Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation

Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynami...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 23; no. 1; p. 45
Main Authors Pei, Liuling, Huang, Xianhui, Liu, Zhenping, Tian, Xuehan, You, Jiaqi, Li, Jianying, Fang, David D., Lindsey, Keith, Zhu, Longfu, Zhang, Xianlong, Wang, Maojun
Format Journal Article
LanguageEnglish
Published London BioMed Central 03.02.2022
BMC
Subjects
Online AccessGet full text
ISSN1474-760X
1474-7596
1474-760X
DOI10.1186/s13059-022-02616-y

Cover

Abstract Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. Conclusions This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
AbstractList Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process.BACKGROUNDDespite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process.To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes.RESULTSTo interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes.This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.CONCLUSIONSThis study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
Abstract Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. Conclusions This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
BACKGROUND: Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. RESULTS: To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. CONCLUSIONS: This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. Conclusions This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.
ArticleNumber 45
Author Fang, David D.
Lindsey, Keith
Huang, Xianhui
Pei, Liuling
Liu, Zhenping
Wang, Maojun
You, Jiaqi
Zhu, Longfu
Tian, Xuehan
Li, Jianying
Zhang, Xianlong
Author_xml – sequence: 1
  givenname: Liuling
  surname: Pei
  fullname: Pei, Liuling
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 2
  givenname: Xianhui
  surname: Huang
  fullname: Huang, Xianhui
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 3
  givenname: Zhenping
  surname: Liu
  fullname: Liu, Zhenping
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 4
  givenname: Xuehan
  surname: Tian
  fullname: Tian, Xuehan
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 5
  givenname: Jiaqi
  surname: You
  fullname: You, Jiaqi
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 6
  givenname: Jianying
  surname: Li
  fullname: Li, Jianying
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 7
  givenname: David D.
  surname: Fang
  fullname: Fang, David D.
  organization: Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center
– sequence: 8
  givenname: Keith
  surname: Lindsey
  fullname: Lindsey, Keith
  organization: Department of Biosciences, Durham University
– sequence: 9
  givenname: Longfu
  surname: Zhu
  fullname: Zhu, Longfu
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 10
  givenname: Xianlong
  surname: Zhang
  fullname: Zhang, Xianlong
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
– sequence: 11
  givenname: Maojun
  orcidid: 0000-0002-4791-3742
  surname: Wang
  fullname: Wang, Maojun
  email: mjwang@mail.hzau.edu.cn
  organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35115029$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1TAQhSNURH_gBVggS2zYBDxO7DgbJNTyU6kSG5DYWY4zyfVVYhfbqXTfoI-Ne9NC20XFwrJlf-doZnyOiwPnHRbFa6DvAaT4EKGivC0pY3kJEOXuWXEEdVOXjaC_Du6dD4vjGLeUQlsz8aI4rDgAp6w9Kq7Pdk7P1pDqjIzo_IxEB7OxCU1aAhI_EONT8o4MtsNAAl6hniKJS7fipfE-9NbphD0xm-BnnawjyV_6yY87MvhA6jImPeb3aN04ZQlOE-ntMGBAl2wWePeyeD5kY3x1u58UP798_nH6rbz4_vX89NNFaRoqU2mkabqaacOlASpNDaZuAGsuNe-lQUA5cN5qSanmgvNeAPYDb1umWw2gq5PifPXtvd6qy2BnHXbKa6v2Fz6MSodkzYRKU9FVvWk465s8yVp2wlQSmQSqWwCTvT6uXpdLN2NvcjNBTw9MH744u1Gjv1JSAgPJs8G7W4Pgfy8Yk5ptvJmOduiXqJiopRRMtuw_UCYorZuqyujbR-jWL8HlqWYqRyb_fttk6s394v9WfZeNDMgVMMHHGHBQxqb9X-Ve7KSAqpsYqjWGKsdQ7WOodlnKHknv3J8UVasoZtiNGP6V_YTqD0B78i4
CitedBy_id crossref_primary_10_1038_s41467_024_55309_4
crossref_primary_10_3389_fpls_2023_1223591
crossref_primary_10_21769_BioProtoc_4879
crossref_primary_10_1111_tpj_16468
crossref_primary_10_1038_s42003_023_04781_7
crossref_primary_10_1186_s12915_023_01665_4
crossref_primary_10_1093_bioinformatics_btad588
crossref_primary_10_1093_gigascience_giaf020
crossref_primary_10_1016_j_tplants_2023_11_009
crossref_primary_10_1186_s42397_024_00207_9
crossref_primary_10_1007_s11427_022_2278_0
crossref_primary_10_1093_hr_uhae017
crossref_primary_10_1007_s11427_024_2784_3
crossref_primary_10_1186_s12915_024_01906_0
crossref_primary_10_7717_peerj_17462
crossref_primary_10_1111_tpj_16615
crossref_primary_10_1016_j_molp_2023_02_005
crossref_primary_10_1093_bioinformatics_btad576
crossref_primary_10_1186_s13059_023_03018_4
crossref_primary_10_1093_nar_gkae1267
crossref_primary_10_1186_s13068_023_02378_0
crossref_primary_10_1016_j_jare_2024_05_019
crossref_primary_10_1111_jipb_13388
crossref_primary_10_1016_j_xplc_2023_100722
crossref_primary_10_1016_j_celrep_2023_113543
Cites_doi 10.1146/annurev-cellbio-100617-062459
10.1038/nature12753
10.1093/plcell/koab028
10.1038/nprot.2016.095
10.1038/s41596-019-0273-0
10.1038/s41588-018-0282-x
10.1038/nature14222
10.1186/s12915-021-00996-4
10.1146/annurev-arplant-080720-113241
10.1186/s13059-020-01998-1
10.1105/tpc.17.00010
10.1093/nar/gkw238
10.1038/nature20158
10.1186/s13059-017-1281-4
10.1016/j.cell.2010.05.026
10.1038/s41588-018-0175-z
10.1126/science.1181369
10.1016/j.tplants.2016.07.013
10.1038/nrg.2016.112
10.1186/s13059-020-02063-7
10.1038/nature11279
10.1101/gr.1239303
10.1105/tpc.114.133793
10.1038/s41467-021-22352-4
10.1093/jxb/erl218
10.1038/s41477-017-0096-3
10.1038/nature13417
10.1038/nature14099
10.1038/nbt.3208
10.1038/s41477-019-0471-3
10.1016/j.cell.2014.11.021
10.1093/nar/gky504
10.1038/nmeth.1923
10.1186/s13059-015-0767-1
10.1101/gr.080663.108
10.1104/pp.112.212142
10.1016/j.cell.2011.12.014
10.1038/nmeth.3317
10.1111/tpj.14011
10.1038/s41477-019-0548-z
10.1038/s41588-019-0561-1
10.1371/journal.pgen.1005724
10.1371/journal.pgen.1008764
10.1186/gb-2008-9-9-r137
10.1186/s13059-015-0831-x
10.1007/s00425-010-1246-2
10.1093/mp/sss112
10.1038/sj.cr.7310150
10.1093/nar/gkr1293
10.1111/jipb.12809
10.1038/s41588-019-0392-0
10.1016/j.pbi.2015.09.004
10.1186/s13059-014-0550-8
10.1038/nature08497
10.1016/j.cell.2017.09.043
10.3389/fpls.2012.00104
10.1038/nature04269
10.1105/tpc.104.024844
10.1007/s00438-002-0721-2
10.1105/tpc.104.029629
10.1242/jcs.95.3.335
10.1186/s13059-021-02383-2
10.1038/s41477-018-0136-7
10.1038/nature12644
10.1038/s41467-020-15607-z
10.1038/nrg3095
10.1038/nrg.2016.139
10.1105/tpc.15.00744
10.1126/science.aau1783
10.1105/tpc.107.054437
10.1111/nph.15256
10.1111/pbi.13594
10.1038/srep17662
10.1016/j.cell.2021.01.001
10.3389/fgene.2020.00158
10.1104/pp.113.233312
10.1371/journal.pgen.1002446
10.1038/s41467-019-11535-9
10.1038/s41588-019-0479-7
10.1093/molbev/msab128
10.1016/j.cels.2015.07.012
10.1073/pnas.162077099
10.1016/j.cell.2020.12.032
10.1038/s41467-020-15520-5
10.1093/nar/gkz511
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-022-02616-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 45
ExternalDocumentID oai_doaj_org_article_a06b3dc752d747448b6c38e2810a911c
PMC8812185
35115029
10_1186_s13059_022_02616_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31801405
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: 31922069
  funderid: http://dx.doi.org/10.13039/100014717
– fundername: ;
  grantid: 31922069
– fundername: ;
  grantid: 31801405
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c708t-c8c7b42ac58c108c41c471e458a5d8ce1e8f559a800a5655d61edf5992a9a11a3
IEDL.DBID C6C
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:30:09 EDT 2025
Thu Aug 21 18:08:16 EDT 2025
Thu Sep 04 21:19:48 EDT 2025
Fri Sep 05 07:37:24 EDT 2025
Fri Jul 25 11:57:30 EDT 2025
Mon Jul 21 05:45:34 EDT 2025
Tue Jul 01 03:10:50 EDT 2025
Thu Apr 24 22:53:31 EDT 2025
Sat Sep 06 07:17:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 3D genome
Single-cell differentiation
Cotton fiber
Polyploid
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c708t-c8c7b42ac58c108c41c471e458a5d8ce1e8f559a800a5655d61edf5992a9a11a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4791-3742
OpenAccessLink https://doi.org/10.1186/s13059-022-02616-y
PMID 35115029
PQID 2630535197
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_a06b3dc752d747448b6c38e2810a911c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812185
proquest_miscellaneous_2648862892
proquest_miscellaneous_2626004733
proquest_journals_2630535197
pubmed_primary_35115029
crossref_citationtrail_10_1186_s13059_022_02616_y
crossref_primary_10_1186_s13059_022_02616_y
springer_journals_10_1186_s13059_022_02616_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-03
PublicationDateYYYYMMDD 2022-02-03
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2022
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References F Li (2616_CR42) 2015; 33
XB Li (2616_CR27) 2005; 17
N Servant (2616_CR79) 2015; 16
EB Chuong (2616_CR61) 2017; 18
I Kurek (2616_CR29) 2002; 99
S Wang (2616_CR22) 2004; 16
MI Love (2616_CR87) 2014; 15
P Olivares-Chauvet (2616_CR11) 2016; 540
M Wang (2616_CR41) 2019; 51
B Langmead (2616_CR77) 2012; 9
CH Haigler (2616_CR20) 2012; 3
P Shannon (2616_CR86) 2003; 13
AR Leitch (2616_CR58) 1990; 95
Y Sun (2616_CR18) 2020; 21
MJ Fullwood (2616_CR9) 2009; 462
F Jin (2616_CR69) 2013; 503
D Liu (2616_CR73) 2006; 40
M Ikeuchi (2616_CR3) 2015; 28
NC Durand (2616_CR81) 2016; 3
A Kaul (2616_CR85) 2020; 15
JA Beagan (2616_CR39) 2020; 52
PJ Wittkopp (2616_CR67) 2011; 13
TQ Zhang (2616_CR7) 2021; 12
X Cai (2616_CR53) 2021; 22
D Yuan (2616_CR40) 2015; 5
M Pertea (2616_CR75) 2016; 11
H Chen (2616_CR46) 2018; 50
D Kim (2616_CR74) 2015; 12
B Xu (2616_CR50) 2013; 6
JY Gou (2616_CR25) 2007; 17
J Lee (2616_CR48) 2010; 232
S Zhou (2616_CR15) 2019; 5
E Pierre-Jerome (2616_CR2) 2018; 34
L Sun (2616_CR17) 1886; 2020
W Zhu (2616_CR65) 2017; 18
M de Lucas (2616_CR4) 2016; 28
M Wang (2616_CR31) 2016; 44
AG Diehl (2616_CR62) 2020; 11
V Kumar (2616_CR32) 2018; 95
PP Edger (2616_CR56) 2017; 29
J Candaele (2616_CR5) 2014; 164
Z Liang (2616_CR19) 2021; 19
Y Wang (2616_CR76) 2012; 40
L Concia (2616_CR59) 2020; 21
B Weber (2616_CR70) 2016; 21
M Wang (2616_CR33) 2018; 4
S Rosa (2616_CR6) 2014; 26
X Ding (2616_CR28) 2021; 19
Y Zhang (2616_CR64) 2019; 51
G Huang (2616_CR21) 2021; 72
JR Dixon (2616_CR36) 2015; 518
CR Huang (2616_CR60) 2010; 141
Q Song (2616_CR30) 2015; 11
G Bourque (2616_CR63) 2008; 18
S Costa (2616_CR1) 2011; 439
2616_CR34
KC Akdemir (2616_CR80) 2015; 16
YM Qin (2616_CR23) 2007; 58
J Tan (2616_CR49) 2013; 162
P Dong (2616_CR16) 2020; 62
Y Du (2616_CR71) 2020; 16
M Wang (2616_CR54) 2021; 33
B Bonev (2616_CR10) 2016; 17
SS Rao (2616_CR35) 2014; 159
F Cheng (2616_CR55) 2018; 4
SE Harmer (2616_CR26) 2002; 268
L Zhao (2616_CR66) 2019; 10
KA Bird (2616_CR57) 2018; 220
H Zhang (2616_CR37) 2019; 47
YM Qin (2616_CR24) 2007; 19
X Luo (2616_CR38) 2021; 184
Y Ghavi-Helm (2616_CR47) 2014; 512
E Lieberman-Aiden (2616_CR8) 2009; 326
A Bruex (2616_CR51) 2012; 8
Y Zhang (2616_CR78) 2008; 9
L Pei (2616_CR88) 2022
G Li (2616_CR45) 2012; 148
B Bonev (2616_CR13) 2017; 171
J Wolff (2616_CR83) 2018; 46
L Tan (2616_CR14) 2021; 184
M Taylor-Teeples (2616_CR52) 2015; 517
Z Lu (2616_CR72) 2019; 5
KG Cresswell (2616_CR84) 2020; 11
B Bintu (2616_CR12) 2018; 362
M Chen (2616_CR82) 2020; 11
W de Laat (2616_CR44) 2013; 502
A Sanyal (2616_CR68) 2012; 489
J Paulsen (2616_CR43) 2019; 51
References_xml – volume: 34
  start-page: 289
  year: 2018
  ident: 2616_CR2
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-100617-062459
– volume: 502
  start-page: 499
  year: 2013
  ident: 2616_CR44
  publication-title: Nature
  doi: 10.1038/nature12753
– volume: 33
  start-page: 865
  year: 2021
  ident: 2616_CR54
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab028
– volume: 11
  start-page: 1650
  year: 2016
  ident: 2616_CR75
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2016.095
– volume: 2020
  start-page: 11
  year: 1886
  ident: 2616_CR17
  publication-title: Nat Commun
– volume: 15
  start-page: 991
  year: 2020
  ident: 2616_CR85
  publication-title: Nat Protoc
  doi: 10.1038/s41596-019-0273-0
– volume: 51
  start-page: 224
  year: 2019
  ident: 2616_CR41
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0282-x
– volume: 518
  start-page: 331
  year: 2015
  ident: 2616_CR36
  publication-title: Nature
  doi: 10.1038/nature14222
– volume: 19
  start-page: 53
  year: 2021
  ident: 2616_CR19
  publication-title: BMC Biol
  doi: 10.1186/s12915-021-00996-4
– volume: 72
  start-page: 437
  year: 2021
  ident: 2616_CR21
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-080720-113241
– volume: 21
  start-page: 104
  year: 2020
  ident: 2616_CR59
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-01998-1
– volume: 29
  start-page: 2150
  year: 2017
  ident: 2616_CR56
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00010
– volume: 44
  start-page: 4067
  year: 2016
  ident: 2616_CR31
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw238
– volume: 540
  start-page: 296
  year: 2016
  ident: 2616_CR11
  publication-title: Nature
  doi: 10.1038/nature20158
– volume: 18
  start-page: 157
  year: 2017
  ident: 2616_CR65
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1281-4
– volume: 141
  start-page: 1171
  year: 2010
  ident: 2616_CR60
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.026
– volume: 50
  start-page: 1296
  year: 2018
  ident: 2616_CR46
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0175-z
– volume: 326
  start-page: 289
  year: 2009
  ident: 2616_CR8
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 21
  start-page: 974
  year: 2016
  ident: 2616_CR70
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2016.07.013
– volume: 17
  start-page: 661
  year: 2016
  ident: 2616_CR10
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.112
– volume: 21
  start-page: 143
  year: 2020
  ident: 2616_CR18
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02063-7
– volume: 489
  start-page: 109
  year: 2012
  ident: 2616_CR68
  publication-title: Nature
  doi: 10.1038/nature11279
– volume: 13
  start-page: 2498
  year: 2003
  ident: 2616_CR86
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 26
  start-page: 4821
  year: 2014
  ident: 2616_CR6
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.133793
– volume: 12
  start-page: 2053
  year: 2021
  ident: 2616_CR7
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22352-4
– volume: 58
  start-page: 473
  year: 2007
  ident: 2616_CR23
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erl218
– volume: 4
  start-page: 90
  year: 2018
  ident: 2616_CR33
  publication-title: Nat Plants
  doi: 10.1038/s41477-017-0096-3
– volume: 512
  start-page: 96
  year: 2014
  ident: 2616_CR47
  publication-title: Nature
  doi: 10.1038/nature13417
– volume: 517
  start-page: 571
  year: 2015
  ident: 2616_CR52
  publication-title: Nature
  doi: 10.1038/nature14099
– volume: 33
  start-page: 524
  year: 2015
  ident: 2616_CR42
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3208
– volume: 5
  start-page: 795
  year: 2019
  ident: 2616_CR15
  publication-title: Nat Plants
  doi: 10.1038/s41477-019-0471-3
– volume: 159
  start-page: 1665
  year: 2014
  ident: 2616_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.021
– volume: 46
  start-page: W11
  year: 2018
  ident: 2616_CR83
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky504
– volume: 9
  start-page: 357
  year: 2012
  ident: 2616_CR77
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 16
  start-page: 198
  year: 2015
  ident: 2616_CR80
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0767-1
– volume: 18
  start-page: 1752
  year: 2008
  ident: 2616_CR63
  publication-title: Genome Res
  doi: 10.1101/gr.080663.108
– volume: 162
  start-page: 86
  year: 2013
  ident: 2616_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.212142
– volume: 148
  start-page: 84
  year: 2012
  ident: 2616_CR45
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.014
– volume: 12
  start-page: 357
  year: 2015
  ident: 2616_CR74
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3317
– volume: 95
  start-page: 1069
  year: 2018
  ident: 2616_CR32
  publication-title: Plant J
  doi: 10.1111/tpj.14011
– volume: 5
  start-page: 1250
  year: 2019
  ident: 2616_CR72
  publication-title: Nat Plants
  doi: 10.1038/s41477-019-0548-z
– volume: 52
  start-page: 8
  year: 2020
  ident: 2616_CR39
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0561-1
– volume: 11
  start-page: e1005724
  year: 2015
  ident: 2616_CR30
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005724
– volume: 16
  start-page: e1008764
  year: 2020
  ident: 2616_CR71
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008764
– volume: 9
  start-page: R137
  year: 2008
  ident: 2616_CR78
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-9-r137
– volume: 16
  start-page: 259
  year: 2015
  ident: 2616_CR79
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0831-x
– volume: 232
  start-page: 1191
  year: 2010
  ident: 2616_CR48
  publication-title: Planta
  doi: 10.1007/s00425-010-1246-2
– volume: 6
  start-page: 945
  year: 2013
  ident: 2616_CR50
  publication-title: Mol Plant
  doi: 10.1093/mp/sss112
– volume: 17
  start-page: 422
  year: 2007
  ident: 2616_CR25
  publication-title: Cell Res
  doi: 10.1038/sj.cr.7310150
– volume: 40
  start-page: e49
  year: 2012
  ident: 2616_CR76
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1293
– volume: 62
  start-page: 201
  year: 2020
  ident: 2616_CR16
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12809
– volume: 51
  start-page: 835
  year: 2019
  ident: 2616_CR43
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0392-0
– volume: 28
  start-page: 60
  year: 2015
  ident: 2616_CR3
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2015.09.004
– volume: 15
  start-page: 550
  year: 2014
  ident: 2616_CR87
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 462
  start-page: 58
  year: 2009
  ident: 2616_CR9
  publication-title: Nature
  doi: 10.1038/nature08497
– volume: 171
  start-page: 557
  year: 2017
  ident: 2616_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.043
– volume-title: Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation. Datasets. NCBI Bioproject
  year: 2022
  ident: 2616_CR88
– volume: 3
  start-page: 104
  year: 2012
  ident: 2616_CR20
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2012.00104
– volume: 439
  start-page: 493
  year: 2011
  ident: 2616_CR1
  publication-title: Nature
  doi: 10.1038/nature04269
– volume: 16
  start-page: 2323
  year: 2004
  ident: 2616_CR22
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.024844
– volume: 268
  start-page: 1
  year: 2002
  ident: 2616_CR26
  publication-title: Mol Gen Genomics
  doi: 10.1007/s00438-002-0721-2
– volume: 17
  start-page: 859
  year: 2005
  ident: 2616_CR27
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.029629
– volume: 95
  start-page: 335
  issue: Pt 3
  year: 1990
  ident: 2616_CR58
  publication-title: J Cell Sci
  doi: 10.1242/jcs.95.3.335
– volume: 40
  start-page: 825
  year: 2006
  ident: 2616_CR73
  publication-title: Mol Biol
– volume: 22
  start-page: 166
  year: 2021
  ident: 2616_CR53
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02383-2
– volume: 4
  start-page: 258
  year: 2018
  ident: 2616_CR55
  publication-title: Nat Plants
  doi: 10.1038/s41477-018-0136-7
– volume: 503
  start-page: 290
  year: 2013
  ident: 2616_CR69
  publication-title: Nature
  doi: 10.1038/nature12644
– volume: 11
  start-page: 1813
  year: 2020
  ident: 2616_CR82
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15607-z
– volume: 13
  start-page: 59
  year: 2011
  ident: 2616_CR67
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3095
– volume: 18
  start-page: 71
  year: 2017
  ident: 2616_CR61
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.139
– volume: 28
  start-page: 2616
  year: 2016
  ident: 2616_CR4
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00744
– volume: 362
  start-page: eaau1783
  year: 2018
  ident: 2616_CR12
  publication-title: Science
  doi: 10.1126/science.aau1783
– volume: 19
  start-page: 3692
  year: 2007
  ident: 2616_CR24
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.054437
– volume: 220
  start-page: 87
  year: 2018
  ident: 2616_CR57
  publication-title: New Phytol
  doi: 10.1111/nph.15256
– volume: 19
  start-page: 1092
  year: 2021
  ident: 2616_CR28
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13594
– volume: 5
  start-page: 17662
  year: 2015
  ident: 2616_CR40
  publication-title: Sci Rep
  doi: 10.1038/srep17662
– volume: 184
  start-page: 723
  year: 2021
  ident: 2616_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.001
– volume: 11
  start-page: 158
  year: 2020
  ident: 2616_CR84
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00158
– volume: 164
  start-page: 1350
  year: 2014
  ident: 2616_CR5
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.233312
– volume: 8
  start-page: e1002446
  year: 2012
  ident: 2616_CR51
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002446
– volume: 10
  start-page: 3640
  year: 2019
  ident: 2616_CR66
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11535-9
– volume: 51
  start-page: 1380
  year: 2019
  ident: 2616_CR64
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0479-7
– ident: 2616_CR34
  doi: 10.1093/molbev/msab128
– volume: 3
  start-page: 99
  year: 2016
  ident: 2616_CR81
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2015.07.012
– volume: 99
  start-page: 11109
  year: 2002
  ident: 2616_CR29
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.162077099
– volume: 184
  start-page: 741
  year: 2021
  ident: 2616_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2020.12.032
– volume: 11
  start-page: 1796
  year: 2020
  ident: 2616_CR62
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15520-5
– volume: 47
  start-page: 7857
  year: 2019
  ident: 2616_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz511
SSID ssj0019426
ssj0017866
Score 2.5131366
Snippet Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is...
Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about...
Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is...
BACKGROUND: Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is...
Abstract Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms 3D genome
allotetraploidy
Animal Genetics and Genomics
Bias
Bioinformatics
Biomedical and Life Sciences
Cell cycle
Cell Differentiation
Cellulose
Chromatin
Cotton
Cotton Fiber
DNA methylation
Epigenetics
Evolutionary Biology
Gene expression
genes
Genome
Genomes
Genomics
Human Genetics
Life Sciences
lint cotton
Microbial Genetics and Genomics
Plant Genetics and Genomics
Polyploid
Single-cell differentiation
topology
Transcription
transcription (genetics)
Transcription factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmDVcWzHPgKlqpDgRKXerMnESystCepmD_sP-Nkdx8nS5VEuXNcTyZmH_X1r5xvGXlkDRG-wFjWAEhpjI7ytvXAKJQJIdJC-d_702Z6c6o9n5uxaq690JyzLA2fHHYK0TdVibVRLyJfIRGOxclG5UgIVKqbVV3o5k6np_MDTxjN_IuPs4YpWauNFurmeOIcVm51taFTr_xPE_P2m5C_HpeMudHyP3Z3gI3-bp73PbsXuPrudG0puHrAfR7nBPK-OeFJf_Rb59ZMC3i940mLoO75IN0V40m-i_OOrdZPNBfbERi86QqAtx_PLPgHajg-5lcKGE8TlWhCi_Erj6W-GJT0Sl0s-N1oZcqgfstPjD1_en4ip14LAWrpBoMO60QrQOCylQ10ibVtRGwemdRjL6BZEPoDwJRAGNK0tY7sw3ivwUJZQPWJ7Xd_FJ4wjLCjCBAQbbTXRO9Blow14q52ixRQKVs6uDzgJkad-GMswEhJnQw5XoHCFMVxhU7DX22e-ZxmOG63fpYhuLZOE9vgDJVaYEiv8K7EKdjDnQ5jqehWUrZIgTunrgr3cDlNFJldDF_t1skmi_7quqptsaOG0RHZVwR7nFNvONh3tGql8weqd5Nt5nd2R7uJ8VAZ3BNcIgBXszZymP6f-d3c9_R_uesbuqFxfQlYHbG-4XMfnhNeG5sVYmldR1j2v
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6ux4-cJAaWqkOBEpb1FjuO0lZak7GYP-w_42czEScry2OOuHSmxZ8bfZ4_nI-S1Vh7oTTDMeC-YDLFiThvHrAh58D4P1uN95y9f9emZ_LxQi3HDbT2mVU4xcQjUdRdwj_xI6AJLkXBn3l39YKgahaero4TGTXKLAxJB6QazmAkXNxaxyvjDSZGuGmEConJ6ukFj9dEaArlyDBPbkZJott1ZpYZi_v9CoH8nUv5xmjosUif3yN0RXdL3yRzukxuxfUBuJ73J7UPy8zjpz9PimGJx1u-R_n6QQLuGYqmGrqUNJpJQLO8E5knXmyp1Z6EDsnrZAkCtabhYdYh3W9onpYUtBQRMJQPAeQ7tuAuxhEfickknHZY-WcIjcnby6dvHUzZKMbBgctuzYIOppPBB2cBzGyQPsKpFqaxXtQ2RR9sAN_EAPz1ARFVrHutGOSe885z74jE5aLs2PiU0-AYMAHBiJbUE9uclr6TyTksrINb6jPBp6Msw1ilHuYxlOfAVq8s0XSVMVzlMV7nNyJv5matUpWNv7w84o3NPrLA9_NGtzsvRYUuf66qog1GiBsYFJLbSobBRWJ57WCBCRg4neyhHt1-X10aakVdzMzgsDrVvY7fBPqgJIE1R7OsDcVUDFxYZeZJMbH5bPPlVuXAZMTvGt_M5uy3t5cVQONwCmgN8lpG3k5lev_r_h-vZ_i99Tu6I5DksLw7JQb_axBcA1Prq5eCNvwB1ITqN
  priority: 102
  providerName: ProQuest
Title Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation
URI https://link.springer.com/article/10.1186/s13059-022-02616-y
https://www.ncbi.nlm.nih.gov/pubmed/35115029
https://www.proquest.com/docview/2630535197
https://www.proquest.com/docview/2626004733
https://www.proquest.com/docview/2648862892
https://pubmed.ncbi.nlm.nih.gov/PMC8812185
https://doaj.org/article/a06b3dc752d747448b6c38e2810a911c
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhcEG9SyspI3MAidvw8sttWFRIVqqi04hI5jpdWWhLUzR72H_RnM86LLpRKXHKIx1LimbG_8djfALxV0mF44zXVznEqfCioVdpSw33qnUu9cfG-8-dTdXIuPs3lvKfJiXdhbubvmVEfVjjHSkvjmfMYLSi62YE9iS-jNc_UbMwYWFxqhksxt_bbWnhafv7bQOXfZyP_SJC2687xI3jYA0bysdPwY7gXqidwvyshuXkK14ddSXmSHZLIt_ojkJu5AVIvSGRfqCuyiGdDSGRsQosjq3XRiVNfY_x5WSHmLIm_uKojhK1I0xVP2BAEtURQxJDfsT1uLCyxS1guyVBapemU-wzOj4--zk5oX12Bep2ahnrjdSG489J4lhovmMeFKghpnCyNDyyYBYYbDhGlQ9QnS8VCuZDWcmcdYy57DrtVXYWXQLxboE4R-hVCCQzonGCFkM4qYThOny4BNgx97nvq8VgBY5m3IYhReaeuHNWVt-rKNwm8G_v87Ig37pSeRo2OkpE0u32BtpT3Ppi7VBVZ6bXkJQZRGJcWymcmcMNSh3O-T-BgsIe89-RVzlUWKXCY1Qm8GZvRB-NQuyrU6ygTaf6FzrK7ZHCqVBje8gRedCY2fm1M5sqU2wT0lvFt_c52S3V50XKBGwRoCLkSeD-Y6e9P__dw7f-f-Ct4wDtPoml2ALvN1Tq8RizWFBPY0XM9gb3p0emXs0nrkpN2XwOfZ9NvvwDHADPB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVgheEDeBAkaCJ7CaOLZjP1SIsq229BBCrdS34DjedqVtUvYQyj_gV_HbmMmxZTn2rY-JJ1HiGY-_8VyEvFbSgnnjEpZYy5lwPmNGJYZp7kJnbei0xXznwyM1OBGfTuXpGvnZ5cJgWGWnE2tFnZcOz8g3uYqxFElkkveX3xh2jULvatdCw7atFfKtusRYm9ix76vvYMJNt_b6wO83nO_uHH8csLbLAHNJqGfMaZdkglsntYtC7UTkQGF7IbWVuXY-8noIsNsCsrKAfmSuIp8PpTHcGhtFNob33iDrAg9QemR9e-fo85eFHyPRiJbaCyN4k-yEIZDSqC6HR6vNKWwl0jAMrUejSLFqaZ-s2wn8CwP_Hcr5hz-33iZ375I7Lb6lHxqBvEfWfHGf3Gw6XlYPyI9-VdiLkaNxn2J52AtPf3dl0HJIsVhEWdAhhrJQLDAFC4RO51lDzlwJcz0qACLn1J1PSkTcBZ01vR4qChicCgaQ9wzG8RxkDI_48Zh2nWBmjSw-JCfXwqZHpFeUhX9CqLNDEEFAqplQAuxPK6JMSGuU0By0vQ1I1E196tpK6diwY5zWFpNWacOuFNiV1uxKq4C8XTxz2dQJWUm9jRxdUGKN7_pGOTlLW5WR2lBlce4SyXOw-cCMzpSLtec6Ci1sUS4gG508pK3imaZXyyQgrxbDoDJwqm3hyznSYFcCkcTxKhrQ7AqscR6Qx42ILb4Wfc8y5CYgyZLwLf3O8kgxOq9Ll2vAk4AQA_KuE9OrT___dD1d_acvya3B8eFBerB3tP-M3ObNKmJhvEF6s8ncPwfYOMtetGuTkq_XrQ5-AYeofds
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgFYgL4rMEChiJG1iNHduxjwvLqixQIUGl3izHcdpKS1LtZg_7D_jZjOMkdKFU4hqPpcQz43mTsd8g9FoKC-mNy0luLSPc-YJomWuimEudtalTNtx3_nIkD4_5_EScXLrF3512H0qS8U5DYGmq24OLsoouruTBCnZeoUk4iR5yCEk2N9GuElpD-rU7mcy_zcdKgoYQNFyWuXLmVkDqePuvApt_n5n8o3DaxaPZPXS3B5J4EjV_H93w9QN0K7aW3DxEP6ex1TzOpjjwsP7w-HLNADcVDqwMTY2rcGYEByYnsES8WhdRnLgG8tLzGrBoid3ZsgnQtsZtbKqwwQB2MSeALU9hPPxwWMAUv1jgoeVKG5X-CB3PPnx_f0j6rgvE5alqiVMuLzizTihHU-U4dRDAPBfKilI5T72qIA2xgDQtoEFRSurLCtaeWW0ptdljtFM3tX-CsLMV6BogYcElh0TPclpwYbXkisG2ahNEh6U3rqckD50xFqZLTZQ0UV0G1GU6dZlNgt6Mcy4iIce10u-CRkfJQKbdPWiWp6b3TWNTWWSlywUrIbmCfLWQLlOeKZpaiAUuQfuDPZjew1eGySxQ41CdJ-jVOAy-GZba1r5ZB5lA_8_zLLtOBrZQCWkvS9BeNLHxbUORV6RMJyjfMr6tz9keqc_POo5wBcANoFiC3g5m-vvV_71cT_9P_CW6_XU6M58_Hn16hu6w6FQkzfbRTrtc--cA19riRe-RvwCjTTvp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+3D+genome+architecture+of+cotton+fiber+reveals+subgenome-coordinated+chromatin+topology+for+4-staged+single-cell+differentiation&rft.jtitle=Genome+biology&rft.au=Pei%2C+Liuling&rft.au=Huang%2C+Xianhui&rft.au=Liu%2C+Zhenping&rft.au=Tian%2C+Xuehan&rft.date=2022-02-03&rft.pub=BioMed+Central&rft.eissn=1474-760X&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-022-02616-y&rft.externalDocID=10_1186_s13059_022_02616_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon