Method for determination of methane potentials of solid organic waste
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 °C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular m...
Saved in:
Published in | Waste management (Elmsford) Vol. 24; no. 4; pp. 393 - 400 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2004
New York, NY Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 0956-053X 1879-2456 1879-2456 |
DOI | 10.1016/j.wasman.2003.09.009 |
Cover
Abstract | A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 °C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH
4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH
4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200–500 ml CH
4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. |
---|---|
AbstractList | A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 deg. C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH{sub 4}/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH{sub 4}/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH{sub 4}/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degreesC with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. Methane potentials of organic solid waste were measured with a laboratory procedure. Trplicate reactors with 10 g of volatile solids were incubated at 55 degree C with 400 ml of inoculum from a thermophilic biogas plant, and methane production was monitored for 50 d by gas chromatographic measurements. A methane potential of 495 ml/g of volatile solids was determined for source-separated organic household waste. A lag phase of several days was observed for fat and oil. For paper bags, starch, and glucose, 63, 84, and 94% of the theoretical methane potential was achieved, respectively. A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 °C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH 4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH 4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200–500 ml CH 4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degree C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source- separated organic household waste a methane potential of 495 ml CH sub(4)/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH sub(4)/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH sub(4)/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. |
Author | Mosbæk, Hans Angelidaki, Irini Hansen, Trine L. Jansen, Jes la Cour Schmidt, Jens Ejbye Christensen, Thomas H. Marca, Emilia |
Author_xml | – sequence: 1 givenname: Trine L. surname: Hansen fullname: Hansen, Trine L. organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark – sequence: 2 givenname: Jens Ejbye surname: Schmidt fullname: Schmidt, Jens Ejbye organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark – sequence: 3 givenname: Irini surname: Angelidaki fullname: Angelidaki, Irini organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark – sequence: 4 givenname: Emilia surname: Marca fullname: Marca, Emilia organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark – sequence: 5 givenname: Jes la Cour surname: Jansen fullname: Jansen, Jes la Cour organization: Department of Water and Environmental Technology, Lund Institute of Technology, University of Lund, Lund, Sweden – sequence: 6 givenname: Hans surname: Mosbæk fullname: Mosbæk, Hans organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark – sequence: 7 givenname: Thomas H. surname: Christensen fullname: Christensen, Thomas H. email: thc@er.dtu.dk organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15695242$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15081067$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/20875639$$D View this record in Osti.gov |
BookMark | eNqNksuKFDEUhgsZcXpG30CkQNRVtyepSlKZhSDDeIERNwruQio5ZaepTtok7eDbm-pqL7iYcZWQ851L_vOfVSc-eKyqxwRWBAh_uVnd6LTVfkUBmhXIFYC8Vy1IJ-SStoyfVAuQjC-BNV9Oq7OUNgCk7Qg8qE4Jg3LhYlFdfcC8DrYeQqwtZoxb53V2wddhqLclpj3Wu5DRZ6fHNL2mMDpbh_hVe2fqMkTGh9X9oUTx0fE8rz6_ufp0-W55_fHt-8vX10sjQOQlGdDqvqMNEDrwBiiwQQjdcdn2RPbaUmxb0jGDxFguCTNcNGVkyixIGGhzXum5brrB3b5Xu-i2Ov5QQTu1CzHrUUVMqKNZq3GvEqpCjc4cfpTUwIBxtIPq-t6olluuegNCGWsHgkURaWXp8XTuEVJ2KhmX0axN8B5NVhQ6wXgzUS9mahfDtz2mrLYuGRzHolfYJyVYK6ARB_L57STpqCSU3wkSTgSl_wOW1oK3rIBPjuC-36L9Ldev9Rfg2RHQyehxiNobl_7iuGS0nXRvZ87EkFLE4Q8CanKj2qjZjWpyowKpihtL2sU_aUXNwy5y1G68K_nVnIzFUN8dxmkX6A1aF6dV2OBuL_ATwQ38Zg |
CitedBy_id | crossref_primary_10_3390_pr9091565 crossref_primary_10_1186_1754_6834_6_11 crossref_primary_10_1016_j_wasman_2010_06_026 crossref_primary_10_1016_j_wasman_2014_06_025 crossref_primary_10_1080_15435075_2016_1175356 crossref_primary_10_5307_JBE_2012_37_4_233 crossref_primary_10_1016_j_biombioe_2011_10_019 crossref_primary_10_1016_j_biombioe_2015_10_018 crossref_primary_10_1016_j_wasman_2016_02_008 crossref_primary_10_3390_fermentation6010034 crossref_primary_10_1016_j_indcrop_2015_05_016 crossref_primary_10_1007_s13399_023_05086_9 crossref_primary_10_1016_j_wasman_2008_08_024 crossref_primary_10_1016_j_chemosphere_2021_133003 crossref_primary_10_3390_recycling7020015 crossref_primary_10_1002_ese3_29 crossref_primary_10_1016_j_energy_2021_122818 crossref_primary_10_1039_C5RA27901A crossref_primary_10_2166_wqrj_2018_003 crossref_primary_10_1016_j_wasman_2011_01_030 crossref_primary_10_1016_j_wasman_2012_06_012 crossref_primary_10_1016_j_biombioe_2012_12_013 crossref_primary_10_1016_j_renene_2021_01_131 crossref_primary_10_1016_j_renene_2020_03_112 crossref_primary_10_1016_j_biortech_2009_08_085 crossref_primary_10_1016_j_biortech_2014_08_085 crossref_primary_10_1021_ie302805c crossref_primary_10_1007_s12649_013_9221_3 crossref_primary_10_1016_j_wasman_2016_10_029 crossref_primary_10_1016_j_biortech_2010_12_052 crossref_primary_10_1016_j_jclepro_2021_128390 crossref_primary_10_1002_jctb_4883 crossref_primary_10_1016_j_enconman_2016_03_064 crossref_primary_10_3390_en12132473 crossref_primary_10_1016_j_biortech_2011_07_103 crossref_primary_10_1016_j_biortech_2016_01_085 crossref_primary_10_1016_j_biombioe_2020_105933 crossref_primary_10_1016_j_jenvman_2018_08_034 crossref_primary_10_7745_KJSSF_2011_44_6_1252 crossref_primary_10_1016_j_fuel_2018_01_035 crossref_primary_10_1016_j_biombioe_2023_106757 crossref_primary_10_1016_j_enconman_2018_04_067 crossref_primary_10_1016_j_biortech_2010_10_126 crossref_primary_10_1007_s42853_019_00012_2 crossref_primary_10_1016_j_fuel_2020_119132 crossref_primary_10_1016_j_bej_2022_108363 crossref_primary_10_1016_j_cej_2014_02_008 crossref_primary_10_3390_su13137198 crossref_primary_10_1016_j_aquaeng_2019_102020 crossref_primary_10_3390_microorganisms11071710 crossref_primary_10_1007_s12010_014_0747_z crossref_primary_10_1016_j_biortech_2010_06_108 crossref_primary_10_1016_j_wasman_2016_03_046 crossref_primary_10_1016_j_biortech_2011_09_031 crossref_primary_10_1007_s11356_017_0039_6 crossref_primary_10_4236_aces_2013_34029 crossref_primary_10_1016_j_jclepro_2020_120389 crossref_primary_10_1016_j_procbio_2016_05_012 crossref_primary_10_3390_fermentation8090463 crossref_primary_10_1080_10643389_2016_1204812 crossref_primary_10_1007_s13762_023_04843_7 crossref_primary_10_1016_j_wasman_2007_03_024 crossref_primary_10_1016_j_renene_2021_02_159 crossref_primary_10_1016_j_indcrop_2014_12_023 crossref_primary_10_5004_dwt_2019_24121 crossref_primary_10_1007_s42452_020_03359_w crossref_primary_10_1016_j_biombioe_2016_01_021 crossref_primary_10_1002_bbb_2177 crossref_primary_10_1016_j_biortech_2021_125834 crossref_primary_10_1016_j_biombioe_2015_10_026 crossref_primary_10_1007_s10098_013_0706_3 crossref_primary_10_1016_j_biombioe_2020_105831 crossref_primary_10_1016_j_wasman_2012_09_022 crossref_primary_10_1016_j_wasman_2015_07_013 crossref_primary_10_1016_j_biortech_2013_01_041 crossref_primary_10_1016_j_jece_2024_111929 crossref_primary_10_1016_j_wasman_2017_08_011 crossref_primary_10_1002_jctb_3695 crossref_primary_10_1080_00986445_2019_1705797 crossref_primary_10_1007_s00253_018_8833_8 crossref_primary_10_3390_en13195001 crossref_primary_10_1080_09593330_2017_1313317 crossref_primary_10_1007_s12155_021_10268_2 crossref_primary_10_1080_09593330_2017_1298677 crossref_primary_10_1016_j_biortech_2014_10_141 crossref_primary_10_1016_S1001_0742_13_60515_X crossref_primary_10_1016_j_wasman_2015_03_013 crossref_primary_10_1080_10962247_2017_1308447 crossref_primary_10_1016_j_biortech_2014_03_107 crossref_primary_10_1155_2017_9732329 crossref_primary_10_1016_j_bcab_2019_101035 crossref_primary_10_1016_j_biortech_2016_05_117 crossref_primary_10_1016_j_aninu_2018_01_009 crossref_primary_10_1007_s12649_019_00778_8 crossref_primary_10_1016_j_jenvman_2018_08_058 crossref_primary_10_1016_j_biortech_2010_09_017 crossref_primary_10_1007_s11356_018_3530_9 crossref_primary_10_1007_s13399_021_01577_9 crossref_primary_10_1080_09593330_2020_1782477 crossref_primary_10_1016_j_biortech_2006_11_043 crossref_primary_10_1016_j_energy_2012_04_005 crossref_primary_10_1016_j_renene_2020_01_049 crossref_primary_10_1016_j_watres_2016_10_032 crossref_primary_10_1177_0734242X12451306 crossref_primary_10_3390_su8121311 crossref_primary_10_35208_ert_441202 crossref_primary_10_1111_gfs_12397 crossref_primary_10_1016_j_wasman_2020_07_049 crossref_primary_10_1111_gcbb_12470 crossref_primary_10_1016_j_wasman_2016_11_023 crossref_primary_10_1016_j_wasman_2016_11_025 crossref_primary_10_5004_dwt_2021_27919 crossref_primary_10_1080_07388551_2019_1680599 crossref_primary_10_12944_CWE_19_2_14 crossref_primary_10_1007_s10163_019_00898_2 crossref_primary_10_1016_j_heliyon_2018_e00619 crossref_primary_10_1016_j_scitotenv_2021_146972 crossref_primary_10_1016_j_renene_2022_05_067 crossref_primary_10_1016_j_biortech_2005_12_018 crossref_primary_10_1016_j_biortech_2020_123100 crossref_primary_10_1016_j_biortech_2013_12_029 crossref_primary_10_1016_j_scitotenv_2020_142753 crossref_primary_10_1016_j_fuel_2016_12_024 crossref_primary_10_1002_jctb_2707 crossref_primary_10_1016_j_scitotenv_2019_133641 crossref_primary_10_1089_ees_2016_0372 crossref_primary_10_1016_j_biombioe_2016_03_035 crossref_primary_10_1016_j_biortech_2012_11_053 crossref_primary_10_1016_j_psep_2023_10_016 crossref_primary_10_1177_0734242X07072085 crossref_primary_10_1016_j_wasman_2014_07_018 crossref_primary_10_1016_j_fuel_2013_07_094 crossref_primary_10_1016_j_apenergy_2013_11_006 crossref_primary_10_1016_j_fuel_2019_03_080 crossref_primary_10_3390_agronomy11091750 crossref_primary_10_1016_j_apenergy_2012_03_007 crossref_primary_10_1016_j_biombioe_2017_03_005 crossref_primary_10_15446_dyna_v81n187_40570 crossref_primary_10_1016_j_scitotenv_2018_01_176 crossref_primary_10_1007_s12649_017_0119_3 crossref_primary_10_1016_j_biteb_2021_100635 crossref_primary_10_1080_09593330_2013_770555 crossref_primary_10_1007_s10163_020_00974_y crossref_primary_10_1016_j_biortech_2021_125356 crossref_primary_10_1080_23311916_2016_1181696 crossref_primary_10_3390_w11050921 crossref_primary_10_1016_j_biombioe_2016_12_002 crossref_primary_10_1016_j_wasman_2006_02_014 crossref_primary_10_1016_j_biombioe_2010_11_005 crossref_primary_10_1021_es401018d crossref_primary_10_1016_j_jhazmat_2009_10_049 crossref_primary_10_1080_09593330_2017_1362035 crossref_primary_10_1016_j_biombioe_2022_106354 crossref_primary_10_1016_j_wasman_2006_02_013 crossref_primary_10_1016_j_biortech_2011_09_077 crossref_primary_10_1016_j_jclepro_2015_06_069 crossref_primary_10_1080_09593330903139520 crossref_primary_10_1016_j_jenvman_2018_03_057 crossref_primary_10_1080_09593330_2018_1447023 crossref_primary_10_1016_j_jclepro_2022_132870 crossref_primary_10_1016_j_biortech_2009_09_029 crossref_primary_10_1039_D2EW00077F crossref_primary_10_5713_ajas_2013_13537 crossref_primary_10_1016_j_biortech_2011_07_012 crossref_primary_10_1016_j_jhazmat_2011_02_025 crossref_primary_10_1016_j_procbio_2011_04_003 crossref_primary_10_1016_j_biortech_2011_04_063 crossref_primary_10_1002_bit_22558 crossref_primary_10_1177_0734242X06067767 crossref_primary_10_3390_polym11030392 crossref_primary_10_3390_w10121812 crossref_primary_10_1016_j_enconman_2021_114467 crossref_primary_10_1002_bbb_2650 crossref_primary_10_1016_j_ijhydene_2017_08_043 crossref_primary_10_1016_j_biortech_2008_03_030 crossref_primary_10_1016_j_indcrop_2019_04_029 crossref_primary_10_1080_09593330_2012_743597 crossref_primary_10_1016_j_wasman_2019_12_011 crossref_primary_10_1016_j_biortech_2013_07_051 crossref_primary_10_1016_j_wasman_2015_10_021 crossref_primary_10_1016_j_procbio_2009_11_018 crossref_primary_10_7745_KJSSF_2012_45_4_532 crossref_primary_10_1007_s13399_020_00912_w crossref_primary_10_1007_s10098_014_0826_4 crossref_primary_10_1016_j_wasman_2012_04_011 crossref_primary_10_1016_j_wasman_2014_04_018 crossref_primary_10_3923_jbs_2014_258_266 crossref_primary_10_1007_s12649_021_01497_9 crossref_primary_10_1016_j_enconman_2023_116877 crossref_primary_10_1515_intag_2016_0057 crossref_primary_10_1016_j_biortech_2015_03_029 crossref_primary_10_1002_jctb_2615 crossref_primary_10_1155_2013_350731 crossref_primary_10_3390_su151511573 crossref_primary_10_1177_0734242X14541985 crossref_primary_10_1002_bbb_2303 crossref_primary_10_1016_j_wasman_2007_12_002 crossref_primary_10_1016_j_procbio_2009_03_014 crossref_primary_10_1515_msac_2017_0008 crossref_primary_10_1080_1065657X_2011_10736985 crossref_primary_10_1007_s10811_014_0368_5 crossref_primary_10_1007_s12010_013_0116_3 crossref_primary_10_7745_KJSSF_2012_45_6_1049 crossref_primary_10_1016_j_fuel_2024_133751 crossref_primary_10_1016_j_rser_2019_109586 crossref_primary_10_7745_KJSSF_2012_45_4_524 crossref_primary_10_1680_warm_2008_161_4_167 crossref_primary_10_1007_s13399_020_01248_1 crossref_primary_10_1080_09593330_2014_919033 crossref_primary_10_1021_ef301633x crossref_primary_10_1252_jcej_08we129 crossref_primary_10_1016_j_jes_2017_06_004 crossref_primary_10_1111_jiec_12519 crossref_primary_10_3390_bioengineering8110176 crossref_primary_10_1016_j_wasman_2016_01_042 crossref_primary_10_1016_j_wasman_2016_04_034 crossref_primary_10_1016_j_jece_2016_10_009 crossref_primary_10_1016_j_wasman_2017_03_052 crossref_primary_10_1007_s13369_020_04900_0 crossref_primary_10_1016_j_biortech_2010_11_094 crossref_primary_10_1016_j_wasman_2019_05_001 crossref_primary_10_4236_jep_2017_813103 crossref_primary_10_1002_jctb_2622 crossref_primary_10_1016_j_fuel_2020_119302 crossref_primary_10_5276_jswtm_iswmaw_50S1_2024_725 crossref_primary_10_1007_s12010_014_1358_4 crossref_primary_10_1186_s12934_024_02374_5 crossref_primary_10_1016_j_egypro_2012_05_203 crossref_primary_10_1021_acs_energyfuels_6b02468 crossref_primary_10_5327_Z2176_94781562 crossref_primary_10_1590_0104_6632_20140312s00002468 crossref_primary_10_1016_j_eurpolymj_2021_110349 crossref_primary_10_3390_en15134696 crossref_primary_10_1016_j_biortech_2012_10_044 crossref_primary_10_1007_s12155_020_10126_7 crossref_primary_10_1177_0734242X13487584 crossref_primary_10_1016_j_indcrop_2011_03_022 crossref_primary_10_2134_jeq2005_0239 crossref_primary_10_1016_j_watres_2021_117216 crossref_primary_10_1016_j_jenvman_2021_114138 crossref_primary_10_1155_2014_374562 crossref_primary_10_1088_1755_1315_36_1_012017 crossref_primary_10_1007_s12010_017_2525_1 crossref_primary_10_1111_asj_12495 crossref_primary_10_1016_j_rser_2013_08_085 crossref_primary_10_1016_j_enconman_2024_118683 crossref_primary_10_1016_j_jhazmat_2008_05_141 crossref_primary_10_1016_j_snb_2009_02_065 crossref_primary_10_1016_j_rser_2011_09_008 crossref_primary_10_1016_j_biteb_2022_101279 crossref_primary_10_1016_j_fuel_2023_129531 crossref_primary_10_1016_j_indcrop_2015_07_018 crossref_primary_10_1007_s12155_019_10049_y crossref_primary_10_2166_wpt_2018_012 crossref_primary_10_3390_cleantechnol2010008 crossref_primary_10_1021_acssuschemeng_4c05739 crossref_primary_10_1016_j_apenergy_2015_12_065 crossref_primary_10_5004_dwt_2020_26231 crossref_primary_10_1007_s10661_018_7050_3 crossref_primary_10_1016_j_jclepro_2018_01_198 crossref_primary_10_29121_granthaalayah_v5_i4RAST_2017_3376 crossref_primary_10_1007_s12649_016_9731_x crossref_primary_10_3390_membranes5040616 crossref_primary_10_1016_j_biortech_2012_08_022 crossref_primary_10_1016_j_fuel_2012_12_092 crossref_primary_10_1007_s10163_023_01715_7 crossref_primary_10_2139_ssrn_4105078 crossref_primary_10_1016_j_biortech_2017_03_030 crossref_primary_10_1080_15567036_2014_907374 crossref_primary_10_1016_S1001_0742_10_60648_1 crossref_primary_10_2208_jscejer_75_7_III_153 crossref_primary_10_1080_09593330_2015_1007089 crossref_primary_10_3390_w12102814 crossref_primary_10_1016_j_energy_2019_01_150 crossref_primary_10_1016_j_wasman_2017_11_015 crossref_primary_10_1016_j_egypro_2017_04_066 crossref_primary_10_1016_j_biortech_2012_02_022 crossref_primary_10_1016_j_biortech_2015_08_050 crossref_primary_10_1016_j_rser_2018_09_024 crossref_primary_10_1080_1065657X_2015_1026005 crossref_primary_10_1080_09593330_2018_1523232 crossref_primary_10_1016_j_apenergy_2011_12_066 crossref_primary_10_1016_j_biortech_2018_01_069 crossref_primary_10_1016_j_biortech_2018_03_115 crossref_primary_10_2139_ssrn_4192373 crossref_primary_10_1155_2014_350414 crossref_primary_10_1016_j_biombioe_2021_106137 crossref_primary_10_1016_j_softx_2018_06_005 crossref_primary_10_1016_j_biortech_2011_06_042 crossref_primary_10_1016_j_biortech_2020_124167 crossref_primary_10_7745_KJSSF_2012_45_6_1086 crossref_primary_10_12677_HJCET_2022_124040 crossref_primary_10_4028_www_scientific_net_AMR_512_515_444 crossref_primary_10_1016_j_jtice_2017_01_021 crossref_primary_10_1088_1755_1315_926_1_012097 crossref_primary_10_1016_j_apenergy_2010_01_004 crossref_primary_10_1007_s12649_020_01150_x crossref_primary_10_7745_KJSSF_2011_44_6_1245 crossref_primary_10_1016_j_biortech_2013_05_089 crossref_primary_10_1016_j_wasman_2011_09_021 crossref_primary_10_1007_s13399_022_02654_3 crossref_primary_10_5338_KJEA_2016_35_2_12 crossref_primary_10_1016_j_watres_2017_04_051 crossref_primary_10_3390_agronomy14112546 crossref_primary_10_1016_j_jclepro_2018_03_172 crossref_primary_10_1021_es0707409 crossref_primary_10_1016_j_procbio_2013_02_029 crossref_primary_10_1016_j_rser_2018_09_008 crossref_primary_10_1007_s13399_024_05577_3 crossref_primary_10_1016_j_wasman_2014_11_019 crossref_primary_10_1177_0734242X07075635 crossref_primary_10_1016_j_rser_2015_01_066 crossref_primary_10_1016_j_scitotenv_2019_02_088 crossref_primary_10_1504_IJEP_2010_035910 crossref_primary_10_1016_j_fuel_2022_125539 crossref_primary_10_1007_s40201_021_00751_5 crossref_primary_10_1016_j_jece_2018_01_028 crossref_primary_10_1016_j_biteb_2019_100202 crossref_primary_10_1016_j_biombioe_2014_05_025 crossref_primary_10_1016_j_renene_2017_04_068 crossref_primary_10_1016_j_psep_2021_06_013 crossref_primary_10_1016_j_renene_2016_02_059 crossref_primary_10_3390_agronomy11091800 crossref_primary_10_3390_en13061300 crossref_primary_10_1016_j_fuel_2023_130291 crossref_primary_10_3390_w12061752 crossref_primary_10_5713_ajas_2012_12623 crossref_primary_10_1016_j_renene_2022_10_069 crossref_primary_10_1016_j_renene_2016_04_095 crossref_primary_10_1080_09593330_2022_2139639 crossref_primary_10_1016_j_wasman_2022_04_012 crossref_primary_10_1016_j_jenvman_2022_114581 crossref_primary_10_1039_D1EW00882J crossref_primary_10_1016_j_biortech_2010_10_044 crossref_primary_10_1016_j_biortech_2012_10_088 crossref_primary_10_1016_j_wasman_2006_11_014 crossref_primary_10_4491_KSEE_2019_41_12_677 crossref_primary_10_1007_s12649_017_9950_9 crossref_primary_10_1016_j_biortech_2021_125988 crossref_primary_10_1155_2015_494182 crossref_primary_10_1016_j_renene_2022_08_055 crossref_primary_10_1016_j_apenergy_2011_12_092 crossref_primary_10_1016_j_energy_2021_122361 crossref_primary_10_1186_s13068_017_0802_4 crossref_primary_10_1016_j_rser_2020_110173 crossref_primary_10_4000_vertigo_2221 crossref_primary_10_1016_j_biortech_2014_07_064 crossref_primary_10_1007_s40093_018_0238_2 crossref_primary_10_1016_j_wasman_2016_07_006 crossref_primary_10_1016_j_renene_2010_11_014 crossref_primary_10_1016_j_biortech_2011_11_017 crossref_primary_10_1016_j_jenvman_2016_11_002 crossref_primary_10_1080_09593330_2021_1936199 crossref_primary_10_7745_KJSSF_2012_45_2_156 crossref_primary_10_1016_j_algal_2020_101803 crossref_primary_10_1016_j_cesys_2021_100026 crossref_primary_10_3390_en11082101 crossref_primary_10_1016_j_energy_2023_127057 crossref_primary_10_1016_j_jclepro_2020_123175 crossref_primary_10_1016_j_biortech_2010_10_035 crossref_primary_10_1016_j_wasman_2015_06_019 crossref_primary_10_1177_0734242X06062598 crossref_primary_10_3390_recycling5020014 crossref_primary_10_17221_30_2014_RAE crossref_primary_10_1016_j_biombioe_2017_06_013 crossref_primary_10_1016_j_ijhydene_2019_08_124 crossref_primary_10_1016_j_renene_2024_120900 crossref_primary_10_1016_j_rser_2016_09_102 crossref_primary_10_1007_s13399_021_02229_8 crossref_primary_10_1007_s10163_020_01033_2 crossref_primary_10_1016_j_jece_2019_103510 crossref_primary_10_1016_j_wasman_2017_09_001 crossref_primary_10_1177_0734242X241227373 crossref_primary_10_2175_106143014X14062131177999 crossref_primary_10_1016_j_biortech_2013_08_006 crossref_primary_10_1111_j_1757_1707_2009_01029_x crossref_primary_10_1016_j_energy_2019_01_149 crossref_primary_10_1002_er_5343 crossref_primary_10_1155_2016_7263974 crossref_primary_10_1016_j_bcab_2021_101936 |
Cites_doi | 10.1007/BF00174850 10.2166/wst.1993.0065 10.1023/A:1008284527096 10.1021/es9606788 10.1016/0043-1354(79)90043-5 |
ContentType | Journal Article |
Copyright | 2003 Elsevier Ltd 2005 INIST-CNRS |
Copyright_xml | – notice: 2003 Elsevier Ltd – notice: 2005 INIST-CNRS |
CorporateAuthor | Institutioner vid LTH Institutionen för processteknik och tillämpad biovetenskap Avdelningen för kemiteknik Departments at LTH Division of Chemical Engineering Department of Process and Life Science Engineering Lunds universitet Faculty of Engineering, LTH Lunds Tekniska Högskola Lund University |
CorporateAuthor_xml | – name: Faculty of Engineering, LTH – name: Lund University – name: Avdelningen för kemiteknik – name: Department of Process and Life Science Engineering – name: Division of Chemical Engineering – name: Institutionen för processteknik och tillämpad biovetenskap – name: Institutioner vid LTH – name: Lunds Tekniska Högskola – name: Departments at LTH – name: Lunds universitet |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7TV 7X8 OTOTI ADTPV AOWAS D95 |
DOI | 10.1016/j.wasman.2003.09.009 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Pollution Abstracts MEDLINE - Academic OSTI.GOV SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Environment Abstracts Environmental Sciences and Pollution Management Pollution Abstracts MEDLINE - Academic |
DatabaseTitleList | Environment Abstracts MEDLINE - Academic Pollution Abstracts MEDLINE Environment Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences Environmental Sciences |
EISSN | 1879-2456 |
EndPage | 400 |
ExternalDocumentID | oai_portal_research_lu_se_publications_f5056edf_8bbc_46d6_bc07_cddf1e8109d9 20875639 15081067 15695242 10_1016_j_wasman_2003_09_009 S0956053X0300223X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29R 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEN SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE WUQ Y6R ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7TV 7X8 AAPBV ABPTK OTOTI ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c707t-1fedab823012f630205f77a8694b19bad2e44185ce1cd6915c67348125d090f23 |
IEDL.DBID | .~1 |
ISSN | 0956-053X 1879-2456 |
IngestDate | Mon Sep 29 03:16:20 EDT 2025 Fri May 19 01:41:11 EDT 2023 Sun Sep 28 02:37:05 EDT 2025 Sun Sep 28 03:04:26 EDT 2025 Sat Sep 27 22:45:29 EDT 2025 Fri Sep 05 08:58:54 EDT 2025 Wed Feb 19 01:37:56 EST 2025 Mon Jul 21 09:16:03 EDT 2025 Wed Oct 01 03:36:15 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Fri Feb 23 02:17:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Methane Characterization Organic waste Biogas Laboratory measurement |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c707t-1fedab823012f630205f77a8694b19bad2e44185ce1cd6915c67348125d090f23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15081067 |
PQID | 14707645 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_f5056edf_8bbc_46d6_bc07_cddf1e8109d9 osti_scitechconnect_20875639 proquest_miscellaneous_754703739 proquest_miscellaneous_71829126 proquest_miscellaneous_16172226 proquest_miscellaneous_14707645 pubmed_primary_15081067 pascalfrancis_primary_15695242 crossref_primary_10_1016_j_wasman_2003_09_009 crossref_citationtrail_10_1016_j_wasman_2003_09_009 elsevier_sciencedirect_doi_10_1016_j_wasman_2003_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-01-01 |
PublicationDateYYYYMMDD | 2004-01-01 |
PublicationDate_xml | – month: 01 year: 2004 text: 2004-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford New York, NY |
PublicationPlace_xml | – name: Oxford – name: New York, NY – name: United States |
PublicationTitle | Waste management (Elmsford) |
PublicationTitleAlternate | Waste Manag |
PublicationYear | 2004 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | (BIB2) 2002 Jansen J.l.C., Spliid H., Hansen T.L., Svärd Å.,d Christensen T.H. (2004). Assessment of sampling and chemical analysis of source-separated organic household waste. Submitted to Waste Management. Owen, Stuckey, Healy, Young, McCarty (BIB12) 1979; 13 Adani, Calcaterra, Malagutti (BIB1) 2001 Angelidaki, Ahring (BIB3) 1992; 37 Owens, Chinoweth (BIB13) 1993; 27 Heerenklage, Stegmann (BIB7) 2001 Harries, Cross, Smith (BIB6) 2001 Juran (BIB10) 1976 Angelidaki, Ahring (BIB4) 1997; 8 ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results—Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, International Standard Organization. Eleazer, Odle, Wang, Barlaz (BIB5) 1997; 31 (10.1016/j.wasman.2003.09.009_BIB2) 2002 Angelidaki (10.1016/j.wasman.2003.09.009_BIB3) 1992; 37 Owens (10.1016/j.wasman.2003.09.009_BIB13) 1993; 27 Eleazer (10.1016/j.wasman.2003.09.009_BIB5) 1997; 31 10.1016/j.wasman.2003.09.009_BIB9 Angelidaki (10.1016/j.wasman.2003.09.009_BIB4) 1997; 8 10.1016/j.wasman.2003.09.009_BIB8 Adani (10.1016/j.wasman.2003.09.009_BIB1) 2001 Juran (10.1016/j.wasman.2003.09.009_BIB10) 1976 Owen (10.1016/j.wasman.2003.09.009_BIB12) 1979; 13 Heerenklage (10.1016/j.wasman.2003.09.009_BIB7) 2001 Harries (10.1016/j.wasman.2003.09.009_BIB6) 2001 |
References_xml | – year: 2001 ident: BIB1 article-title: Preparation of a test for estimating biogas production from pretreated urban waste. Proceeding Sardinia 2001 Eight International Waste Management and Landfill Symposium – year: 2001 ident: BIB6 article-title: Development of a BMP test and application to testing of MSW samples. Proceeding Sardinia 2001 Eight International Waste Management and Landfill Symposium – volume: 13 start-page: 485 year: 1979 end-page: 492 ident: BIB12 article-title: Bioassay for monitoring biochemical methane potential and anaerobic toxicity publication-title: Water Research – year: 2002 ident: BIB2 publication-title: Environmental Biotechnology 12133. Environment & Ressources DTU – year: 2001 ident: BIB7 article-title: Comparison of test systems for the determination of the gas potential from waste. Proceeding Sardinia 2001 Eight International Waste Management and Landfill Symposium – reference: Jansen J.l.C., Spliid H., Hansen T.L., Svärd Å.,d Christensen T.H. (2004). Assessment of sampling and chemical analysis of source-separated organic household waste. Submitted to Waste Management. – volume: 37 start-page: 808 year: 1992 end-page: 812 ident: BIB3 article-title: Effects of free long-chain fatty acids on thermophilic anaerobic digestion publication-title: Applied Microbiology and Biotechnology – reference: ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results—Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, International Standard Organization. – volume: 8 start-page: 221 year: 1997 end-page: 226 ident: BIB4 article-title: Codigestion of oil mill wastewaters together with manure, household waste or sewage sludge publication-title: Biodegradation – volume: 31 start-page: 911 year: 1997 end-page: 917 ident: BIB5 article-title: Biodegradability of municipal solid waste components in laboratory-scale landfills publication-title: Environmental Science & Technology – year: 1976 ident: BIB10 article-title: Quality Control Handbook – volume: 27 start-page: 1 year: 1993 end-page: 14 ident: BIB13 article-title: Biochemical methane potential of municipal solid waste components publication-title: Water Science & Technology – year: 2001 ident: 10.1016/j.wasman.2003.09.009_BIB7 – year: 1976 ident: 10.1016/j.wasman.2003.09.009_BIB10 – volume: 37 start-page: 808 year: 1992 ident: 10.1016/j.wasman.2003.09.009_BIB3 article-title: Effects of free long-chain fatty acids on thermophilic anaerobic digestion publication-title: Applied Microbiology and Biotechnology doi: 10.1007/BF00174850 – year: 2001 ident: 10.1016/j.wasman.2003.09.009_BIB6 – volume: 27 start-page: 1 year: 1993 ident: 10.1016/j.wasman.2003.09.009_BIB13 article-title: Biochemical methane potential of municipal solid waste components publication-title: Water Science & Technology doi: 10.2166/wst.1993.0065 – year: 2001 ident: 10.1016/j.wasman.2003.09.009_BIB1 – volume: 8 start-page: 221 year: 1997 ident: 10.1016/j.wasman.2003.09.009_BIB4 article-title: Codigestion of oil mill wastewaters together with manure, household waste or sewage sludge publication-title: Biodegradation doi: 10.1023/A:1008284527096 – year: 2002 ident: 10.1016/j.wasman.2003.09.009_BIB2 – volume: 31 start-page: 911 year: 1997 ident: 10.1016/j.wasman.2003.09.009_BIB5 article-title: Biodegradability of municipal solid waste components in laboratory-scale landfills publication-title: Environmental Science & Technology doi: 10.1021/es9606788 – ident: 10.1016/j.wasman.2003.09.009_BIB8 – ident: 10.1016/j.wasman.2003.09.009_BIB9 – volume: 13 start-page: 485 year: 1979 ident: 10.1016/j.wasman.2003.09.009_BIB12 article-title: Bioassay for monitoring biochemical methane potential and anaerobic toxicity publication-title: Water Research doi: 10.1016/0043-1354(79)90043-5 |
SSID | ssj0014810 |
Score | 2.301246 |
Snippet | A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were... Methane potentials of organic solid waste were measured with a laboratory procedure. Trplicate reactors with 10 g of volatile solids were incubated at 55... |
SourceID | swepub osti proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 393 |
SubjectTerms | Applied sciences Biogas Bioreactors CELLULOSE Characterization Chemical Engineering Civil Engineering Engineering and Technology Environmental Engineering Environmental Monitoring - methods ENVIRONMENTAL SCIENCES Exact sciences and technology Forecasting Gases - analysis GLUCOSE Kemiteknik Laboratory measurement METHANE Methane - analysis Naturresursteknik OILS Organic Chemicals Organic waste ORGANIC WASTES Pollution PROTEINS QUALITY CONTROL Refuse Disposal - methods Samhällsbyggnadsteknik SENSITIVITY SOLID WASTES STARCH Teknik Temperature Vattenteknik Water Engineering |
Title | Method for determination of methane potentials of solid organic waste |
URI | https://dx.doi.org/10.1016/j.wasman.2003.09.009 https://www.ncbi.nlm.nih.gov/pubmed/15081067 https://www.proquest.com/docview/14707645 https://www.proquest.com/docview/16172226 https://www.proquest.com/docview/71829126 https://www.proquest.com/docview/754703739 https://www.osti.gov/biblio/20875639 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2456 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014810 issn: 0956-053X databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamcgAOCMavwCg-cA1N4tiJj1O1qYC2C0yquFj-KYq2tqKpuPG3856dlA5tTOKaPCfOe8_2l-Tz9wh5Z7Uo2kaK3Ftp85p7C0NK8pxZ3hYh6MrHjbRn52J2UX-c8_kBmQ57YZBW2c_9aU6Ps3V_ZNJ7c7JeLCafUUIPUmgOaQoLEZvjDvZaIK3v_a8dzQPQflQkiHp7aD1sn4scr596c6WjCiqLaqdIS7x5eRqtYMQhcVJvwHchFb24CZX-JTkal6nTx-RRjy_pcXqEJ-TALw_J_elQ1u2QPNxTIHxKTs5iBWkK0JW6gRmDsaKrQLG6tF56ul51yCmCRMWjkKwLR1M1KEvh2Tr_jFycnnyZzvK-skJum6Lp8jJ4pw3-YyurIBhARh6aRrdC1qaURrvK16hqY31pnZAltwJVcAAMuUIWoWLPyWi5WvqXhAoPF6tK1vqa1SZogDetZyKYJgRmCpcRNjhU2V52HKtfXKqBX_ZdpTBgRUymCqkgDBnJd63WSXbjDvtmiJW6lj4KVoY7Wh5haLEVquZapBdBswqV_gG9ZWR8LeR_esOF5IBvMvJ2yAEFkcTfLRCZ1XYDL1Xga1Hzf1ggfAT8e7sFIIdKlmhBb7PgcBvWYE9fpAzc6yLgPUAjGfmaUnJ3BjXF0-ud6jWlvqnLrdp4td77WKwCwmPvgmqNsaoWTihji0ZZ50Lp4drSyVf_7fnX5EGiQeH3rCMy6n5s_RtAeJ0ZxyE8JveOP3yanf8GAiBSTQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FA4ICivQGn3wNWK7X3Ye6yiViltcqGVIi4rex8iqMQRccTfZ8aPkKKWSlztGXs9M7v7rXf2G4BPtlBxnmkVeattJKS32KW0jLiVeRxCkfrmIO10piY34vNczvdg3J-FobTKbuxvx_RmtO6ujDprjlaLxegLUehhCM0xTHEi4vMnsC8kjskD2D-9uJzMtpsJIm9ICRrKPVLoT9A1aV6_ivWPoiFC5Q3hKWUm3j9DDSrsdJQ7WazRfKGte3EfMP2LdbSZqc5fwPMOYrLT9itewp5fHsLBuK_sdgjPdkgIX8HZtCkizRC9Mtcnx5C7WBUYFZgulp6tqprSijBW6SrG68KxtiCUZfhttX8NN-dn1-NJ1BVXiGwWZ3WUBO-KkrbZkjQojqhRhiwrcqVFmeiycKkXRGxjfWKd0om0iohwEA-5WMch5W9gsKyW_h0w5fFhacJzL7goQ4EIJ_dchTILgZexGwLvDWpsxzxOBTBuTZ9i9t20bqCimNzE2qAbhhBttVYt88Yj8lnvK3MnggxODo9oHpFrSYuIcy1lGKFaSmT_COCGcHzH5X9aI5WWCHGGcNLHgEFP0o4LeqbarHFdhbZWQv5DghAkQuCHJRA8pDohCfaQhMTX8Ixa-raNwJ0mIuRDQDKEr21Ibu8QrXi7wjMdrdQ3c7sxa29WO_-LTSCE7F0weVlaI5RTprRxZqxzIfH4bO30-_-2_AkcTK6nV-bqYnb5AZ62WVH0e-sIBvXPjf-IgK8uj7sO_RtTa1T4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+determination+of+methane+potentials+of+solid+organic+waste&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Hansen%2C+Trine+L.&rft.au=Schmidt%2C+Jens+Ejbye&rft.au=Angelidaki%2C+Irini&rft.au=Marca%2C+Emilia&rft.date=2004-01-01&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1016%2Fj.wasman.2003.09.009&rft.externalDocID=20875639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon |