CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data
Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge. Results Here, we present Cy...
Saved in:
| Published in | BMC bioinformatics Vol. 22; no. 1; pp. 138 - 20 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
22.03.2021
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-021-04054-2 |
Cover
| Abstract | Background
The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge.
Results
Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner.
Conclusions
CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. |
|---|---|
| AbstractList | The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge.
Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner.
CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge. Results Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner. Conclusions CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. Abstract Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge. Results Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner. Conclusions CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge. Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner. CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge. Results Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner. Conclusions CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. Keywords: Flow cytometry, Mass cytometry, Single-cell, Tree, Pseudotime The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge.BACKGROUNDThe rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge.Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner.RESULTSHere, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner.CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow.CONCLUSIONSCytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and the recently emerging single-cell-based algorithms provide a powerful strategy to meet this challenge. Results Here, we present CytoTree, an R/Bioconductor package designed to analyze and interpret multidimensional flow and mass cytometry data. CytoTree provides multiple computational functionalities that integrate most of the commonly used techniques in unsupervised clustering and dimensionality reduction and, more importantly, support the construction of a tree-shaped trajectory based on the minimum spanning tree algorithm. A graph-based algorithm is also implemented to estimate the pseudotime and infer intermediate-state cells. We apply CytoTree to several examples of mass cytometry and time-course flow cytometry data on heterogeneity-based cytology and differentiation/reprogramming experiments to illustrate the practical utility achieved in a fast and convenient manner. Conclusions CytoTree represents a versatile tool for analyzing multidimensional flow and mass cytometry data and to producing heuristic results for trajectory construction and pseudotime estimation in an integrated workflow. |
| ArticleNumber | 138 |
| Audience | Academic |
| Author | Wu, Liang Li, Jianfeng Chen, Jun Xu, Aining Sun, Xiao-Jian Dai, Yuting Yu, Shanhe Zhao, Weili Huang, Jinyan |
| Author_xml | – sequence: 1 givenname: Yuting surname: Dai fullname: Dai, Yuting organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 2 givenname: Aining surname: Xu fullname: Xu, Aining organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 3 givenname: Jianfeng surname: Li fullname: Li, Jianfeng organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 4 givenname: Liang surname: Wu fullname: Wu, Liang organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 5 givenname: Shanhe surname: Yu fullname: Yu, Shanhe organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 6 givenname: Jun surname: Chen fullname: Chen, Jun organization: Division of Biomedical Statistics and Informatics, Department of Health Sciences Research and Center for Individualized Medicine, Mayo Clinic – sequence: 7 givenname: Weili surname: Zhao fullname: Zhao, Weili email: zhao.weili@yahoo.com organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 8 givenname: Xiao-Jian surname: Sun fullname: Sun, Xiao-Jian email: xjsun@sibs.ac.cn organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University – sequence: 9 givenname: Jinyan surname: Huang fullname: Huang, Jinyan email: huangjy@sjtu.edu.cn organization: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33752602$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhSNURB_wB1igSGxgkdZ24sewQCojHiNVQiplbd049uCS2FPbaRl-PZ4HbadCFcoiV9ffOXHOvYfFnvNOF8VLjI4xFuwkYiLopEIEV6hBtKnIk-IANxxXBCO6d6_eLw5jvEQIc4Hos2K_rjklDJGDop0uk78IWr8rwZXnJx-sV951o0o-lAtQP2GuS5NrcNAvo4256MprG0fo7W9I1rvSm9L0_mZ9MkCMpcqeg05hWXaQ4Hnx1EAf9Yvt-6j4_unjxfRLdfb182x6elYpjniqNEZ1DVoz3DDKO4YmvFYCkY4brCgnjeAtM0KgriUK0ZojNeGCEUE6hQlq66NitvHtPFzKRbADhKX0YOW64cNcQkhW9VoaI1pogGvSmpxR22LeEsa0IZzi3M9e9cZrdAtY3kDf3xpiJFfpy036Mqcv1-lLklXvN6rF2A66U9qlAP3OVXZPnP0h5_5a8omoCV8ZvNkaBH816pjkYKPSfQ9O-zFKQlFT02aCm4y-foBe-jHkIa0o3BBG8rTvqDnk37bO-PxdtTKVp4yyBnHOVl7H_6Dy0-nB5nXQxub-juDtjiAzSf9KcxhjlLNv57vsq_uh3KbxdwczIDaACj7GoI1UNq03K9_C9o8HTh5I_2tK29nGDLu5DnfJPaL6A0x0DK0 |
| CitedBy_id | crossref_primary_10_1186_s13059_023_03099_1 crossref_primary_10_1016_j_celrep_2023_113613 crossref_primary_10_1126_sciadv_adm8841 crossref_primary_10_1016_j_jtct_2023_11_022 crossref_primary_10_1080_2162402X_2024_2392898 crossref_primary_10_1016_j_rpth_2024_102523 crossref_primary_10_3390_cells12131706 crossref_primary_10_7554_eLife_74183 crossref_primary_10_1016_j_isci_2021_103566 crossref_primary_10_1016_j_cell_2025_01_021 crossref_primary_10_3390_cells11193142 crossref_primary_10_1038_s41467_023_40393_9 crossref_primary_10_1016_j_ccell_2022_08_005 crossref_primary_10_1002_advs_202207061 crossref_primary_10_1093_bioadv_vbad177 crossref_primary_10_1172_jci_insight_160398 crossref_primary_10_1016_j_isci_2024_110613 crossref_primary_10_1038_s41467_024_55179_w crossref_primary_10_1038_s41591_022_01696_4 |
| Cites_doi | 10.1371/journal.pcbi.1005112 10.1038/nbt.4314 10.1038/nbt.1991 10.1016/j.patcog.2010.01.003 10.1002/cyto.a.21007 10.1038/s42003-019-0415-5 10.1016/j.stem.2012.01.006 10.4049/jimmunol.1701494 10.1038/nbt.2594 10.1016/j.celrep.2018.07.003 10.1021/acssynbio.5b00284 10.1002/cyto.a.22625 10.1016/j.cell.2016.04.019 10.1038/s42003-019-0467-6 10.1093/bioinformatics/bts034 10.1002/cyto.a.23030 10.12688/f1000research.11622.3 10.1016/j.cels.2017.10.012 10.1186/s13059-019-1663-x 10.1093/bioinformatics/btn021 10.1002/cyto.a.22106 10.1038/cr.2011.138 10.1038/nmeth.4644 10.1371/journal.pcbi.1003806 10.1038/nature25022 10.1186/s12859-016-1109-3 10.1146/annurev-anchem-061417-125927 10.1038/nbt.4096 10.1038/nbt.2859 10.1016/j.cell.2014.04.005 10.1126/science.aar3131 10.1093/bioinformatics/btv325 10.1038/nbt.3569 10.1093/nar/gkv007 10.1073/pnas.1408993111 10.1038/s41467-018-05988-7 10.1002/cyto.a.23621 10.1186/s13059-019-1917-7 10.1126/science.1198704 10.1186/1471-2105-10-106 10.1182/blood-2019-130429 10.1038/nmeth.3971 10.1002/cyto.a.23563 10.1038/s41587-019-0071-9 10.1038/s41586-019-0969-x |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-021-04054-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database ProQuest Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_ff8ba4a7e2bf471bb17b266ef27514a7 10.1186/s12859-021-04054-2 PMC7983272 A656407764 33752602 10_1186_s12859_021_04054_2 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c707t-e1033aee614657d60973c802d7f1c572487b6f880db2c05370c9786282dc120b3 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:44:50 EDT 2025 Sun Oct 26 03:31:25 EDT 2025 Tue Sep 30 16:43:13 EDT 2025 Thu Oct 02 06:56:14 EDT 2025 Tue Oct 07 05:19:21 EDT 2025 Mon Oct 20 22:32:08 EDT 2025 Mon Oct 20 16:29:33 EDT 2025 Thu Oct 16 14:10:50 EDT 2025 Thu Apr 03 07:07:37 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Oct 01 04:15:36 EDT 2025 Sat Sep 06 07:27:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Flow cytometry Tree Mass cytometry Pseudotime Single-cell |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c707t-e1033aee614657d60973c802d7f1c572487b6f880db2c05370c9786282dc120b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-021-04054-2 |
| PMID | 33752602 |
| PQID | 2514262017 |
| PQPubID | 44065 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ff8ba4a7e2bf471bb17b266ef27514a7 unpaywall_primary_10_1186_s12859_021_04054_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7983272 proquest_miscellaneous_2504354914 proquest_journals_2514262017 gale_infotracmisc_A656407764 gale_infotracacademiconefile_A656407764 gale_incontextgauss_ISR_A656407764 pubmed_primary_33752602 crossref_citationtrail_10_1186_s12859_021_04054_2 crossref_primary_10_1186_s12859_021_04054_2 springer_journals_10_1186_s12859_021_04054_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-22 |
| PublicationDateYYYYMMDD | 2021-03-22 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2021 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | M Setty (4054_CR44) 2016; 34 C Trapnell (4054_CR6) 2014; 32 J Spidlen (4054_CR22) 2012; 81 JA Farrell (4054_CR30) 2018; 360 SC Bendall (4054_CR23) 2011; 332 S Doulatov (4054_CR35) 2012; 10 AK Kimball (4054_CR15) 2018; 200 Z Hu (4054_CR39) 2018; 24 A Butler (4054_CR5) 2018; 36 Y-C Liaw (4054_CR32) 2010; 43 W Saelens (4054_CR8) 2019; 37 LR Olsen (4054_CR2) 2019; 95 SC Bendall (4054_CR20) 2014; 157 N Aghaeepour (4054_CR26) 2011; 79 E Marco (4054_CR45) 2014; 111 P Qiu (4054_CR13) 2011; 29 S Meehan (4054_CR42) 2019; 2 C Wang (4054_CR37) 2012; 22 LM Weber (4054_CR28) 2019; 2 LM Weber (4054_CR34) 2016; 89 A-N Xu (4054_CR38) 2019; 134 L Wang (4054_CR3) 2017; 79 CA Herring (4054_CR24) 2018; 6 F Hahne (4054_CR10) 2009; 10 MH Spitzer (4054_CR1) 2016; 165 E Becht (4054_CR18) 2018; 37 L Haghverdi (4054_CR9) 2016; 13 JT Leek (4054_CR25) 2012; 28 G Finak (4054_CR11) 2014; 10 VY Kiselev (4054_CR7) 2018; 15 S Van Gassen (4054_CR12) 2015; 87 M Nowicka (4054_CR21) 2019; 6 X Liu (4054_CR33) 2019; 20 D Sarkar (4054_CR19) 2008; 24 E-D Amir (4054_CR16) 2013; 31 F Costa (4054_CR31) 2018; 9 H Chen (4054_CR14) 2016; 12 FA Wolf (4054_CR43) 2019; 20 H Matsumoto (4054_CR46) 2016; 17 ME Ritchie (4054_CR27) 2015; 43 PK Chattopadhyay (4054_CR4) 2019; 12 L Haghverdi (4054_CR17) 2015; 31 E Laurenti (4054_CR36) 2018; 553 M Koblizek (4054_CR40) 2018; 93 J Cao (4054_CR29) 2019; 566 SM Castillo-Hair (4054_CR41) 2016; 5 |
| References_xml | – volume: 12 start-page: e1005112 issue: 9 year: 2016 ident: 4054_CR14 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005112 – volume: 37 start-page: 38 issue: 1 year: 2018 ident: 4054_CR18 publication-title: Nat Biotechnol doi: 10.1038/nbt.4314 – volume: 29 start-page: 886 issue: 10 year: 2011 ident: 4054_CR13 publication-title: Nat Biotechnol doi: 10.1038/nbt.1991 – volume: 43 start-page: 2351 issue: 6 year: 2010 ident: 4054_CR32 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2010.01.003 – volume: 79 start-page: 6 issue: 1 year: 2011 ident: 4054_CR26 publication-title: Cytometry A doi: 10.1002/cyto.a.21007 – volume: 2 start-page: 183 year: 2019 ident: 4054_CR28 publication-title: Commun Biol doi: 10.1038/s42003-019-0415-5 – volume: 10 start-page: 120 issue: 2 year: 2012 ident: 4054_CR35 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.01.006 – volume: 200 start-page: 3 issue: 1 year: 2018 ident: 4054_CR15 publication-title: J Immunol doi: 10.4049/jimmunol.1701494 – volume: 31 start-page: 545 issue: 6 year: 2013 ident: 4054_CR16 publication-title: Nat Biotechnol doi: 10.1038/nbt.2594 – volume: 24 start-page: 1377 issue: 5 year: 2018 ident: 4054_CR39 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.07.003 – volume: 5 start-page: 774 issue: 7 year: 2016 ident: 4054_CR41 publication-title: ACS Synth Biol doi: 10.1021/acssynbio.5b00284 – volume: 87 start-page: 636 issue: 7 year: 2015 ident: 4054_CR12 publication-title: Cytometry A doi: 10.1002/cyto.a.22625 – volume: 165 start-page: 780 issue: 4 year: 2016 ident: 4054_CR1 publication-title: Cell doi: 10.1016/j.cell.2016.04.019 – volume: 2 start-page: 229 year: 2019 ident: 4054_CR42 publication-title: Commun Biol doi: 10.1038/s42003-019-0467-6 – volume: 28 start-page: 882 issue: 6 year: 2012 ident: 4054_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts034 – volume: 89 start-page: 1084 issue: 12 year: 2016 ident: 4054_CR34 publication-title: Cytometry A doi: 10.1002/cyto.a.23030 – volume: 6 start-page: 748 year: 2019 ident: 4054_CR21 publication-title: F1000Research doi: 10.12688/f1000research.11622.3 – volume: 6 start-page: 37 issue: 1 year: 2018 ident: 4054_CR24 publication-title: Cell Syst doi: 10.1016/j.cels.2017.10.012 – volume: 20 start-page: 59 issue: 1 year: 2019 ident: 4054_CR43 publication-title: Genome Biol doi: 10.1186/s13059-019-1663-x – volume: 24 start-page: 878 issue: 6 year: 2008 ident: 4054_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn021 – volume: 81 start-page: 727 issue: 9 year: 2012 ident: 4054_CR22 publication-title: Cytometry A doi: 10.1002/cyto.a.22106 – volume: 22 start-page: 194 issue: 1 year: 2012 ident: 4054_CR37 publication-title: Cell Res doi: 10.1038/cr.2011.138 – volume: 15 start-page: 359 issue: 5 year: 2018 ident: 4054_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.4644 – volume: 10 start-page: e1003806 issue: 8 year: 2014 ident: 4054_CR11 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003806 – volume: 553 start-page: 418 issue: 7689 year: 2018 ident: 4054_CR36 publication-title: Nature doi: 10.1038/nature25022 – volume: 17 start-page: 232 issue: 1 year: 2016 ident: 4054_CR46 publication-title: BMC Bioinform doi: 10.1186/s12859-016-1109-3 – volume: 12 start-page: 411 issue: 1 year: 2019 ident: 4054_CR4 publication-title: Annu Rev Anal Chem (Palo Alto Calif) doi: 10.1146/annurev-anchem-061417-125927 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: 4054_CR5 publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 32 start-page: 381 issue: 4 year: 2014 ident: 4054_CR6 publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – volume: 157 start-page: 714 issue: 3 year: 2014 ident: 4054_CR20 publication-title: Cell doi: 10.1016/j.cell.2014.04.005 – volume: 360 start-page: eaar3131 issue: 6392 year: 2018 ident: 4054_CR30 publication-title: Science doi: 10.1126/science.aar3131 – volume: 31 start-page: 2989 issue: 18 year: 2015 ident: 4054_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv325 – volume: 34 start-page: 637 issue: 6 year: 2016 ident: 4054_CR44 publication-title: Nat Biotechnol doi: 10.1038/nbt.3569 – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 4054_CR27 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 – volume: 111 start-page: E5643 issue: 52 year: 2014 ident: 4054_CR45 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1408993111 – volume: 9 start-page: 3685 issue: 1 year: 2018 ident: 4054_CR31 publication-title: Nat Commun doi: 10.1038/s41467-018-05988-7 – volume: 95 start-page: 156 issue: 2 year: 2019 ident: 4054_CR2 publication-title: Cytometry A doi: 10.1002/cyto.a.23621 – volume: 20 start-page: 297 issue: 1 year: 2019 ident: 4054_CR33 publication-title: Genome Biol doi: 10.1186/s13059-019-1917-7 – volume: 332 start-page: 687 issue: 6030 year: 2011 ident: 4054_CR23 publication-title: Science doi: 10.1126/science.1198704 – volume: 10 start-page: 106 year: 2009 ident: 4054_CR10 publication-title: BMC Bioinform doi: 10.1186/1471-2105-10-106 – volume: 134 start-page: 3700 issue: Supplement_1 year: 2019 ident: 4054_CR38 publication-title: Blood doi: 10.1182/blood-2019-130429 – volume: 79 start-page: 1.3.1 issue: 1 year: 2017 ident: 4054_CR3 publication-title: Curr Protoc Cytom – volume: 13 start-page: 845 issue: 10 year: 2016 ident: 4054_CR9 publication-title: Nat Methods doi: 10.1038/nmeth.3971 – volume: 93 start-page: 848 issue: 8 year: 2018 ident: 4054_CR40 publication-title: Cytometry A doi: 10.1002/cyto.a.23563 – volume: 37 start-page: 547 issue: 5 year: 2019 ident: 4054_CR8 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0071-9 – volume: 566 start-page: 496 issue: 7745 year: 2019 ident: 4054_CR29 publication-title: Nature doi: 10.1038/s41586-019-0969-x |
| SSID | ssj0017805 |
| Score | 2.4542568 |
| Snippet | Background
The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and... The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and interpretation, and... Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and... Abstract Background The rapidly increasing dimensionality and throughput of flow and mass cytometry data necessitate new bioinformatics tools for analysis and... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 138 |
| SubjectTerms | Algorithms Bioinformatics Biomedical and Life Sciences Cell Differentiation Cluster Analysis Clustering Compensation Computational Biology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Cytology Data analysis Flow Cytometry Graph theory Heterogeneity Life Sciences Mass cytometry Methods Microarrays Principal components analysis Pseudotime R (Programming language) Research Article Single-cell Software Stem cells Trajectory analysis Tree Visualization Visualization (Computers) Workflow |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEG-WFmQQEgcareMktpdbqagKEhxKK_Vm2Y4NFduk2s222n_PjPNgA1LhwC3KjKN4ZjyPZPyZkNfWiAyihEqkFyrJi8wkCgJLwp11xntWBo-fBj5_EYcn-afT4nTjqC_sCWvhgVvBTUNQ1uRGem4DOFJrU2khqPjAJcR6E_eRMzXri6nu_wEi9fdbZJSYLlPEaUuwHQGMtsgTPgpDEa3_T5-8EZR-b5gc_preIbdW1YVZX5n5fCMwHdwjd7uMku61M7lPbvjqAbnZnjG5fkjs_rqpjxfev6OmokdTIEAJjCiv9YJCwfwDHAqFzBWoLTwJXJT08myJuy3bPZq0DjTM66tIOYdsmzp45rlvFmuKHaaPyMnBh-P9w6Q7WCFxkskm8SnLMtAEhGZRyFIgZI9TjJcypK6QHIoYKwKs7NJyh4AvzEGxKaA6K13Kmc0ek62qrvxTQr0qWaEsFLd2lptUWVVa5mVpIPMLhcgmJO3lrF2HOo6HX8x1rD6U0K1uNOhGR91oPiFvhzEXLebGtdzvUX0DJ-JlxxtgRbqzIv03K5qQV6h8jYgYFbbcfDOr5VJ__Hqk9yDjzRH0KJ-QNx1TqGEOznQ7GEASCKI14twZccKSdWNyb2O6cxlLDYlmPB0ghZd5OZBxJLbBVb5eIQ-D9DafpfCIJ61JDvPOMllAcQrykCNjHQlmTKnOvkdAcTkDvy5h5G5v1r9e6zrB7w6m_w96evY_9LRNbvO4irOE8x2y1SxW_jlkhY19ER3AT6k7WgY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3raxQxEA_1iqgfxFftaZVVBD_YcLvZR3KCSFtaquAhZwv9FvKsxevu9R6W---d2Ve7Coffjp3JcslM5rGZ_IaQd1plMXgJQbnLBE3SWFEBjoUyo41yLrTe4aeBb6Ps-DT5epaebZBRcxcGyyobm1gaalsY_EY-AD9cgqdH_PP0imLXKDxdbVpoqLq1gv1UQozdIZsMkbF6ZHP_cPR93J4rIIJ_c3VGZIN5hPhtFMsUQJnThLKOeypR_P-11bec1d-FlO1p6gNyb5lP1epaTSa3HNbRI_KwjjSDvUo1HpMNlz8hd6vek6unRB-sFsXJzLmPgcqD8QAIkBoj-msxCyCR_gWGJoCIFqgVbAn8sMHviznewqzubgaFD_ykuC4plxCFBwbeeekWs1WAlafPyOnR4cnBMa0bLlDDQ76gLgrjGCQELjtLuc0QyseIkFnuI5NyBsmNzjzseKuZQSCY0EASmkHWZk3EQh1vkV5e5G6bBE7YMBUakl49TFQktLA6dNwqiAh9msV9EjXrLE2NRo5NMSayzEpEJivZSJCNLGUjWZ98aMdMKyyOtdz7KL6WE3G0ywfF7FzW21J6L7RKFHdMe3DTWkdcQ8jiPOOgb4r3yVsUvkSkjBxLcc7Vcj6XX36M5R5EwgmCISV98r5m8gXMwaj6ZgOsBIJrdTh3OpywlU2X3OiYrE3JXN4ofp-8ack4EsvjclcskSeEsDcZRvCK55VKtvOOY55C0grrwTvK2lmYLiW_-FkCjfMh2HsOI3cbtb75W-sWfrdV_f-Q04v1k35J7rNyf8aUsR3SW8yW7hXEgQv9ut7cfwBF3Fcb priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QEAIeEN8cDBQQEg8sWpu2SY63cWIaSPAwNmlvUZImY-LWTtce0_332GmvXAFN8HY6O1FrO7Hd2L8Q8toakYGXUEx6oVheZIYpcCyMO-uM90kZPH4a-PxFHBznn06Kkx4mB3thNs_vUyV2mxQR1hgWEoC5FTmD7fY6OCkRD2bFbDgxQGz-dVPMX8eNHE_E5_9zF95wQ7-XSA7npLfJzWV1YVaXZj7fcEX7d8mdPoake53S75FrvrpPbnS3Sq4eEDtbtfXRwvt31FT0cBcIkPQirmu9oJAif4cthEKsCtQOkAR-lPTHWYP9lV1XJq0DDfP6MlLOIb6mDuY89-1iRbGm9CE53v9wNDtg_VUKzMlEtsynSZaB7MEZi0KWAkF6nEp4KUPqCskhbbEiwFouLXcI8ZI4SC8F5GOlS3lis0dkq6or_4RQr8qkUBbSWTvNTaqsKm3iZWkg1guFyCYkXctZux5nHK-7mOuYbyihO91o0I2OutF8Qt4OYy46lI0rud-j-gZORMiOf4Dh6H7B6RCUNbmRntsADtjaVFoIRnzgEmJEIyfkFSpfIwZGhUU2p2bZNPrj10O9BzFujjBH-YS86ZlCDe_gTN-zAJJA2KwR5_aIExapG5PXNqb7TaLREFrG-wBSeJiXAxlHYuFb5esl8iQQ0ObTFKZ43Jnk8N5ZJgtIR0EecmSsI8GMKdXZtwghLqewk0sYubM261-PdZXgdwbT_wc9Pf2_2Z-RWzyu14xxvk222sXSP4eIr7Uv4lL_CdNMSX8 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamTgh44H4pDGQQEg8sbeJc7PJWJqaBxITKKo0ny3bsUS1NqiRlKr-e49xoBppA4q3qOY7sk3Ntz_mM0CspIh-iBHOojpgThL5wGAQWhyiphNZubLT9aeDTcXQ0Dz6ehqc7aNbOwsilkousAQ21QMWj7TH0pJ5ysLco6Hy8ik1t9CwaF55FYnNswwGoZRg44JZ3oxDy8wHanR9_nn6txowo7AIyinZ65o8LexGqAvL_3V1vxavLvZTdH6o30fV1uhKbC5EkWzHr8DYq2tPWrSrno3UpR-rHJSDI_yuOO-hWk-Liaa2Td9GOTu-ha_Wll5v7SB5syuwk1_otFimejYEANbmFnc1yDBX8OXg4DDsBao2XAh9i_H1R2PHPemgUZwabJLuoKEtI_7GCZy51mW-wbXl9gOaH708OjpzmpgdHUZeWjvZc3wfVgFwhCmkcWQwhxVwSU-OpkBKoqmRkwNXEkiiLQOMqqH4jKBdj5RFX-g_RIM1S_RhhzWI3ZBKqbTkJhMcki6WraSwgFTVh5A-R175drhoYdHsbR8KrcohFvJYdB9nxSnacDNGbbs2qBgG5kvudVZqO0wJ4V19k-Rlv_AE3hkkRCKqJNKCVUnpUQq6kDaGQwgo6RC-tynEL0ZHaHqAzsS4K_uHLjE8hBQ8sClMwRK8bJpPBGZRoRipAEhbVq8e51-MEH6L65FazeePDCg6Zb3VdgQebedGR7Urbl5fqbG15XMi3g4kHj3hUG0J3bt-nIVTLIA_aM5GeYPqUdPGtQjinEwg0FFbut8b0a1tXCX6_M7i_eE9P_o39KbpBKnvyHUL20KDM1_oZJKSlfN54mJ9_lIH5 priority: 102 providerName: Unpaywall |
| Title | CytoTree: an R/Bioconductor package for analysis and visualization of flow and mass cytometry data |
| URI | https://link.springer.com/article/10.1186/s12859-021-04054-2 https://www.ncbi.nlm.nih.gov/pubmed/33752602 https://www.proquest.com/docview/2514262017 https://www.proquest.com/docview/2504354914 https://pubmed.ncbi.nlm.nih.gov/PMC7983272 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-021-04054-2 https://doaj.org/article/ff8ba4a7e2bf471bb17b266ef27514a7 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJmA8ID5HYVQGIfHAwhLnwy4SQl21MiqtmrpV6p4s27G3iS4Zacvof885X1tgTLwkUe4cOb47311i_w6hd1JEPngJ5lAdMScIfeEwcCwOUVIJrd3YaPtpYH8Y7Y2DwSScrKCq3FE5gLMbUztbT2qcTT_--rH8Agb_OTd4Fm3PPIvC5tjFBqCSYeDAlLwGnqpjSznsB1d_FSx-f7Vx5sZ26-ie79MQYnzS8FM5nP_fk_Y1r_Xnisr6t-oDdH-RXIjlpZhOr3mu_iP0sAw5cbfQkcdoRSdP0N2iCOXyKZK95Tw9yrT-hEWCR9tAgBzZwsCmGYaM-jvMOBhCW6AW-CVwEeOfZzO7HbPYxIlTg800vcwp5xCOYwXPPNfzbIntEtRnaNzfPertOWXlBUdRl84d7bm-D6IC3x2FNI4spo9iLomp8VRICWQ5MjJg-rEkyiLCuAqy0QjSt1h5xJX-c7SapIl-gbBmsRsyCdmv7ATCY5LF0tU0FhAamjDyW8irxpmrEpbcVseY8jw9YREvxMRBTDwXEyct9KFuc1GActzKvWPFV3NaQO38Rpqd8NI-uTFMikBQTaQBfy2lRyXELtoQCiGloC301gqfW8iMxK7JORGL2Yx_OxzxLoTEgUVFClrofclkUngHJcotDjASFmWrwbnZ4ASbVk1ypWO8MgkOkWhePsCDzrypybalXSeX6HRheVyIf4OOB4_YKFSyfu9Ks1uINpS1MTBNSnJ2miOO0w5M_BRablVqfdWt2wZ-q1b9_5DTy3_2-BVaJ7mV-g4hm2h1ni30a4gF57KN7tAJhSPrf22jtW53cDiA887u8GAEd3tRr51_ZWnnEwFQxsOD7vFvRldcEw |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IO4UBhgE4mGzmjgXp0gIjcHUssvD6KS-GdtxxkSXlKal6p_iN3JObltAqnjZW9VzbMU-98T-DiGvtQo9iBIREzaMmB94ikUQWBg32ihrnTix-Grg8Cjsn_hfRsFojfyu78LgscraJxaOOs4MviPvQhwuwNNd8WHyk2HXKPy6WrfQKNVi3y4XULLl7wefQL5vON_7PNzts6qrADPCETNmXcfz4DEgLoWBiEPEqzGRw2ORuCYQHDJ4HSag1rHmBtFOHAOVVgilSWxc7mgP5r1Grvse-BKwHzFqCjwX-wPUF3OisJu7iA7H8BAEmErgM94KfkWPgH8jwaVQ-PcxzeZb7S2yMU8narlQ4_GlcLh3h9yu8li6UyreXbJm03vkRtnZcnmf6N3lLBtOrX1HVUqPu0CAwhuxZbMphTL9B7gxCvkyUEtQFPgR019nOd7xLG-G0iyhyThbFJRzyPGpgTnP7Wy6pHiu9QE5uZKNf0jW0yy1jwm1UewEkYaSWvd85UY6irVjRawg30yC0OsQt95naSqsc2y5MZZFzROFspSNBNnIQjaSd8hWM2ZSIn2s5P6I4ms4EaW7-CObnsrK6GWSRFr5SliuE0gCtHaFhoTIJlyANivRIa9Q-BJxOFI86HOq5nkuB1-P5Q7k2T5CLfkd8rZiSjJYg1HVvQnYCYTuanFutjjBUZg2udYxWTmqXF6YVYe8bMg4Eg_fpTabI48DSbXfc2GKR6VKNuv2PBFASQz7IVrK2tqYNiU9-17AmIseRBMBI7drtb54rFUbv92o_n_I6cnqRb8gG_3h4YE8GBztPyU3eWGrHuN8k6zPpnP7DDLOmX5emDkl367ar_wBk0GK9A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQEF8PiO8VBhiExAOLmjiJ7fI2CtXGx4TGJu3Nsh17TOuSqkmZ-t9zl6ShATTBW9U7R7HvzncX3_1MyCujeQxeQgbCcRkkaawDCY4lYNZY7VyYeYefBr7s892j5ONxerzWxV9Xu6-OJJueBkRpyqvhLPONiUs-LCPEXQuwvACUME0C2ISvJuDd8A6DMR935wiI2L9qlfnruJ47qlH7_9yb15zT74WT3enpLXJjkc_08kJPp2sOanKH3G4jS7rTqMJdcsXl98i15q7J5X1ixsuqOJw795bqnB4MgQBzRrTXYk4hcT6DjYVCBAvUBqYEfmT0x2mJXZdNryYtPPXT4qKmnEPUTS0889xV8yXFStMH5Gjy4XC8G7QXLARWhKIKXBTGMUgEXDRPRcYRusfKkGXCRzYVDJIZwz1YeGaYReCX0ELSySFLy2zEQhM_JBt5kbtNQp3MwlQaSHLNKNGRNDIzoROZhgjQpzwekGi1zsq26ON4CcZU1VmI5KqRjQLZqFo2ig3Im27MrMHeuJT7HYqv40Tc7PqPYn6iWjNU3kujEy0cMx7csjGRMBCiOM8ERI5aDMhLFL5CZIwcS29O9KIs1d63A7UDkW-C4EfJgLxumXwBc7C67WSAlUAwrR7nVo8TTNf2ySsdU-3WUSoIOOtbAiJ4mRcdGUdiOVzuigXyhBDmJqMIHvGoUclu3nEsUkhSYT1ET1l7C9On5Kffa2BxMYL9XcDI7ZVa_3qtyxZ-u1P9f5DT4_97-nNy_ev7ifq8t__pCbnJatONA8a2yEY1X7inEBJW5llt9T8BvoZUtQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamTgh44H4pDGQQEg8sbeJc7PJWJqaBxITKKo0ny3bsUS1NqiRlKr-e49xoBppA4q3qOY7sk3Ntz_mM0CspIh-iBHOojpgThL5wGAQWhyiphNZubLT9aeDTcXQ0Dz6ehqc7aNbOwsilkousAQ21QMWj7TH0pJ5ysLco6Hy8ik1t9CwaF55FYnNswwGoZRg44JZ3oxDy8wHanR9_nn6txowo7AIyinZ65o8LexGqAvL_3V1vxavLvZTdH6o30fV1uhKbC5EkWzHr8DYq2tPWrSrno3UpR-rHJSDI_yuOO-hWk-Liaa2Td9GOTu-ha_Wll5v7SB5syuwk1_otFimejYEANbmFnc1yDBX8OXg4DDsBao2XAh9i_H1R2PHPemgUZwabJLuoKEtI_7GCZy51mW-wbXl9gOaH708OjpzmpgdHUZeWjvZc3wfVgFwhCmkcWQwhxVwSU-OpkBKoqmRkwNXEkiiLQOMqqH4jKBdj5RFX-g_RIM1S_RhhzWI3ZBKqbTkJhMcki6WraSwgFTVh5A-R175drhoYdHsbR8KrcohFvJYdB9nxSnacDNGbbs2qBgG5kvudVZqO0wJ4V19k-Rlv_AE3hkkRCKqJNKCVUnpUQq6kDaGQwgo6RC-tynEL0ZHaHqAzsS4K_uHLjE8hBQ8sClMwRK8bJpPBGZRoRipAEhbVq8e51-MEH6L65FazeePDCg6Zb3VdgQebedGR7Urbl5fqbG15XMi3g4kHj3hUG0J3bt-nIVTLIA_aM5GeYPqUdPGtQjinEwg0FFbut8b0a1tXCX6_M7i_eE9P_o39KbpBKnvyHUL20KDM1_oZJKSlfN54mJ9_lIH5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CytoTree%3A+an+R%2FBioconductor+package+for+analysis+and+visualization+of+flow+and+mass+cytometry+data&rft.jtitle=BMC+bioinformatics&rft.au=Dai%2C+Yuting&rft.au=Xu%2C+Aining&rft.au=Li%2C+Jianfeng&rft.au=Wu%2C+Liang&rft.date=2021-03-22&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft.spage=138&rft_id=info:doi/10.1186%2Fs12859-021-04054-2&rft_id=info%3Apmid%2F33752602&rft.externalDocID=33752602 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |