Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans

Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 18; no. 1; pp. 321 - 14
Main Authors Haraksingh, Rajini R., Abyzov, Alexej, Urban, Alexander Eckehart
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.04.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-017-3658-x

Cover

Abstract Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
AbstractList Abstract Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data.BACKGROUNDHigh-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data.The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters.RESULTSThe arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters.High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.CONCLUSIONSHigh-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. Keywords: Copy Number Variation (CNV), Array Comparative Genome Hybridization (aCGH), SNP array
ArticleNumber 321
Audience Academic
Author Abyzov, Alexej
Haraksingh, Rajini R.
Urban, Alexander Eckehart
Author_xml – sequence: 1
  givenname: Rajini R.
  surname: Haraksingh
  fullname: Haraksingh, Rajini R.
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Department of Genetics, Stanford University School of Medicine
– sequence: 2
  givenname: Alexej
  surname: Abyzov
  fullname: Abyzov, Alexej
  organization: Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic
– sequence: 3
  givenname: Alexander Eckehart
  surname: Urban
  fullname: Urban, Alexander Eckehart
  email: aeurban@stanford.edu
  organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Department of Genetics, Stanford University School of Medicine, Program on Genetics of Brain Function, Stanford Center for Genomics and Personalized Medicine, Tasha and John Morgridge Faculty Scholar, Stanford Child Health Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28438122$$D View this record in MEDLINE/PubMed
BookMark eNqNkstq3DAUhk1paS7tA3RTBN0kC6eSLMvyphCGXgIhhV6yFbJ85FGwJVeyk8wL9LmryaRJJrSlGGxz9P2_pP-cveyp8w6y7BXBR4QI_jYSKjjLManygpciv36S7RJWkZwSzp4--N_J9mK8wAkUtHye7VDBCkEo3c1-LvwwBliCi_YS0AjB-DAopwHptKKCjd4hb9DSdss8QPT9PNlUUiGoFRp7Na0FEaU36sD5AfIr2wJa-HGFzuahgYDOk426UR0szs4PkXKqX0UbkXVoOafd4ovsmVF9hJe33_3s-4f33xaf8tPPH08Wx6e5rnAx5brkXNR1JeqS1NowKCulS2W4YVxXjcEaaNvUuC40TnevAOsGNwSrsq2M4KrYz042vq1XF3IMdlBhJb2y8qbgQydVmKzuQTYVLRnjLaW8YbhlDTfGYNEyXBStYSR50Y3X7Ea1ulJ9f2dIsFw3SG4aJFPuct0geZ1E7zaicW4GaDW4Kah-6yTbK84uZecvZckw5SVNBge3BsH_mCFOcrBRQ98rB36OkoiaCFEXxRp98wi98HNI2UdJCyYKijnG91Sn0q2tMz7tq9em8rgkpKgIqXiijv5ApaeFweo0lsam-pbgcEuQmAmup07NMcqTr1-22dcPQ7lL4_eYJqDaADr4GAMYqe10M1HpFLb_Z97kkfJ_enTb2JhY10G4z-3vol_JIhvZ
CitedBy_id crossref_primary_10_3389_fgene_2019_00761
crossref_primary_10_1186_s13039_022_00631_z
crossref_primary_10_3390_cancers13246283
crossref_primary_10_3390_ijms23042143
crossref_primary_10_1177_2047487319854552
crossref_primary_10_1186_s12920_021_00948_5
crossref_primary_10_1016_j_jmoldx_2019_01_010
crossref_primary_10_1186_s12885_020_07695_3
crossref_primary_10_2217_epi_2022_0453
crossref_primary_10_5734_JGM_2021_18_1_31
crossref_primary_10_1093_nar_gkac076
crossref_primary_10_1182_bloodadvances_2020003643
crossref_primary_10_1186_s12864_021_08082_3
crossref_primary_10_1158_1078_0432_CCR_20_4068
crossref_primary_10_12688_f1000research_24887_1
crossref_primary_10_1063_1_5037882
crossref_primary_10_1002_ajmg_a_63145
crossref_primary_10_1136_jmg_2024_110422
crossref_primary_10_3390_brainsci14030273
crossref_primary_10_3389_fneur_2018_00958
crossref_primary_10_7554_eLife_80165
crossref_primary_10_1186_s12967_024_05468_1
crossref_primary_10_1002_jdn_10397
crossref_primary_10_1111_acer_14581
crossref_primary_10_1016_j_ygeno_2024_110962
crossref_primary_10_3390_jpm12091452
crossref_primary_10_1080_14737159_2021_1887731
crossref_primary_10_1515_medgen_2020_2001
crossref_primary_10_1080_15384101_2020_1836439
crossref_primary_10_1136_jmedgenet_2018_105272
crossref_primary_10_3389_fimmu_2018_00636
crossref_primary_10_1080_14737159_2018_1479253
crossref_primary_10_1186_s12859_020_03859_x
crossref_primary_10_1136_jmedgenet_2019_106525
crossref_primary_10_1016_j_jpsychires_2018_06_001
crossref_primary_10_1097_HS9_0000000000000707
crossref_primary_10_3390_ijms23147862
crossref_primary_10_1016_j_gene_2023_147237
crossref_primary_10_1111_jpn_12922
crossref_primary_10_1016_j_meomic_2020_100002
crossref_primary_10_1038_s41408_022_00610_y
crossref_primary_10_1002_acn3_51011
crossref_primary_10_1093_nargab_lqae033
crossref_primary_10_1016_j_aca_2018_03_047
crossref_primary_10_1016_j_scr_2017_09_006
crossref_primary_10_3390_genes9110524
crossref_primary_10_1002_gcc_5
crossref_primary_10_1016_j_rasd_2018_04_006
crossref_primary_10_1371_journal_pcbi_1007069
crossref_primary_10_1038_s41598_020_59922_3
crossref_primary_10_1093_brain_awab233
crossref_primary_10_1136_jmedgenet_2021_107902
crossref_primary_10_1093_clinchem_hvaa002
Cites_doi 10.1371/journal.pone.0027859
10.1056/NEJMoa1203382
10.1038/ng.238
10.1038/nbt.1852
10.1038/nature02168
10.1038/nature08516
10.1038/nature09871
10.1111/cdev.12051
10.1111/cdev.12050
10.1038/nature15394
10.1146/annurev-genom-092010-110715
10.1038/ng.3092
10.1101/gr.114876.110
10.1038/nbt.2835
10.1093/nar/30.1.207
10.1038/nature09534
10.1038/ejhg.2013.77
10.1016/j.stem.2010.12.003
10.1038/gim.2012.152
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12864-017-3658-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Science (Gale)
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 14
ExternalDocumentID oai_doaj_org_article_b725446d226b40d4b6fff08d4033df41
10.1186/s12864-017-3658-x
PMC5402652
A511371176
28438122
10_1186_s12864_017_3658_x
Genre Journal Article
Comparative Study
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
AIXEN
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
2VQ
4.4
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c703t-c566899789519cf4e57ac5af6f46c7bf0ce2db9093c04717e0cb0b10a5d7f86a3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Fri Oct 03 12:51:59 EDT 2025
Sun Oct 26 03:08:27 EDT 2025
Tue Sep 30 16:59:52 EDT 2025
Wed Oct 01 13:37:51 EDT 2025
Tue Oct 07 05:27:33 EDT 2025
Mon Oct 20 21:42:43 EDT 2025
Mon Oct 20 16:36:39 EDT 2025
Thu Oct 16 15:01:50 EDT 2025
Wed Feb 19 02:43:51 EST 2025
Thu Apr 24 23:11:18 EDT 2025
Wed Oct 01 03:03:35 EDT 2025
Sat Sep 06 07:21:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Array Comparative Genome Hybridization (aCGH)
Copy Number Variation (CNV)
SNP array
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-c566899789519cf4e57ac5af6f46c7bf0ce2db9093c04717e0cb0b10a5d7f86a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3658-x
PMID 28438122
PQID 2348320600
PQPubID 44682
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_b725446d226b40d4b6fff08d4033df41
unpaywall_primary_10_1186_s12864_017_3658_x
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5402652
proquest_miscellaneous_1891889332
proquest_journals_2348320600
gale_infotracmisc_A511371176
gale_infotracacademiconefile_A511371176
gale_incontextgauss_ISR_A511371176
pubmed_primary_28438122
crossref_citationtrail_10_1186_s12864_017_3658_x
crossref_primary_10_1186_s12864_017_3658_x
springer_journals_10_1186_s12864_017_3658_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-24
PublicationDateYYYYMMDD 2017-04-24
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References RR Haraksingh (3658_CR2) 2011; 6
LC Laurent (3658_CR5) 2011; 8
SA McCarroll (3658_CR19) 2008; 40
Consortium GP (3658_CR3) 2010; 467
Q Wang (3658_CR7) 2015; 6
DF Conrad (3658_CR17) 2010; 464
JM Zook (3658_CR18) 2014; 32
CP Schaaf (3658_CR12) 2011; 12
W Bi (3658_CR10) 2013; 15
AL Beaudet (3658_CR13) 2013; 84
D Pinto (3658_CR15) 2011; 29
3658_CR4
A Abyzov (3658_CR14) 2011; 21
Y Zhang (3658_CR1) 2013; 84
BP Coe (3658_CR8) 2014; 46
RJ Wapner (3658_CR11) 2012; 367
J Wiszniewska (3658_CR9) 2014; 22
R Edgar (3658_CR20) 2002; 30
SM Hussein (3658_CR6) 2011; 471
IH Consortium (3658_CR16) 2003; 426
25941534 - Front Genet. 2015 Apr 20;6:149
24531798 - Nat Biotechnol. 2014 Mar;32(3):246-51
21552272 - Nat Biotechnol. 2011 May 08;29(6):512-20
25217958 - Nat Genet. 2014 Oct;46(10):1063-71
21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18
23311723 - Child Dev. 2013 Jan-Feb;84(1):121-32
22140474 - PLoS One. 2011;6(11):e27859
21324876 - Genome Res. 2011 Jun;21(6):974-84
14685227 - Nature. 2003 Dec 18;426(6968):789-96
21801020 - Annu Rev Genomics Hum Genet. 2011;12:25-51
23215555 - N Engl J Med. 2012 Dec 6;367(23):2175-84
20981092 - Nature. 2010 Oct 28;467(7319):1061-73
23311762 - Child Dev. 2013 Jan-Feb;84(1):34-48
11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
18776908 - Nat Genet. 2008 Oct;40(10):1166-74
23695279 - Eur J Hum Genet. 2014 Jan;22(1):79-87
26432246 - Nature. 2015 Oct 1;526(7571):75-81
21368824 - Nature. 2011 Mar 3;471(7336):58-62
23238528 - Genet Med. 2013 Jun;15(6):450-7
19812545 - Nature. 2010 Apr 1;464(7289):704-12
References_xml – volume: 6
  start-page: e27859
  issue: 11
  year: 2011
  ident: 3658_CR2
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0027859
– volume: 367
  start-page: 2175
  issue: 23
  year: 2012
  ident: 3658_CR11
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1203382
– volume: 40
  start-page: 1166
  issue: 10
  year: 2008
  ident: 3658_CR19
  publication-title: Nat Genet
  doi: 10.1038/ng.238
– volume: 29
  start-page: 512
  issue: 6
  year: 2011
  ident: 3658_CR15
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1852
– volume: 426
  start-page: 789
  issue: 6968
  year: 2003
  ident: 3658_CR16
  publication-title: Nature
  doi: 10.1038/nature02168
– volume: 464
  start-page: 704
  issue: 7289
  year: 2010
  ident: 3658_CR17
  publication-title: Nature
  doi: 10.1038/nature08516
– volume: 6
  start-page: 149
  year: 2015
  ident: 3658_CR7
  publication-title: Front Genet
– volume: 471
  start-page: 58
  issue: 7336
  year: 2011
  ident: 3658_CR6
  publication-title: Nature
  doi: 10.1038/nature09871
– volume: 84
  start-page: 34
  issue: 1
  year: 2013
  ident: 3658_CR1
  publication-title: Child Dev
  doi: 10.1111/cdev.12051
– volume: 84
  start-page: 121
  issue: 1
  year: 2013
  ident: 3658_CR13
  publication-title: Child Dev
  doi: 10.1111/cdev.12050
– ident: 3658_CR4
  doi: 10.1038/nature15394
– volume: 12
  start-page: 25
  year: 2011
  ident: 3658_CR12
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-092010-110715
– volume: 46
  start-page: 1063
  issue: 10
  year: 2014
  ident: 3658_CR8
  publication-title: Nat Genet
  doi: 10.1038/ng.3092
– volume: 21
  start-page: 974
  issue: 6
  year: 2011
  ident: 3658_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.114876.110
– volume: 32
  start-page: 246
  issue: 3
  year: 2014
  ident: 3658_CR18
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2835
– volume: 30
  start-page: 207
  issue: 1
  year: 2002
  ident: 3658_CR20
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.207
– volume: 467
  start-page: 1061
  issue: 7319
  year: 2010
  ident: 3658_CR3
  publication-title: Nature
  doi: 10.1038/nature09534
– volume: 22
  start-page: 79
  issue: 1
  year: 2014
  ident: 3658_CR9
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2013.77
– volume: 8
  start-page: 106
  issue: 1
  year: 2011
  ident: 3658_CR5
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.003
– volume: 15
  start-page: 450
  issue: 6
  year: 2013
  ident: 3658_CR10
  publication-title: Genet Med
  doi: 10.1038/gim.2012.152
– reference: 21552272 - Nat Biotechnol. 2011 May 08;29(6):512-20
– reference: 25217958 - Nat Genet. 2014 Oct;46(10):1063-71
– reference: 25941534 - Front Genet. 2015 Apr 20;6:149
– reference: 23311723 - Child Dev. 2013 Jan-Feb;84(1):121-32
– reference: 22140474 - PLoS One. 2011;6(11):e27859
– reference: 21368824 - Nature. 2011 Mar 3;471(7336):58-62
– reference: 19812545 - Nature. 2010 Apr 1;464(7289):704-12
– reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10
– reference: 21801020 - Annu Rev Genomics Hum Genet. 2011;12:25-51
– reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96
– reference: 18776908 - Nat Genet. 2008 Oct;40(10):1166-74
– reference: 21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18
– reference: 23695279 - Eur J Hum Genet. 2014 Jan;22(1):79-87
– reference: 24531798 - Nat Biotechnol. 2014 Mar;32(3):246-51
– reference: 26432246 - Nature. 2015 Oct 1;526(7571):75-81
– reference: 23238528 - Genet Med. 2013 Jun;15(6):450-7
– reference: 23311762 - Child Dev. 2013 Jan-Feb;84(1):34-48
– reference: 21324876 - Genome Res. 2011 Jun;21(6):974-84
– reference: 23215555 - N Engl J Med. 2012 Dec 6;367(23):2175-84
– reference: 20981092 - Nature. 2010 Oct 28;467(7319):1061-73
SSID ssj0017825
Score 2.4480436
Snippet Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs)...
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the...
Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs)...
Abstract Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 321
SubjectTerms Algorithms
Animal Genetics and Genomics
Array Comparative Genome Hybridization (aCGH)
Array processors
Arrays
Biomedical and Life Sciences
Comparative analysis
Computer programs
Copy number
Copy Number Variation (CNV)
Copy number variations
Cost analysis
Cytogenetics
Data analysis
DNA Copy Number Variations
DNA probes
Gene sequencing
Genetic aspects
Genome, Human - genetics
Genomes
Genomics
Health aspects
High resolution
Human and rodent genomics
Human body
Humans
Laboratories
Life Sciences
Mathematical analysis
Microarrays
Microbial Genetics and Genomics
Oligonucleotide Array Sequence Analysis - methods
Plant Genetics and Genomics
Probes
Proteomics
Research Article
Sensitivity analysis
Single-nucleotide polymorphism
SNP array
Software
Standard deviation
Whole genome sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJAQ8IL4JDGQQEh-TNSdx7ORxVEwDiT4Am_Zm3Tg2q1TSqmm19Q_wu7lO3KwBaXvhpQ-1XdW-x_cey9fnEvIGrKo4xIK52HAmQAqGULbMiTSxAgTE7Sv-r2N5dCy-nGanW6W-fE5YJw_cLdx-qbyIlqyQJpSCV6KUzjmeV4KnaeXaJ-sJz4vNYSrcH2Dcy8IdZpzL_Qa9sPTZFrihMOSyi0EUasX6_3XJWzHp73zJ_tL0Drm1quewPofpdCsuHd4jdwOhpAfdRO6TG7Z-QG52JSbXD8lvv-EX9qzLU6fzy3cC1PQlCOnMUa9bzPDsHaBIYbGANZ1PYekHNBQ_qRd0_WXZ-aSydDSbr-m4rSdCT_BnWgvTd6PxyXsKQemETmraFgFsHpHjw08_Rkcs1F5gBn3AkhmkeXgUUzkysMI4YTMFJgMnnZBGlY4bm1RlwYvUcIxvynJT8jLmkFXK5RLSx2SnntX2KaGZsmlSFp4oCpFliBoohAEEQ1WUAHlE-MYW2gRhcl8fY6rbA0oudWc-jebT3nz6IiIf-iHzTpXjqs4fvYH7jl5Qu_0CYaYDzPR1MIvIaw8P7SUzap-T8xNWTaM_f_-mD5CzpiqOlYzI29DJzXAGBsITB1wHr7I16Lk76Il72gybNyjUwac0OkkFul-ODDUir_pmP9LnydV2tmp0nBdxjhQ0TSLypANtP28kIkjPEmxRAzgPFmbYUk_OWsVxpPWJzHDk3gb4l3_rinXf6_fG9VZ69j-s9JzcTvwm54IlYpfsLBcr-wJJ47J82fqHP-VmZ9A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJwQ8IO4EBjIIictkzUkcJ3lAaKs2DSQqNNi0N8tx7K1SSULTausf4HdznDjpAtJ46UNsR7XP7XN8_B2E3kgd51T6jBhfUcIkZwRUWRPDwkAzyaTf3OL_OuGHx-zLaXS6gSbdXRibVtn5xMZR56Wy38h3gpCB8lGIz5-qX8RWjbKnq10JDelKK-QfG4qxG2gzsMxYI7S5tz_5dtSfK0A8jNzZpp_wnRq8M7dZGGBoEIrJ5SA6NST-_7rqK7Hq7zzK_jD1Drq1LCq5upCz2ZV4dXAP3XVAE--2mnEfbejiAbrZlp5cPUS_rSOY6_M2fx1X6_sDWPWlCXFpsOUzJrAndyqK5XwuV7iayYUdUGP4xZbo9acmF9Nc43FZrfCkqTOCT-A1jeTxu_Hk5D2WjgEFTwvcFAesH6Hjg_0f40PiajIQBb5hQRTAP9iixQkgs1QZpqNYqkgabhhXcWao0kGepTQNFYW4F2uqMpr5VEZ5bBIuw8doVJSFfopwFOswyFILIBmLItAmmTIlQUnyNJMy8RDtZCGUIyy3dTNmotm4JFy04hMgPmHFJy499KEfUrVsHdd13rMC7jtaou3mQTk_E85uRRZbDjeeA0rNGM1Zxo0xNMkZDcPcMN9Dr616CEulUdhcnTO5rGvx-fuR2AUsG8a-H3MPvXWdTAkzUNJdfYB1sOxbg55bg55g62rY3GmhcL6mFmvL8NCrvtmOtPlzhS6XtfCT1E8AmoaBh560StvPGwAKwLYAWuKBOg8WZthSTM8bJnKA-wGPYOR2p_jrv3XNum_3tvF_KT27fsrP0e3Ami9lJGBbaLSYL_ULgImL7KWz_T9B-GYP
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQEAIeEHcyBjIIictk4SSOnTyWimkg0Qeg094sx7G3Sl1SNa1G_wC_m2PHzRZAQ7z0IT6OGp_bZ_n4Owi9UkZUVMWM2FhTwhRnBEzZEMvSxDDFVOxv8X-Z8MMp-3ycHYd73O222n17JOkjtXfrnL9vIZJyVzEBTgFpkwBwvJ45Ni8w4mky6o8OIOVl4fjyr9MGCcjz9P8ZjS-lo99LJfvz0tvo5rpeqM25ms8vpaSDu-hOwJJ41Cn_Hrpm6vvoRtddcvMA_XS-vjSnXYk6XlxcEcC67z6IG4sdZTGBbXewQqyWS7XBi7lauQkthl_suFzPDDmfVQaPm8UGT3wrEXwEr_HKxW_Gk6O3WAWSEzyrse__1z5E04OP38eHJLRdIBrcf0U0IDzYhYkcwFehLTOZUDpTllvGtSgt1SapyoIWqaaQ2oShuqRlTFVWCZtzlT5CO3VTmycIZ8KkSVk4jMhYloHBqIJpBXZQFaVSeYToVhdSB05y1xpjLv3eJOeyU58E9UmnPvkjQu_6KYuOkOMq4Q9Owb2g49L2D5rliQyuKUvhaNp4BUC0ZLRiJbfW0rxiNE0ry-IIvXTmIR1bRu3KcU7Uum3lp29f5QjgairiWPAIvQ5CtoEv0CrcboB1cARbA8m9gSS4sx4Ob61QhnDSyiRlEHkpgNMIveiH3UxXIlebZt3KOC_iHNBnmkTocWe0_XcDBgFklsCIGJjzYGGGI_Xs1JONA6JPeAYz97eGf_G3rlj3_d43_q2l3f9691N0K3HeTBlJ2B7aWS3X5hkAw1X53AeCX6wOXNk
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1tb9MwELbQJgR84P0lMJBBSLxM7pzEcZKPpWIaSFQI6DQ-WY5jb2VdUjWtRvkB_G7OiZs1Aw0h8aWK6nOUnO_Oj5W75xB6LnWcU-kzYnxFCZOcETBlTQwLA80kk35dxf9hyPdG7P1BdOAohWwtTHaiLDnpyVhVvfUC9EkdteFCHe9Mc9M4e8J3Koiv3OZRgKvAZkoATm7yCGD5BtocDT_2v9bVRbFPAjgXuK-af5zX2Zdq-v7fg_TaLnU-g7L9jHoNXVkUU7k8lZPJ2k61ewN9W71jk6By3FvMs576cY7-8b8o4Sa67vAs7jcGeAtd0sVtdLnpcLm8g37aeDPTR02aPJ6elSlg1XZAxKXBljaZwNHfeQKWs5lc4ulEzu2ECsMvrp9Wk9NxrvGgnC7xsG5ngvfhNrWB4ZeD4f4rLB3RCh4XuO5BWN1Fo923XwZ7xLV-IApC0JwoQJlwEowTAICpMkxHsVSRNNwwruLMUKWDPEtpGioKqxtrqjKa-VRGeWwSLsN7aKMoC_0A4SjWYZClFqcyFkVgtDJlSoIt5mkmZeIhulp4oRwvum3PMRH1-SjholGvAPUKq17x3UOv2ynThhTkIuE31ppaQcvnXf9Rzg6FCw8iiy1VHM8BDGeM5izjxhia5IyGYW6Y76Fn1haFZewobErQoVxUlXj3-ZPoA2QOY9-PuYdeOCFTWiORrsIC9GBJvjqSWx1JCCmqO7wyeeFCWiWCkEH0pwCQPfS0HbYzbZpeoctFJfwk9RNAwGHgofuNh7TvDTgI0GEAI3HHdzqK6Y4U46Oa8BxOFQGPYOb2ysvOHusCvW-3jvj3VXr4T9KP0NXAehtlJGBbaGM-W-jHAE7n2RMXdn4BEuGKYw
  priority: 102
  providerName: Unpaywall
Title Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans
URI https://link.springer.com/article/10.1186/s12864-017-3658-x
https://www.ncbi.nlm.nih.gov/pubmed/28438122
https://www.proquest.com/docview/2348320600
https://www.proquest.com/docview/1891889332
https://pubmed.ncbi.nlm.nih.gov/PMC5402652
https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3658-x
https://doaj.org/article/b725446d226b40d4b6fff08d4033df41
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection (NC LIVE)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbGKgQ8IO4ERmUQEhJTwEkcO3lAqKs2DaRV06Coe7Icx94qlaQkrba-8dM5TtJ0gWm8RG1tR825fo7t7yD0VmqeEulR13iKuFQy6oIpa9fQwNdUUulVp_iPRuxwTL9OwskWWpe3agRYXju1s_WkxsXsw-Wv1Wdw-E-Vw0fsYwkxltm9FOAukFBdgJQ9SFSxreRwRDeLCpAMw-qwEfdcH6YJzSLntbfopKmKzf_fmH0laf29obJdVb2H7iyzuVxdyNnsSuI6eIDuN4gTD2oTeYi2dPYI3a5rUK4eo982IhT6vN7IjuebgwRYtTUKcW6wJTZ2YXLe2CqWRSFXeD6TCzugxHDFlvH1p3YvpqnGw3y-wqOq4Aj-AbeR9aiGBAVPM1zVByyfoPHB_vfhoduUZXAVhIeFqwABwiyNRwDOYmWoDrlUoTTMUKZ4YojSfprEJA4UAVFzTVRCEo_IMOUmYjJ4irazPNPPEQ65DvwkthiS0jAEg5IxVRLsJI0TKSMHkbUWhGo4y23pjJmo5i4RE7XiBChOWMWJSwe9b4fMa8KOmzrvWdW2HS3XdvVDXpyJxnVFwi2NG0sBqCaUpDRhxhgSpZQEQWqo56A31jCEZdPI7HadM7ksS_Hl24kYAJwNuOdx5qB3TSeTwxMo2Zx-ADlYAq5Oz51OT3B31W1e259Ye4vwAwqRmQB4ddDrttmOtFvoMp0vS-FFsRcBOg18Bz2rzbV9bsAogNx8aOEdQ-4IptuSTc8rMnJA_D4LYeTu2uQ3f-sGue-2XvF_Lb24WSIv0V3fOi6hrk930PaiWOpXgBQXSR_d4hPeR729_dHxCXwbsmG_euvSryIDXMc-fO6NR8eD0z9_XWn_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwJDDAIxGWK5iTO7WFCW9nUsq1CY5v2ZhzH3iqVJCStuv4Bfha_jePcuoA0nvaSh9qOYp_P51IffwehN1z6MeEWNZUliEm5R02AsjQVdWxJOeVWeYv_YOj1j-mXU_d0Cf1u7sLotMpGJ5aKOk6F_o98w3YogI-Aff6U_TR11Sh9utqU0OB1aYV4s6QYqy927Mn5DEK4YnPwGeT91rZ3d456fbOuMmAKQPvEFODQQNDhB-BrhEJR6fpcuFx5inrCjxQR0o6jECJ_QUCT-5KIiEQW4W7sq8DjDrz3BlqhDg0h-FvZ3hl-PWzPMcD-uvVZqhV4GwVYA09nfcDGBtNvXnSsYVk04F_TcMk2_p232R7e3kar0yTj8xkfjy_Zx9276E7t2OKtCon30JJM7qObVanL-QP0SyueXJ5X-fI4W9xXwKIthYhThTV_spnLZktgnud8jrMxn-gBBYYn1sSyP6Q5G8US99JsjodlXRN8Aq8pkYbf94YnHzCvGVfwKMFlMcLiITq-Fuk8QstJmsgnCLu-dOwo1A4rpa4L6OUhFRxAGYcR54GBSCMLJmqCdF2nY8zKQCnwWCU-BuJjWnzswkAf2yFZxQ5yVedtLeC2oyb2Ln9I8zNW6wkW-ZozzovBK44oiWnkKaVIEFPiOLGiloFea3gwTd2R6NygMz4tCjb4dsi2wHd2fMvyPQO9qzupFGYgeH3VAtZBs311eq51eoJuEd3mBoWs1m0FW-xEA71qm_VIna-XyHRaMCsIrQBcYcc20OMKtO28wSECN9GGFr8D587CdFuS0XnJfA7hhe25MHK9Af7is65Y9_V2b_xfSk-vnvJLtNo_Othn-4Ph3jN0y9ZbmVDTpmtoeZJP5XNwUSfRi1oPYPT9ulXPH38Io1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQELcHxJ3AAIOQuEzWnMSxk8dRqDYuFQI27c1yHHurVJKoaTX6B_jdHCdutgAa4qUP8XHU-Nw-y8ffQei5MqKgKmTEhpoSpjgjYMqGWBZHhimmwvYW_6cJ391n7w-TQ9_ntFlXu6-PJLs7DY6lqVxs14XtXDzl2w1EVe6qJ8BBIIUSAJEXGSQ318JgxEf9MQKkv8QfZf512iAZtZz9f0bmM6np97LJ_uz0GrqyLGu1OlGz2Zn0NL6BrntciXc6Q7iJLpjyFrrUdZpc3UY_nd_PzXFXro7r0-sCWPedCHFlsaMvJrAF9xaJ1XyuVrieqYWb0GD4xY7X9bshJ9PC4FFVr_CkbSuCD-A1raLxy9Hk4BVWnvAET0vc9gJs7qD98btvo13iWzAQDaFgQTSgPdiRiRSAWKYtM4lQOlGWW8a1yC3VJiryjGaxppDmhKE6p3lIVVIIm3IV30UbZVWa-wgnwsRRnjm8yFiSgPGojGkFNlFkuVJpgOhaF1J7fnLXJmMm231KymWnPgnqk0598keAXvdT6o6c4zzhN07BvaDj1W4fVPMj6d1U5sJRtvECQGnOaMFybq2lacFoHBeWhQF65sxDOuaM0pXmHKll08i9r1_kDkDXWISh4AF64YVsBV-glb_pAOvgyLYGkpsDSXBtPRxeW6H0oaWRUcwgClMAqgF62g-7ma5crjTVspFhmoUpINE4CtC9zmj77wY8AigtghExMOfBwgxHyulxSzwO6D7iCczcWhv-6d86Z923et_4t5Ye_Ne7n6DLn9-O5ce9yYeH6GrkHJsyErFNtLGYL80jwIuL_HEbE34BP-Rj6w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1tb9MwELbQJgR84P0lMJBBSLxM7pzEcZKPpWIaSFQI6DQ-WY5jb2VdUjWtRvkB_G7OiZs1Aw0h8aWK6nOUnO_Oj5W75xB6LnWcU-kzYnxFCZOcETBlTQwLA80kk35dxf9hyPdG7P1BdOAohWwtTHaiLDnpyVhVvfUC9EkdteFCHe9Mc9M4e8J3Koiv3OZRgKvAZkoATm7yCGD5BtocDT_2v9bVRbFPAjgXuK-af5zX2Zdq-v7fg_TaLnU-g7L9jHoNXVkUU7k8lZPJ2k61ewN9W71jk6By3FvMs576cY7-8b8o4Sa67vAs7jcGeAtd0sVtdLnpcLm8g37aeDPTR02aPJ6elSlg1XZAxKXBljaZwNHfeQKWs5lc4ulEzu2ECsMvrp9Wk9NxrvGgnC7xsG5ngvfhNrWB4ZeD4f4rLB3RCh4XuO5BWN1Fo923XwZ7xLV-IApC0JwoQJlwEowTAICpMkxHsVSRNNwwruLMUKWDPEtpGioKqxtrqjKa-VRGeWwSLsN7aKMoC_0A4SjWYZClFqcyFkVgtDJlSoIt5mkmZeIhulp4oRwvum3PMRH1-SjholGvAPUKq17x3UOv2ynThhTkIuE31ppaQcvnXf9Rzg6FCw8iiy1VHM8BDGeM5izjxhia5IyGYW6Y76Fn1haFZewobErQoVxUlXj3-ZPoA2QOY9-PuYdeOCFTWiORrsIC9GBJvjqSWx1JCCmqO7wyeeFCWiWCkEH0pwCQPfS0HbYzbZpeoctFJfwk9RNAwGHgofuNh7TvDTgI0GEAI3HHdzqK6Y4U46Oa8BxOFQGPYOb2ysvOHusCvW-3jvj3VXr4T9KP0NXAehtlJGBbaGM-W-jHAE7n2RMXdn4BEuGKYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+performance+comparison+of+high-resolution+array+platforms+for+genome-wide+Copy+Number+Variation+analysis+in+humans&rft.jtitle=BMC+genomics&rft.au=Haraksingh%2C+Rajini+R&rft.au=Abyzov%2C+Alexej&rft.au=Urban%2C+Alexander+Eckehart&rft.date=2017-04-24&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-017-3658-x&rft.externalDocID=A511371176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon