Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans
Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools...
        Saved in:
      
    
          | Published in | BMC genomics Vol. 18; no. 1; pp. 321 - 14 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        24.04.2017
     BioMed Central Ltd Springer Nature B.V BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2164 1471-2164  | 
| DOI | 10.1186/s12864-017-3658-x | 
Cover
| Abstract | Background
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data.
Results
The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters.
Conclusions
High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. | 
    
|---|---|
| AbstractList | Abstract Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4–489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0–86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data.BACKGROUNDHigh-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data.The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters.RESULTSThe arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters.High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.CONCLUSIONSHigh-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. Results The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. Conclusions High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies. Keywords: Copy Number Variation (CNV), Array Comparative Genome Hybridization (aCGH), SNP array  | 
    
| ArticleNumber | 321 | 
    
| Audience | Academic | 
    
| Author | Abyzov, Alexej Haraksingh, Rajini R. Urban, Alexander Eckehart  | 
    
| Author_xml | – sequence: 1 givenname: Rajini R. surname: Haraksingh fullname: Haraksingh, Rajini R. organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Department of Genetics, Stanford University School of Medicine – sequence: 2 givenname: Alexej surname: Abyzov fullname: Abyzov, Alexej organization: Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic – sequence: 3 givenname: Alexander Eckehart surname: Urban fullname: Urban, Alexander Eckehart email: aeurban@stanford.edu organization: Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Department of Genetics, Stanford University School of Medicine, Program on Genetics of Brain Function, Stanford Center for Genomics and Personalized Medicine, Tasha and John Morgridge Faculty Scholar, Stanford Child Health Research Institute  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28438122$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkstq3DAUhk1paS7tA3RTBN0kC6eSLMvyphCGXgIhhV6yFbJ85FGwJVeyk8wL9LmryaRJJrSlGGxz9P2_pP-cveyp8w6y7BXBR4QI_jYSKjjLManygpciv36S7RJWkZwSzp4--N_J9mK8wAkUtHye7VDBCkEo3c1-LvwwBliCi_YS0AjB-DAopwHptKKCjd4hb9DSdss8QPT9PNlUUiGoFRp7Na0FEaU36sD5AfIr2wJa-HGFzuahgYDOk426UR0szs4PkXKqX0UbkXVoOafd4ovsmVF9hJe33_3s-4f33xaf8tPPH08Wx6e5rnAx5brkXNR1JeqS1NowKCulS2W4YVxXjcEaaNvUuC40TnevAOsGNwSrsq2M4KrYz042vq1XF3IMdlBhJb2y8qbgQydVmKzuQTYVLRnjLaW8YbhlDTfGYNEyXBStYSR50Y3X7Ea1ulJ9f2dIsFw3SG4aJFPuct0geZ1E7zaicW4GaDW4Kah-6yTbK84uZecvZckw5SVNBge3BsH_mCFOcrBRQ98rB36OkoiaCFEXxRp98wi98HNI2UdJCyYKijnG91Sn0q2tMz7tq9em8rgkpKgIqXiijv5ApaeFweo0lsam-pbgcEuQmAmup07NMcqTr1-22dcPQ7lL4_eYJqDaADr4GAMYqe10M1HpFLb_Z97kkfJ_enTb2JhY10G4z-3vol_JIhvZ | 
    
| CitedBy_id | crossref_primary_10_3389_fgene_2019_00761 crossref_primary_10_1186_s13039_022_00631_z crossref_primary_10_3390_cancers13246283 crossref_primary_10_3390_ijms23042143 crossref_primary_10_1177_2047487319854552 crossref_primary_10_1186_s12920_021_00948_5 crossref_primary_10_1016_j_jmoldx_2019_01_010 crossref_primary_10_1186_s12885_020_07695_3 crossref_primary_10_2217_epi_2022_0453 crossref_primary_10_5734_JGM_2021_18_1_31 crossref_primary_10_1093_nar_gkac076 crossref_primary_10_1182_bloodadvances_2020003643 crossref_primary_10_1186_s12864_021_08082_3 crossref_primary_10_1158_1078_0432_CCR_20_4068 crossref_primary_10_12688_f1000research_24887_1 crossref_primary_10_1063_1_5037882 crossref_primary_10_1002_ajmg_a_63145 crossref_primary_10_1136_jmg_2024_110422 crossref_primary_10_3390_brainsci14030273 crossref_primary_10_3389_fneur_2018_00958 crossref_primary_10_7554_eLife_80165 crossref_primary_10_1186_s12967_024_05468_1 crossref_primary_10_1002_jdn_10397 crossref_primary_10_1111_acer_14581 crossref_primary_10_1016_j_ygeno_2024_110962 crossref_primary_10_3390_jpm12091452 crossref_primary_10_1080_14737159_2021_1887731 crossref_primary_10_1515_medgen_2020_2001 crossref_primary_10_1080_15384101_2020_1836439 crossref_primary_10_1136_jmedgenet_2018_105272 crossref_primary_10_3389_fimmu_2018_00636 crossref_primary_10_1080_14737159_2018_1479253 crossref_primary_10_1186_s12859_020_03859_x crossref_primary_10_1136_jmedgenet_2019_106525 crossref_primary_10_1016_j_jpsychires_2018_06_001 crossref_primary_10_1097_HS9_0000000000000707 crossref_primary_10_3390_ijms23147862 crossref_primary_10_1016_j_gene_2023_147237 crossref_primary_10_1111_jpn_12922 crossref_primary_10_1016_j_meomic_2020_100002 crossref_primary_10_1038_s41408_022_00610_y crossref_primary_10_1002_acn3_51011 crossref_primary_10_1093_nargab_lqae033 crossref_primary_10_1016_j_aca_2018_03_047 crossref_primary_10_1016_j_scr_2017_09_006 crossref_primary_10_3390_genes9110524 crossref_primary_10_1002_gcc_5 crossref_primary_10_1016_j_rasd_2018_04_006 crossref_primary_10_1371_journal_pcbi_1007069 crossref_primary_10_1038_s41598_020_59922_3 crossref_primary_10_1093_brain_awab233 crossref_primary_10_1136_jmedgenet_2021_107902 crossref_primary_10_1093_clinchem_hvaa002  | 
    
| Cites_doi | 10.1371/journal.pone.0027859 10.1056/NEJMoa1203382 10.1038/ng.238 10.1038/nbt.1852 10.1038/nature02168 10.1038/nature08516 10.1038/nature09871 10.1111/cdev.12051 10.1111/cdev.12050 10.1038/nature15394 10.1146/annurev-genom-092010-110715 10.1038/ng.3092 10.1101/gr.114876.110 10.1038/nbt.2835 10.1093/nar/30.1.207 10.1038/nature09534 10.1038/ejhg.2013.77 10.1016/j.stem.2010.12.003 10.1038/gim.2012.152  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s12864-017-3658-x | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Science (Gale) ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2164 | 
    
| EndPage | 14 | 
    
| ExternalDocumentID | oai_doaj_org_article_b725446d226b40d4b6fff08d4033df41 10.1186/s12864-017-3658-x PMC5402652 A511371176 28438122 10_1186_s12864_017_3658_x  | 
    
| Genre | Journal Article Comparative Study  | 
    
| GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION -A0 3V. ACRMQ ADINQ AIXEN ALIPV C24 CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM 2VQ 4.4 ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c703t-c566899789519cf4e57ac5af6f46c7bf0ce2db9093c04717e0cb0b10a5d7f86a3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2164 | 
    
| IngestDate | Fri Oct 03 12:51:59 EDT 2025 Sun Oct 26 03:08:27 EDT 2025 Tue Sep 30 16:59:52 EDT 2025 Wed Oct 01 13:37:51 EDT 2025 Tue Oct 07 05:27:33 EDT 2025 Mon Oct 20 21:42:43 EDT 2025 Mon Oct 20 16:36:39 EDT 2025 Thu Oct 16 15:01:50 EDT 2025 Wed Feb 19 02:43:51 EST 2025 Thu Apr 24 23:11:18 EDT 2025 Wed Oct 01 03:03:35 EDT 2025 Sat Sep 06 07:21:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Array Comparative Genome Hybridization (aCGH) Copy Number Variation (CNV) SNP array  | 
    
| Language | English | 
    
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c703t-c566899789519cf4e57ac5af6f46c7bf0ce2db9093c04717e0cb0b10a5d7f86a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3658-x | 
    
| PMID | 28438122 | 
    
| PQID | 2348320600 | 
    
| PQPubID | 44682 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b725446d226b40d4b6fff08d4033df41 unpaywall_primary_10_1186_s12864_017_3658_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_5402652 proquest_miscellaneous_1891889332 proquest_journals_2348320600 gale_infotracmisc_A511371176 gale_infotracacademiconefile_A511371176 gale_incontextgauss_ISR_A511371176 pubmed_primary_28438122 crossref_citationtrail_10_1186_s12864_017_3658_x crossref_primary_10_1186_s12864_017_3658_x springer_journals_10_1186_s12864_017_3658_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-04-24 | 
    
| PublicationDateYYYYMMDD | 2017-04-24 | 
    
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-24 day: 24  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC genomics | 
    
| PublicationTitleAbbrev | BMC Genomics | 
    
| PublicationTitleAlternate | BMC Genomics | 
    
| PublicationYear | 2017 | 
    
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC  | 
    
| References | RR Haraksingh (3658_CR2) 2011; 6 LC Laurent (3658_CR5) 2011; 8 SA McCarroll (3658_CR19) 2008; 40 Consortium GP (3658_CR3) 2010; 467 Q Wang (3658_CR7) 2015; 6 DF Conrad (3658_CR17) 2010; 464 JM Zook (3658_CR18) 2014; 32 CP Schaaf (3658_CR12) 2011; 12 W Bi (3658_CR10) 2013; 15 AL Beaudet (3658_CR13) 2013; 84 D Pinto (3658_CR15) 2011; 29 3658_CR4 A Abyzov (3658_CR14) 2011; 21 Y Zhang (3658_CR1) 2013; 84 BP Coe (3658_CR8) 2014; 46 RJ Wapner (3658_CR11) 2012; 367 J Wiszniewska (3658_CR9) 2014; 22 R Edgar (3658_CR20) 2002; 30 SM Hussein (3658_CR6) 2011; 471 IH Consortium (3658_CR16) 2003; 426 25941534 - Front Genet. 2015 Apr 20;6:149 24531798 - Nat Biotechnol. 2014 Mar;32(3):246-51 21552272 - Nat Biotechnol. 2011 May 08;29(6):512-20 25217958 - Nat Genet. 2014 Oct;46(10):1063-71 21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18 23311723 - Child Dev. 2013 Jan-Feb;84(1):121-32 22140474 - PLoS One. 2011;6(11):e27859 21324876 - Genome Res. 2011 Jun;21(6):974-84 14685227 - Nature. 2003 Dec 18;426(6968):789-96 21801020 - Annu Rev Genomics Hum Genet. 2011;12:25-51 23215555 - N Engl J Med. 2012 Dec 6;367(23):2175-84 20981092 - Nature. 2010 Oct 28;467(7319):1061-73 23311762 - Child Dev. 2013 Jan-Feb;84(1):34-48 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10 18776908 - Nat Genet. 2008 Oct;40(10):1166-74 23695279 - Eur J Hum Genet. 2014 Jan;22(1):79-87 26432246 - Nature. 2015 Oct 1;526(7571):75-81 21368824 - Nature. 2011 Mar 3;471(7336):58-62 23238528 - Genet Med. 2013 Jun;15(6):450-7 19812545 - Nature. 2010 Apr 1;464(7289):704-12  | 
    
| References_xml | – volume: 6 start-page: e27859 issue: 11 year: 2011 ident: 3658_CR2 publication-title: PLoS One doi: 10.1371/journal.pone.0027859 – volume: 367 start-page: 2175 issue: 23 year: 2012 ident: 3658_CR11 publication-title: N Engl J Med doi: 10.1056/NEJMoa1203382 – volume: 40 start-page: 1166 issue: 10 year: 2008 ident: 3658_CR19 publication-title: Nat Genet doi: 10.1038/ng.238 – volume: 29 start-page: 512 issue: 6 year: 2011 ident: 3658_CR15 publication-title: Nat Biotechnol doi: 10.1038/nbt.1852 – volume: 426 start-page: 789 issue: 6968 year: 2003 ident: 3658_CR16 publication-title: Nature doi: 10.1038/nature02168 – volume: 464 start-page: 704 issue: 7289 year: 2010 ident: 3658_CR17 publication-title: Nature doi: 10.1038/nature08516 – volume: 6 start-page: 149 year: 2015 ident: 3658_CR7 publication-title: Front Genet – volume: 471 start-page: 58 issue: 7336 year: 2011 ident: 3658_CR6 publication-title: Nature doi: 10.1038/nature09871 – volume: 84 start-page: 34 issue: 1 year: 2013 ident: 3658_CR1 publication-title: Child Dev doi: 10.1111/cdev.12051 – volume: 84 start-page: 121 issue: 1 year: 2013 ident: 3658_CR13 publication-title: Child Dev doi: 10.1111/cdev.12050 – ident: 3658_CR4 doi: 10.1038/nature15394 – volume: 12 start-page: 25 year: 2011 ident: 3658_CR12 publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev-genom-092010-110715 – volume: 46 start-page: 1063 issue: 10 year: 2014 ident: 3658_CR8 publication-title: Nat Genet doi: 10.1038/ng.3092 – volume: 21 start-page: 974 issue: 6 year: 2011 ident: 3658_CR14 publication-title: Genome Res doi: 10.1101/gr.114876.110 – volume: 32 start-page: 246 issue: 3 year: 2014 ident: 3658_CR18 publication-title: Nat Biotechnol doi: 10.1038/nbt.2835 – volume: 30 start-page: 207 issue: 1 year: 2002 ident: 3658_CR20 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.207 – volume: 467 start-page: 1061 issue: 7319 year: 2010 ident: 3658_CR3 publication-title: Nature doi: 10.1038/nature09534 – volume: 22 start-page: 79 issue: 1 year: 2014 ident: 3658_CR9 publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2013.77 – volume: 8 start-page: 106 issue: 1 year: 2011 ident: 3658_CR5 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.12.003 – volume: 15 start-page: 450 issue: 6 year: 2013 ident: 3658_CR10 publication-title: Genet Med doi: 10.1038/gim.2012.152 – reference: 21552272 - Nat Biotechnol. 2011 May 08;29(6):512-20 – reference: 25217958 - Nat Genet. 2014 Oct;46(10):1063-71 – reference: 25941534 - Front Genet. 2015 Apr 20;6:149 – reference: 23311723 - Child Dev. 2013 Jan-Feb;84(1):121-32 – reference: 22140474 - PLoS One. 2011;6(11):e27859 – reference: 21368824 - Nature. 2011 Mar 3;471(7336):58-62 – reference: 19812545 - Nature. 2010 Apr 1;464(7289):704-12 – reference: 11752295 - Nucleic Acids Res. 2002 Jan 1;30(1):207-10 – reference: 21801020 - Annu Rev Genomics Hum Genet. 2011;12:25-51 – reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96 – reference: 18776908 - Nat Genet. 2008 Oct;40(10):1166-74 – reference: 21211785 - Cell Stem Cell. 2011 Jan 7;8(1):106-18 – reference: 23695279 - Eur J Hum Genet. 2014 Jan;22(1):79-87 – reference: 24531798 - Nat Biotechnol. 2014 Mar;32(3):246-51 – reference: 26432246 - Nature. 2015 Oct 1;526(7571):75-81 – reference: 23238528 - Genet Med. 2013 Jun;15(6):450-7 – reference: 23311762 - Child Dev. 2013 Jan-Feb;84(1):34-48 – reference: 21324876 - Genome Res. 2011 Jun;21(6):974-84 – reference: 23215555 - N Engl J Med. 2012 Dec 6;367(23):2175-84 – reference: 20981092 - Nature. 2010 Oct 28;467(7319):1061-73  | 
    
| SSID | ssj0017825 | 
    
| Score | 2.4480436 | 
    
| Snippet | Background
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs)... High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the... Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs)... Abstract Background High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 321 | 
    
| SubjectTerms | Algorithms Animal Genetics and Genomics Array Comparative Genome Hybridization (aCGH) Array processors Arrays Biomedical and Life Sciences Comparative analysis Computer programs Copy number Copy Number Variation (CNV) Copy number variations Cost analysis Cytogenetics Data analysis DNA Copy Number Variations DNA probes Gene sequencing Genetic aspects Genome, Human - genetics Genomes Genomics Health aspects High resolution Human and rodent genomics Human body Humans Laboratories Life Sciences Mathematical analysis Microarrays Microbial Genetics and Genomics Oligonucleotide Array Sequence Analysis - methods Plant Genetics and Genomics Probes Proteomics Research Article Sensitivity analysis Single-nucleotide polymorphism SNP array Software Standard deviation Whole genome sequencing  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJAQ8IL4JDGQQEh-TNSdx7ORxVEwDiT4Am_Zm3Tg2q1TSqmm19Q_wu7lO3KwBaXvhpQ-1XdW-x_cey9fnEvIGrKo4xIK52HAmQAqGULbMiTSxAgTE7Sv-r2N5dCy-nGanW6W-fE5YJw_cLdx-qbyIlqyQJpSCV6KUzjmeV4KnaeXaJ-sJz4vNYSrcH2Dcy8IdZpzL_Qa9sPTZFrihMOSyi0EUasX6_3XJWzHp73zJ_tL0Drm1quewPofpdCsuHd4jdwOhpAfdRO6TG7Z-QG52JSbXD8lvv-EX9qzLU6fzy3cC1PQlCOnMUa9bzPDsHaBIYbGANZ1PYekHNBQ_qRd0_WXZ-aSydDSbr-m4rSdCT_BnWgvTd6PxyXsKQemETmraFgFsHpHjw08_Rkcs1F5gBn3AkhmkeXgUUzkysMI4YTMFJgMnnZBGlY4bm1RlwYvUcIxvynJT8jLmkFXK5RLSx2SnntX2KaGZsmlSFp4oCpFliBoohAEEQ1WUAHlE-MYW2gRhcl8fY6rbA0oudWc-jebT3nz6IiIf-iHzTpXjqs4fvYH7jl5Qu_0CYaYDzPR1MIvIaw8P7SUzap-T8xNWTaM_f_-mD5CzpiqOlYzI29DJzXAGBsITB1wHr7I16Lk76Il72gybNyjUwac0OkkFul-ODDUir_pmP9LnydV2tmp0nBdxjhQ0TSLypANtP28kIkjPEmxRAzgPFmbYUk_OWsVxpPWJzHDk3gb4l3_rinXf6_fG9VZ69j-s9JzcTvwm54IlYpfsLBcr-wJJ47J82fqHP-VmZ9A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJwQ8IO4EBjIIictkzUkcJ3lAaKs2DSQqNNi0N8tx7K1SSULTausf4HdznDjpAtJ46UNsR7XP7XN8_B2E3kgd51T6jBhfUcIkZwRUWRPDwkAzyaTf3OL_OuGHx-zLaXS6gSbdXRibVtn5xMZR56Wy38h3gpCB8lGIz5-qX8RWjbKnq10JDelKK-QfG4qxG2gzsMxYI7S5tz_5dtSfK0A8jNzZpp_wnRq8M7dZGGBoEIrJ5SA6NST-_7rqK7Hq7zzK_jD1Drq1LCq5upCz2ZV4dXAP3XVAE--2mnEfbejiAbrZlp5cPUS_rSOY6_M2fx1X6_sDWPWlCXFpsOUzJrAndyqK5XwuV7iayYUdUGP4xZbo9acmF9Nc43FZrfCkqTOCT-A1jeTxu_Hk5D2WjgEFTwvcFAesH6Hjg_0f40PiajIQBb5hQRTAP9iixQkgs1QZpqNYqkgabhhXcWao0kGepTQNFYW4F2uqMpr5VEZ5bBIuw8doVJSFfopwFOswyFILIBmLItAmmTIlQUnyNJMy8RDtZCGUIyy3dTNmotm4JFy04hMgPmHFJy499KEfUrVsHdd13rMC7jtaou3mQTk_E85uRRZbDjeeA0rNGM1Zxo0xNMkZDcPcMN9Dr616CEulUdhcnTO5rGvx-fuR2AUsG8a-H3MPvXWdTAkzUNJdfYB1sOxbg55bg55g62rY3GmhcL6mFmvL8NCrvtmOtPlzhS6XtfCT1E8AmoaBh560StvPGwAKwLYAWuKBOg8WZthSTM8bJnKA-wGPYOR2p_jrv3XNum_3tvF_KT27fsrP0e3Ami9lJGBbaLSYL_ULgImL7KWz_T9B-GYP priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQEAIeEHcyBjIIictk4SSOnTyWimkg0Qeg094sx7G3Sl1SNa1G_wC_m2PHzRZAQ7z0IT6OGp_bZ_n4Owi9UkZUVMWM2FhTwhRnBEzZEMvSxDDFVOxv8X-Z8MMp-3ycHYd73O222n17JOkjtXfrnL9vIZJyVzEBTgFpkwBwvJ45Ni8w4mky6o8OIOVl4fjyr9MGCcjz9P8ZjS-lo99LJfvz0tvo5rpeqM25ms8vpaSDu-hOwJJ41Cn_Hrpm6vvoRtddcvMA_XS-vjSnXYk6XlxcEcC67z6IG4sdZTGBbXewQqyWS7XBi7lauQkthl_suFzPDDmfVQaPm8UGT3wrEXwEr_HKxW_Gk6O3WAWSEzyrse__1z5E04OP38eHJLRdIBrcf0U0IDzYhYkcwFehLTOZUDpTllvGtSgt1SapyoIWqaaQ2oShuqRlTFVWCZtzlT5CO3VTmycIZ8KkSVk4jMhYloHBqIJpBXZQFaVSeYToVhdSB05y1xpjLv3eJOeyU58E9UmnPvkjQu_6KYuOkOMq4Q9Owb2g49L2D5rliQyuKUvhaNp4BUC0ZLRiJbfW0rxiNE0ry-IIvXTmIR1bRu3KcU7Uum3lp29f5QjgairiWPAIvQ5CtoEv0CrcboB1cARbA8m9gSS4sx4Ob61QhnDSyiRlEHkpgNMIveiH3UxXIlebZt3KOC_iHNBnmkTocWe0_XcDBgFklsCIGJjzYGGGI_Xs1JONA6JPeAYz97eGf_G3rlj3_d43_q2l3f9691N0K3HeTBlJ2B7aWS3X5hkAw1X53AeCX6wOXNk priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1tb9MwELbQJgR84P0lMJBBSLxM7pzEcZKPpWIaSFQI6DQ-WY5jb2VdUjWtRvkB_G7OiZs1Aw0h8aWK6nOUnO_Oj5W75xB6LnWcU-kzYnxFCZOcETBlTQwLA80kk35dxf9hyPdG7P1BdOAohWwtTHaiLDnpyVhVvfUC9EkdteFCHe9Mc9M4e8J3Koiv3OZRgKvAZkoATm7yCGD5BtocDT_2v9bVRbFPAjgXuK-af5zX2Zdq-v7fg_TaLnU-g7L9jHoNXVkUU7k8lZPJ2k61ewN9W71jk6By3FvMs576cY7-8b8o4Sa67vAs7jcGeAtd0sVtdLnpcLm8g37aeDPTR02aPJ6elSlg1XZAxKXBljaZwNHfeQKWs5lc4ulEzu2ECsMvrp9Wk9NxrvGgnC7xsG5ngvfhNrWB4ZeD4f4rLB3RCh4XuO5BWN1Fo923XwZ7xLV-IApC0JwoQJlwEowTAICpMkxHsVSRNNwwruLMUKWDPEtpGioKqxtrqjKa-VRGeWwSLsN7aKMoC_0A4SjWYZClFqcyFkVgtDJlSoIt5mkmZeIhulp4oRwvum3PMRH1-SjholGvAPUKq17x3UOv2ynThhTkIuE31ppaQcvnXf9Rzg6FCw8iiy1VHM8BDGeM5izjxhia5IyGYW6Y76Fn1haFZewobErQoVxUlXj3-ZPoA2QOY9-PuYdeOCFTWiORrsIC9GBJvjqSWx1JCCmqO7wyeeFCWiWCkEH0pwCQPfS0HbYzbZpeoctFJfwk9RNAwGHgofuNh7TvDTgI0GEAI3HHdzqK6Y4U46Oa8BxOFQGPYOb2ysvOHusCvW-3jvj3VXr4T9KP0NXAehtlJGBbaGM-W-jHAE7n2RMXdn4BEuGKYw priority: 102 providerName: Unpaywall  | 
    
| Title | Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans | 
    
| URI | https://link.springer.com/article/10.1186/s12864-017-3658-x https://www.ncbi.nlm.nih.gov/pubmed/28438122 https://www.proquest.com/docview/2348320600 https://www.proquest.com/docview/1891889332 https://pubmed.ncbi.nlm.nih.gov/PMC5402652 https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/s12864-017-3658-x https://doaj.org/article/b725446d226b40d4b6fff08d4033df41  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbGKgQ8IO4ERmUQEhJTwEkcO3lAqKs2DaRV06Coe7Icx94qlaQkrba-8dM5TtJ0gWm8RG1tR825fo7t7yD0VmqeEulR13iKuFQy6oIpa9fQwNdUUulVp_iPRuxwTL9OwskWWpe3agRYXju1s_WkxsXsw-Wv1Wdw-E-Vw0fsYwkxltm9FOAukFBdgJQ9SFSxreRwRDeLCpAMw-qwEfdcH6YJzSLntbfopKmKzf_fmH0laf29obJdVb2H7iyzuVxdyNnsSuI6eIDuN4gTD2oTeYi2dPYI3a5rUK4eo982IhT6vN7IjuebgwRYtTUKcW6wJTZ2YXLe2CqWRSFXeD6TCzugxHDFlvH1p3YvpqnGw3y-wqOq4Aj-AbeR9aiGBAVPM1zVByyfoPHB_vfhoduUZXAVhIeFqwABwiyNRwDOYmWoDrlUoTTMUKZ4YojSfprEJA4UAVFzTVRCEo_IMOUmYjJ4irazPNPPEQ65DvwkthiS0jAEg5IxVRLsJI0TKSMHkbUWhGo4y23pjJmo5i4RE7XiBChOWMWJSwe9b4fMa8KOmzrvWdW2HS3XdvVDXpyJxnVFwi2NG0sBqCaUpDRhxhgSpZQEQWqo56A31jCEZdPI7HadM7ksS_Hl24kYAJwNuOdx5qB3TSeTwxMo2Zx-ADlYAq5Oz51OT3B31W1e259Ye4vwAwqRmQB4ddDrttmOtFvoMp0vS-FFsRcBOg18Bz2rzbV9bsAogNx8aOEdQ-4IptuSTc8rMnJA_D4LYeTu2uQ3f-sGue-2XvF_Lb24WSIv0V3fOi6hrk930PaiWOpXgBQXSR_d4hPeR729_dHxCXwbsmG_euvSryIDXMc-fO6NR8eD0z9_XWn_ | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwJDDAIxGWK5iTO7WFCW9nUsq1CY5v2ZhzH3iqVJCStuv4Bfha_jePcuoA0nvaSh9qOYp_P51IffwehN1z6MeEWNZUliEm5R02AsjQVdWxJOeVWeYv_YOj1j-mXU_d0Cf1u7sLotMpGJ5aKOk6F_o98w3YogI-Aff6U_TR11Sh9utqU0OB1aYV4s6QYqy927Mn5DEK4YnPwGeT91rZ3d456fbOuMmAKQPvEFODQQNDhB-BrhEJR6fpcuFx5inrCjxQR0o6jECJ_QUCT-5KIiEQW4W7sq8DjDrz3BlqhDg0h-FvZ3hl-PWzPMcD-uvVZqhV4GwVYA09nfcDGBtNvXnSsYVk04F_TcMk2_p232R7e3kar0yTj8xkfjy_Zx9276E7t2OKtCon30JJM7qObVanL-QP0SyueXJ5X-fI4W9xXwKIthYhThTV_spnLZktgnud8jrMxn-gBBYYn1sSyP6Q5G8US99JsjodlXRN8Aq8pkYbf94YnHzCvGVfwKMFlMcLiITq-Fuk8QstJmsgnCLu-dOwo1A4rpa4L6OUhFRxAGYcR54GBSCMLJmqCdF2nY8zKQCnwWCU-BuJjWnzswkAf2yFZxQ5yVedtLeC2oyb2Ln9I8zNW6wkW-ZozzovBK44oiWnkKaVIEFPiOLGiloFea3gwTd2R6NygMz4tCjb4dsi2wHd2fMvyPQO9qzupFGYgeH3VAtZBs311eq51eoJuEd3mBoWs1m0FW-xEA71qm_VIna-XyHRaMCsIrQBcYcc20OMKtO28wSECN9GGFr8D587CdFuS0XnJfA7hhe25MHK9Af7is65Y9_V2b_xfSk-vnvJLtNo_Othn-4Ph3jN0y9ZbmVDTpmtoeZJP5XNwUSfRi1oPYPT9ulXPH38Io1E | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQELcHxJ3AAIOQuEzWnMSxk8dRqDYuFQI27c1yHHurVJKoaTX6B_jdHCdutgAa4qUP8XHU-Nw-y8ffQei5MqKgKmTEhpoSpjgjYMqGWBZHhimmwvYW_6cJ391n7w-TQ9_ntFlXu6-PJLs7DY6lqVxs14XtXDzl2w1EVe6qJ8BBIIUSAJEXGSQ318JgxEf9MQKkv8QfZf512iAZtZz9f0bmM6np97LJ_uz0GrqyLGu1OlGz2Zn0NL6BrntciXc6Q7iJLpjyFrrUdZpc3UY_nd_PzXFXro7r0-sCWPedCHFlsaMvJrAF9xaJ1XyuVrieqYWb0GD4xY7X9bshJ9PC4FFVr_CkbSuCD-A1raLxy9Hk4BVWnvAET0vc9gJs7qD98btvo13iWzAQDaFgQTSgPdiRiRSAWKYtM4lQOlGWW8a1yC3VJiryjGaxppDmhKE6p3lIVVIIm3IV30UbZVWa-wgnwsRRnjm8yFiSgPGojGkFNlFkuVJpgOhaF1J7fnLXJmMm231KymWnPgnqk0598keAXvdT6o6c4zzhN07BvaDj1W4fVPMj6d1U5sJRtvECQGnOaMFybq2lacFoHBeWhQF65sxDOuaM0pXmHKll08i9r1_kDkDXWISh4AF64YVsBV-glb_pAOvgyLYGkpsDSXBtPRxeW6H0oaWRUcwgClMAqgF62g-7ma5crjTVspFhmoUpINE4CtC9zmj77wY8AigtghExMOfBwgxHyulxSzwO6D7iCczcWhv-6d86Z923et_4t5Ye_Ne7n6DLn9-O5ce9yYeH6GrkHJsyErFNtLGYL80jwIuL_HEbE34BP-Rj6w | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1tb9MwELbQJgR84P0lMJBBSLxM7pzEcZKPpWIaSFQI6DQ-WY5jb2VdUjWtRvkB_G7OiZs1Aw0h8aWK6nOUnO_Oj5W75xB6LnWcU-kzYnxFCZOcETBlTQwLA80kk35dxf9hyPdG7P1BdOAohWwtTHaiLDnpyVhVvfUC9EkdteFCHe9Mc9M4e8J3Koiv3OZRgKvAZkoATm7yCGD5BtocDT_2v9bVRbFPAjgXuK-af5zX2Zdq-v7fg_TaLnU-g7L9jHoNXVkUU7k8lZPJ2k61ewN9W71jk6By3FvMs576cY7-8b8o4Sa67vAs7jcGeAtd0sVtdLnpcLm8g37aeDPTR02aPJ6elSlg1XZAxKXBljaZwNHfeQKWs5lc4ulEzu2ECsMvrp9Wk9NxrvGgnC7xsG5ngvfhNrWB4ZeD4f4rLB3RCh4XuO5BWN1Fo923XwZ7xLV-IApC0JwoQJlwEowTAICpMkxHsVSRNNwwruLMUKWDPEtpGioKqxtrqjKa-VRGeWwSLsN7aKMoC_0A4SjWYZClFqcyFkVgtDJlSoIt5mkmZeIhulp4oRwvum3PMRH1-SjholGvAPUKq17x3UOv2ynThhTkIuE31ppaQcvnXf9Rzg6FCw8iiy1VHM8BDGeM5izjxhia5IyGYW6Y76Fn1haFZewobErQoVxUlXj3-ZPoA2QOY9-PuYdeOCFTWiORrsIC9GBJvjqSWx1JCCmqO7wyeeFCWiWCkEH0pwCQPfS0HbYzbZpeoctFJfwk9RNAwGHgofuNh7TvDTgI0GEAI3HHdzqK6Y4U46Oa8BxOFQGPYOb2ysvOHusCvW-3jvj3VXr4T9KP0NXAehtlJGBbaGM-W-jHAE7n2RMXdn4BEuGKYw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+performance+comparison+of+high-resolution+array+platforms+for+genome-wide+Copy+Number+Variation+analysis+in+humans&rft.jtitle=BMC+genomics&rft.au=Haraksingh%2C+Rajini+R&rft.au=Abyzov%2C+Alexej&rft.au=Urban%2C+Alexander+Eckehart&rft.date=2017-04-24&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-017-3658-x&rft.externalDocID=A511371176 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |