo4k5rGJfoqVqHWXSCen56p05n4ci7Pt2DINtoL8PrO0M7nk5qtFm___Fof4oT_ELgRFHt3tfKUnzTDJQUX43vok5i376kY_ydwdOyBSArBUJyij-qPwN9uveGcAoc_OqYrhGlzdxcCvX2Q8oZnOnkMj3pISY46G9iBLVfvwv0uyeR6Fx5M-9_nT-DbcbjpR5auRd0vLq-XpKlI5Xm5w3FUcuPaG-kuMJKmsevWkTmG6-0FMXVJlp4LNCj0KcxOjn98Oo37jAqx1ZS2sTCFdJQVSlOTyoJxXvJSJQ4nZSlpal2SMSuTyrPMlRrBD-IPLpKCphr1lhb8GWzXTe32gGhd2ZRxazJqsAY6NUe5p0tLDEYpxkbwZhBlbnu6cZ_1YpH7sAMFn6Pgcy94LGARvB5r_-xoNv5R76PXyljHk2OHgmY1z_u5lmu0vzJRpaEqEwgCjMEP1cKKrOAIWVQE7zudjt0MLf1QSuXUP4Yhx5f-GhyuJRHsD4aQD-aaM64yySVCggiedzYxdo5Wn2IMoyPQG9ay8RGbb-rLi8D0rRMf3ssX_ymdl_CQ-e2AsEO0D9vt6rc7QMzUFhOMFj5_nYQdh0mYGvg8-z79C1WqFfE
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+metabolism+of+follicular+environment+during+oocyte+growth+and+maturation&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=WARZYCH%2C+Ewelina&rft.au=LIPINSKA%2C+Paulina&rft.date=2020&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=66&rft.issue=1&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1262%2Fjrd.2019-102&rft.externalDBID=n%2Fa&rft.externalDocID=10_1262_jrd_2019_102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon