Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation
Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynami...
Saved in:
Published in | Genome Biology Vol. 23; no. 1; p. 45 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
03.02.2022
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1474-7596 1474-760X |
DOI | 10.1186/s13059-022-02616-y |
Cover
Abstract | Background
Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process.
Results
To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes.
Conclusions
This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants. |
---|---|
AbstractList | Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process.BACKGROUNDDespite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process.To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes.RESULTSTo interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes.This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.CONCLUSIONSThis study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants. Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants. Abstract Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. Conclusions This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants. BACKGROUND: Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. RESULTS: To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. CONCLUSIONS: This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants. Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process. Results To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes. Conclusions This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants. |
ArticleNumber | 45 |
Author | Fang, David D. Lindsey, Keith Huang, Xianhui Pei, Liuling Liu, Zhenping Wang, Maojun You, Jiaqi Zhu, Longfu Tian, Xuehan Li, Jianying Zhang, Xianlong |
Author_xml | – sequence: 1 givenname: Liuling surname: Pei fullname: Pei, Liuling organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 2 givenname: Xianhui surname: Huang fullname: Huang, Xianhui organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 3 givenname: Zhenping surname: Liu fullname: Liu, Zhenping organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 4 givenname: Xuehan surname: Tian fullname: Tian, Xuehan organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 5 givenname: Jiaqi surname: You fullname: You, Jiaqi organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 6 givenname: Jianying surname: Li fullname: Li, Jianying organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 7 givenname: David D. surname: Fang fullname: Fang, David D. organization: Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center – sequence: 8 givenname: Keith surname: Lindsey fullname: Lindsey, Keith organization: Department of Biosciences, Durham University – sequence: 9 givenname: Longfu surname: Zhu fullname: Zhu, Longfu organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 10 givenname: Xianlong surname: Zhang fullname: Zhang, Xianlong organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University – sequence: 11 givenname: Maojun orcidid: 0000-0002-4791-3742 surname: Wang fullname: Wang, Maojun email: mjwang@mail.hzau.edu.cn organization: National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35115029$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1TAQhSNURH_gBVggS2zYBDxO7DgbJNTyU6kSG5DYWY4zyfVVYhfbqXTfoI-Ne9NC20XFwrJlf-doZnyOiwPnHRbFa6DvAaT4EKGivC0pY3kJEOXuWXEEdVOXjaC_Du6dD4vjGLeUQlsz8aI4rDgAp6w9Kq7Pdk7P1pDqjIzo_IxEB7OxCU1aAhI_EONT8o4MtsNAAl6hniKJS7fipfE-9NbphD0xm-BnnawjyV_6yY87MvhA6jImPeb3aN04ZQlOE-ntMGBAl2wWePeyeD5kY3x1u58UP798_nH6rbz4_vX89NNFaRoqU2mkabqaacOlASpNDaZuAGsuNe-lQUA5cN5qSanmgvNeAPYDb1umWw2gq5PifPXtvd6qy2BnHXbKa6v2Fz6MSodkzYRKU9FVvWk465s8yVp2wlQSmQSqWwCTvT6uXpdLN2NvcjNBTw9MH744u1Gjv1JSAgPJs8G7W4Pgfy8Yk5ptvJmOduiXqJiopRRMtuw_UCYorZuqyujbR-jWL8HlqWYqRyb_fttk6s394v9WfZeNDMgVMMHHGHBQxqb9X-Ve7KSAqpsYqjWGKsdQ7WOodlnKHknv3J8UVasoZtiNGP6V_YTqD0B78i4 |
CitedBy_id | crossref_primary_10_1038_s41467_024_55309_4 crossref_primary_10_3389_fpls_2023_1223591 crossref_primary_10_21769_BioProtoc_4879 crossref_primary_10_1111_tpj_16468 crossref_primary_10_1038_s42003_023_04781_7 crossref_primary_10_1186_s12915_023_01665_4 crossref_primary_10_1093_bioinformatics_btad588 crossref_primary_10_1093_gigascience_giaf020 crossref_primary_10_1016_j_tplants_2023_11_009 crossref_primary_10_1186_s42397_024_00207_9 crossref_primary_10_1007_s11427_022_2278_0 crossref_primary_10_1093_hr_uhae017 crossref_primary_10_1007_s11427_024_2784_3 crossref_primary_10_1186_s12915_024_01906_0 crossref_primary_10_7717_peerj_17462 crossref_primary_10_1111_tpj_16615 crossref_primary_10_1016_j_molp_2023_02_005 crossref_primary_10_1093_bioinformatics_btad576 crossref_primary_10_1186_s13059_023_03018_4 crossref_primary_10_1093_nar_gkae1267 crossref_primary_10_1186_s13068_023_02378_0 crossref_primary_10_1016_j_jare_2024_05_019 crossref_primary_10_1111_jipb_13388 crossref_primary_10_1016_j_xplc_2023_100722 crossref_primary_10_1016_j_celrep_2023_113543 |
Cites_doi | 10.1146/annurev-cellbio-100617-062459 10.1038/nature12753 10.1093/plcell/koab028 10.1038/nprot.2016.095 10.1038/s41596-019-0273-0 10.1038/s41588-018-0282-x 10.1038/nature14222 10.1186/s12915-021-00996-4 10.1146/annurev-arplant-080720-113241 10.1186/s13059-020-01998-1 10.1105/tpc.17.00010 10.1093/nar/gkw238 10.1038/nature20158 10.1186/s13059-017-1281-4 10.1016/j.cell.2010.05.026 10.1038/s41588-018-0175-z 10.1126/science.1181369 10.1016/j.tplants.2016.07.013 10.1038/nrg.2016.112 10.1186/s13059-020-02063-7 10.1038/nature11279 10.1101/gr.1239303 10.1105/tpc.114.133793 10.1038/s41467-021-22352-4 10.1093/jxb/erl218 10.1038/s41477-017-0096-3 10.1038/nature13417 10.1038/nature14099 10.1038/nbt.3208 10.1038/s41477-019-0471-3 10.1016/j.cell.2014.11.021 10.1093/nar/gky504 10.1038/nmeth.1923 10.1186/s13059-015-0767-1 10.1101/gr.080663.108 10.1104/pp.112.212142 10.1016/j.cell.2011.12.014 10.1038/nmeth.3317 10.1111/tpj.14011 10.1038/s41477-019-0548-z 10.1038/s41588-019-0561-1 10.1371/journal.pgen.1005724 10.1371/journal.pgen.1008764 10.1186/gb-2008-9-9-r137 10.1186/s13059-015-0831-x 10.1007/s00425-010-1246-2 10.1093/mp/sss112 10.1038/sj.cr.7310150 10.1093/nar/gkr1293 10.1111/jipb.12809 10.1038/s41588-019-0392-0 10.1016/j.pbi.2015.09.004 10.1186/s13059-014-0550-8 10.1038/nature08497 10.1016/j.cell.2017.09.043 10.3389/fpls.2012.00104 10.1038/nature04269 10.1105/tpc.104.024844 10.1007/s00438-002-0721-2 10.1105/tpc.104.029629 10.1242/jcs.95.3.335 10.1186/s13059-021-02383-2 10.1038/s41477-018-0136-7 10.1038/nature12644 10.1038/s41467-020-15607-z 10.1038/nrg3095 10.1038/nrg.2016.139 10.1105/tpc.15.00744 10.1126/science.aau1783 10.1105/tpc.107.054437 10.1111/nph.15256 10.1111/pbi.13594 10.1038/srep17662 10.1016/j.cell.2021.01.001 10.3389/fgene.2020.00158 10.1104/pp.113.233312 10.1371/journal.pgen.1002446 10.1038/s41467-019-11535-9 10.1038/s41588-019-0479-7 10.1093/molbev/msab128 10.1016/j.cels.2015.07.012 10.1073/pnas.162077099 10.1016/j.cell.2020.12.032 10.1038/s41467-020-15520-5 10.1093/nar/gkz511 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-022-02616-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 45 |
ExternalDocumentID | oai_doaj_org_article_a06b3dc752d747448b6c38e2810a911c PMC8812185 35115029 10_1186_s13059_022_02616_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31801405 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 31922069 funderid: http://dx.doi.org/10.13039/100014717 – fundername: ; grantid: 31922069 – fundername: ; grantid: 31801405 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c708t-c8c7b42ac58c108c41c471e458a5d8ce1e8f559a800a5655d61edf5992a9a11a3 |
IEDL.DBID | C6C |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Thu Aug 21 18:08:16 EDT 2025 Thu Sep 04 21:19:48 EDT 2025 Fri Sep 05 07:37:24 EDT 2025 Fri Jul 25 11:57:30 EDT 2025 Mon Jul 21 05:45:34 EDT 2025 Tue Jul 01 03:10:50 EDT 2025 Thu Apr 24 22:53:31 EDT 2025 Sat Sep 06 07:17:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 3D genome Single-cell differentiation Cotton fiber Polyploid |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c708t-c8c7b42ac58c108c41c471e458a5d8ce1e8f559a800a5655d61edf5992a9a11a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4791-3742 |
OpenAccessLink | https://doi.org/10.1186/s13059-022-02616-y |
PMID | 35115029 |
PQID | 2630535197 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a06b3dc752d747448b6c38e2810a911c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8812185 proquest_miscellaneous_2648862892 proquest_miscellaneous_2626004733 proquest_journals_2630535197 pubmed_primary_35115029 crossref_citationtrail_10_1186_s13059_022_02616_y crossref_primary_10_1186_s13059_022_02616_y springer_journals_10_1186_s13059_022_02616_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-03 |
PublicationDateYYYYMMDD | 2022-02-03 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Genome Biology |
PublicationTitleAbbrev | Genome Biol |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2022 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | F Li (2616_CR42) 2015; 33 XB Li (2616_CR27) 2005; 17 N Servant (2616_CR79) 2015; 16 EB Chuong (2616_CR61) 2017; 18 I Kurek (2616_CR29) 2002; 99 S Wang (2616_CR22) 2004; 16 MI Love (2616_CR87) 2014; 15 P Olivares-Chauvet (2616_CR11) 2016; 540 M Wang (2616_CR41) 2019; 51 B Langmead (2616_CR77) 2012; 9 CH Haigler (2616_CR20) 2012; 3 P Shannon (2616_CR86) 2003; 13 AR Leitch (2616_CR58) 1990; 95 Y Sun (2616_CR18) 2020; 21 MJ Fullwood (2616_CR9) 2009; 462 F Jin (2616_CR69) 2013; 503 D Liu (2616_CR73) 2006; 40 M Ikeuchi (2616_CR3) 2015; 28 NC Durand (2616_CR81) 2016; 3 A Kaul (2616_CR85) 2020; 15 JA Beagan (2616_CR39) 2020; 52 PJ Wittkopp (2616_CR67) 2011; 13 TQ Zhang (2616_CR7) 2021; 12 X Cai (2616_CR53) 2021; 22 D Yuan (2616_CR40) 2015; 5 M Pertea (2616_CR75) 2016; 11 H Chen (2616_CR46) 2018; 50 D Kim (2616_CR74) 2015; 12 B Xu (2616_CR50) 2013; 6 JY Gou (2616_CR25) 2007; 17 J Lee (2616_CR48) 2010; 232 S Zhou (2616_CR15) 2019; 5 E Pierre-Jerome (2616_CR2) 2018; 34 L Sun (2616_CR17) 1886; 2020 W Zhu (2616_CR65) 2017; 18 M de Lucas (2616_CR4) 2016; 28 M Wang (2616_CR31) 2016; 44 AG Diehl (2616_CR62) 2020; 11 V Kumar (2616_CR32) 2018; 95 PP Edger (2616_CR56) 2017; 29 J Candaele (2616_CR5) 2014; 164 Z Liang (2616_CR19) 2021; 19 Y Wang (2616_CR76) 2012; 40 L Concia (2616_CR59) 2020; 21 B Weber (2616_CR70) 2016; 21 M Wang (2616_CR33) 2018; 4 S Rosa (2616_CR6) 2014; 26 X Ding (2616_CR28) 2021; 19 Y Zhang (2616_CR64) 2019; 51 G Huang (2616_CR21) 2021; 72 JR Dixon (2616_CR36) 2015; 518 CR Huang (2616_CR60) 2010; 141 Q Song (2616_CR30) 2015; 11 G Bourque (2616_CR63) 2008; 18 S Costa (2616_CR1) 2011; 439 2616_CR34 KC Akdemir (2616_CR80) 2015; 16 YM Qin (2616_CR23) 2007; 58 J Tan (2616_CR49) 2013; 162 P Dong (2616_CR16) 2020; 62 Y Du (2616_CR71) 2020; 16 M Wang (2616_CR54) 2021; 33 B Bonev (2616_CR10) 2016; 17 SS Rao (2616_CR35) 2014; 159 F Cheng (2616_CR55) 2018; 4 SE Harmer (2616_CR26) 2002; 268 L Zhao (2616_CR66) 2019; 10 KA Bird (2616_CR57) 2018; 220 H Zhang (2616_CR37) 2019; 47 YM Qin (2616_CR24) 2007; 19 X Luo (2616_CR38) 2021; 184 Y Ghavi-Helm (2616_CR47) 2014; 512 E Lieberman-Aiden (2616_CR8) 2009; 326 A Bruex (2616_CR51) 2012; 8 Y Zhang (2616_CR78) 2008; 9 L Pei (2616_CR88) 2022 G Li (2616_CR45) 2012; 148 B Bonev (2616_CR13) 2017; 171 J Wolff (2616_CR83) 2018; 46 L Tan (2616_CR14) 2021; 184 M Taylor-Teeples (2616_CR52) 2015; 517 Z Lu (2616_CR72) 2019; 5 KG Cresswell (2616_CR84) 2020; 11 B Bintu (2616_CR12) 2018; 362 M Chen (2616_CR82) 2020; 11 W de Laat (2616_CR44) 2013; 502 A Sanyal (2616_CR68) 2012; 489 J Paulsen (2616_CR43) 2019; 51 |
References_xml | – volume: 34 start-page: 289 year: 2018 ident: 2616_CR2 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-100617-062459 – volume: 502 start-page: 499 year: 2013 ident: 2616_CR44 publication-title: Nature doi: 10.1038/nature12753 – volume: 33 start-page: 865 year: 2021 ident: 2616_CR54 publication-title: Plant Cell doi: 10.1093/plcell/koab028 – volume: 11 start-page: 1650 year: 2016 ident: 2616_CR75 publication-title: Nat Protoc doi: 10.1038/nprot.2016.095 – volume: 2020 start-page: 11 year: 1886 ident: 2616_CR17 publication-title: Nat Commun – volume: 15 start-page: 991 year: 2020 ident: 2616_CR85 publication-title: Nat Protoc doi: 10.1038/s41596-019-0273-0 – volume: 51 start-page: 224 year: 2019 ident: 2616_CR41 publication-title: Nat Genet doi: 10.1038/s41588-018-0282-x – volume: 518 start-page: 331 year: 2015 ident: 2616_CR36 publication-title: Nature doi: 10.1038/nature14222 – volume: 19 start-page: 53 year: 2021 ident: 2616_CR19 publication-title: BMC Biol doi: 10.1186/s12915-021-00996-4 – volume: 72 start-page: 437 year: 2021 ident: 2616_CR21 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-080720-113241 – volume: 21 start-page: 104 year: 2020 ident: 2616_CR59 publication-title: Genome Biol doi: 10.1186/s13059-020-01998-1 – volume: 29 start-page: 2150 year: 2017 ident: 2616_CR56 publication-title: Plant Cell doi: 10.1105/tpc.17.00010 – volume: 44 start-page: 4067 year: 2016 ident: 2616_CR31 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw238 – volume: 540 start-page: 296 year: 2016 ident: 2616_CR11 publication-title: Nature doi: 10.1038/nature20158 – volume: 18 start-page: 157 year: 2017 ident: 2616_CR65 publication-title: Genome Biol doi: 10.1186/s13059-017-1281-4 – volume: 141 start-page: 1171 year: 2010 ident: 2616_CR60 publication-title: Cell doi: 10.1016/j.cell.2010.05.026 – volume: 50 start-page: 1296 year: 2018 ident: 2616_CR46 publication-title: Nat Genet doi: 10.1038/s41588-018-0175-z – volume: 326 start-page: 289 year: 2009 ident: 2616_CR8 publication-title: Science doi: 10.1126/science.1181369 – volume: 21 start-page: 974 year: 2016 ident: 2616_CR70 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2016.07.013 – volume: 17 start-page: 661 year: 2016 ident: 2616_CR10 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.112 – volume: 21 start-page: 143 year: 2020 ident: 2616_CR18 publication-title: Genome Biol doi: 10.1186/s13059-020-02063-7 – volume: 489 start-page: 109 year: 2012 ident: 2616_CR68 publication-title: Nature doi: 10.1038/nature11279 – volume: 13 start-page: 2498 year: 2003 ident: 2616_CR86 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 26 start-page: 4821 year: 2014 ident: 2616_CR6 publication-title: Plant Cell doi: 10.1105/tpc.114.133793 – volume: 12 start-page: 2053 year: 2021 ident: 2616_CR7 publication-title: Nat Commun doi: 10.1038/s41467-021-22352-4 – volume: 58 start-page: 473 year: 2007 ident: 2616_CR23 publication-title: J Exp Bot doi: 10.1093/jxb/erl218 – volume: 4 start-page: 90 year: 2018 ident: 2616_CR33 publication-title: Nat Plants doi: 10.1038/s41477-017-0096-3 – volume: 512 start-page: 96 year: 2014 ident: 2616_CR47 publication-title: Nature doi: 10.1038/nature13417 – volume: 517 start-page: 571 year: 2015 ident: 2616_CR52 publication-title: Nature doi: 10.1038/nature14099 – volume: 33 start-page: 524 year: 2015 ident: 2616_CR42 publication-title: Nat Biotechnol doi: 10.1038/nbt.3208 – volume: 5 start-page: 795 year: 2019 ident: 2616_CR15 publication-title: Nat Plants doi: 10.1038/s41477-019-0471-3 – volume: 159 start-page: 1665 year: 2014 ident: 2616_CR35 publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 46 start-page: W11 year: 2018 ident: 2616_CR83 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky504 – volume: 9 start-page: 357 year: 2012 ident: 2616_CR77 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 16 start-page: 198 year: 2015 ident: 2616_CR80 publication-title: Genome Biol doi: 10.1186/s13059-015-0767-1 – volume: 18 start-page: 1752 year: 2008 ident: 2616_CR63 publication-title: Genome Res doi: 10.1101/gr.080663.108 – volume: 162 start-page: 86 year: 2013 ident: 2616_CR49 publication-title: Plant Physiol doi: 10.1104/pp.112.212142 – volume: 148 start-page: 84 year: 2012 ident: 2616_CR45 publication-title: Cell doi: 10.1016/j.cell.2011.12.014 – volume: 12 start-page: 357 year: 2015 ident: 2616_CR74 publication-title: Nat Methods doi: 10.1038/nmeth.3317 – volume: 95 start-page: 1069 year: 2018 ident: 2616_CR32 publication-title: Plant J doi: 10.1111/tpj.14011 – volume: 5 start-page: 1250 year: 2019 ident: 2616_CR72 publication-title: Nat Plants doi: 10.1038/s41477-019-0548-z – volume: 52 start-page: 8 year: 2020 ident: 2616_CR39 publication-title: Nat Genet doi: 10.1038/s41588-019-0561-1 – volume: 11 start-page: e1005724 year: 2015 ident: 2616_CR30 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005724 – volume: 16 start-page: e1008764 year: 2020 ident: 2616_CR71 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008764 – volume: 9 start-page: R137 year: 2008 ident: 2616_CR78 publication-title: Genome Biol doi: 10.1186/gb-2008-9-9-r137 – volume: 16 start-page: 259 year: 2015 ident: 2616_CR79 publication-title: Genome Biol doi: 10.1186/s13059-015-0831-x – volume: 232 start-page: 1191 year: 2010 ident: 2616_CR48 publication-title: Planta doi: 10.1007/s00425-010-1246-2 – volume: 6 start-page: 945 year: 2013 ident: 2616_CR50 publication-title: Mol Plant doi: 10.1093/mp/sss112 – volume: 17 start-page: 422 year: 2007 ident: 2616_CR25 publication-title: Cell Res doi: 10.1038/sj.cr.7310150 – volume: 40 start-page: e49 year: 2012 ident: 2616_CR76 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1293 – volume: 62 start-page: 201 year: 2020 ident: 2616_CR16 publication-title: J Integr Plant Biol doi: 10.1111/jipb.12809 – volume: 51 start-page: 835 year: 2019 ident: 2616_CR43 publication-title: Nat Genet doi: 10.1038/s41588-019-0392-0 – volume: 28 start-page: 60 year: 2015 ident: 2616_CR3 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2015.09.004 – volume: 15 start-page: 550 year: 2014 ident: 2616_CR87 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 462 start-page: 58 year: 2009 ident: 2616_CR9 publication-title: Nature doi: 10.1038/nature08497 – volume: 171 start-page: 557 year: 2017 ident: 2616_CR13 publication-title: Cell doi: 10.1016/j.cell.2017.09.043 – volume-title: Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation. Datasets. NCBI Bioproject year: 2022 ident: 2616_CR88 – volume: 3 start-page: 104 year: 2012 ident: 2616_CR20 publication-title: Front Plant Sci doi: 10.3389/fpls.2012.00104 – volume: 439 start-page: 493 year: 2011 ident: 2616_CR1 publication-title: Nature doi: 10.1038/nature04269 – volume: 16 start-page: 2323 year: 2004 ident: 2616_CR22 publication-title: Plant Cell doi: 10.1105/tpc.104.024844 – volume: 268 start-page: 1 year: 2002 ident: 2616_CR26 publication-title: Mol Gen Genomics doi: 10.1007/s00438-002-0721-2 – volume: 17 start-page: 859 year: 2005 ident: 2616_CR27 publication-title: Plant Cell doi: 10.1105/tpc.104.029629 – volume: 95 start-page: 335 issue: Pt 3 year: 1990 ident: 2616_CR58 publication-title: J Cell Sci doi: 10.1242/jcs.95.3.335 – volume: 40 start-page: 825 year: 2006 ident: 2616_CR73 publication-title: Mol Biol – volume: 22 start-page: 166 year: 2021 ident: 2616_CR53 publication-title: Genome Biol doi: 10.1186/s13059-021-02383-2 – volume: 4 start-page: 258 year: 2018 ident: 2616_CR55 publication-title: Nat Plants doi: 10.1038/s41477-018-0136-7 – volume: 503 start-page: 290 year: 2013 ident: 2616_CR69 publication-title: Nature doi: 10.1038/nature12644 – volume: 11 start-page: 1813 year: 2020 ident: 2616_CR82 publication-title: Nat Commun doi: 10.1038/s41467-020-15607-z – volume: 13 start-page: 59 year: 2011 ident: 2616_CR67 publication-title: Nat Rev Genet doi: 10.1038/nrg3095 – volume: 18 start-page: 71 year: 2017 ident: 2616_CR61 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.139 – volume: 28 start-page: 2616 year: 2016 ident: 2616_CR4 publication-title: Plant Cell doi: 10.1105/tpc.15.00744 – volume: 362 start-page: eaau1783 year: 2018 ident: 2616_CR12 publication-title: Science doi: 10.1126/science.aau1783 – volume: 19 start-page: 3692 year: 2007 ident: 2616_CR24 publication-title: Plant Cell doi: 10.1105/tpc.107.054437 – volume: 220 start-page: 87 year: 2018 ident: 2616_CR57 publication-title: New Phytol doi: 10.1111/nph.15256 – volume: 19 start-page: 1092 year: 2021 ident: 2616_CR28 publication-title: Plant Biotechnol J doi: 10.1111/pbi.13594 – volume: 5 start-page: 17662 year: 2015 ident: 2616_CR40 publication-title: Sci Rep doi: 10.1038/srep17662 – volume: 184 start-page: 723 year: 2021 ident: 2616_CR38 publication-title: Cell doi: 10.1016/j.cell.2021.01.001 – volume: 11 start-page: 158 year: 2020 ident: 2616_CR84 publication-title: Front Genet doi: 10.3389/fgene.2020.00158 – volume: 164 start-page: 1350 year: 2014 ident: 2616_CR5 publication-title: Plant Physiol doi: 10.1104/pp.113.233312 – volume: 8 start-page: e1002446 year: 2012 ident: 2616_CR51 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002446 – volume: 10 start-page: 3640 year: 2019 ident: 2616_CR66 publication-title: Nat Commun doi: 10.1038/s41467-019-11535-9 – volume: 51 start-page: 1380 year: 2019 ident: 2616_CR64 publication-title: Nat Genet doi: 10.1038/s41588-019-0479-7 – ident: 2616_CR34 doi: 10.1093/molbev/msab128 – volume: 3 start-page: 99 year: 2016 ident: 2616_CR81 publication-title: Cell Syst doi: 10.1016/j.cels.2015.07.012 – volume: 99 start-page: 11109 year: 2002 ident: 2616_CR29 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.162077099 – volume: 184 start-page: 741 year: 2021 ident: 2616_CR14 publication-title: Cell doi: 10.1016/j.cell.2020.12.032 – volume: 11 start-page: 1796 year: 2020 ident: 2616_CR62 publication-title: Nat Commun doi: 10.1038/s41467-020-15520-5 – volume: 47 start-page: 7857 year: 2019 ident: 2616_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz511 |
SSID | ssj0019426 ssj0017866 |
Score | 2.5131366 |
Snippet | Background
Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is... Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about... Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is... BACKGROUND: Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is... Abstract Background Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 45 |
SubjectTerms | 3D genome allotetraploidy Animal Genetics and Genomics Bias Bioinformatics Biomedical and Life Sciences Cell cycle Cell Differentiation Cellulose Chromatin Cotton Cotton Fiber DNA methylation Epigenetics Evolutionary Biology Gene expression genes Genome Genomes Genomics Human Genetics Life Sciences lint cotton Microbial Genetics and Genomics Plant Genetics and Genomics Polyploid Single-cell differentiation topology Transcription transcription (genetics) Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmDVcWzHPgKlqpDgRKXerMnESystCepmD_sP-Nkdx8nS5VEuXNcTyZmH_X1r5xvGXlkDRG-wFjWAEhpjI7ytvXAKJQJIdJC-d_702Z6c6o9n5uxaq690JyzLA2fHHYK0TdVibVRLyJfIRGOxclG5UgIVKqbVV3o5k6np_MDTxjN_IuPs4YpWauNFurmeOIcVm51taFTr_xPE_P2m5C_HpeMudHyP3Z3gI3-bp73PbsXuPrudG0puHrAfR7nBPK-OeFJf_Rb59ZMC3i940mLoO75IN0V40m-i_OOrdZPNBfbERi86QqAtx_PLPgHajg-5lcKGE8TlWhCi_Erj6W-GJT0Sl0s-N1oZcqgfstPjD1_en4ip14LAWrpBoMO60QrQOCylQ10ibVtRGwemdRjL6BZEPoDwJRAGNK0tY7sw3ivwUJZQPWJ7Xd_FJ4wjLCjCBAQbbTXRO9Blow14q52ixRQKVs6uDzgJkad-GMswEhJnQw5XoHCFMVxhU7DX22e-ZxmOG63fpYhuLZOE9vgDJVaYEiv8K7EKdjDnQ5jqehWUrZIgTunrgr3cDlNFJldDF_t1skmi_7quqptsaOG0RHZVwR7nFNvONh3tGql8weqd5Nt5nd2R7uJ8VAZ3BNcIgBXszZymP6f-d3c9_R_uesbuqFxfQlYHbG-4XMfnhNeG5sVYmldR1j2v priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6ux4-cJAaWqkOBEpb1FjuO0lZak7GYP-w_42czEScry2OOuHSmxZ8bfZ4_nI-S1Vh7oTTDMeC-YDLFiThvHrAh58D4P1uN95y9f9emZ_LxQi3HDbT2mVU4xcQjUdRdwj_xI6AJLkXBn3l39YKgahaero4TGTXKLAxJB6QazmAkXNxaxyvjDSZGuGmEConJ6ukFj9dEaArlyDBPbkZJott1ZpYZi_v9CoH8nUv5xmjosUif3yN0RXdL3yRzukxuxfUBuJ73J7UPy8zjpz9PimGJx1u-R_n6QQLuGYqmGrqUNJpJQLO8E5knXmyp1Z6EDsnrZAkCtabhYdYh3W9onpYUtBQRMJQPAeQ7tuAuxhEfickknHZY-WcIjcnby6dvHUzZKMbBgctuzYIOppPBB2cBzGyQPsKpFqaxXtQ2RR9sAN_EAPz1ARFVrHutGOSe885z74jE5aLs2PiU0-AYMAHBiJbUE9uclr6TyTksrINb6jPBp6Msw1ilHuYxlOfAVq8s0XSVMVzlMV7nNyJv5matUpWNv7w84o3NPrLA9_NGtzsvRYUuf66qog1GiBsYFJLbSobBRWJ57WCBCRg4neyhHt1-X10aakVdzMzgsDrVvY7fBPqgJIE1R7OsDcVUDFxYZeZJMbH5bPPlVuXAZMTvGt_M5uy3t5cVQONwCmgN8lpG3k5lev_r_h-vZ_i99Tu6I5DksLw7JQb_axBcA1Prq5eCNvwB1ITqN priority: 102 providerName: ProQuest |
Title | Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation |
URI | https://link.springer.com/article/10.1186/s13059-022-02616-y https://www.ncbi.nlm.nih.gov/pubmed/35115029 https://www.proquest.com/docview/2630535197 https://www.proquest.com/docview/2626004733 https://www.proquest.com/docview/2648862892 https://pubmed.ncbi.nlm.nih.gov/PMC8812185 https://doaj.org/article/a06b3dc752d747448b6c38e2810a911c |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkhcEG9SyspI3MAidvw8sttWFRIVqqi04hI5jpdWWhLUzR72H_RnM86LLpRKXHKIx1LimbG_8djfALxV0mF44zXVznEqfCioVdpSw33qnUu9cfG-8-dTdXIuPs3lvKfJiXdhbubvmVEfVjjHSkvjmfMYLSi62YE9iS-jNc_UbMwYWFxqhksxt_bbWnhafv7bQOXfZyP_SJC2687xI3jYA0bysdPwY7gXqidwvyshuXkK14ddSXmSHZLIt_ojkJu5AVIvSGRfqCuyiGdDSGRsQosjq3XRiVNfY_x5WSHmLIm_uKojhK1I0xVP2BAEtURQxJDfsT1uLCyxS1guyVBapemU-wzOj4--zk5oX12Bep2ahnrjdSG489J4lhovmMeFKghpnCyNDyyYBYYbDhGlQ9QnS8VCuZDWcmcdYy57DrtVXYWXQLxboE4R-hVCCQzonGCFkM4qYThOny4BNgx97nvq8VgBY5m3IYhReaeuHNWVt-rKNwm8G_v87Ig37pSeRo2OkpE0u32BtpT3Ppi7VBVZ6bXkJQZRGJcWymcmcMNSh3O-T-BgsIe89-RVzlUWKXCY1Qm8GZvRB-NQuyrU6ygTaf6FzrK7ZHCqVBje8gRedCY2fm1M5sqU2wT0lvFt_c52S3V50XKBGwRoCLkSeD-Y6e9P__dw7f-f-Ct4wDtPoml2ALvN1Tq8RizWFBPY0XM9gb3p0emXs0nrkpN2XwOfZ9NvvwDHADPB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVgheEDeBAkaCJ7CaOLZjP1SIsq229BBCrdS34DjedqVtUvYQyj_gV_HbmMmxZTn2rY-JJ1HiGY-_8VyEvFbSgnnjEpZYy5lwPmNGJYZp7kJnbei0xXznwyM1OBGfTuXpGvnZ5cJgWGWnE2tFnZcOz8g3uYqxFElkkveX3xh2jULvatdCw7atFfKtusRYm9ix76vvYMJNt_b6wO83nO_uHH8csLbLAHNJqGfMaZdkglsntYtC7UTkQGF7IbWVuXY-8noIsNsCsrKAfmSuIp8PpTHcGhtFNob33iDrAg9QemR9e-fo85eFHyPRiJbaCyN4k-yEIZDSqC6HR6vNKWwl0jAMrUejSLFqaZ-s2wn8CwP_Hcr5hz-33iZ375I7Lb6lHxqBvEfWfHGf3Gw6XlYPyI9-VdiLkaNxn2J52AtPf3dl0HJIsVhEWdAhhrJQLDAFC4RO51lDzlwJcz0qACLn1J1PSkTcBZ01vR4qChicCgaQ9wzG8RxkDI_48Zh2nWBmjSw-JCfXwqZHpFeUhX9CqLNDEEFAqplQAuxPK6JMSGuU0By0vQ1I1E196tpK6diwY5zWFpNWacOuFNiV1uxKq4C8XTxz2dQJWUm9jRxdUGKN7_pGOTlLW5WR2lBlce4SyXOw-cCMzpSLtec6Ci1sUS4gG508pK3imaZXyyQgrxbDoDJwqm3hyznSYFcCkcTxKhrQ7AqscR6Qx42ILb4Wfc8y5CYgyZLwLf3O8kgxOq9Ll2vAk4AQA_KuE9OrT___dD1d_acvya3B8eFBerB3tP-M3ObNKmJhvEF6s8ncPwfYOMtetGuTkq_XrQ5-AYeofds |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgFYgL4rMEChiJG1iNHduxjwvLqixQIUGl3izHcdpKS1LtZg_7D_jZjOMkdKFU4hqPpcQz43mTsd8g9FoKC-mNy0luLSPc-YJomWuimEudtalTNtx3_nIkD4_5_EScXLrF3512H0qS8U5DYGmq24OLsoouruTBCnZeoUk4iR5yCEk2N9GuElpD-rU7mcy_zcdKgoYQNFyWuXLmVkDqePuvApt_n5n8o3DaxaPZPXS3B5J4EjV_H93w9QN0K7aW3DxEP6ex1TzOpjjwsP7w-HLNADcVDqwMTY2rcGYEByYnsES8WhdRnLgG8tLzGrBoid3ZsgnQtsZtbKqwwQB2MSeALU9hPPxwWMAUv1jgoeVKG5X-CB3PPnx_f0j6rgvE5alqiVMuLzizTihHU-U4dRDAPBfKilI5T72qIA2xgDQtoEFRSurLCtaeWW0ptdljtFM3tX-CsLMV6BogYcElh0TPclpwYbXkisG2ahNEh6U3rqckD50xFqZLTZQ0UV0G1GU6dZlNgt6Mcy4iIce10u-CRkfJQKbdPWiWp6b3TWNTWWSlywUrIbmCfLWQLlOeKZpaiAUuQfuDPZjew1eGySxQ41CdJ-jVOAy-GZba1r5ZB5lA_8_zLLtOBrZQCWkvS9BeNLHxbUORV6RMJyjfMr6tz9keqc_POo5wBcANoFiC3g5m-vvV_71cT_9P_CW6_XU6M58_Hn16hu6w6FQkzfbRTrtc--cA19riRe-RvwCjTTvp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+3D+genome+architecture+of+cotton+fiber+reveals+subgenome-coordinated+chromatin+topology+for+4-staged+single-cell+differentiation&rft.jtitle=Genome+biology&rft.au=Pei%2C+Liuling&rft.au=Huang%2C+Xianhui&rft.au=Liu%2C+Zhenping&rft.au=Tian%2C+Xuehan&rft.date=2022-02-03&rft.pub=BioMed+Central&rft.eissn=1474-760X&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-022-02616-y&rft.externalDocID=10_1186_s13059_022_02616_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |