Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient P...
        Saved in:
      
    
          | Published in | Genome Biology Vol. 21; no. 1; p. 9 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        20.01.2020
     Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1474-760X 1474-7596 1474-760X  | 
| DOI | 10.1186/s13059-019-1900-3 | 
Cover
| Abstract | Background
Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory.
Results
In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms.
Conclusion
We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers. | 
    
|---|---|
| AbstractList | BACKGROUND: Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. RESULTS: In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. CONCLUSION: We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers. Abstract Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. Conclusion We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers. Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. Conclusion We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers. Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers. Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory.BACKGROUNDPrincipal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory.In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms.RESULTSIn this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms.We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.CONCLUSIONWe develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.  | 
    
| ArticleNumber | 9 | 
    
| Author | Tsuyuzaki, Koki Sato, Kenta Nikaido, Itoshi Sato, Hiroyuki  | 
    
| Author_xml | – sequence: 1 givenname: Koki orcidid: 0000-0003-3797-2148 surname: Tsuyuzaki fullname: Tsuyuzaki, Koki email: koki.tsuyuzaki@gmail.com organization: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Japan Science and Technology Agency, PRESTO, 5-3 – sequence: 2 givenname: Hiroyuki orcidid: 0000-0003-1399-8140 surname: Sato fullname: Sato, Hiroyuki organization: Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University – sequence: 3 givenname: Kenta orcidid: 0000-0002-6569-5574 surname: Sato fullname: Sato, Kenta organization: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo – sequence: 4 givenname: Itoshi orcidid: 0000-0002-7261-2570 surname: Nikaido fullname: Nikaido, Itoshi email: itoshi.nikaido@riken.jp organization: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Bioinformatics Course, Master’s/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31955711$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk2P1SAYhRszxvnQH-DGNHHjpgqFQtmYjBM_JploYsbEHXlLaYcrt1RoNfff-9Zex5lJ_FhB4JzD4YHj7GAIg82yx5Q8p7QWLxJlpFIFoaqgipCC3cuOKJe8kIJ8PrgxP8yOU9oQFPJSPMgOGVVVJSk9yi5f2cFcbSF-cUOfj9ENxo3gcxO2Ix42TDkM4HfJpbwLMfcQe1skA97mCR3eFsZ6n398f1ok-3XGMFx9mN3vwCf7aD-eZJ_evL48e1dcfHh7fnZ6URhJ-FRUDZEdlRY4SCmbVlSkUYzRElRJgFZt11VMEGWVKGtmjQDRdF3dgkITNQ07yc7X3DbARmN5vMdOB3D650KIvYY4OeOtRgq2ktxiWMtr2jayIowD6TizliqDWeWaNQ8j7L6D99eBlOgFt15xa6SoF9yaoenlahrnZmtbg7wi-FtNbu8M7kr34ZsWSpJSEQx4tg-IAemlSW9dWojCYMOcdMk5EYozyv4tZbxEWqJUKH16R7oJc8R3XFSVRIkgNaqe3Cx_3frX50CBXAUmhpSi7bRxE0wuLHdx_q9c6B3n_7DcP0BafmFv4-_Sfzb9AIW17L8 | 
    
| CitedBy_id | crossref_primary_10_1038_s43586_022_00184_w crossref_primary_10_1186_s40779_022_00434_8 crossref_primary_10_1109_TPAMI_2024_3459988 crossref_primary_10_1093_nar_gkab457 crossref_primary_10_1093_bib_bbac387 crossref_primary_10_1093_bib_bbad157 crossref_primary_10_1016_j_physa_2022_127538 crossref_primary_10_1093_pcp_pcac041 crossref_primary_10_26508_lsa_202402713 crossref_primary_10_1007_s12668_022_01021_w crossref_primary_10_1155_2021_2903543 crossref_primary_10_1038_s41467_023_39985_2 crossref_primary_10_1093_bib_bbac412 crossref_primary_10_1186_s40543_023_00414_0 crossref_primary_10_1007_s11075_024_01906_9 crossref_primary_10_1002_1873_3468_14178 crossref_primary_10_1186_s12284_021_00474_z crossref_primary_10_1186_s12870_024_05851_6 crossref_primary_10_1093_bib_bbad061 crossref_primary_10_1016_j_compbiomed_2024_108230 crossref_primary_10_3389_fpls_2024_1436872 crossref_primary_10_7717_peerj_12831 crossref_primary_10_1016_j_tranon_2025_102331 crossref_primary_10_1093_nar_gkac436 crossref_primary_10_3389_fgene_2021_785290 crossref_primary_10_1093_bib_bbab236 crossref_primary_10_1093_bioinformatics_btae494 crossref_primary_10_1038_s41556_022_01072_x crossref_primary_10_1186_s40543_025_00480_6 crossref_primary_10_3892_wasj_2025_315 crossref_primary_10_1016_j_ajhg_2022_09_008 crossref_primary_10_1016_j_csbj_2020_10_007 crossref_primary_10_1016_j_crmeth_2023_100547 crossref_primary_10_21105_joss_05664 crossref_primary_10_3389_fgene_2021_681206 crossref_primary_10_1038_s41540_024_00331_x crossref_primary_10_1093_bib_bbab304 crossref_primary_10_1109_ACCESS_2020_3029234 crossref_primary_10_1177_09636897221123515 crossref_primary_10_1016_j_tranon_2025_102291 crossref_primary_10_1186_s13040_021_00285_4 crossref_primary_10_3389_fcell_2022_884748 crossref_primary_10_1038_s41598_023_28952_y crossref_primary_10_1021_jasms_4c00314 crossref_primary_10_34133_research_0590 crossref_primary_10_1016_j_compbiomed_2024_108211 crossref_primary_10_3390_biology12040579 crossref_primary_10_1016_j_jare_2023_05_002 crossref_primary_10_1093_nar_gkac216 crossref_primary_10_1186_s13059_020_02136_7 crossref_primary_10_1101_gr_277525_122 crossref_primary_10_1002_widm_1414 crossref_primary_10_3390_ijms26072973 crossref_primary_10_3390_ijms241512337 crossref_primary_10_1371_journal_pcbi_1010025 crossref_primary_10_3390_e25010033 crossref_primary_10_1016_j_gpb_2022_06_006 crossref_primary_10_1016_j_scitotenv_2023_169092 crossref_primary_10_1155_2022_3079349 crossref_primary_10_3389_fonc_2020_00973 crossref_primary_10_1073_pnas_2319804121  | 
    
| Cites_doi | 10.1038/nmeth.4644 10.1038/nbt.4096 10.12688/f1000research.9501.2 10.1080/14786440109462720 10.1016/j.cell.2015.05.002 10.1137/100804139 10.1038/nbt.3711 10.1016/j.cell.2018.02.001 10.1371/journal.pone.0093766 10.1038/nmeth.4662 10.1038/nprot.2017.149 10.1038/nmeth.4207 10.1093/bioinformatics/btz157 10.1038/nn.4495 10.1186/s13059-017-1382-0 10.12688/wellcomeopenres.11087.1 10.1016/j.cell.2016.07.054 10.1016/j.cell.2014.03.036 10.1038/s41467-018-04368-5 10.25080/Majora-7b98e3ed-013 10.24963/ijcai.2017/468 10.1038/s41592-018-0308-4 10.1016/j.cels.2016.08.011 10.1038/nbt.4314 10.1038/nn.4366 10.1088/1742-5468/2008/10/P10008 10.1186/s12859-018-2226-y 10.1186/s13073-017-0492-3 10.1016/j.gpb.2018.08.003 10.1186/s13059-018-1407-3 10.1126/science.aaa1934 10.1101/538652 10.1016/j.ipl.2008.09.028 10.1109/Allerton.2012.6483308 10.1145/3004053 10.1186/s13059-019-1639-x 10.1371/journal.pone.0143196 10.1038/nbt.2859 10.1093/nar/gkw430 10.1093/gigascience/giz087 10.5281/zenodo.3341871 10.4049/jimmunol.1700172 10.1038/d41586-019-02310-3 10.1186/s12859-016-0984-y 10.1016/j.cell.2015.04.044 10.1007/BF01908075 10.1038/nbt.3192 10.1038/nmeth.4402 10.1186/s13059-016-0938-8 10.1038/nbt.3102 10.1016/j.cell.2018.05.061 10.1038/s41576-019-0093-7 10.1016/j.ymeth.2015.06.021 10.1093/nar/gkx828 10.3389/fgene.2019.00317 10.1093/bioinformatics/btw201 10.1016/j.molcel.2015.04.005 10.1371/journal.pcbi.1006361 10.1007/BF00275687 10.1186/s13059-016-0927-y 10.1101/574574 10.1101/gr.190595.115 10.1109/83.855432 10.1016/S0893-6080(05)80089-9 10.1101/729202 10.1038/ncomms14049 10.1038/nature13437 10.1016/j.stem.2015.07.013 10.1101/461954 10.1137/04060593X 10.1038/s41576-018-0088-9 10.1137/1.9780898719628 10.1037/h0071325 10.1186/s13059-015-0844-5 10.1101/215723 10.1186/s13059-016-0888-1 10.1101/gr.230771.117 10.1093/bib/bby011 10.1038/s41592-018-0254-1 10.1038/550451a 10.18637/jss.v089.i11 10.1038/s41586-018-0590-4 10.1126/science.aam7511 10.1016/j.mam.2017.07.002 10.15252/embr.201540946 10.1038/nmeth.4463 10.1038/s41586-019-0969-x 10.1093/bioinformatics/btw777 10.1137/090771806 10.1038/s41592-018-0033-z 10.1080/10618600.1996.10474713 10.1186/s13059-019-1738-8 10.1016/0022-247X(85)90131-3 10.1186/s13059-018-1431-3 10.1093/bioinformatics/btx196 10.1186/s12915-018-0580-x 10.1016/j.cell.2018.05.060 10.21105/joss.00861 10.1038/s41467-018-03405-7 10.1126/science.aam8999 10.5281/zenodo.3367116 10.1038/nature14966 10.1073/pnas.1617317113 10.1109/BigData.2013.6691583 10.1038/nrg3833 10.1038/nn.4216 10.1038/nmeth.4236 10.1007/978-3-319-95933-7_90 10.1186/s12864-018-4772-0 10.1109/MC.2009.263 10.1016/j.cels.2019.03.010 10.1126/science.1247651 10.1093/bioinformatics/btx792  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2020 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2020 – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s13059-019-1900-3 | 
    
| DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (selected full-text)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Publicly Available Content Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1474-760X | 
    
| EndPage | 9 | 
    
| ExternalDocumentID | oai_doaj_org_article_760e574e9e9d481db75034a0f43ee19c 10.1186/s13059-019-1900-3 PMC6970290 31955711 10_1186_s13059_019_1900_3  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO ROL RPM RSV SJN SOJ SV3 UKHRP AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM 123 8R4 8R5 ADTOC AHSBF H13 UNPAY  | 
    
| ID | FETCH-LOGICAL-c704t-5b07f17ea4a777bd650b93312a920a15dff53609e96283ec6a6bff8da917e1cb3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1474-760X 1474-7596  | 
    
| IngestDate | Fri Oct 03 12:51:59 EDT 2025 Sun Oct 26 03:12:50 EDT 2025 Tue Sep 30 17:00:08 EDT 2025 Wed Oct 01 13:14:49 EDT 2025 Thu Oct 02 07:15:58 EDT 2025 Tue Oct 14 14:11:19 EDT 2025 Mon Jul 21 05:57:00 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Wed Oct 01 03:54:47 EDT 2025 Sat Sep 06 07:24:38 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Julia Dimension reduction Cellular heterogeneity R Out-of-core Single-cell RNA-seq Sparse data format Online/incremental algorithm Randomized algorithm Principal component analysis Python  | 
    
| Language | English | 
    
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c704t-5b07f17ea4a777bd650b93312a920a15dff53609e96283ec6a6bff8da917e1cb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-1399-8140 0000-0002-7261-2570 0000-0002-6569-5574 0000-0003-3797-2148  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2357629608?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 31955711 | 
    
| PQID | 2357629608 | 
    
| PQPubID | 2040232 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_760e574e9e9d481db75034a0f43ee19c unpaywall_primary_10_1186_s13059_019_1900_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6970290 proquest_miscellaneous_2440694313 proquest_miscellaneous_2342360629 proquest_journals_2357629608 pubmed_primary_31955711 crossref_citationtrail_10_1186_s13059_019_1900_3 crossref_primary_10_1186_s13059_019_1900_3 springer_journals_10_1186_s13059_019_1900_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-01-20 | 
    
| PublicationDateYYYYMMDD | 2020-01-20 | 
    
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-20 day: 20  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Genome Biology | 
    
| PublicationTitleAbbrev | Genome Biol | 
    
| PublicationTitleAlternate | Genome Biol | 
    
| PublicationYear | 2020 | 
    
| Publisher | BioMed Central Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC  | 
    
| References | AM Klein (1900_CR5) 2015; 161 1900_CR26 MB Cole (1900_CR42) 2019; 8 JN Campbell (1900_CR4) 2017; 20 1900_CR24 A Wagner (1900_CR78) 2016; 34 1900_CR131 1900_CR130 1900_CR132 1900_CR135 J Shin (1900_CR64) 2015; 17 1900_CR134 1900_CR137 1900_CR136 C Weinreb (1900_CR73) 2018; 34 1900_CR139 VY Kiselev (1900_CR74) 2017; 14 M Huang (1900_CR119) 2018; 15 AA Kolodziejczyk (1900_CR33) 2015; 58 R Broa (1900_CR38) 2014; 6 D Dijk (1900_CR52) 2018; 174 H Hotelling (1900_CR37) 1933; 24 E Becht (1900_CR72) 2019; 37 1900_CR15 SH Yip (1900_CR85) 2017; 45 L Balzano (1900_CR103) 2018; 106 R Durruthy-Durruthy (1900_CR9) 2014; 157 1900_CR19 Z Ji (1900_CR63) 2016; 44 1900_CR17 1900_CR93 1900_CR122 1900_CR94 1900_CR121 1900_CR99 1900_CR123 1900_CR97 1900_CR98 1900_CR125 1900_CR127 1900_CR129 S Aibar (1900_CR117) 2017; 14 X Han (1900_CR27) 2018; 172 N Halko (1900_CR108) 2011; 33 TS Andrews (1900_CR79) 2018; 59 L McInnes (1900_CR71) 2018; 3 E Azizi (1900_CR89) 2018; 5 L Hubert (1900_CR124) 1985; 2 JM Perkel (1900_CR113) 2019; 572 D van Dijk (1900_CR143) 2018; 174 1900_CR43 A Diaz (1900_CR62) 2016; 32 K Shekhar (1900_CR142) 2016; 166 Z Bai (1900_CR96) 1987 Y Koren (1900_CR128) 2009; 42 Huamin Li (1900_CR109) 2017; 43 T Stuart (1900_CR35) 2019; 20 1900_CR39 1900_CR140 C Trapnell (1900_CR1) 2015; 25 1900_CR141 AB Rosenberg (1900_CR41) 2018; 360 VY Kisekev (1900_CR118) 2018; 15 1900_CR144 J Baglama (1900_CR100) 2005; 27 1900_CR146 1900_CR34 1900_CR145 D Grun (1900_CR7) 2015; 525 1900_CR31 1900_CR147 E Oja (1900_CR105) 1985; 106 F Buettner (1900_CR8) 2015; 33 GXY Zheng (1900_CR22) 2017; 8 G Lacono (1900_CR116) 2018; 28 1900_CR68 K Achim (1900_CR10) 2015; 33 E Oja (1900_CR104) 1982; 15 R Ihaka (1900_CR111) 1996; 5 D Wang (1900_CR120) 2018; 16 CM Bishop (1900_CR126) 2006 A Zeisel (1900_CR18) 2015; 347 U Shaham (1900_CR56) 2017; 33 E Oja (1900_CR106) 1992; 5 E Liberty (1900_CR138) 2009; 109 1900_CR61 F Wagner (1900_CR46) 2015; 10 1900_CR67 M Büttner (1900_CR55) 2019; 16 1900_CR65 J Li (1900_CR48) 2016; 17 C Trapnell (1900_CR12) 2014; 32 1900_CR70 N Halko (1900_CR107) 2011; 53 Alex K. Shalek (1900_CR20) 2014; 510 O Rozenblatt-Rosen (1900_CR25) 2017; 550 A Levy (1900_CR95) 2000; 9 1900_CR59 GH Golub (1900_CR90) 2012 1900_CR57 Z Lin (1900_CR44) 2016; 113 1900_CR51 GC Linderman (1900_CR69) 2019; 16 M Baron (1900_CR6) 2016; 3 B Tasic (1900_CR21) 2016; 19 HPA Butler (1900_CR49) 2018; 36 Aaron T.L. Lun (1900_CR50) 2016; 5 1900_CR53 1900_CR54 B Wang (1900_CR75) 2017; 14 DA Jaitin (1900_CR16) 2014; 343 EZ Macosko (1900_CR2) 2015; 161 Aritra Bose (1900_CR133) 2019; 35 M Baron (1900_CR40) 2016; 3 K Pearson (1900_CR36) 1901; 2 Junyue Cao (1900_CR23) 2019; 566 F Pedregosa (1900_CR92) 2011; 12 1900_CR83 1900_CR88 1900_CR112 1900_CR86 1900_CR115 1900_CR87 1900_CR114 X Qiu (1900_CR13) 2017; 14 A Scialdone (1900_CR58) 2015; 85 VY Kiselev (1900_CR80) 2019; 20 K Shekhar (1900_CR3) 2016; 166 L Tian (1900_CR84) 2018; 14 G Abraham (1900_CR110) 2014; 9 V Svensson (1900_CR14) 2017; 13 TTM Consortium (1900_CR28) 2018; 562 O Stegle (1900_CR30) 2015; 16 JF Poulin (1900_CR32) 2016; 19 Kieran R Campbell (1900_CR66) 2017; 2 DJ McCarthy (1900_CR82) 2017; 33 A Wagner (1900_CR29) 2017; 34 1900_CR77 1900_CR102 R Satija (1900_CR11) 2015; 33 K Cerosaletti (1900_CR47) 2017; 199 JS Herman (1900_CR60) 2018; 15 1900_CR101 1900_CR76 1900_CR81 R Lasrado (1900_CR45) 2017; 356 A Senabouth (1900_CR91) 2019; 8  | 
    
| References_xml | – volume: 15 start-page: 359 year: 2018 ident: 1900_CR118 publication-title: Nat Methods doi: 10.1038/nmeth.4644 – volume: 36 start-page: 411 year: 2018 ident: 1900_CR49 publication-title: Nat Biotechnol doi: 10.1038/nbt.4096 – volume: 5 start-page: 2122 year: 2016 ident: 1900_CR50 publication-title: F1000Research doi: 10.12688/f1000research.9501.2 – ident: 1900_CR87 – volume: 2 start-page: 559 issue: 11 year: 1901 ident: 1900_CR36 publication-title: Phil Mag doi: 10.1080/14786440109462720 – ident: 1900_CR140 – volume: 161 start-page: 1202 year: 2015 ident: 1900_CR2 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 33 start-page: 2580 issue: 5 year: 2011 ident: 1900_CR108 publication-title: SIAM J Sci Comput doi: 10.1137/100804139 – volume: 34 start-page: 1145 issue: 11 year: 2017 ident: 1900_CR29 publication-title: Nat Biotechnol doi: 10.1038/nbt.3711 – volume: 172 start-page: 1091 issue: 5 year: 2018 ident: 1900_CR27 publication-title: Cell doi: 10.1016/j.cell.2018.02.001 – ident: 1900_CR102 – volume: 9 start-page: 93766 issue: 4 year: 2014 ident: 1900_CR110 publication-title: PLoS ONE doi: 10.1371/journal.pone.0093766 – volume: 15 start-page: 379 year: 2018 ident: 1900_CR60 publication-title: Nat Methods doi: 10.1038/nmeth.4662 – volume: 13 start-page: 599 issue: 4 year: 2017 ident: 1900_CR14 publication-title: Nat Protoc doi: 10.1038/nprot.2017.149 – volume: 14 start-page: 414 issue: 4 year: 2017 ident: 1900_CR75 publication-title: Nat Methods doi: 10.1038/nmeth.4207 – ident: 1900_CR131 – volume: 35 start-page: 3679 issue: 19 year: 2019 ident: 1900_CR133 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz157 – volume: 20 start-page: 484 issue: 3 year: 2017 ident: 1900_CR4 publication-title: Nat Neurosci doi: 10.1038/nn.4495 – ident: 1900_CR93 doi: 10.1186/s13059-017-1382-0 – volume-title: Matrix computations (Johns Hopkins Studies in the Mathematical Sciences), fourth edition year: 2012 ident: 1900_CR90 – volume: 2 start-page: 19 year: 2017 ident: 1900_CR66 publication-title: Wellcome Open Research doi: 10.12688/wellcomeopenres.11087.1 – volume: 166 start-page: 1306 issue: 5 year: 2016 ident: 1900_CR142 publication-title: Cell doi: 10.1016/j.cell.2016.07.054 – volume: 157 start-page: 1 year: 2014 ident: 1900_CR9 publication-title: Cell doi: 10.1016/j.cell.2014.03.036 – ident: 1900_CR121 doi: 10.1038/s41467-018-04368-5 – ident: 1900_CR26 – ident: 1900_CR99 – ident: 1900_CR115 doi: 10.25080/Majora-7b98e3ed-013 – ident: 1900_CR136 doi: 10.24963/ijcai.2017/468 – volume: 16 start-page: 243 year: 2019 ident: 1900_CR69 publication-title: Nat Methods doi: 10.1038/s41592-018-0308-4 – volume: 3 start-page: 346 issue: 4 year: 2016 ident: 1900_CR6 publication-title: Cell Syst doi: 10.1016/j.cels.2016.08.011 – ident: 1900_CR70 – volume: 37 start-page: 38 year: 2019 ident: 1900_CR72 publication-title: Nat Biotechnol doi: 10.1038/nbt.4314 – ident: 1900_CR67 – volume: 19 start-page: 1131 issue: 9 year: 2016 ident: 1900_CR32 publication-title: Nat Neurosci doi: 10.1038/nn.4366 – ident: 1900_CR125 doi: 10.1088/1742-5468/2008/10/P10008 – ident: 1900_CR54 doi: 10.1186/s12859-018-2226-y – ident: 1900_CR88 doi: 10.1186/s13073-017-0492-3 – volume: 16 start-page: 320 issue: 5 year: 2018 ident: 1900_CR120 publication-title: Genom Proteomics Bioinforma doi: 10.1016/j.gpb.2018.08.003 – ident: 1900_CR15 doi: 10.1186/s13059-018-1407-3 – volume: 347 start-page: 1138 issue: 6226 year: 2015 ident: 1900_CR18 publication-title: Science doi: 10.1126/science.aaa1934 – ident: 1900_CR81 – ident: 1900_CR122 doi: 10.1101/538652 – volume: 109 start-page: 179 issue: 3 year: 2009 ident: 1900_CR138 publication-title: Inf Process Lett doi: 10.1016/j.ipl.2008.09.028 – ident: 1900_CR132 doi: 10.1109/Allerton.2012.6483308 – volume: 106 start-page: 1293 issue: 8 year: 2018 ident: 1900_CR103 publication-title: Proc IEEE doi: 10.1145/3004053 – ident: 1900_CR61 doi: 10.1186/s13059-019-1639-x – volume: 10 start-page: e0143196 issue: 11 year: 2015 ident: 1900_CR46 publication-title: PLoS ONE doi: 10.1371/journal.pone.0143196 – volume: 32 start-page: 381 year: 2014 ident: 1900_CR12 publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – volume: 44 start-page: e117 issue: 13 year: 2016 ident: 1900_CR63 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw430 – volume: 8 start-page: giz087 issue: 8 year: 2019 ident: 1900_CR91 publication-title: GigaScience doi: 10.1093/gigascience/giz087 – ident: 1900_CR145 doi: 10.5281/zenodo.3341871 – volume: 199 start-page: 323 issue: 1 year: 2017 ident: 1900_CR47 publication-title: J Immunol doi: 10.4049/jimmunol.1700172 – volume: 572 start-page: 141 issue: 7767 year: 2019 ident: 1900_CR113 publication-title: Nature doi: 10.1038/d41586-019-02310-3 – ident: 1900_CR77 doi: 10.1186/s12859-016-0984-y – volume: 161 start-page: 1187 year: 2015 ident: 1900_CR5 publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 2 start-page: 193 issue: 1 year: 1985 ident: 1900_CR124 publication-title: J Classif doi: 10.1007/BF01908075 – volume: 12 start-page: 2825 year: 2011 ident: 1900_CR92 publication-title: J Mach Learn Res – volume-title: Pattern recognition and machine learning (information science and statistics) year: 2006 ident: 1900_CR126 – volume: 33 start-page: 495 issue: 5 year: 2015 ident: 1900_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – ident: 1900_CR24 – ident: 1900_CR141 – volume: 14 start-page: 979 issue: 10 year: 2017 ident: 1900_CR13 publication-title: Nat Methods doi: 10.1038/nmeth.4402 – ident: 1900_CR19 doi: 10.1186/s13059-016-0938-8 – volume: 33 start-page: 155 issue: 2 year: 2015 ident: 1900_CR8 publication-title: Nat Biotechnol doi: 10.1038/nbt.3102 – volume: 174 start-page: 716 issue: 3 year: 2018 ident: 1900_CR52 publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 20 start-page: 257 issue: 5 year: 2019 ident: 1900_CR35 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0093-7 – volume: 166 start-page: 1308 year: 2016 ident: 1900_CR3 publication-title: Cell doi: 10.1016/j.cell.2016.07.054 – volume: 8 start-page: 1 issue: 14049 year: 2017 ident: 1900_CR22 publication-title: Nat Commun – volume: 85 start-page: 54 year: 2015 ident: 1900_CR58 publication-title: Methods doi: 10.1016/j.ymeth.2015.06.021 – volume: 45 start-page: 179 issue: 22 year: 2017 ident: 1900_CR85 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx828 – ident: 1900_CR34 doi: 10.3389/fgene.2019.00317 – ident: 1900_CR97 – volume: 32 start-page: 2219 issue: 14 year: 2016 ident: 1900_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw201 – volume: 33 start-page: 503 issue: 5 year: 2015 ident: 1900_CR10 publication-title: Nat Comput Biol – volume: 58 start-page: 610 issue: 4 year: 2015 ident: 1900_CR33 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.005 – volume: 14 start-page: e1006361 issue: 8 year: 2018 ident: 1900_CR84 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006361 – volume-title: Templates for the solution of algebraic eigenvalue problems, a practical guide year: 1987 ident: 1900_CR96 – volume: 15 start-page: 267 year: 1982 ident: 1900_CR104 publication-title: J Math Biol doi: 10.1007/BF00275687 – ident: 1900_CR31 doi: 10.1186/s13059-016-0927-y – ident: 1900_CR139 doi: 10.1101/574574 – ident: 1900_CR83 – ident: 1900_CR17 doi: 10.1186/s13059-018-1407-3 – volume: 25 start-page: 1491 issue: 10 year: 2015 ident: 1900_CR1 publication-title: Genome Res doi: 10.1101/gr.190595.115 – volume: 9 start-page: 1371 issue: 8 year: 2000 ident: 1900_CR95 publication-title: IEEE Trans Image Process doi: 10.1109/83.855432 – volume: 5 start-page: 927 year: 1992 ident: 1900_CR106 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80089-9 – ident: 1900_CR137 doi: 10.1101/729202 – ident: 1900_CR144 doi: 10.1038/ncomms14049 – ident: 1900_CR68 – ident: 1900_CR147 – volume: 510 start-page: 363 issue: 7505 year: 2014 ident: 1900_CR20 publication-title: Nature doi: 10.1038/nature13437 – volume: 17 start-page: 360 issue: 3 year: 2015 ident: 1900_CR64 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.07.013 – ident: 1900_CR39 – ident: 1900_CR57 doi: 10.1101/461954 – volume: 27 start-page: 19 issue: 1 year: 2005 ident: 1900_CR100 publication-title: SIAM J Sci Comput doi: 10.1137/04060593X – ident: 1900_CR135 – volume: 20 start-page: 273 issue: 5 year: 2019 ident: 1900_CR80 publication-title: Nat Rev doi: 10.1038/s41576-018-0088-9 – ident: 1900_CR112 – ident: 1900_CR101 doi: 10.1137/1.9780898719628 – volume: 24 start-page: 417 year: 1933 ident: 1900_CR37 publication-title: J Educ Psychol doi: 10.1037/h0071325 – ident: 1900_CR86 doi: 10.1186/s13059-015-0844-5 – ident: 1900_CR76 doi: 10.1101/215723 – ident: 1900_CR51 doi: 10.1186/s13059-016-0888-1 – volume: 28 start-page: 878 issue: 6 year: 2018 ident: 1900_CR116 publication-title: Genome Res doi: 10.1101/gr.230771.117 – ident: 1900_CR130 doi: 10.1093/bib/bby011 – ident: 1900_CR129 – volume: 16 start-page: 43 issue: 1 year: 2019 ident: 1900_CR55 publication-title: Nat Methods doi: 10.1038/s41592-018-0254-1 – volume: 550 start-page: 451 year: 2017 ident: 1900_CR25 publication-title: Nature doi: 10.1038/550451a – ident: 1900_CR114 doi: 10.18637/jss.v089.i11 – volume: 562 start-page: 367 issue: 7727 year: 2018 ident: 1900_CR28 publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 356 start-page: 722 issue: 6339 year: 2017 ident: 1900_CR45 publication-title: Science doi: 10.1126/science.aam7511 – volume: 59 start-page: 114 year: 2018 ident: 1900_CR79 publication-title: Mol Asp Med doi: 10.1016/j.mam.2017.07.002 – volume: 17 start-page: 178 issue: 2 year: 2016 ident: 1900_CR48 publication-title: EMBO Reports doi: 10.15252/embr.201540946 – volume: 14 start-page: 1083 year: 2017 ident: 1900_CR117 publication-title: Nat Methods doi: 10.1038/nmeth.4463 – volume: 6 start-page: 2812 issue: 2812 year: 2014 ident: 1900_CR38 publication-title: R Soc Chem – volume: 3 start-page: 346 issue: 4 year: 2016 ident: 1900_CR40 publication-title: Cell Syst doi: 10.1016/j.cels.2016.08.011 – volume: 566 start-page: 496 issue: 7745 year: 2019 ident: 1900_CR23 publication-title: Nature doi: 10.1038/s41586-019-0969-x – volume: 33 start-page: 1179 issue: 8 year: 2017 ident: 1900_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw777 – volume: 53 start-page: 217 issue: 2 year: 2011 ident: 1900_CR107 publication-title: SIAM Rev Surv Rev doi: 10.1137/090771806 – volume: 15 start-page: 539 year: 2018 ident: 1900_CR119 publication-title: Nat Methods doi: 10.1038/s41592-018-0033-z – volume: 5 start-page: 299 issue: 3 year: 1996 ident: 1900_CR111 publication-title: J Comput Graph Stat doi: 10.1080/10618600.1996.10474713 – ident: 1900_CR123 doi: 10.1186/s13059-019-1738-8 – volume: 106 start-page: 69 issue: 1 year: 1985 ident: 1900_CR105 publication-title: J Math Anal Appl doi: 10.1016/0022-247X(85)90131-3 – ident: 1900_CR59 doi: 10.1186/s13059-018-1431-3 – volume: 33 start-page: 2539 issue: 16 year: 2017 ident: 1900_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx196 – ident: 1900_CR94 doi: 10.1186/s12915-018-0580-x – ident: 1900_CR98 – volume: 5 start-page: 1293 issue: 23 year: 2018 ident: 1900_CR89 publication-title: Cell doi: 10.1016/j.cell.2018.05.060 – volume: 3 start-page: 861 issue: 29 year: 2018 ident: 1900_CR71 publication-title: J Open Source Softw doi: 10.21105/joss.00861 – volume: 174 start-page: 716 issue: 3 year: 2018 ident: 1900_CR143 publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – ident: 1900_CR53 doi: 10.1038/s41467-018-03405-7 – volume: 34 start-page: 1145 issue: 11 year: 2016 ident: 1900_CR78 publication-title: Nat Biotechnol doi: 10.1038/nbt.3711 – volume: 360 start-page: 176 issue: 6385 year: 2018 ident: 1900_CR41 publication-title: Science doi: 10.1126/science.aam8999 – ident: 1900_CR146 doi: 10.5281/zenodo.3367116 – volume: 525 start-page: 251 year: 2015 ident: 1900_CR7 publication-title: Nature doi: 10.1038/nature14966 – volume: 113 start-page: 14662 issue: 51 year: 2016 ident: 1900_CR44 publication-title: PNAS doi: 10.1073/pnas.1617317113 – ident: 1900_CR127 doi: 10.1109/BigData.2013.6691583 – volume: 16 start-page: 133 issue: 3 year: 2015 ident: 1900_CR30 publication-title: Nat Rev Genet doi: 10.1038/nrg3833 – volume: 19 start-page: 335 issue: 2 year: 2016 ident: 1900_CR21 publication-title: Nat Neurosci doi: 10.1038/nn.4216 – volume: 14 start-page: 483 issue: 5 year: 2017 ident: 1900_CR74 publication-title: Nat Methods doi: 10.1038/nmeth.4236 – ident: 1900_CR43 doi: 10.1007/978-3-319-95933-7_90 – ident: 1900_CR65 doi: 10.1186/s12864-018-4772-0 – volume: 43 start-page: 1 issue: 3 year: 2017 ident: 1900_CR109 publication-title: ACM Transactions on Mathematical Software – volume: 42 start-page: 30 issue: 8 year: 2009 ident: 1900_CR128 publication-title: IEEE Comput doi: 10.1109/MC.2009.263 – volume: 8 start-page: 315 issue: 4 year: 2019 ident: 1900_CR42 publication-title: Cell Syst doi: 10.1016/j.cels.2019.03.010 – ident: 1900_CR134 – volume: 343 start-page: 776 issue: 6172 year: 2014 ident: 1900_CR16 publication-title: Science doi: 10.1126/science.1247651 – volume: 34 start-page: 1246 issue: 7 year: 2018 ident: 1900_CR73 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx792  | 
    
| SSID | ssj0019426 ssj0017866  | 
    
| Score | 2.5608118 | 
    
| Snippet | Background
Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq... Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets,... Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq... BACKGROUND: Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq... Abstract Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 9 | 
    
| SubjectTerms | Accuracy Algorithms Animal Genetics and Genomics Benchmarking Benchmarking Studies Bioinformatics Biomedical and Life Sciences Cell cycle Cellular heterogeneity Clustering Computer applications Data analysis data collection Datasets Dimension reduction Evolutionary Biology Gene expression genome Genomics guidelines Human Genetics Life Sciences memory Microbial Genetics and Genomics Online/incremental algorithm Pancreas Plant Genetics and Genomics Principal Component Analysis Randomized algorithm Ribonucleic acid RNA RNA-Seq - methods sequence analysis Single-Cell Analysis - methods Single-cell RNA-seq Software  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ (selected full-text) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDBejULYdRrvPtN3IYKcVU9vxR3xsx0oZrIfRQm_Gdhw6yNJH33uM_veTE7-sj43XS6-2QhxJln-SFQngU5RM0Qb3t0BwQQT3nDgnGImOcadrx6lJ_w5_P1dnl-Lblby61-or5YSN5YFHxh1pRaPUIppoGoHgyqeLN-FoK6oYmQnJ-tLarJypfH9g8ODJd5isVkdztNQy5QUZggcgGp61U2go1v8_hPlvouR0W_ocni77mbv77bru3oF0ugMvMpIsj8cv2IUnsX8J22NvybtXcHGC-nf9yw2x8HI2xtSRPuWQ3_T4ptLleiQl4taySxnhZI4Si2UKH3SRpJh--eP8mOR0axx9DZenXy--nJHcQoEETcWCSE91y3R0wmmtfYN4zJuqQjkYTh2TTdvKSlFkrkKcEYNyyrdt3Tj04iILvnoDWz0u6h2UDJ_SrR7aWYlaGF8Hz2Xw1DXBm2AKoCuW2pDri6c2F50d_Ixa2VEKFqVgkxRsVcDn6ZHZWFxjE_FJktNEmOpiDwOoLTZri31IWwo4WEnZ5s06t6nij-LoytUFfJymcZslPrs-3iwTDeJOdPa42UAjht-IK4ZrfTsqzrRatHRSasYK0GsqtfY56zP9z-uh3LcymnJDCzhcKd_fpW_g1uGknw_zdu8xeLsPz3gKRlCGpvcAtha3y_geEdvCfxg25x_KeDnD priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals (Selected full-text) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0IupD8dvVKiv4ZAkm2XxsHtvSUgT7IC30LSTZLBW228O7Q_rfO8nurT0sV_q6O7nLzkfml5nJBOBLlEzRBu1bILgggntOnBOMRMe407Xj1KSzwz9O1PGZ-H4uz8dm0ekszM38PavVtzmusTJV9BiCrguXjIfwCH2UynlZdTAlDAx6mjFpeeuwNbeTu_PfBin_r4yc0qPP4Mmyn7nrP67rbnigo-ewPULHcm-Q9Qt4EPuX8Hi4TPL6FZzuo8JdXLoc_C5nQxAd6VPR-FWP_1S6sQFJiUC17FIJOJmjiGKZ4gVdJCmIX_482SNjfTU-fQ1nR4enB8dkvDOBBE3FgkhPdct0dMJprX2DAMybqkLGG04dk03bykpRE41CYBGDcsq3bd043LZFFnz1BrZ6nNQ7KBmO0q3O91eJWhhfB89l8NQ1wZtgCqArltowNhRP91p0Nm8samUHKViUgk1SsFUBX6chs6Gbxibi_SSniTA1ws4PUD_saFdWKxqlFhE_qBGIvX3KywpHW1HFyEwoYGclZTta59ymFj-K496tLuDz9BrtKvHZ9fFqmWgQaOLujpsNNCKfG64YzvXtoDjTbHFpk1IzVoBeU6m1z1l_0_-6yP29ldGUG1rA7kr5_k19A7d2J_28m7fv7_XbH-ApT2EGynBR3YGtxe9l_IhYbOE_ZSv8C6DuKdw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88P0RGChIPDGlsxN_xI8dYpqQqBBapfIU2Y6zoWVptbZC46_nnLhhhakIibcoOSf25Xfns30fAG8dp4KUKN8MjYuEpSZNtGY0cZqmWuY6JcrHDn8ai6MJ-zjl01AOaNHGVjWzcxcSEA2vhqDXrd7GC3u2Py-rTtxzsb9ALcy9z49KcHJDpXITdgRHw3wAO5Px59HXNr7Iex1yJfprQabhjPPad2zMUm0y_-ss0D8dKfvT1Ltwe9XM9eV3XddXJqzD-1Cvh9r5qZwNV0sztD9-ywL5n3jxAO4FwzYedUh8CDdc8whudaUuLx_D8QGKw-m5brfm43m3xY_03qV91uDnYh3So8RoRse1d1BPFgggF_vdjNol_ogh_jIeJcH7G-8-gcnhh-P3R0mo6JBYSdgy4YbIikqnmZZSmhLNQ6OyDGGhUqIpL6uKZ4IopwSaPc4KLUxV5aXGRaWj1mRPYdBgp55DTLGVrGRbXYvlTJncmpRbQ3RpjbIqArL-g4UN6c591Y26aJc9uSg6ZhXIrMIzq8gieNc3mXe5PrYRH3hY9IQ-TXd7Y3ZxUgSpLxBmjkvmcEAlw5WB8afGTJOKZc5RZSPYXYOqCLpjUfgERCJFAOcRvOkfo9R7PuvGzVaeBs1gXHumagsNa6OaM4p9fdbhtO8tKl7OJaURyA0Ebwxn80nz7bTNPi6UJKkiEeytsf6r61u4tdeLw995--KfqF_CndRvghCKKn8XBsuLlXuFluLSvA4a4CdAR18h priority: 102 providerName: Unpaywall  | 
    
| Title | Benchmarking principal component analysis for large-scale single-cell RNA-sequencing | 
    
| URI | https://link.springer.com/article/10.1186/s13059-019-1900-3 https://www.ncbi.nlm.nih.gov/pubmed/31955711 https://www.proquest.com/docview/2357629608 https://www.proquest.com/docview/2342360629 https://www.proquest.com/docview/2440694313 https://pubmed.ncbi.nlm.nih.gov/PMC6970290 https://genomebiology.biomedcentral.com/track/pdf/10.1186/s13059-019-1900-3 https://doaj.org/article/760e574e9e9d481db75034a0f43ee19c  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017866 issn: 1474-7596 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017866 issn: 1474-7596 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: RPM dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: AAJSJ dateStart: 20000201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1474-760X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0019426 issn: 1474-760X databaseCode: C6C dateStart: 20000102 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdtylj3MPY9b13wYE8ropKsD-thjCS0lMFCCQ1kezGSLbeDzEmbhNH_fidbdhc2sheDLRnLd6fTT3enO4Q-OEElKWB-cwAXmDPLsDGcYmcoMyo1jGh_dvjrWJ5P-ZeZmO2hcXsWxodVtjqxVtTFIvc28hOflkUywNvp5-UN9lWjvHe1LaFhQmmF4lOdYmwfHTCfGauHDoan44tJ51dQqUcv4UZz1hw-8iGJQsvg9KSpPFmBahc-kEhjWDFBU20tW3V2_39B0r8jKzv36iP0cFMtzd0vM5__sYKdPUGPA_SMB42sPEV7rnqGHjTFKO-eo8shCOz1T1Mbz-NlY4SH_j7ofFHBl2ITEpjEAHTjuQ8hxytgsYu9vWHusHcCxJPxAIf4bHj6Ak3PTi9H5zjUXMC5InyNhSWqpMoZbpRStgAAZ3WSAOM0I4aKoixFIol2WgIwcbk00pZlWhjY9jma2-Ql6lUwqNcopvCWKlVd_4qnXNs0t0zklpgitzrXESItSbM8JCT3dTHmWb0xSWXWcCEDLmSeC1kSoY_dK8smG8euzkPPp66jT6RdP1jcXmVhXmZKEicUd_BDBQfsbr1flxtS8sQ5qvMIHbVczsLsXmX3shih910zzEtPZ1O5xcb3AaAKu0Omd_Th9bnjhMJYXzWC040WVKMQitIIqS2R2vqd7Zbqx3WdH1xqRZgmETpuhe9-6DuoddzJ5_9p-2Y3Wd6iQ-btEoSCFj5CvfXtxr0D8La2fbSvZqof5iXcjeSoXxtC4DoZfoeW6fhi8O030eFCLA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6ocED4pvAgCDBC1M023Hs-GFCK2zq2FahaZP2FuzEYUglLWurqX-O38Y5cTIqUHnaYxInOd-d78N3vgN4axMqSIHrm6NxEXFmWKQ1p5HVlGmZakaUOzt8PBSDM_75PDlfg1_tWRiXVtnKxFpQF-Pc7ZFvu7IsgqG9nX6Y_Ixc1ygXXW1baGjfWqHYqUuM-YMdh3ZxhS7cdOfgE9L7HWP7e6cfB5HvMhDlkvBZlBgiSyqt5lpKaQo0WQx6-QiqYkTTpCjLJBZEWSVQFdtcaGHKMi00OjqW5ibG796CdR7jbHuw3t8bfjnp4hgyddaSv1CcNYedXApkooQPstJUbE9RlSQucUlFqKFRMi6pybqbwL9M4L8zObtw7l3YmFcTvbjSo9EfGnP_Ptzzpm642_DmA1iz1UO43TS_XDyC0z4ukIsfut6sDyfNpj-Od0nu4wr_FGpfMCVEwzocuZT1aIosZUO3vzGykQs6hCfD3cjng-Pdx3B2I9h_Ar0KgXoGIcW3ZCnrfls85cqkuWFJbogucqNyFQBpUZrlvgC668MxympHKBVZQ4UMqZA5KmRxAO-7VyZN9Y9Vg_uOTt1AV7i7vjG-_JZ5OZBJQWwiucUJFRx9BePiyFyTksfWUpUHsNlSOfPSZJpd834Ab7rHKAccnnVlx3M3Bg1j9EaZWjGG1-ecY4qwPm0Yp4MWRXGSSEoDkEsstTSd5SfV94u6HrlQkjBFAthqme8a9BXY2ur48_-4fb4aLa9hY3B6fJQdHQwPX8Ad5vZECEUNsAm92eXcvkTDcWZe-dUZwtebFgi_AWcwedY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEdcD4iZQIEg8UVm1HR_xY7uwKtcKoVbqm2UnDkUK2VV3V6j_nnEuWFEt4jUZ7zqeGc_nmfEMwOsgmaIl6rdAcEEE95w4JxgJjnGnc8epiXeHP8_U0Yn4cCpP-z6nyyHbfQhJdncaYpWmZrW_KKtOxXO1v8SdV8Y8H0PQoOFGchWuCTRusYXBRE3GMIJB-9OHMi8dtmGM2pr9lwHNv_Mlx6Dpbbi5bhbu4qer6z_s0vQu3OkBZXrQScA9uBKa-3C9azF58QCOD1EMz3641iWeLjrXOtLHVPJ5g_-Uur4sSYrwNa1jYjhZIuNCGr0IdSDRtZ9-nR2QPusanz6Ek-m748kR6TspkEJTsSLSU10xHZxwWmtfIizzJsuQHYZTx2RZVTJT1ASjEG6EQjnlqyovHR7mAit89gh2GpzUE0gZjtKVbrtaiVwYnxeey8JTVxbeFCYBOiypLfoy47HbRW3b40aubMcFi1ywkQs2S-DNOGTR1djYRnwY-TQSxvLY7YP5-Tfba5vVigapRcAPKgUich-jtcLRSmQhMFMksDtw2fY6u7Sx8I_ieKLLE3g1vkZti-vsmjBfRxqEn3jm42YLjWhvE2cM5_q4E5xxtrjhSakZS0BviNTG52y-ab6ftVW_ldGUG5rA3iB8v6e-ZbX2Rvn899o-_a_ffgk3vryd2k_vZx-fwS0e_RCU4a67Czur83V4jmBt5V-0CvkLrwk1Eg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88P0RGChIPDGlsxN_xI8dYpqQqBBapfIU2Y6zoWVptbZC46_nnLhhhakIibcoOSf25Xfns30fAG8dp4KUKN8MjYuEpSZNtGY0cZqmWuY6JcrHDn8ai6MJ-zjl01AOaNHGVjWzcxcSEA2vhqDXrd7GC3u2Py-rTtxzsb9ALcy9z49KcHJDpXITdgRHw3wAO5Px59HXNr7Iex1yJfprQabhjPPad2zMUm0y_-ss0D8dKfvT1Ltwe9XM9eV3XddXJqzD-1Cvh9r5qZwNV0sztD9-ywL5n3jxAO4FwzYedUh8CDdc8whudaUuLx_D8QGKw-m5brfm43m3xY_03qV91uDnYh3So8RoRse1d1BPFgggF_vdjNol_ogh_jIeJcH7G-8-gcnhh-P3R0mo6JBYSdgy4YbIikqnmZZSmhLNQ6OyDGGhUqIpL6uKZ4IopwSaPc4KLUxV5aXGRaWj1mRPYdBgp55DTLGVrGRbXYvlTJncmpRbQ3RpjbIqArL-g4UN6c591Y26aJc9uSg6ZhXIrMIzq8gieNc3mXe5PrYRH3hY9IQ-TXd7Y3ZxUgSpLxBmjkvmcEAlw5WB8afGTJOKZc5RZSPYXYOqCLpjUfgERCJFAOcRvOkfo9R7PuvGzVaeBs1gXHumagsNa6OaM4p9fdbhtO8tKl7OJaURyA0Ebwxn80nz7bTNPi6UJKkiEeytsf6r61u4tdeLw995--KfqF_CndRvghCKKn8XBsuLlXuFluLSvA4a4CdAR18h | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+principal+component+analysis+for+large-scale+single-cell+RNA-sequencing&rft.jtitle=Genome+Biology&rft.date=2020-01-20&rft.pub=Springer+Nature+B.V&rft.issn=1474-7596&rft.eissn=1474-760X&rft.volume=21&rft.spage=1&rft_id=info:doi/10.1186%2Fs13059-019-1900-3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |