Technology dictates algorithms: recent developments in read alignment
Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today’s diverse array of alignment methods. We provide a systematic survey of...
Saved in:
| Published in | Genome Biology Vol. 22; no. 1; p. 249 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
26.08.2021
Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1474-760X 1474-7596 1474-760X |
| DOI | 10.1186/s13059-021-02443-7 |
Cover
| Summary: | Aligning sequencing reads onto a reference is an essential step of the majority of genomic analysis pipelines. Computational algorithms for read alignment have evolved in accordance with technological advances, leading to today’s diverse array of alignment methods. We provide a systematic survey of algorithmic foundations and methodologies across 107 alignment methods, for both short and long reads. We provide a rigorous experimental evaluation of 11 read aligners to demonstrate the effect of these underlying algorithms on speed and efficiency of read alignment. We discuss how general alignment algorithms have been tailored to the specific needs of various domains in biology. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ISSN: | 1474-760X 1474-7596 1474-760X |
| DOI: | 10.1186/s13059-021-02443-7 |