Benchmarking principal component analysis for large-scale single-cell RNA-sequencing

Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient P...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 21; no. 1; p. 9
Main Authors Tsuyuzaki, Koki, Sato, Hiroyuki, Sato, Kenta, Nikaido, Itoshi
Format Journal Article
LanguageEnglish
Published London BioMed Central 20.01.2020
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1474-760X
1474-7596
1474-760X
DOI10.1186/s13059-019-1900-3

Cover

Abstract Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. Conclusion We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.
AbstractList BACKGROUND: Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. RESULTS: In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. CONCLUSION: We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.
Abstract Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. Conclusion We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.
Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. Results In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. Conclusion We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.
Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory. In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms. We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.
Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory.BACKGROUNDPrincipal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets, computation time is long and consumes large amounts of memory.In this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms.RESULTSIn this work, we review the existing fast and memory-efficient PCA algorithms and implementations and evaluate their practical application to large-scale scRNA-seq datasets. Our benchmark shows that some PCA algorithms based on Krylov subspace and randomized singular value decomposition are fast, memory-efficient, and more accurate than the other algorithms.We develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.CONCLUSIONWe develop a guideline to select an appropriate PCA implementation based on the differences in the computational environment of users and developers.
ArticleNumber 9
Author Tsuyuzaki, Koki
Sato, Kenta
Nikaido, Itoshi
Sato, Hiroyuki
Author_xml – sequence: 1
  givenname: Koki
  orcidid: 0000-0003-3797-2148
  surname: Tsuyuzaki
  fullname: Tsuyuzaki, Koki
  email: koki.tsuyuzaki@gmail.com
  organization: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Japan Science and Technology Agency, PRESTO, 5-3
– sequence: 2
  givenname: Hiroyuki
  orcidid: 0000-0003-1399-8140
  surname: Sato
  fullname: Sato, Hiroyuki
  organization: Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University
– sequence: 3
  givenname: Kenta
  orcidid: 0000-0002-6569-5574
  surname: Sato
  fullname: Sato, Kenta
  organization: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
– sequence: 4
  givenname: Itoshi
  orcidid: 0000-0002-7261-2570
  surname: Nikaido
  fullname: Nikaido, Itoshi
  email: itoshi.nikaido@riken.jp
  organization: Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Bioinformatics Course, Master’s/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31955711$$D View this record in MEDLINE/PubMed
BookMark eNqNkk2P1SAYhRszxvnQH-DGNHHjpgqFQtmYjBM_JploYsbEHXlLaYcrt1RoNfff-9Zex5lJ_FhB4JzD4YHj7GAIg82yx5Q8p7QWLxJlpFIFoaqgipCC3cuOKJe8kIJ8PrgxP8yOU9oQFPJSPMgOGVVVJSk9yi5f2cFcbSF-cUOfj9ENxo3gcxO2Ix42TDkM4HfJpbwLMfcQe1skA97mCR3eFsZ6n398f1ok-3XGMFx9mN3vwCf7aD-eZJ_evL48e1dcfHh7fnZ6URhJ-FRUDZEdlRY4SCmbVlSkUYzRElRJgFZt11VMEGWVKGtmjQDRdF3dgkITNQ07yc7X3DbARmN5vMdOB3D650KIvYY4OeOtRgq2ktxiWMtr2jayIowD6TizliqDWeWaNQ8j7L6D99eBlOgFt15xa6SoF9yaoenlahrnZmtbg7wi-FtNbu8M7kr34ZsWSpJSEQx4tg-IAemlSW9dWojCYMOcdMk5EYozyv4tZbxEWqJUKH16R7oJc8R3XFSVRIkgNaqe3Cx_3frX50CBXAUmhpSi7bRxE0wuLHdx_q9c6B3n_7DcP0BafmFv4-_Sfzb9AIW17L8
CitedBy_id crossref_primary_10_1038_s43586_022_00184_w
crossref_primary_10_1186_s40779_022_00434_8
crossref_primary_10_1109_TPAMI_2024_3459988
crossref_primary_10_1093_nar_gkab457
crossref_primary_10_1093_bib_bbac387
crossref_primary_10_1093_bib_bbad157
crossref_primary_10_1016_j_physa_2022_127538
crossref_primary_10_1093_pcp_pcac041
crossref_primary_10_26508_lsa_202402713
crossref_primary_10_1007_s12668_022_01021_w
crossref_primary_10_1155_2021_2903543
crossref_primary_10_1038_s41467_023_39985_2
crossref_primary_10_1093_bib_bbac412
crossref_primary_10_1186_s40543_023_00414_0
crossref_primary_10_1007_s11075_024_01906_9
crossref_primary_10_1002_1873_3468_14178
crossref_primary_10_1186_s12284_021_00474_z
crossref_primary_10_1186_s12870_024_05851_6
crossref_primary_10_1093_bib_bbad061
crossref_primary_10_1016_j_compbiomed_2024_108230
crossref_primary_10_3389_fpls_2024_1436872
crossref_primary_10_7717_peerj_12831
crossref_primary_10_1016_j_tranon_2025_102331
crossref_primary_10_1093_nar_gkac436
crossref_primary_10_3389_fgene_2021_785290
crossref_primary_10_1093_bib_bbab236
crossref_primary_10_1093_bioinformatics_btae494
crossref_primary_10_1038_s41556_022_01072_x
crossref_primary_10_1186_s40543_025_00480_6
crossref_primary_10_3892_wasj_2025_315
crossref_primary_10_1016_j_ajhg_2022_09_008
crossref_primary_10_1016_j_csbj_2020_10_007
crossref_primary_10_1016_j_crmeth_2023_100547
crossref_primary_10_21105_joss_05664
crossref_primary_10_3389_fgene_2021_681206
crossref_primary_10_1038_s41540_024_00331_x
crossref_primary_10_1093_bib_bbab304
crossref_primary_10_1109_ACCESS_2020_3029234
crossref_primary_10_1177_09636897221123515
crossref_primary_10_1016_j_tranon_2025_102291
crossref_primary_10_1186_s13040_021_00285_4
crossref_primary_10_3389_fcell_2022_884748
crossref_primary_10_1038_s41598_023_28952_y
crossref_primary_10_1021_jasms_4c00314
crossref_primary_10_34133_research_0590
crossref_primary_10_1016_j_compbiomed_2024_108211
crossref_primary_10_3390_biology12040579
crossref_primary_10_1016_j_jare_2023_05_002
crossref_primary_10_1093_nar_gkac216
crossref_primary_10_1186_s13059_020_02136_7
crossref_primary_10_1101_gr_277525_122
crossref_primary_10_1002_widm_1414
crossref_primary_10_3390_ijms26072973
crossref_primary_10_3390_ijms241512337
crossref_primary_10_1371_journal_pcbi_1010025
crossref_primary_10_3390_e25010033
crossref_primary_10_1016_j_gpb_2022_06_006
crossref_primary_10_1016_j_scitotenv_2023_169092
crossref_primary_10_1155_2022_3079349
crossref_primary_10_3389_fonc_2020_00973
crossref_primary_10_1073_pnas_2319804121
Cites_doi 10.1038/nmeth.4644
10.1038/nbt.4096
10.12688/f1000research.9501.2
10.1080/14786440109462720
10.1016/j.cell.2015.05.002
10.1137/100804139
10.1038/nbt.3711
10.1016/j.cell.2018.02.001
10.1371/journal.pone.0093766
10.1038/nmeth.4662
10.1038/nprot.2017.149
10.1038/nmeth.4207
10.1093/bioinformatics/btz157
10.1038/nn.4495
10.1186/s13059-017-1382-0
10.12688/wellcomeopenres.11087.1
10.1016/j.cell.2016.07.054
10.1016/j.cell.2014.03.036
10.1038/s41467-018-04368-5
10.25080/Majora-7b98e3ed-013
10.24963/ijcai.2017/468
10.1038/s41592-018-0308-4
10.1016/j.cels.2016.08.011
10.1038/nbt.4314
10.1038/nn.4366
10.1088/1742-5468/2008/10/P10008
10.1186/s12859-018-2226-y
10.1186/s13073-017-0492-3
10.1016/j.gpb.2018.08.003
10.1186/s13059-018-1407-3
10.1126/science.aaa1934
10.1101/538652
10.1016/j.ipl.2008.09.028
10.1109/Allerton.2012.6483308
10.1145/3004053
10.1186/s13059-019-1639-x
10.1371/journal.pone.0143196
10.1038/nbt.2859
10.1093/nar/gkw430
10.1093/gigascience/giz087
10.5281/zenodo.3341871
10.4049/jimmunol.1700172
10.1038/d41586-019-02310-3
10.1186/s12859-016-0984-y
10.1016/j.cell.2015.04.044
10.1007/BF01908075
10.1038/nbt.3192
10.1038/nmeth.4402
10.1186/s13059-016-0938-8
10.1038/nbt.3102
10.1016/j.cell.2018.05.061
10.1038/s41576-019-0093-7
10.1016/j.ymeth.2015.06.021
10.1093/nar/gkx828
10.3389/fgene.2019.00317
10.1093/bioinformatics/btw201
10.1016/j.molcel.2015.04.005
10.1371/journal.pcbi.1006361
10.1007/BF00275687
10.1186/s13059-016-0927-y
10.1101/574574
10.1101/gr.190595.115
10.1109/83.855432
10.1016/S0893-6080(05)80089-9
10.1101/729202
10.1038/ncomms14049
10.1038/nature13437
10.1016/j.stem.2015.07.013
10.1101/461954
10.1137/04060593X
10.1038/s41576-018-0088-9
10.1137/1.9780898719628
10.1037/h0071325
10.1186/s13059-015-0844-5
10.1101/215723
10.1186/s13059-016-0888-1
10.1101/gr.230771.117
10.1093/bib/bby011
10.1038/s41592-018-0254-1
10.1038/550451a
10.18637/jss.v089.i11
10.1038/s41586-018-0590-4
10.1126/science.aam7511
10.1016/j.mam.2017.07.002
10.15252/embr.201540946
10.1038/nmeth.4463
10.1038/s41586-019-0969-x
10.1093/bioinformatics/btw777
10.1137/090771806
10.1038/s41592-018-0033-z
10.1080/10618600.1996.10474713
10.1186/s13059-019-1738-8
10.1016/0022-247X(85)90131-3
10.1186/s13059-018-1431-3
10.1093/bioinformatics/btx196
10.1186/s12915-018-0580-x
10.1016/j.cell.2018.05.060
10.21105/joss.00861
10.1038/s41467-018-03405-7
10.1126/science.aam8999
10.5281/zenodo.3367116
10.1038/nature14966
10.1073/pnas.1617317113
10.1109/BigData.2013.6691583
10.1038/nrg3833
10.1038/nn.4216
10.1038/nmeth.4236
10.1007/978-3-319-95933-7_90
10.1186/s12864-018-4772-0
10.1109/MC.2009.263
10.1016/j.cels.2019.03.010
10.1126/science.1247651
10.1093/bioinformatics/btx792
ContentType Journal Article
Copyright The Author(s) 2020
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s13059-019-1900-3
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (selected full-text)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 9
ExternalDocumentID oai_doaj_org_article_760e574e9e9d481db75034a0f43ee19c
10.1186/s13059-019-1900-3
PMC6970290
31955711
10_1186_s13059_019_1900_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
123
8R4
8R5
ADTOC
AHSBF
H13
UNPAY
ID FETCH-LOGICAL-c704t-5b07f17ea4a777bd650b93312a920a15dff53609e96283ec6a6bff8da917e1cb3
IEDL.DBID BENPR
ISSN 1474-760X
1474-7596
IngestDate Fri Oct 03 12:51:59 EDT 2025
Sun Oct 26 03:12:50 EDT 2025
Tue Sep 30 17:00:08 EDT 2025
Wed Oct 01 13:14:49 EDT 2025
Thu Oct 02 07:15:58 EDT 2025
Tue Oct 14 14:11:19 EDT 2025
Mon Jul 21 05:57:00 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Wed Oct 01 03:54:47 EDT 2025
Sat Sep 06 07:24:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Julia
Dimension reduction
Cellular heterogeneity
R
Out-of-core
Single-cell RNA-seq
Sparse data format
Online/incremental algorithm
Randomized algorithm
Principal component analysis
Python
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c704t-5b07f17ea4a777bd650b93312a920a15dff53609e96283ec6a6bff8da917e1cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1399-8140
0000-0002-7261-2570
0000-0002-6569-5574
0000-0003-3797-2148
OpenAccessLink https://www.proquest.com/docview/2357629608?pq-origsite=%requestingapplication%&accountid=15518
PMID 31955711
PQID 2357629608
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_760e574e9e9d481db75034a0f43ee19c
unpaywall_primary_10_1186_s13059_019_1900_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6970290
proquest_miscellaneous_2440694313
proquest_miscellaneous_2342360629
proquest_journals_2357629608
pubmed_primary_31955711
crossref_citationtrail_10_1186_s13059_019_1900_3
crossref_primary_10_1186_s13059_019_1900_3
springer_journals_10_1186_s13059_019_1900_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-20
PublicationDateYYYYMMDD 2020-01-20
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Genome Biology
PublicationTitleAbbrev Genome Biol
PublicationTitleAlternate Genome Biol
PublicationYear 2020
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References AM Klein (1900_CR5) 2015; 161
1900_CR26
MB Cole (1900_CR42) 2019; 8
JN Campbell (1900_CR4) 2017; 20
1900_CR24
A Wagner (1900_CR78) 2016; 34
1900_CR131
1900_CR130
1900_CR132
1900_CR135
J Shin (1900_CR64) 2015; 17
1900_CR134
1900_CR137
1900_CR136
C Weinreb (1900_CR73) 2018; 34
1900_CR139
VY Kiselev (1900_CR74) 2017; 14
M Huang (1900_CR119) 2018; 15
AA Kolodziejczyk (1900_CR33) 2015; 58
R Broa (1900_CR38) 2014; 6
D Dijk (1900_CR52) 2018; 174
H Hotelling (1900_CR37) 1933; 24
E Becht (1900_CR72) 2019; 37
1900_CR15
SH Yip (1900_CR85) 2017; 45
L Balzano (1900_CR103) 2018; 106
R Durruthy-Durruthy (1900_CR9) 2014; 157
1900_CR19
Z Ji (1900_CR63) 2016; 44
1900_CR17
1900_CR93
1900_CR122
1900_CR94
1900_CR121
1900_CR99
1900_CR123
1900_CR97
1900_CR98
1900_CR125
1900_CR127
1900_CR129
S Aibar (1900_CR117) 2017; 14
X Han (1900_CR27) 2018; 172
N Halko (1900_CR108) 2011; 33
TS Andrews (1900_CR79) 2018; 59
L McInnes (1900_CR71) 2018; 3
E Azizi (1900_CR89) 2018; 5
L Hubert (1900_CR124) 1985; 2
JM Perkel (1900_CR113) 2019; 572
D van Dijk (1900_CR143) 2018; 174
1900_CR43
A Diaz (1900_CR62) 2016; 32
K Shekhar (1900_CR142) 2016; 166
Z Bai (1900_CR96) 1987
Y Koren (1900_CR128) 2009; 42
Huamin Li (1900_CR109) 2017; 43
T Stuart (1900_CR35) 2019; 20
1900_CR39
1900_CR140
C Trapnell (1900_CR1) 2015; 25
1900_CR141
AB Rosenberg (1900_CR41) 2018; 360
VY Kisekev (1900_CR118) 2018; 15
1900_CR144
J Baglama (1900_CR100) 2005; 27
1900_CR146
1900_CR34
1900_CR145
D Grun (1900_CR7) 2015; 525
1900_CR31
1900_CR147
E Oja (1900_CR105) 1985; 106
F Buettner (1900_CR8) 2015; 33
GXY Zheng (1900_CR22) 2017; 8
G Lacono (1900_CR116) 2018; 28
1900_CR68
K Achim (1900_CR10) 2015; 33
E Oja (1900_CR104) 1982; 15
R Ihaka (1900_CR111) 1996; 5
D Wang (1900_CR120) 2018; 16
CM Bishop (1900_CR126) 2006
A Zeisel (1900_CR18) 2015; 347
U Shaham (1900_CR56) 2017; 33
E Oja (1900_CR106) 1992; 5
E Liberty (1900_CR138) 2009; 109
1900_CR61
F Wagner (1900_CR46) 2015; 10
1900_CR67
M Büttner (1900_CR55) 2019; 16
1900_CR65
J Li (1900_CR48) 2016; 17
C Trapnell (1900_CR12) 2014; 32
1900_CR70
N Halko (1900_CR107) 2011; 53
Alex K. Shalek (1900_CR20) 2014; 510
O Rozenblatt-Rosen (1900_CR25) 2017; 550
A Levy (1900_CR95) 2000; 9
1900_CR59
GH Golub (1900_CR90) 2012
1900_CR57
Z Lin (1900_CR44) 2016; 113
1900_CR51
GC Linderman (1900_CR69) 2019; 16
M Baron (1900_CR6) 2016; 3
B Tasic (1900_CR21) 2016; 19
HPA Butler (1900_CR49) 2018; 36
Aaron T.L. Lun (1900_CR50) 2016; 5
1900_CR53
1900_CR54
B Wang (1900_CR75) 2017; 14
DA Jaitin (1900_CR16) 2014; 343
EZ Macosko (1900_CR2) 2015; 161
Aritra Bose (1900_CR133) 2019; 35
M Baron (1900_CR40) 2016; 3
K Pearson (1900_CR36) 1901; 2
Junyue Cao (1900_CR23) 2019; 566
F Pedregosa (1900_CR92) 2011; 12
1900_CR83
1900_CR88
1900_CR112
1900_CR86
1900_CR115
1900_CR87
1900_CR114
X Qiu (1900_CR13) 2017; 14
A Scialdone (1900_CR58) 2015; 85
VY Kiselev (1900_CR80) 2019; 20
K Shekhar (1900_CR3) 2016; 166
L Tian (1900_CR84) 2018; 14
G Abraham (1900_CR110) 2014; 9
V Svensson (1900_CR14) 2017; 13
TTM Consortium (1900_CR28) 2018; 562
O Stegle (1900_CR30) 2015; 16
JF Poulin (1900_CR32) 2016; 19
Kieran R Campbell (1900_CR66) 2017; 2
DJ McCarthy (1900_CR82) 2017; 33
A Wagner (1900_CR29) 2017; 34
1900_CR77
1900_CR102
R Satija (1900_CR11) 2015; 33
K Cerosaletti (1900_CR47) 2017; 199
JS Herman (1900_CR60) 2018; 15
1900_CR101
1900_CR76
1900_CR81
R Lasrado (1900_CR45) 2017; 356
A Senabouth (1900_CR91) 2019; 8
References_xml – volume: 15
  start-page: 359
  year: 2018
  ident: 1900_CR118
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4644
– volume: 36
  start-page: 411
  year: 2018
  ident: 1900_CR49
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4096
– volume: 5
  start-page: 2122
  year: 2016
  ident: 1900_CR50
  publication-title: F1000Research
  doi: 10.12688/f1000research.9501.2
– ident: 1900_CR87
– volume: 2
  start-page: 559
  issue: 11
  year: 1901
  ident: 1900_CR36
  publication-title: Phil Mag
  doi: 10.1080/14786440109462720
– ident: 1900_CR140
– volume: 161
  start-page: 1202
  year: 2015
  ident: 1900_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 33
  start-page: 2580
  issue: 5
  year: 2011
  ident: 1900_CR108
  publication-title: SIAM J Sci Comput
  doi: 10.1137/100804139
– volume: 34
  start-page: 1145
  issue: 11
  year: 2017
  ident: 1900_CR29
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3711
– volume: 172
  start-page: 1091
  issue: 5
  year: 2018
  ident: 1900_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– ident: 1900_CR102
– volume: 9
  start-page: 93766
  issue: 4
  year: 2014
  ident: 1900_CR110
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0093766
– volume: 15
  start-page: 379
  year: 2018
  ident: 1900_CR60
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4662
– volume: 13
  start-page: 599
  issue: 4
  year: 2017
  ident: 1900_CR14
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2017.149
– volume: 14
  start-page: 414
  issue: 4
  year: 2017
  ident: 1900_CR75
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4207
– ident: 1900_CR131
– volume: 35
  start-page: 3679
  issue: 19
  year: 2019
  ident: 1900_CR133
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz157
– volume: 20
  start-page: 484
  issue: 3
  year: 2017
  ident: 1900_CR4
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4495
– ident: 1900_CR93
  doi: 10.1186/s13059-017-1382-0
– volume-title: Matrix computations (Johns Hopkins Studies in the Mathematical Sciences), fourth edition
  year: 2012
  ident: 1900_CR90
– volume: 2
  start-page: 19
  year: 2017
  ident: 1900_CR66
  publication-title: Wellcome Open Research
  doi: 10.12688/wellcomeopenres.11087.1
– volume: 166
  start-page: 1306
  issue: 5
  year: 2016
  ident: 1900_CR142
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.054
– volume: 157
  start-page: 1
  year: 2014
  ident: 1900_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.036
– ident: 1900_CR121
  doi: 10.1038/s41467-018-04368-5
– ident: 1900_CR26
– ident: 1900_CR99
– ident: 1900_CR115
  doi: 10.25080/Majora-7b98e3ed-013
– ident: 1900_CR136
  doi: 10.24963/ijcai.2017/468
– volume: 16
  start-page: 243
  year: 2019
  ident: 1900_CR69
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0308-4
– volume: 3
  start-page: 346
  issue: 4
  year: 2016
  ident: 1900_CR6
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– ident: 1900_CR70
– volume: 37
  start-page: 38
  year: 2019
  ident: 1900_CR72
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4314
– ident: 1900_CR67
– volume: 19
  start-page: 1131
  issue: 9
  year: 2016
  ident: 1900_CR32
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4366
– ident: 1900_CR125
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: 1900_CR54
  doi: 10.1186/s12859-018-2226-y
– ident: 1900_CR88
  doi: 10.1186/s13073-017-0492-3
– volume: 16
  start-page: 320
  issue: 5
  year: 2018
  ident: 1900_CR120
  publication-title: Genom Proteomics Bioinforma
  doi: 10.1016/j.gpb.2018.08.003
– ident: 1900_CR15
  doi: 10.1186/s13059-018-1407-3
– volume: 347
  start-page: 1138
  issue: 6226
  year: 2015
  ident: 1900_CR18
  publication-title: Science
  doi: 10.1126/science.aaa1934
– ident: 1900_CR81
– ident: 1900_CR122
  doi: 10.1101/538652
– volume: 109
  start-page: 179
  issue: 3
  year: 2009
  ident: 1900_CR138
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2008.09.028
– ident: 1900_CR132
  doi: 10.1109/Allerton.2012.6483308
– volume: 106
  start-page: 1293
  issue: 8
  year: 2018
  ident: 1900_CR103
  publication-title: Proc IEEE
  doi: 10.1145/3004053
– ident: 1900_CR61
  doi: 10.1186/s13059-019-1639-x
– volume: 10
  start-page: e0143196
  issue: 11
  year: 2015
  ident: 1900_CR46
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0143196
– volume: 32
  start-page: 381
  year: 2014
  ident: 1900_CR12
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– volume: 44
  start-page: e117
  issue: 13
  year: 2016
  ident: 1900_CR63
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw430
– volume: 8
  start-page: giz087
  issue: 8
  year: 2019
  ident: 1900_CR91
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz087
– ident: 1900_CR145
  doi: 10.5281/zenodo.3341871
– volume: 199
  start-page: 323
  issue: 1
  year: 2017
  ident: 1900_CR47
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1700172
– volume: 572
  start-page: 141
  issue: 7767
  year: 2019
  ident: 1900_CR113
  publication-title: Nature
  doi: 10.1038/d41586-019-02310-3
– ident: 1900_CR77
  doi: 10.1186/s12859-016-0984-y
– volume: 161
  start-page: 1187
  year: 2015
  ident: 1900_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 1900_CR124
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1900_CR92
  publication-title: J Mach Learn Res
– volume-title: Pattern recognition and machine learning (information science and statistics)
  year: 2006
  ident: 1900_CR126
– volume: 33
  start-page: 495
  issue: 5
  year: 2015
  ident: 1900_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– ident: 1900_CR24
– ident: 1900_CR141
– volume: 14
  start-page: 979
  issue: 10
  year: 2017
  ident: 1900_CR13
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4402
– ident: 1900_CR19
  doi: 10.1186/s13059-016-0938-8
– volume: 33
  start-page: 155
  issue: 2
  year: 2015
  ident: 1900_CR8
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3102
– volume: 174
  start-page: 716
  issue: 3
  year: 2018
  ident: 1900_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 20
  start-page: 257
  issue: 5
  year: 2019
  ident: 1900_CR35
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0093-7
– volume: 166
  start-page: 1308
  year: 2016
  ident: 1900_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.054
– volume: 8
  start-page: 1
  issue: 14049
  year: 2017
  ident: 1900_CR22
  publication-title: Nat Commun
– volume: 85
  start-page: 54
  year: 2015
  ident: 1900_CR58
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.06.021
– volume: 45
  start-page: 179
  issue: 22
  year: 2017
  ident: 1900_CR85
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx828
– ident: 1900_CR34
  doi: 10.3389/fgene.2019.00317
– ident: 1900_CR97
– volume: 32
  start-page: 2219
  issue: 14
  year: 2016
  ident: 1900_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw201
– volume: 33
  start-page: 503
  issue: 5
  year: 2015
  ident: 1900_CR10
  publication-title: Nat Comput Biol
– volume: 58
  start-page: 610
  issue: 4
  year: 2015
  ident: 1900_CR33
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 14
  start-page: e1006361
  issue: 8
  year: 2018
  ident: 1900_CR84
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006361
– volume-title: Templates for the solution of algebraic eigenvalue problems, a practical guide
  year: 1987
  ident: 1900_CR96
– volume: 15
  start-page: 267
  year: 1982
  ident: 1900_CR104
  publication-title: J Math Biol
  doi: 10.1007/BF00275687
– ident: 1900_CR31
  doi: 10.1186/s13059-016-0927-y
– ident: 1900_CR139
  doi: 10.1101/574574
– ident: 1900_CR83
– ident: 1900_CR17
  doi: 10.1186/s13059-018-1407-3
– volume: 25
  start-page: 1491
  issue: 10
  year: 2015
  ident: 1900_CR1
  publication-title: Genome Res
  doi: 10.1101/gr.190595.115
– volume: 9
  start-page: 1371
  issue: 8
  year: 2000
  ident: 1900_CR95
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.855432
– volume: 5
  start-page: 927
  year: 1992
  ident: 1900_CR106
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80089-9
– ident: 1900_CR137
  doi: 10.1101/729202
– ident: 1900_CR144
  doi: 10.1038/ncomms14049
– ident: 1900_CR68
– ident: 1900_CR147
– volume: 510
  start-page: 363
  issue: 7505
  year: 2014
  ident: 1900_CR20
  publication-title: Nature
  doi: 10.1038/nature13437
– volume: 17
  start-page: 360
  issue: 3
  year: 2015
  ident: 1900_CR64
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.07.013
– ident: 1900_CR39
– ident: 1900_CR57
  doi: 10.1101/461954
– volume: 27
  start-page: 19
  issue: 1
  year: 2005
  ident: 1900_CR100
  publication-title: SIAM J Sci Comput
  doi: 10.1137/04060593X
– ident: 1900_CR135
– volume: 20
  start-page: 273
  issue: 5
  year: 2019
  ident: 1900_CR80
  publication-title: Nat Rev
  doi: 10.1038/s41576-018-0088-9
– ident: 1900_CR112
– ident: 1900_CR101
  doi: 10.1137/1.9780898719628
– volume: 24
  start-page: 417
  year: 1933
  ident: 1900_CR37
  publication-title: J Educ Psychol
  doi: 10.1037/h0071325
– ident: 1900_CR86
  doi: 10.1186/s13059-015-0844-5
– ident: 1900_CR76
  doi: 10.1101/215723
– ident: 1900_CR51
  doi: 10.1186/s13059-016-0888-1
– volume: 28
  start-page: 878
  issue: 6
  year: 2018
  ident: 1900_CR116
  publication-title: Genome Res
  doi: 10.1101/gr.230771.117
– ident: 1900_CR130
  doi: 10.1093/bib/bby011
– ident: 1900_CR129
– volume: 16
  start-page: 43
  issue: 1
  year: 2019
  ident: 1900_CR55
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0254-1
– volume: 550
  start-page: 451
  year: 2017
  ident: 1900_CR25
  publication-title: Nature
  doi: 10.1038/550451a
– ident: 1900_CR114
  doi: 10.18637/jss.v089.i11
– volume: 562
  start-page: 367
  issue: 7727
  year: 2018
  ident: 1900_CR28
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 356
  start-page: 722
  issue: 6339
  year: 2017
  ident: 1900_CR45
  publication-title: Science
  doi: 10.1126/science.aam7511
– volume: 59
  start-page: 114
  year: 2018
  ident: 1900_CR79
  publication-title: Mol Asp Med
  doi: 10.1016/j.mam.2017.07.002
– volume: 17
  start-page: 178
  issue: 2
  year: 2016
  ident: 1900_CR48
  publication-title: EMBO Reports
  doi: 10.15252/embr.201540946
– volume: 14
  start-page: 1083
  year: 2017
  ident: 1900_CR117
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4463
– volume: 6
  start-page: 2812
  issue: 2812
  year: 2014
  ident: 1900_CR38
  publication-title: R Soc Chem
– volume: 3
  start-page: 346
  issue: 4
  year: 2016
  ident: 1900_CR40
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 566
  start-page: 496
  issue: 7745
  year: 2019
  ident: 1900_CR23
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 33
  start-page: 1179
  issue: 8
  year: 2017
  ident: 1900_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw777
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 1900_CR107
  publication-title: SIAM Rev Surv Rev
  doi: 10.1137/090771806
– volume: 15
  start-page: 539
  year: 2018
  ident: 1900_CR119
  publication-title: Nat Methods
  doi: 10.1038/s41592-018-0033-z
– volume: 5
  start-page: 299
  issue: 3
  year: 1996
  ident: 1900_CR111
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1996.10474713
– ident: 1900_CR123
  doi: 10.1186/s13059-019-1738-8
– volume: 106
  start-page: 69
  issue: 1
  year: 1985
  ident: 1900_CR105
  publication-title: J Math Anal Appl
  doi: 10.1016/0022-247X(85)90131-3
– ident: 1900_CR59
  doi: 10.1186/s13059-018-1431-3
– volume: 33
  start-page: 2539
  issue: 16
  year: 2017
  ident: 1900_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx196
– ident: 1900_CR94
  doi: 10.1186/s12915-018-0580-x
– ident: 1900_CR98
– volume: 5
  start-page: 1293
  issue: 23
  year: 2018
  ident: 1900_CR89
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.060
– volume: 3
  start-page: 861
  issue: 29
  year: 2018
  ident: 1900_CR71
  publication-title: J Open Source Softw
  doi: 10.21105/joss.00861
– volume: 174
  start-page: 716
  issue: 3
  year: 2018
  ident: 1900_CR143
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– ident: 1900_CR53
  doi: 10.1038/s41467-018-03405-7
– volume: 34
  start-page: 1145
  issue: 11
  year: 2016
  ident: 1900_CR78
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3711
– volume: 360
  start-page: 176
  issue: 6385
  year: 2018
  ident: 1900_CR41
  publication-title: Science
  doi: 10.1126/science.aam8999
– ident: 1900_CR146
  doi: 10.5281/zenodo.3367116
– volume: 525
  start-page: 251
  year: 2015
  ident: 1900_CR7
  publication-title: Nature
  doi: 10.1038/nature14966
– volume: 113
  start-page: 14662
  issue: 51
  year: 2016
  ident: 1900_CR44
  publication-title: PNAS
  doi: 10.1073/pnas.1617317113
– ident: 1900_CR127
  doi: 10.1109/BigData.2013.6691583
– volume: 16
  start-page: 133
  issue: 3
  year: 2015
  ident: 1900_CR30
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3833
– volume: 19
  start-page: 335
  issue: 2
  year: 2016
  ident: 1900_CR21
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4216
– volume: 14
  start-page: 483
  issue: 5
  year: 2017
  ident: 1900_CR74
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4236
– ident: 1900_CR43
  doi: 10.1007/978-3-319-95933-7_90
– ident: 1900_CR65
  doi: 10.1186/s12864-018-4772-0
– volume: 43
  start-page: 1
  issue: 3
  year: 2017
  ident: 1900_CR109
  publication-title: ACM Transactions on Mathematical Software
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 1900_CR128
  publication-title: IEEE Comput
  doi: 10.1109/MC.2009.263
– volume: 8
  start-page: 315
  issue: 4
  year: 2019
  ident: 1900_CR42
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2019.03.010
– ident: 1900_CR134
– volume: 343
  start-page: 776
  issue: 6172
  year: 2014
  ident: 1900_CR16
  publication-title: Science
  doi: 10.1126/science.1247651
– volume: 34
  start-page: 1246
  issue: 7
  year: 2018
  ident: 1900_CR73
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx792
SSID ssj0019426
ssj0017866
Score 2.5608118
Snippet Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq...
Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq datasets,...
Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq...
BACKGROUND: Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale scRNA-seq...
Abstract Background Principal component analysis (PCA) is an essential method for analyzing single-cell RNA-seq (scRNA-seq) datasets, but for large-scale...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Accuracy
Algorithms
Animal Genetics and Genomics
Benchmarking
Benchmarking Studies
Bioinformatics
Biomedical and Life Sciences
Cell cycle
Cellular heterogeneity
Clustering
Computer applications
Data analysis
data collection
Datasets
Dimension reduction
Evolutionary Biology
Gene expression
genome
Genomics
guidelines
Human Genetics
Life Sciences
memory
Microbial Genetics and Genomics
Online/incremental algorithm
Pancreas
Plant Genetics and Genomics
Principal Component Analysis
Randomized algorithm
Ribonucleic acid
RNA
RNA-Seq - methods
sequence analysis
Single-Cell Analysis - methods
Single-cell RNA-seq
Software
SummonAdditionalLinks – databaseName: DOAJ (selected full-text)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDBejULYdRrvPtN3IYKcVU9vxR3xsx0oZrIfRQm_Gdhw6yNJH33uM_veTE7-sj43XS6-2QhxJln-SFQngU5RM0Qb3t0BwQQT3nDgnGImOcadrx6lJ_w5_P1dnl-Lblby61-or5YSN5YFHxh1pRaPUIppoGoHgyqeLN-FoK6oYmQnJ-tLarJypfH9g8ODJd5isVkdztNQy5QUZggcgGp61U2go1v8_hPlvouR0W_ocni77mbv77bru3oF0ugMvMpIsj8cv2IUnsX8J22NvybtXcHGC-nf9yw2x8HI2xtSRPuWQ3_T4ptLleiQl4taySxnhZI4Si2UKH3SRpJh--eP8mOR0axx9DZenXy--nJHcQoEETcWCSE91y3R0wmmtfYN4zJuqQjkYTh2TTdvKSlFkrkKcEYNyyrdt3Tj04iILvnoDWz0u6h2UDJ_SrR7aWYlaGF8Hz2Xw1DXBm2AKoCuW2pDri6c2F50d_Ixa2VEKFqVgkxRsVcDn6ZHZWFxjE_FJktNEmOpiDwOoLTZri31IWwo4WEnZ5s06t6nij-LoytUFfJymcZslPrs-3iwTDeJOdPa42UAjht-IK4ZrfTsqzrRatHRSasYK0GsqtfY56zP9z-uh3LcymnJDCzhcKd_fpW_g1uGknw_zdu8xeLsPz3gKRlCGpvcAtha3y_geEdvCfxg25x_KeDnD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB-0IupD8dvVKiv4ZAkm2XxsHtvSUgT7IC30LSTZLBW228O7Q_rfO8nurT0sV_q6O7nLzkfml5nJBOBLlEzRBu1bILgggntOnBOMRMe407Xj1KSzwz9O1PGZ-H4uz8dm0ekszM38PavVtzmusTJV9BiCrguXjIfwCH2UynlZdTAlDAx6mjFpeeuwNbeTu_PfBin_r4yc0qPP4Mmyn7nrP67rbnigo-ewPULHcm-Q9Qt4EPuX8Hi4TPL6FZzuo8JdXLoc_C5nQxAd6VPR-FWP_1S6sQFJiUC17FIJOJmjiGKZ4gVdJCmIX_482SNjfTU-fQ1nR4enB8dkvDOBBE3FgkhPdct0dMJprX2DAMybqkLGG04dk03bykpRE41CYBGDcsq3bd043LZFFnz1BrZ6nNQ7KBmO0q3O91eJWhhfB89l8NQ1wZtgCqArltowNhRP91p0Nm8samUHKViUgk1SsFUBX6chs6Gbxibi_SSniTA1ws4PUD_saFdWKxqlFhE_qBGIvX3KywpHW1HFyEwoYGclZTta59ymFj-K496tLuDz9BrtKvHZ9fFqmWgQaOLujpsNNCKfG64YzvXtoDjTbHFpk1IzVoBeU6m1z1l_0_-6yP29ldGUG1rA7kr5_k19A7d2J_28m7fv7_XbH-ApT2EGynBR3YGtxe9l_IhYbOE_ZSv8C6DuKdw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88P0RGChIPDGlsxN_xI8dYpqQqBBapfIU2Y6zoWVptbZC46_nnLhhhakIibcoOSf25Xfns30fAG8dp4KUKN8MjYuEpSZNtGY0cZqmWuY6JcrHDn8ai6MJ-zjl01AOaNHGVjWzcxcSEA2vhqDXrd7GC3u2Py-rTtxzsb9ALcy9z49KcHJDpXITdgRHw3wAO5Px59HXNr7Iex1yJfprQabhjPPad2zMUm0y_-ss0D8dKfvT1Ltwe9XM9eV3XddXJqzD-1Cvh9r5qZwNV0sztD9-ywL5n3jxAO4FwzYedUh8CDdc8whudaUuLx_D8QGKw-m5brfm43m3xY_03qV91uDnYh3So8RoRse1d1BPFgggF_vdjNol_ogh_jIeJcH7G-8-gcnhh-P3R0mo6JBYSdgy4YbIikqnmZZSmhLNQ6OyDGGhUqIpL6uKZ4IopwSaPc4KLUxV5aXGRaWj1mRPYdBgp55DTLGVrGRbXYvlTJncmpRbQ3RpjbIqArL-g4UN6c591Y26aJc9uSg6ZhXIrMIzq8gieNc3mXe5PrYRH3hY9IQ-TXd7Y3ZxUgSpLxBmjkvmcEAlw5WB8afGTJOKZc5RZSPYXYOqCLpjUfgERCJFAOcRvOkfo9R7PuvGzVaeBs1gXHumagsNa6OaM4p9fdbhtO8tKl7OJaURyA0Ebwxn80nz7bTNPi6UJKkiEeytsf6r61u4tdeLw995--KfqF_CndRvghCKKn8XBsuLlXuFluLSvA4a4CdAR18h
  priority: 102
  providerName: Unpaywall
Title Benchmarking principal component analysis for large-scale single-cell RNA-sequencing
URI https://link.springer.com/article/10.1186/s13059-019-1900-3
https://www.ncbi.nlm.nih.gov/pubmed/31955711
https://www.proquest.com/docview/2357629608
https://www.proquest.com/docview/2342360629
https://www.proquest.com/docview/2440694313
https://pubmed.ncbi.nlm.nih.gov/PMC6970290
https://genomebiology.biomedcentral.com/track/pdf/10.1186/s13059-019-1900-3
https://doaj.org/article/760e574e9e9d481db75034a0f43ee19c
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017866
  issn: 1474-7596
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017866
  issn: 1474-7596
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: RPM
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: AAJSJ
  dateStart: 20000201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1474-760X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0019426
  issn: 1474-760X
  databaseCode: C6C
  dateStart: 20000102
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdtylj3MPY9b13wYE8ropKsD-thjCS0lMFCCQ1kezGSLbeDzEmbhNH_fidbdhc2sheDLRnLd6fTT3enO4Q-OEElKWB-cwAXmDPLsDGcYmcoMyo1jGh_dvjrWJ5P-ZeZmO2hcXsWxodVtjqxVtTFIvc28hOflkUywNvp5-UN9lWjvHe1LaFhQmmF4lOdYmwfHTCfGauHDoan44tJ51dQqUcv4UZz1hw-8iGJQsvg9KSpPFmBahc-kEhjWDFBU20tW3V2_39B0r8jKzv36iP0cFMtzd0vM5__sYKdPUGPA_SMB42sPEV7rnqGHjTFKO-eo8shCOz1T1Mbz-NlY4SH_j7ofFHBl2ITEpjEAHTjuQ8hxytgsYu9vWHusHcCxJPxAIf4bHj6Ak3PTi9H5zjUXMC5InyNhSWqpMoZbpRStgAAZ3WSAOM0I4aKoixFIol2WgIwcbk00pZlWhjY9jma2-Ql6lUwqNcopvCWKlVd_4qnXNs0t0zklpgitzrXESItSbM8JCT3dTHmWb0xSWXWcCEDLmSeC1kSoY_dK8smG8euzkPPp66jT6RdP1jcXmVhXmZKEicUd_BDBQfsbr1flxtS8sQ5qvMIHbVczsLsXmX3shih910zzEtPZ1O5xcb3AaAKu0Omd_Th9bnjhMJYXzWC040WVKMQitIIqS2R2vqd7Zbqx3WdH1xqRZgmETpuhe9-6DuoddzJ5_9p-2Y3Wd6iQ-btEoSCFj5CvfXtxr0D8La2fbSvZqof5iXcjeSoXxtC4DoZfoeW6fhi8O030eFCLA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6ocED4pvAgCDBC1M023Hs-GFCK2zq2FahaZP2FuzEYUglLWurqX-O38Y5cTIqUHnaYxInOd-d78N3vgN4axMqSIHrm6NxEXFmWKQ1p5HVlGmZakaUOzt8PBSDM_75PDlfg1_tWRiXVtnKxFpQF-Pc7ZFvu7IsgqG9nX6Y_Ixc1ygXXW1baGjfWqHYqUuM-YMdh3ZxhS7cdOfgE9L7HWP7e6cfB5HvMhDlkvBZlBgiSyqt5lpKaQo0WQx6-QiqYkTTpCjLJBZEWSVQFdtcaGHKMi00OjqW5ibG796CdR7jbHuw3t8bfjnp4hgyddaSv1CcNYedXApkooQPstJUbE9RlSQucUlFqKFRMi6pybqbwL9M4L8zObtw7l3YmFcTvbjSo9EfGnP_Ptzzpm642_DmA1iz1UO43TS_XDyC0z4ukIsfut6sDyfNpj-Od0nu4wr_FGpfMCVEwzocuZT1aIosZUO3vzGykQs6hCfD3cjng-Pdx3B2I9h_Ar0KgXoGIcW3ZCnrfls85cqkuWFJbogucqNyFQBpUZrlvgC668MxympHKBVZQ4UMqZA5KmRxAO-7VyZN9Y9Vg_uOTt1AV7i7vjG-_JZ5OZBJQWwiucUJFRx9BePiyFyTksfWUpUHsNlSOfPSZJpd834Ab7rHKAccnnVlx3M3Bg1j9EaZWjGG1-ecY4qwPm0Yp4MWRXGSSEoDkEsstTSd5SfV94u6HrlQkjBFAthqme8a9BXY2ur48_-4fb4aLa9hY3B6fJQdHQwPX8Ad5vZECEUNsAm92eXcvkTDcWZe-dUZwtebFgi_AWcwedY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEdcD4iZQIEg8UVm1HR_xY7uwKtcKoVbqm2UnDkUK2VV3V6j_nnEuWFEt4jUZ7zqeGc_nmfEMwOsgmaIl6rdAcEEE95w4JxgJjnGnc8epiXeHP8_U0Yn4cCpP-z6nyyHbfQhJdncaYpWmZrW_KKtOxXO1v8SdV8Y8H0PQoOFGchWuCTRusYXBRE3GMIJB-9OHMi8dtmGM2pr9lwHNv_Mlx6Dpbbi5bhbu4qer6z_s0vQu3OkBZXrQScA9uBKa-3C9azF58QCOD1EMz3641iWeLjrXOtLHVPJ5g_-Uur4sSYrwNa1jYjhZIuNCGr0IdSDRtZ9-nR2QPusanz6Ek-m748kR6TspkEJTsSLSU10xHZxwWmtfIizzJsuQHYZTx2RZVTJT1ASjEG6EQjnlqyovHR7mAit89gh2GpzUE0gZjtKVbrtaiVwYnxeey8JTVxbeFCYBOiypLfoy47HbRW3b40aubMcFi1ywkQs2S-DNOGTR1djYRnwY-TQSxvLY7YP5-Tfba5vVigapRcAPKgUich-jtcLRSmQhMFMksDtw2fY6u7Sx8I_ieKLLE3g1vkZti-vsmjBfRxqEn3jm42YLjWhvE2cM5_q4E5xxtrjhSakZS0BviNTG52y-ab6ftVW_ldGUG5rA3iB8v6e-ZbX2Rvn899o-_a_ffgk3vryd2k_vZx-fwS0e_RCU4a67Czur83V4jmBt5V-0CvkLrwk1Eg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9BJwQ88P0RGChIPDGlsxN_xI8dYpqQqBBapfIU2Y6zoWVptbZC46_nnLhhhakIibcoOSf25Xfns30fAG8dp4KUKN8MjYuEpSZNtGY0cZqmWuY6JcrHDn8ai6MJ-zjl01AOaNHGVjWzcxcSEA2vhqDXrd7GC3u2Py-rTtxzsb9ALcy9z49KcHJDpXITdgRHw3wAO5Px59HXNr7Iex1yJfprQabhjPPad2zMUm0y_-ss0D8dKfvT1Ltwe9XM9eV3XddXJqzD-1Cvh9r5qZwNV0sztD9-ywL5n3jxAO4FwzYedUh8CDdc8whudaUuLx_D8QGKw-m5brfm43m3xY_03qV91uDnYh3So8RoRse1d1BPFgggF_vdjNol_ogh_jIeJcH7G-8-gcnhh-P3R0mo6JBYSdgy4YbIikqnmZZSmhLNQ6OyDGGhUqIpL6uKZ4IopwSaPc4KLUxV5aXGRaWj1mRPYdBgp55DTLGVrGRbXYvlTJncmpRbQ3RpjbIqArL-g4UN6c591Y26aJc9uSg6ZhXIrMIzq8gieNc3mXe5PrYRH3hY9IQ-TXd7Y3ZxUgSpLxBmjkvmcEAlw5WB8afGTJOKZc5RZSPYXYOqCLpjUfgERCJFAOcRvOkfo9R7PuvGzVaeBs1gXHumagsNa6OaM4p9fdbhtO8tKl7OJaURyA0Ebwxn80nz7bTNPi6UJKkiEeytsf6r61u4tdeLw995--KfqF_CndRvghCKKn8XBsuLlXuFluLSvA4a4CdAR18h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+principal+component+analysis+for+large-scale+single-cell+RNA-sequencing&rft.jtitle=Genome+Biology&rft.date=2020-01-20&rft.pub=Springer+Nature+B.V&rft.issn=1474-7596&rft.eissn=1474-760X&rft.volume=21&rft.spage=1&rft_id=info:doi/10.1186%2Fs13059-019-1900-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon