Method for determination of methane potentials of solid organic waste

A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 °C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular m...

Full description

Saved in:
Bibliographic Details
Published inWaste management (Elmsford) Vol. 24; no. 4; pp. 393 - 400
Main Authors Hansen, Trine L., Schmidt, Jens Ejbye, Angelidaki, Irini, Marca, Emilia, Jansen, Jes la Cour, Mosbæk, Hans, Christensen, Thomas H.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2004
New York, NY Elsevier Science
Subjects
Online AccessGet full text
ISSN0956-053X
1879-2456
1879-2456
DOI10.1016/j.wasman.2003.09.009

Cover

Abstract A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 °C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH 4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH 4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200–500 ml CH 4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
AbstractList A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 deg. C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH{sub 4}/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH{sub 4}/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH{sub 4}/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degreesC with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
Methane potentials of organic solid waste were measured with a laboratory procedure. Trplicate reactors with 10 g of volatile solids were incubated at 55 degree C with 400 ml of inoculum from a thermophilic biogas plant, and methane production was monitored for 50 d by gas chromatographic measurements. A methane potential of 495 ml/g of volatile solids was determined for source-separated organic household waste. A lag phase of several days was observed for fat and oil. For paper bags, starch, and glucose, 63, 84, and 94% of the theoretical methane potential was achieved, respectively.
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 °C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH 4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH 4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200–500 ml CH 4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degree C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source- separated organic household waste a methane potential of 495 ml CH sub(4)/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH sub(4)/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH sub(4)/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.
Author Mosbæk, Hans
Angelidaki, Irini
Hansen, Trine L.
Jansen, Jes la Cour
Schmidt, Jens Ejbye
Christensen, Thomas H.
Marca, Emilia
Author_xml – sequence: 1
  givenname: Trine L.
  surname: Hansen
  fullname: Hansen, Trine L.
  organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 2
  givenname: Jens Ejbye
  surname: Schmidt
  fullname: Schmidt, Jens Ejbye
  organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 3
  givenname: Irini
  surname: Angelidaki
  fullname: Angelidaki, Irini
  organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 4
  givenname: Emilia
  surname: Marca
  fullname: Marca, Emilia
  organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 5
  givenname: Jes la Cour
  surname: Jansen
  fullname: Jansen, Jes la Cour
  organization: Department of Water and Environmental Technology, Lund Institute of Technology, University of Lund, Lund, Sweden
– sequence: 6
  givenname: Hans
  surname: Mosbæk
  fullname: Mosbæk, Hans
  organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark
– sequence: 7
  givenname: Thomas H.
  surname: Christensen
  fullname: Christensen, Thomas H.
  email: thc@er.dtu.dk
  organization: Environment & Resources DTU, Technical University of Denmark, Kongens Lyngby, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15695242$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15081067$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/20875639$$D View this record in Osti.gov
BookMark eNqNksuKFDEUhgsZcXpG30CkQNRVtyepSlKZhSDDeIERNwruQio5ZaepTtok7eDbm-pqL7iYcZWQ851L_vOfVSc-eKyqxwRWBAh_uVnd6LTVfkUBmhXIFYC8Vy1IJ-SStoyfVAuQjC-BNV9Oq7OUNgCk7Qg8qE4Jg3LhYlFdfcC8DrYeQqwtZoxb53V2wddhqLclpj3Wu5DRZ6fHNL2mMDpbh_hVe2fqMkTGh9X9oUTx0fE8rz6_ufp0-W55_fHt-8vX10sjQOQlGdDqvqMNEDrwBiiwQQjdcdn2RPbaUmxb0jGDxFguCTNcNGVkyixIGGhzXum5brrB3b5Xu-i2Ov5QQTu1CzHrUUVMqKNZq3GvEqpCjc4cfpTUwIBxtIPq-t6olluuegNCGWsHgkURaWXp8XTuEVJ2KhmX0axN8B5NVhQ6wXgzUS9mahfDtz2mrLYuGRzHolfYJyVYK6ARB_L57STpqCSU3wkSTgSl_wOW1oK3rIBPjuC-36L9Ldev9Rfg2RHQyehxiNobl_7iuGS0nXRvZ87EkFLE4Q8CanKj2qjZjWpyowKpihtL2sU_aUXNwy5y1G68K_nVnIzFUN8dxmkX6A1aF6dV2OBuL_ATwQ38Zg
CitedBy_id crossref_primary_10_3390_pr9091565
crossref_primary_10_1186_1754_6834_6_11
crossref_primary_10_1016_j_wasman_2010_06_026
crossref_primary_10_1016_j_wasman_2014_06_025
crossref_primary_10_1080_15435075_2016_1175356
crossref_primary_10_5307_JBE_2012_37_4_233
crossref_primary_10_1016_j_biombioe_2011_10_019
crossref_primary_10_1016_j_biombioe_2015_10_018
crossref_primary_10_1016_j_wasman_2016_02_008
crossref_primary_10_3390_fermentation6010034
crossref_primary_10_1016_j_indcrop_2015_05_016
crossref_primary_10_1007_s13399_023_05086_9
crossref_primary_10_1016_j_wasman_2008_08_024
crossref_primary_10_1016_j_chemosphere_2021_133003
crossref_primary_10_3390_recycling7020015
crossref_primary_10_1002_ese3_29
crossref_primary_10_1016_j_energy_2021_122818
crossref_primary_10_1039_C5RA27901A
crossref_primary_10_2166_wqrj_2018_003
crossref_primary_10_1016_j_wasman_2011_01_030
crossref_primary_10_1016_j_wasman_2012_06_012
crossref_primary_10_1016_j_biombioe_2012_12_013
crossref_primary_10_1016_j_renene_2021_01_131
crossref_primary_10_1016_j_renene_2020_03_112
crossref_primary_10_1016_j_biortech_2009_08_085
crossref_primary_10_1016_j_biortech_2014_08_085
crossref_primary_10_1021_ie302805c
crossref_primary_10_1007_s12649_013_9221_3
crossref_primary_10_1016_j_wasman_2016_10_029
crossref_primary_10_1016_j_biortech_2010_12_052
crossref_primary_10_1016_j_jclepro_2021_128390
crossref_primary_10_1002_jctb_4883
crossref_primary_10_1016_j_enconman_2016_03_064
crossref_primary_10_3390_en12132473
crossref_primary_10_1016_j_biortech_2011_07_103
crossref_primary_10_1016_j_biortech_2016_01_085
crossref_primary_10_1016_j_biombioe_2020_105933
crossref_primary_10_1016_j_jenvman_2018_08_034
crossref_primary_10_7745_KJSSF_2011_44_6_1252
crossref_primary_10_1016_j_fuel_2018_01_035
crossref_primary_10_1016_j_biombioe_2023_106757
crossref_primary_10_1016_j_enconman_2018_04_067
crossref_primary_10_1016_j_biortech_2010_10_126
crossref_primary_10_1007_s42853_019_00012_2
crossref_primary_10_1016_j_fuel_2020_119132
crossref_primary_10_1016_j_bej_2022_108363
crossref_primary_10_1016_j_cej_2014_02_008
crossref_primary_10_3390_su13137198
crossref_primary_10_1016_j_aquaeng_2019_102020
crossref_primary_10_3390_microorganisms11071710
crossref_primary_10_1007_s12010_014_0747_z
crossref_primary_10_1016_j_biortech_2010_06_108
crossref_primary_10_1016_j_wasman_2016_03_046
crossref_primary_10_1016_j_biortech_2011_09_031
crossref_primary_10_1007_s11356_017_0039_6
crossref_primary_10_4236_aces_2013_34029
crossref_primary_10_1016_j_jclepro_2020_120389
crossref_primary_10_1016_j_procbio_2016_05_012
crossref_primary_10_3390_fermentation8090463
crossref_primary_10_1080_10643389_2016_1204812
crossref_primary_10_1007_s13762_023_04843_7
crossref_primary_10_1016_j_wasman_2007_03_024
crossref_primary_10_1016_j_renene_2021_02_159
crossref_primary_10_1016_j_indcrop_2014_12_023
crossref_primary_10_5004_dwt_2019_24121
crossref_primary_10_1007_s42452_020_03359_w
crossref_primary_10_1016_j_biombioe_2016_01_021
crossref_primary_10_1002_bbb_2177
crossref_primary_10_1016_j_biortech_2021_125834
crossref_primary_10_1016_j_biombioe_2015_10_026
crossref_primary_10_1007_s10098_013_0706_3
crossref_primary_10_1016_j_biombioe_2020_105831
crossref_primary_10_1016_j_wasman_2012_09_022
crossref_primary_10_1016_j_wasman_2015_07_013
crossref_primary_10_1016_j_biortech_2013_01_041
crossref_primary_10_1016_j_jece_2024_111929
crossref_primary_10_1016_j_wasman_2017_08_011
crossref_primary_10_1002_jctb_3695
crossref_primary_10_1080_00986445_2019_1705797
crossref_primary_10_1007_s00253_018_8833_8
crossref_primary_10_3390_en13195001
crossref_primary_10_1080_09593330_2017_1313317
crossref_primary_10_1007_s12155_021_10268_2
crossref_primary_10_1080_09593330_2017_1298677
crossref_primary_10_1016_j_biortech_2014_10_141
crossref_primary_10_1016_S1001_0742_13_60515_X
crossref_primary_10_1016_j_wasman_2015_03_013
crossref_primary_10_1080_10962247_2017_1308447
crossref_primary_10_1016_j_biortech_2014_03_107
crossref_primary_10_1155_2017_9732329
crossref_primary_10_1016_j_bcab_2019_101035
crossref_primary_10_1016_j_biortech_2016_05_117
crossref_primary_10_1016_j_aninu_2018_01_009
crossref_primary_10_1007_s12649_019_00778_8
crossref_primary_10_1016_j_jenvman_2018_08_058
crossref_primary_10_1016_j_biortech_2010_09_017
crossref_primary_10_1007_s11356_018_3530_9
crossref_primary_10_1007_s13399_021_01577_9
crossref_primary_10_1080_09593330_2020_1782477
crossref_primary_10_1016_j_biortech_2006_11_043
crossref_primary_10_1016_j_energy_2012_04_005
crossref_primary_10_1016_j_renene_2020_01_049
crossref_primary_10_1016_j_watres_2016_10_032
crossref_primary_10_1177_0734242X12451306
crossref_primary_10_3390_su8121311
crossref_primary_10_35208_ert_441202
crossref_primary_10_1111_gfs_12397
crossref_primary_10_1016_j_wasman_2020_07_049
crossref_primary_10_1111_gcbb_12470
crossref_primary_10_1016_j_wasman_2016_11_023
crossref_primary_10_1016_j_wasman_2016_11_025
crossref_primary_10_5004_dwt_2021_27919
crossref_primary_10_1080_07388551_2019_1680599
crossref_primary_10_12944_CWE_19_2_14
crossref_primary_10_1007_s10163_019_00898_2
crossref_primary_10_1016_j_heliyon_2018_e00619
crossref_primary_10_1016_j_scitotenv_2021_146972
crossref_primary_10_1016_j_renene_2022_05_067
crossref_primary_10_1016_j_biortech_2005_12_018
crossref_primary_10_1016_j_biortech_2020_123100
crossref_primary_10_1016_j_biortech_2013_12_029
crossref_primary_10_1016_j_scitotenv_2020_142753
crossref_primary_10_1016_j_fuel_2016_12_024
crossref_primary_10_1002_jctb_2707
crossref_primary_10_1016_j_scitotenv_2019_133641
crossref_primary_10_1089_ees_2016_0372
crossref_primary_10_1016_j_biombioe_2016_03_035
crossref_primary_10_1016_j_biortech_2012_11_053
crossref_primary_10_1016_j_psep_2023_10_016
crossref_primary_10_1177_0734242X07072085
crossref_primary_10_1016_j_wasman_2014_07_018
crossref_primary_10_1016_j_fuel_2013_07_094
crossref_primary_10_1016_j_apenergy_2013_11_006
crossref_primary_10_1016_j_fuel_2019_03_080
crossref_primary_10_3390_agronomy11091750
crossref_primary_10_1016_j_apenergy_2012_03_007
crossref_primary_10_1016_j_biombioe_2017_03_005
crossref_primary_10_15446_dyna_v81n187_40570
crossref_primary_10_1016_j_scitotenv_2018_01_176
crossref_primary_10_1007_s12649_017_0119_3
crossref_primary_10_1016_j_biteb_2021_100635
crossref_primary_10_1080_09593330_2013_770555
crossref_primary_10_1007_s10163_020_00974_y
crossref_primary_10_1016_j_biortech_2021_125356
crossref_primary_10_1080_23311916_2016_1181696
crossref_primary_10_3390_w11050921
crossref_primary_10_1016_j_biombioe_2016_12_002
crossref_primary_10_1016_j_wasman_2006_02_014
crossref_primary_10_1016_j_biombioe_2010_11_005
crossref_primary_10_1021_es401018d
crossref_primary_10_1016_j_jhazmat_2009_10_049
crossref_primary_10_1080_09593330_2017_1362035
crossref_primary_10_1016_j_biombioe_2022_106354
crossref_primary_10_1016_j_wasman_2006_02_013
crossref_primary_10_1016_j_biortech_2011_09_077
crossref_primary_10_1016_j_jclepro_2015_06_069
crossref_primary_10_1080_09593330903139520
crossref_primary_10_1016_j_jenvman_2018_03_057
crossref_primary_10_1080_09593330_2018_1447023
crossref_primary_10_1016_j_jclepro_2022_132870
crossref_primary_10_1016_j_biortech_2009_09_029
crossref_primary_10_1039_D2EW00077F
crossref_primary_10_5713_ajas_2013_13537
crossref_primary_10_1016_j_biortech_2011_07_012
crossref_primary_10_1016_j_jhazmat_2011_02_025
crossref_primary_10_1016_j_procbio_2011_04_003
crossref_primary_10_1016_j_biortech_2011_04_063
crossref_primary_10_1002_bit_22558
crossref_primary_10_1177_0734242X06067767
crossref_primary_10_3390_polym11030392
crossref_primary_10_3390_w10121812
crossref_primary_10_1016_j_enconman_2021_114467
crossref_primary_10_1002_bbb_2650
crossref_primary_10_1016_j_ijhydene_2017_08_043
crossref_primary_10_1016_j_biortech_2008_03_030
crossref_primary_10_1016_j_indcrop_2019_04_029
crossref_primary_10_1080_09593330_2012_743597
crossref_primary_10_1016_j_wasman_2019_12_011
crossref_primary_10_1016_j_biortech_2013_07_051
crossref_primary_10_1016_j_wasman_2015_10_021
crossref_primary_10_1016_j_procbio_2009_11_018
crossref_primary_10_7745_KJSSF_2012_45_4_532
crossref_primary_10_1007_s13399_020_00912_w
crossref_primary_10_1007_s10098_014_0826_4
crossref_primary_10_1016_j_wasman_2012_04_011
crossref_primary_10_1016_j_wasman_2014_04_018
crossref_primary_10_3923_jbs_2014_258_266
crossref_primary_10_1007_s12649_021_01497_9
crossref_primary_10_1016_j_enconman_2023_116877
crossref_primary_10_1515_intag_2016_0057
crossref_primary_10_1016_j_biortech_2015_03_029
crossref_primary_10_1002_jctb_2615
crossref_primary_10_1155_2013_350731
crossref_primary_10_3390_su151511573
crossref_primary_10_1177_0734242X14541985
crossref_primary_10_1002_bbb_2303
crossref_primary_10_1016_j_wasman_2007_12_002
crossref_primary_10_1016_j_procbio_2009_03_014
crossref_primary_10_1515_msac_2017_0008
crossref_primary_10_1080_1065657X_2011_10736985
crossref_primary_10_1007_s10811_014_0368_5
crossref_primary_10_1007_s12010_013_0116_3
crossref_primary_10_7745_KJSSF_2012_45_6_1049
crossref_primary_10_1016_j_fuel_2024_133751
crossref_primary_10_1016_j_rser_2019_109586
crossref_primary_10_7745_KJSSF_2012_45_4_524
crossref_primary_10_1680_warm_2008_161_4_167
crossref_primary_10_1007_s13399_020_01248_1
crossref_primary_10_1080_09593330_2014_919033
crossref_primary_10_1021_ef301633x
crossref_primary_10_1252_jcej_08we129
crossref_primary_10_1016_j_jes_2017_06_004
crossref_primary_10_1111_jiec_12519
crossref_primary_10_3390_bioengineering8110176
crossref_primary_10_1016_j_wasman_2016_01_042
crossref_primary_10_1016_j_wasman_2016_04_034
crossref_primary_10_1016_j_jece_2016_10_009
crossref_primary_10_1016_j_wasman_2017_03_052
crossref_primary_10_1007_s13369_020_04900_0
crossref_primary_10_1016_j_biortech_2010_11_094
crossref_primary_10_1016_j_wasman_2019_05_001
crossref_primary_10_4236_jep_2017_813103
crossref_primary_10_1002_jctb_2622
crossref_primary_10_1016_j_fuel_2020_119302
crossref_primary_10_5276_jswtm_iswmaw_50S1_2024_725
crossref_primary_10_1007_s12010_014_1358_4
crossref_primary_10_1186_s12934_024_02374_5
crossref_primary_10_1016_j_egypro_2012_05_203
crossref_primary_10_1021_acs_energyfuels_6b02468
crossref_primary_10_5327_Z2176_94781562
crossref_primary_10_1590_0104_6632_20140312s00002468
crossref_primary_10_1016_j_eurpolymj_2021_110349
crossref_primary_10_3390_en15134696
crossref_primary_10_1016_j_biortech_2012_10_044
crossref_primary_10_1007_s12155_020_10126_7
crossref_primary_10_1177_0734242X13487584
crossref_primary_10_1016_j_indcrop_2011_03_022
crossref_primary_10_2134_jeq2005_0239
crossref_primary_10_1016_j_watres_2021_117216
crossref_primary_10_1016_j_jenvman_2021_114138
crossref_primary_10_1155_2014_374562
crossref_primary_10_1088_1755_1315_36_1_012017
crossref_primary_10_1007_s12010_017_2525_1
crossref_primary_10_1111_asj_12495
crossref_primary_10_1016_j_rser_2013_08_085
crossref_primary_10_1016_j_enconman_2024_118683
crossref_primary_10_1016_j_jhazmat_2008_05_141
crossref_primary_10_1016_j_snb_2009_02_065
crossref_primary_10_1016_j_rser_2011_09_008
crossref_primary_10_1016_j_biteb_2022_101279
crossref_primary_10_1016_j_fuel_2023_129531
crossref_primary_10_1016_j_indcrop_2015_07_018
crossref_primary_10_1007_s12155_019_10049_y
crossref_primary_10_2166_wpt_2018_012
crossref_primary_10_3390_cleantechnol2010008
crossref_primary_10_1021_acssuschemeng_4c05739
crossref_primary_10_1016_j_apenergy_2015_12_065
crossref_primary_10_5004_dwt_2020_26231
crossref_primary_10_1007_s10661_018_7050_3
crossref_primary_10_1016_j_jclepro_2018_01_198
crossref_primary_10_29121_granthaalayah_v5_i4RAST_2017_3376
crossref_primary_10_1007_s12649_016_9731_x
crossref_primary_10_3390_membranes5040616
crossref_primary_10_1016_j_biortech_2012_08_022
crossref_primary_10_1016_j_fuel_2012_12_092
crossref_primary_10_1007_s10163_023_01715_7
crossref_primary_10_2139_ssrn_4105078
crossref_primary_10_1016_j_biortech_2017_03_030
crossref_primary_10_1080_15567036_2014_907374
crossref_primary_10_1016_S1001_0742_10_60648_1
crossref_primary_10_2208_jscejer_75_7_III_153
crossref_primary_10_1080_09593330_2015_1007089
crossref_primary_10_3390_w12102814
crossref_primary_10_1016_j_energy_2019_01_150
crossref_primary_10_1016_j_wasman_2017_11_015
crossref_primary_10_1016_j_egypro_2017_04_066
crossref_primary_10_1016_j_biortech_2012_02_022
crossref_primary_10_1016_j_biortech_2015_08_050
crossref_primary_10_1016_j_rser_2018_09_024
crossref_primary_10_1080_1065657X_2015_1026005
crossref_primary_10_1080_09593330_2018_1523232
crossref_primary_10_1016_j_apenergy_2011_12_066
crossref_primary_10_1016_j_biortech_2018_01_069
crossref_primary_10_1016_j_biortech_2018_03_115
crossref_primary_10_2139_ssrn_4192373
crossref_primary_10_1155_2014_350414
crossref_primary_10_1016_j_biombioe_2021_106137
crossref_primary_10_1016_j_softx_2018_06_005
crossref_primary_10_1016_j_biortech_2011_06_042
crossref_primary_10_1016_j_biortech_2020_124167
crossref_primary_10_7745_KJSSF_2012_45_6_1086
crossref_primary_10_12677_HJCET_2022_124040
crossref_primary_10_4028_www_scientific_net_AMR_512_515_444
crossref_primary_10_1016_j_jtice_2017_01_021
crossref_primary_10_1088_1755_1315_926_1_012097
crossref_primary_10_1016_j_apenergy_2010_01_004
crossref_primary_10_1007_s12649_020_01150_x
crossref_primary_10_7745_KJSSF_2011_44_6_1245
crossref_primary_10_1016_j_biortech_2013_05_089
crossref_primary_10_1016_j_wasman_2011_09_021
crossref_primary_10_1007_s13399_022_02654_3
crossref_primary_10_5338_KJEA_2016_35_2_12
crossref_primary_10_1016_j_watres_2017_04_051
crossref_primary_10_3390_agronomy14112546
crossref_primary_10_1016_j_jclepro_2018_03_172
crossref_primary_10_1021_es0707409
crossref_primary_10_1016_j_procbio_2013_02_029
crossref_primary_10_1016_j_rser_2018_09_008
crossref_primary_10_1007_s13399_024_05577_3
crossref_primary_10_1016_j_wasman_2014_11_019
crossref_primary_10_1177_0734242X07075635
crossref_primary_10_1016_j_rser_2015_01_066
crossref_primary_10_1016_j_scitotenv_2019_02_088
crossref_primary_10_1504_IJEP_2010_035910
crossref_primary_10_1016_j_fuel_2022_125539
crossref_primary_10_1007_s40201_021_00751_5
crossref_primary_10_1016_j_jece_2018_01_028
crossref_primary_10_1016_j_biteb_2019_100202
crossref_primary_10_1016_j_biombioe_2014_05_025
crossref_primary_10_1016_j_renene_2017_04_068
crossref_primary_10_1016_j_psep_2021_06_013
crossref_primary_10_1016_j_renene_2016_02_059
crossref_primary_10_3390_agronomy11091800
crossref_primary_10_3390_en13061300
crossref_primary_10_1016_j_fuel_2023_130291
crossref_primary_10_3390_w12061752
crossref_primary_10_5713_ajas_2012_12623
crossref_primary_10_1016_j_renene_2022_10_069
crossref_primary_10_1016_j_renene_2016_04_095
crossref_primary_10_1080_09593330_2022_2139639
crossref_primary_10_1016_j_wasman_2022_04_012
crossref_primary_10_1016_j_jenvman_2022_114581
crossref_primary_10_1039_D1EW00882J
crossref_primary_10_1016_j_biortech_2010_10_044
crossref_primary_10_1016_j_biortech_2012_10_088
crossref_primary_10_1016_j_wasman_2006_11_014
crossref_primary_10_4491_KSEE_2019_41_12_677
crossref_primary_10_1007_s12649_017_9950_9
crossref_primary_10_1016_j_biortech_2021_125988
crossref_primary_10_1155_2015_494182
crossref_primary_10_1016_j_renene_2022_08_055
crossref_primary_10_1016_j_apenergy_2011_12_092
crossref_primary_10_1016_j_energy_2021_122361
crossref_primary_10_1186_s13068_017_0802_4
crossref_primary_10_1016_j_rser_2020_110173
crossref_primary_10_4000_vertigo_2221
crossref_primary_10_1016_j_biortech_2014_07_064
crossref_primary_10_1007_s40093_018_0238_2
crossref_primary_10_1016_j_wasman_2016_07_006
crossref_primary_10_1016_j_renene_2010_11_014
crossref_primary_10_1016_j_biortech_2011_11_017
crossref_primary_10_1016_j_jenvman_2016_11_002
crossref_primary_10_1080_09593330_2021_1936199
crossref_primary_10_7745_KJSSF_2012_45_2_156
crossref_primary_10_1016_j_algal_2020_101803
crossref_primary_10_1016_j_cesys_2021_100026
crossref_primary_10_3390_en11082101
crossref_primary_10_1016_j_energy_2023_127057
crossref_primary_10_1016_j_jclepro_2020_123175
crossref_primary_10_1016_j_biortech_2010_10_035
crossref_primary_10_1016_j_wasman_2015_06_019
crossref_primary_10_1177_0734242X06062598
crossref_primary_10_3390_recycling5020014
crossref_primary_10_17221_30_2014_RAE
crossref_primary_10_1016_j_biombioe_2017_06_013
crossref_primary_10_1016_j_ijhydene_2019_08_124
crossref_primary_10_1016_j_renene_2024_120900
crossref_primary_10_1016_j_rser_2016_09_102
crossref_primary_10_1007_s13399_021_02229_8
crossref_primary_10_1007_s10163_020_01033_2
crossref_primary_10_1016_j_jece_2019_103510
crossref_primary_10_1016_j_wasman_2017_09_001
crossref_primary_10_1177_0734242X241227373
crossref_primary_10_2175_106143014X14062131177999
crossref_primary_10_1016_j_biortech_2013_08_006
crossref_primary_10_1111_j_1757_1707_2009_01029_x
crossref_primary_10_1016_j_energy_2019_01_149
crossref_primary_10_1002_er_5343
crossref_primary_10_1155_2016_7263974
crossref_primary_10_1016_j_bcab_2021_101936
Cites_doi 10.1007/BF00174850
10.2166/wst.1993.0065
10.1023/A:1008284527096
10.1021/es9606788
10.1016/0043-1354(79)90043-5
ContentType Journal Article
Copyright 2003 Elsevier Ltd
2005 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Ltd
– notice: 2005 INIST-CNRS
CorporateAuthor Institutioner vid LTH
Institutionen för processteknik och tillämpad biovetenskap
Avdelningen för kemiteknik
Departments at LTH
Division of Chemical Engineering
Department of Process and Life Science Engineering
Lunds universitet
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Lund University
CorporateAuthor_xml – name: Faculty of Engineering, LTH
– name: Lund University
– name: Avdelningen för kemiteknik
– name: Department of Process and Life Science Engineering
– name: Division of Chemical Engineering
– name: Institutionen för processteknik och tillämpad biovetenskap
– name: Institutioner vid LTH
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7TV
7X8
OTOTI
ADTPV
AOWAS
D95
DOI 10.1016/j.wasman.2003.09.009
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Pollution Abstracts
MEDLINE - Academic
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Environment Abstracts
Environmental Sciences and Pollution Management
Pollution Abstracts
MEDLINE - Academic
DatabaseTitleList

Environment Abstracts
MEDLINE - Academic

Pollution Abstracts
MEDLINE
Environment Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
Environmental Sciences
EISSN 1879-2456
EndPage 400
ExternalDocumentID oai_portal_research_lu_se_publications_f5056edf_8bbc_46d6_bc07_cddf1e8109d9
20875639
15081067
15695242
10_1016_j_wasman_2003_09_009
S0956053X0300223X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
WUQ
Y6R
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7TV
7X8
AAPBV
ABPTK
OTOTI
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c707t-1fedab823012f630205f77a8694b19bad2e44185ce1cd6915c67348125d090f23
IEDL.DBID .~1
ISSN 0956-053X
1879-2456
IngestDate Mon Sep 29 03:16:20 EDT 2025
Fri May 19 01:41:11 EDT 2023
Sun Sep 28 02:37:05 EDT 2025
Sun Sep 28 03:04:26 EDT 2025
Sat Sep 27 22:45:29 EDT 2025
Fri Sep 05 08:58:54 EDT 2025
Wed Feb 19 01:37:56 EST 2025
Mon Jul 21 09:16:03 EDT 2025
Wed Oct 01 03:36:15 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Fri Feb 23 02:17:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Methane
Characterization
Organic waste
Biogas
Laboratory measurement
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c707t-1fedab823012f630205f77a8694b19bad2e44185ce1cd6915c67348125d090f23
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15081067
PQID 14707645
PQPubID 23462
PageCount 8
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_f5056edf_8bbc_46d6_bc07_cddf1e8109d9
osti_scitechconnect_20875639
proquest_miscellaneous_754703739
proquest_miscellaneous_71829126
proquest_miscellaneous_16172226
proquest_miscellaneous_14707645
pubmed_primary_15081067
pascalfrancis_primary_15695242
crossref_primary_10_1016_j_wasman_2003_09_009
crossref_citationtrail_10_1016_j_wasman_2003_09_009
elsevier_sciencedirect_doi_10_1016_j_wasman_2003_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-01-01
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – month: 01
  year: 2004
  text: 2004-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
New York, NY
PublicationPlace_xml – name: Oxford
– name: New York, NY
– name: United States
PublicationTitle Waste management (Elmsford)
PublicationTitleAlternate Waste Manag
PublicationYear 2004
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References (BIB2) 2002
Jansen J.l.C., Spliid H., Hansen T.L., Svärd Å.,d Christensen T.H. (2004). Assessment of sampling and chemical analysis of source-separated organic household waste. Submitted to Waste Management.
Owen, Stuckey, Healy, Young, McCarty (BIB12) 1979; 13
Adani, Calcaterra, Malagutti (BIB1) 2001
Angelidaki, Ahring (BIB3) 1992; 37
Owens, Chinoweth (BIB13) 1993; 27
Heerenklage, Stegmann (BIB7) 2001
Harries, Cross, Smith (BIB6) 2001
Juran (BIB10) 1976
Angelidaki, Ahring (BIB4) 1997; 8
ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results—Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, International Standard Organization.
Eleazer, Odle, Wang, Barlaz (BIB5) 1997; 31
(10.1016/j.wasman.2003.09.009_BIB2) 2002
Angelidaki (10.1016/j.wasman.2003.09.009_BIB3) 1992; 37
Owens (10.1016/j.wasman.2003.09.009_BIB13) 1993; 27
Eleazer (10.1016/j.wasman.2003.09.009_BIB5) 1997; 31
10.1016/j.wasman.2003.09.009_BIB9
Angelidaki (10.1016/j.wasman.2003.09.009_BIB4) 1997; 8
10.1016/j.wasman.2003.09.009_BIB8
Adani (10.1016/j.wasman.2003.09.009_BIB1) 2001
Juran (10.1016/j.wasman.2003.09.009_BIB10) 1976
Owen (10.1016/j.wasman.2003.09.009_BIB12) 1979; 13
Heerenklage (10.1016/j.wasman.2003.09.009_BIB7) 2001
Harries (10.1016/j.wasman.2003.09.009_BIB6) 2001
References_xml – year: 2001
  ident: BIB1
  article-title: Preparation of a test for estimating biogas production from pretreated urban waste. Proceeding Sardinia 2001 Eight International Waste Management and Landfill Symposium
– year: 2001
  ident: BIB6
  article-title: Development of a BMP test and application to testing of MSW samples. Proceeding Sardinia 2001 Eight International Waste Management and Landfill Symposium
– volume: 13
  start-page: 485
  year: 1979
  end-page: 492
  ident: BIB12
  article-title: Bioassay for monitoring biochemical methane potential and anaerobic toxicity
  publication-title: Water Research
– year: 2002
  ident: BIB2
  publication-title: Environmental Biotechnology 12133. Environment & Ressources DTU
– year: 2001
  ident: BIB7
  article-title: Comparison of test systems for the determination of the gas potential from waste. Proceeding Sardinia 2001 Eight International Waste Management and Landfill Symposium
– reference: Jansen J.l.C., Spliid H., Hansen T.L., Svärd Å.,d Christensen T.H. (2004). Assessment of sampling and chemical analysis of source-separated organic household waste. Submitted to Waste Management.
– volume: 37
  start-page: 808
  year: 1992
  end-page: 812
  ident: BIB3
  article-title: Effects of free long-chain fatty acids on thermophilic anaerobic digestion
  publication-title: Applied Microbiology and Biotechnology
– reference: ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results—Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, International Standard Organization.
– volume: 8
  start-page: 221
  year: 1997
  end-page: 226
  ident: BIB4
  article-title: Codigestion of oil mill wastewaters together with manure, household waste or sewage sludge
  publication-title: Biodegradation
– volume: 31
  start-page: 911
  year: 1997
  end-page: 917
  ident: BIB5
  article-title: Biodegradability of municipal solid waste components in laboratory-scale landfills
  publication-title: Environmental Science & Technology
– year: 1976
  ident: BIB10
  article-title: Quality Control Handbook
– volume: 27
  start-page: 1
  year: 1993
  end-page: 14
  ident: BIB13
  article-title: Biochemical methane potential of municipal solid waste components
  publication-title: Water Science & Technology
– year: 2001
  ident: 10.1016/j.wasman.2003.09.009_BIB7
– year: 1976
  ident: 10.1016/j.wasman.2003.09.009_BIB10
– volume: 37
  start-page: 808
  year: 1992
  ident: 10.1016/j.wasman.2003.09.009_BIB3
  article-title: Effects of free long-chain fatty acids on thermophilic anaerobic digestion
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/BF00174850
– year: 2001
  ident: 10.1016/j.wasman.2003.09.009_BIB6
– volume: 27
  start-page: 1
  year: 1993
  ident: 10.1016/j.wasman.2003.09.009_BIB13
  article-title: Biochemical methane potential of municipal solid waste components
  publication-title: Water Science & Technology
  doi: 10.2166/wst.1993.0065
– year: 2001
  ident: 10.1016/j.wasman.2003.09.009_BIB1
– volume: 8
  start-page: 221
  year: 1997
  ident: 10.1016/j.wasman.2003.09.009_BIB4
  article-title: Codigestion of oil mill wastewaters together with manure, household waste or sewage sludge
  publication-title: Biodegradation
  doi: 10.1023/A:1008284527096
– year: 2002
  ident: 10.1016/j.wasman.2003.09.009_BIB2
– volume: 31
  start-page: 911
  year: 1997
  ident: 10.1016/j.wasman.2003.09.009_BIB5
  article-title: Biodegradability of municipal solid waste components in laboratory-scale landfills
  publication-title: Environmental Science & Technology
  doi: 10.1021/es9606788
– ident: 10.1016/j.wasman.2003.09.009_BIB8
– ident: 10.1016/j.wasman.2003.09.009_BIB9
– volume: 13
  start-page: 485
  year: 1979
  ident: 10.1016/j.wasman.2003.09.009_BIB12
  article-title: Bioassay for monitoring biochemical methane potential and anaerobic toxicity
  publication-title: Water Research
  doi: 10.1016/0043-1354(79)90043-5
SSID ssj0014810
Score 2.301246
Snippet A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were...
Methane potentials of organic solid waste were measured with a laboratory procedure. Trplicate reactors with 10 g of volatile solids were incubated at 55...
SourceID swepub
osti
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 393
SubjectTerms Applied sciences
Biogas
Bioreactors
CELLULOSE
Characterization
Chemical Engineering
Civil Engineering
Engineering and Technology
Environmental Engineering
Environmental Monitoring - methods
ENVIRONMENTAL SCIENCES
Exact sciences and technology
Forecasting
Gases - analysis
GLUCOSE
Kemiteknik
Laboratory measurement
METHANE
Methane - analysis
Naturresursteknik
OILS
Organic Chemicals
Organic waste
ORGANIC WASTES
Pollution
PROTEINS
QUALITY CONTROL
Refuse Disposal - methods
Samhällsbyggnadsteknik
SENSITIVITY
SOLID WASTES
STARCH
Teknik
Temperature
Vattenteknik
Water Engineering
Title Method for determination of methane potentials of solid organic waste
URI https://dx.doi.org/10.1016/j.wasman.2003.09.009
https://www.ncbi.nlm.nih.gov/pubmed/15081067
https://www.proquest.com/docview/14707645
https://www.proquest.com/docview/16172226
https://www.proquest.com/docview/71829126
https://www.proquest.com/docview/754703739
https://www.osti.gov/biblio/20875639
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLamcgAOCMavwCg-cA1N4tiJj1O1qYC2C0yquFj-KYq2tqKpuPG3856dlA5tTOKaPCfOe8_2l-Tz9wh5Z7Uo2kaK3Ftp85p7C0NK8pxZ3hYh6MrHjbRn52J2UX-c8_kBmQ57YZBW2c_9aU6Ps3V_ZNJ7c7JeLCafUUIPUmgOaQoLEZvjDvZaIK3v_a8dzQPQflQkiHp7aD1sn4scr596c6WjCiqLaqdIS7x5eRqtYMQhcVJvwHchFb24CZX-JTkal6nTx-RRjy_pcXqEJ-TALw_J_elQ1u2QPNxTIHxKTs5iBWkK0JW6gRmDsaKrQLG6tF56ul51yCmCRMWjkKwLR1M1KEvh2Tr_jFycnnyZzvK-skJum6Lp8jJ4pw3-YyurIBhARh6aRrdC1qaURrvK16hqY31pnZAltwJVcAAMuUIWoWLPyWi5WvqXhAoPF6tK1vqa1SZogDetZyKYJgRmCpcRNjhU2V52HKtfXKqBX_ZdpTBgRUymCqkgDBnJd63WSXbjDvtmiJW6lj4KVoY7Wh5haLEVquZapBdBswqV_gG9ZWR8LeR_esOF5IBvMvJ2yAEFkcTfLRCZ1XYDL1Xga1Hzf1ggfAT8e7sFIIdKlmhBb7PgcBvWYE9fpAzc6yLgPUAjGfmaUnJ3BjXF0-ud6jWlvqnLrdp4td77WKwCwmPvgmqNsaoWTihji0ZZ50Lp4drSyVf_7fnX5EGiQeH3rCMy6n5s_RtAeJ0ZxyE8JveOP3yanf8GAiBSTQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FA4ICivQGn3wNWK7X3Ye6yiViltcqGVIi4rex8iqMQRccTfZ8aPkKKWSlztGXs9M7v7rXf2G4BPtlBxnmkVeattJKS32KW0jLiVeRxCkfrmIO10piY34vNczvdg3J-FobTKbuxvx_RmtO6ujDprjlaLxegLUehhCM0xTHEi4vMnsC8kjskD2D-9uJzMtpsJIm9ICRrKPVLoT9A1aV6_ivWPoiFC5Q3hKWUm3j9DDSrsdJQ7WazRfKGte3EfMP2LdbSZqc5fwPMOYrLT9itewp5fHsLBuK_sdgjPdkgIX8HZtCkizRC9Mtcnx5C7WBUYFZgulp6tqprSijBW6SrG68KxtiCUZfhttX8NN-dn1-NJ1BVXiGwWZ3WUBO-KkrbZkjQojqhRhiwrcqVFmeiycKkXRGxjfWKd0om0iohwEA-5WMch5W9gsKyW_h0w5fFhacJzL7goQ4EIJ_dchTILgZexGwLvDWpsxzxOBTBuTZ9i9t20bqCimNzE2qAbhhBttVYt88Yj8lnvK3MnggxODo9oHpFrSYuIcy1lGKFaSmT_COCGcHzH5X9aI5WWCHGGcNLHgEFP0o4LeqbarHFdhbZWQv5DghAkQuCHJRA8pDohCfaQhMTX8Ixa-raNwJ0mIuRDQDKEr21Ibu8QrXi7wjMdrdQ3c7sxa29WO_-LTSCE7F0weVlaI5RTprRxZqxzIfH4bO30-_-2_AkcTK6nV-bqYnb5AZ62WVH0e-sIBvXPjf-IgK8uj7sO_RtTa1T4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Method+for+determination+of+methane+potentials+of+solid+organic+waste&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Hansen%2C+Trine+L.&rft.au=Schmidt%2C+Jens+Ejbye&rft.au=Angelidaki%2C+Irini&rft.au=Marca%2C+Emilia&rft.date=2004-01-01&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=24&rft.issue=4&rft_id=info:doi/10.1016%2Fj.wasman.2003.09.009&rft.externalDocID=20875639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon