Convolutional neural network based on SMILES representation of compounds for detecting chemical motif

Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods a...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. Suppl 19; pp. 526 - 94
Main Authors Hirohara, Maya, Saito, Yutaka, Koda, Yuki, Sato, Kengo, Sakakibara, Yasubumi
Format Journal Article
LanguageEnglish
Published London BioMed Central 31.12.2018
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-018-2523-5

Cover

Abstract Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. Results We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. Conclusions The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/ , and the dataset used for performance evaluation in this work is available at the same URL.
AbstractList Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features.BACKGROUNDPrevious studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features.We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected.RESULTSWe developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected.The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/ , and the dataset used for performance evaluation in this work is available at the same URL.CONCLUSIONSThe source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/ , and the dataset used for performance evaluation in this work is available at the same URL.
Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. Results We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. Conclusions The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/ , and the dataset used for performance evaluation in this work is available at the same URL.
Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/, and the dataset used for performance evaluation in this work is available at the same URL.
Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/ , and the dataset used for performance evaluation in this work is available at the same URL.
Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. Results We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. Conclusions The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at Keywords: Convolutional neural network, Chemical compound, Virtual screening, SMILES, TOX 21 Challenge
Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. Results We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. Conclusions The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/, and the dataset used for performance evaluation in this work is available at the same URL.
Abstract Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have been developed by addressing the use of various kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or disadvantageous depending on whether they (1) can distinguish structural differences including chirality of compounds, and (2) can automatically discover effective features. Results We developed another deep learning model for compound classification. In this method, we constructed a distributed representation of compounds based on the SMILES notation, which linearly represents a compound structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES allows us to process all types of compounds while incorporating a broad range of structure information, and representation learning by CNN automatically acquires a low-dimensional representation of input features. In a benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown functional groups were detected. Conclusions The source code of our SMILES-based convolutional neural network software in the deep learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/, and the dataset used for performance evaluation in this work is available at the same URL.
ArticleNumber 526
Audience Academic
Author Hirohara, Maya
Sato, Kengo
Koda, Yuki
Saito, Yutaka
Sakakibara, Yasubumi
Author_xml – sequence: 1
  givenname: Maya
  surname: Hirohara
  fullname: Hirohara, Maya
  organization: Department of Biosciences and Informatics, Keio University
– sequence: 2
  givenname: Yutaka
  surname: Saito
  fullname: Saito, Yutaka
  organization: Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 3
  givenname: Yuki
  surname: Koda
  fullname: Koda, Yuki
  organization: Department of Biosciences and Informatics, Keio University
– sequence: 4
  givenname: Kengo
  surname: Sato
  fullname: Sato, Kengo
  organization: Department of Biosciences and Informatics, Keio University
– sequence: 5
  givenname: Yasubumi
  surname: Sakakibara
  fullname: Sakakibara, Yasubumi
  email: yasu@bio.keio.ac.jp
  organization: Department of Biosciences and Informatics, Keio University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30598075$$D View this record in MEDLINE/PubMed
BookMark eNqNkl9v0zAUxSM0xP7AB-AFReJlPGTYcW6cviBN1YBKRUgMni3Hvu5cUrvYyca-PU5btnUChPxgyznnXOd373F24LzDLHtJyRmlTf020rKBSUFoU5RQsgKeZEe04rQoKYGDB-fD7DjGJSGUNwSeZYeMwKQhHI4ynHp37buht97JLnc4hM3W3_jwPW9lRJ17l19-ms0vLvOA64ARXS9Hfe5Nrvxq7QenY258yDX2qHrrFrm6wpVVKWrle2ueZ0-N7CK-2O0n2bf3F1-nH4v55w-z6fm8UJywvpC8bGskpEWk3FQVNErLCZMSWs20RmxLxkrCCRgOLXDGdIuyYVwDIHBkJ9lsm6u9XIp1sCsZboWXVmwufFgIGXqrOhRK6QoqIolhZQVSSzBljaCoqSVQM0lZ5TZrcGt5eyO77i6QEjHyF1v-IvEXI38ByfRua1oP7Qq1SqgSz72X7H9x9kos_LWoWUqc8BRwugsI_seAsRcrGxV2nXTohyhKWpfVpGJAk_T1I-nSDyF1caNqKuDA63vVQqa_ts74VFeNoeIc6oalGeFj2bM_qNLSYxvT1Bmb7vcMb_YMSdPjz34hhxjF7PLLvvbVQyh3NH5PYRLQrUAFH2NA81-k-SOPstuxTC-33T-du8bGVMUtMNxz-7vpF8GYD3Q
CitedBy_id crossref_primary_10_1088_1742_6596_1418_1_012002
crossref_primary_10_1016_j_csbj_2022_07_049
crossref_primary_10_1021_acsami_1c20947
crossref_primary_10_1016_j_partic_2023_11_014
crossref_primary_10_1039_D2CP03281C
crossref_primary_10_1038_s41598_021_90259_7
crossref_primary_10_3390_pr11051340
crossref_primary_10_1016_j_ipha_2025_01_001
crossref_primary_10_1039_C9AN01624D
crossref_primary_10_1038_s41540_021_00199_1
crossref_primary_10_1016_j_tifs_2024_104578
crossref_primary_10_1371_journal_pcbi_1008184
crossref_primary_10_1021_acsami_0c21036
crossref_primary_10_3390_ma15217760
crossref_primary_10_1021_acs_jcim_9b01212
crossref_primary_10_1038_s41524_022_00734_6
crossref_primary_10_1016_j_trechm_2020_12_006
crossref_primary_10_1093_bioinformatics_btaa921
crossref_primary_10_1109_TCBB_2021_3078089
crossref_primary_10_3390_ph17030395
crossref_primary_10_1002_minf_202060080
crossref_primary_10_1021_acsomega_2c06702
crossref_primary_10_1093_bib_bbad422
crossref_primary_10_1093_bioinformatics_btad354
crossref_primary_10_1021_acspolymersau_3c00025
crossref_primary_10_3390_computers10060074
crossref_primary_10_1016_j_chroma_2021_462792
crossref_primary_10_1016_j_ailsci_2021_100017
crossref_primary_10_1109_ACCESS_2024_3514912
crossref_primary_10_1016_j_polymer_2020_122341
crossref_primary_10_1021_acs_jcim_0c01409
crossref_primary_10_1093_jamia_ocaa212
crossref_primary_10_1002_minf_201900131
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_1039_D3NR04944B
crossref_primary_10_3389_fgene_2021_680117
crossref_primary_10_1002_nano_202200092
crossref_primary_10_1038_s41598_023_28716_8
crossref_primary_10_1039_D4SC03921A
crossref_primary_10_1007_s12293_024_00414_6
crossref_primary_10_1021_acsomega_1c05693
crossref_primary_10_1038_s42004_022_00647_x
crossref_primary_10_1007_s11814_024_00276_1
crossref_primary_10_1093_bioinformatics_btaa544
crossref_primary_10_1186_s13321_024_00835_y
crossref_primary_10_1021_acsomega_2c08146
crossref_primary_10_3390_electronics11091360
crossref_primary_10_1002_aic_17282
crossref_primary_10_1016_j_drudis_2022_103373
crossref_primary_10_1038_s41598_020_80113_7
crossref_primary_10_3390_biomedicines11020284
crossref_primary_10_1021_acs_jpcb_1c05264
crossref_primary_10_3390_ijms23042156
crossref_primary_10_1021_acs_jpca_0c01376
crossref_primary_10_1039_D2TA07660H
crossref_primary_10_1002_cite_202200172
crossref_primary_10_1016_j_bioorg_2020_104503
crossref_primary_10_1016_j_compchemeng_2024_108805
crossref_primary_10_1021_acs_chemmater_3c02134
crossref_primary_10_3390_ijms22189983
crossref_primary_10_1016_j_ymeth_2020_06_016
crossref_primary_10_1038_s42256_021_00418_8
crossref_primary_10_1093_bib_bbae042
crossref_primary_10_1080_07391102_2023_2291829
crossref_primary_10_1371_journal_pcbi_1011301
crossref_primary_10_1021_acs_est_4c11417
crossref_primary_10_1021_acs_jcim_4c02319
crossref_primary_10_3390_ph16091259
crossref_primary_10_1186_s13321_022_00583_x
crossref_primary_10_1021_acs_jcim_4c00792
crossref_primary_10_1109_TCBB_2022_3141103
crossref_primary_10_1016_j_csbj_2021_03_004
crossref_primary_10_1038_s41598_024_75973_2
crossref_primary_10_1021_acsami_2c00029
crossref_primary_10_1021_acsomega_2c00642
crossref_primary_10_1016_j_compbiomed_2023_107811
crossref_primary_10_1016_j_scitotenv_2024_170435
crossref_primary_10_1021_acs_chemrestox_2c00375
crossref_primary_10_1021_acs_jcim_0c01208
crossref_primary_10_1002_imt2_192
crossref_primary_10_1016_j_ymeth_2024_08_008
crossref_primary_10_1186_s13321_024_00825_0
crossref_primary_10_1021_acs_jcim_4c02264
crossref_primary_10_1021_acsestwater_3c00152
crossref_primary_10_1109_ACCESS_2020_3045047
crossref_primary_10_1371_journal_pcbi_1009135
crossref_primary_10_2174_1381612827666210129123231
crossref_primary_10_1021_jasms_4c00154
crossref_primary_10_1186_s12859_020_03645_9
crossref_primary_10_2174_0113816128282837240130102817
crossref_primary_10_26599_BDMA_2024_9020028
crossref_primary_10_3390_ijms23052797
crossref_primary_10_1109_JBHI_2024_3368608
crossref_primary_10_1016_j_commatsci_2024_112863
crossref_primary_10_1039_D2CC01549H
crossref_primary_10_1002_cpz1_302
crossref_primary_10_1016_j_aca_2020_12_043
crossref_primary_10_1186_s12859_021_04285_3
crossref_primary_10_1186_s13321_022_00622_7
crossref_primary_10_3390_ijms242015447
crossref_primary_10_1002_minf_202100267
crossref_primary_10_3390_ijms25020715
crossref_primary_10_1186_s12859_022_04913_6
crossref_primary_10_1038_s41598_024_57879_1
Cites_doi 10.3389/fenvs.2015.00085
10.1038/nmeth.3547
10.1093/bioinformatics/btw255
10.1021/ci500747n
10.1101/gr.200535.115
10.1109/TPAMI.2013.50
10.1021/jm0603365
10.1021/ci100050t
10.1007/s10822-016-9938-8
10.1021/acs.chemrestox.7b00037
10.1109/TNN.2008.2010350
10.1002/jcc.20681
10.1021/ci400187y
10.1021/ci00057a005
10.3389/fenvs.2015.00080
10.1038/nbt.3300
10.1109/TNN.2008.2005605
ContentType Journal Article
Copyright The Author(s) 2018
COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-018-2523-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 94
ExternalDocumentID oai_doaj_org_article_ccd4540a0f3245ada5f26e5c1f6a51f9
10.1186/s12859-018-2523-5
PMC6311897
A568314777
30598075
10_1186_s12859_018_2523_5
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
M0N
NPM
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
123
2VQ
4.4
ADTOC
AHSBF
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c703t-a72b6e00bee17f4458cda93aa5bd3ddeeb23320705f75b5733dbea837d55e57e3
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:41:05 EDT 2025
Sun Oct 26 03:51:24 EDT 2025
Tue Sep 30 15:59:27 EDT 2025
Thu Sep 04 19:13:36 EDT 2025
Tue Oct 07 05:13:09 EDT 2025
Mon Oct 20 22:25:30 EDT 2025
Mon Oct 20 16:51:32 EDT 2025
Thu Oct 16 14:36:06 EDT 2025
Wed Feb 19 02:36:38 EST 2025
Wed Oct 01 04:15:31 EDT 2025
Thu Apr 24 23:13:56 EDT 2025
Sat Sep 06 07:27:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 19
Keywords Virtual screening
SMILES
Convolutional neural network
Chemical compound
TOX 21 Challenge
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-a72b6e00bee17f4458cda93aa5bd3ddeeb23320705f75b5733dbea837d55e57e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2523-5
PMID 30598075
PQID 2168457576
PQPubID 44065
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_ccd4540a0f3245ada5f26e5c1f6a51f9
unpaywall_primary_10_1186_s12859_018_2523_5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6311897
proquest_miscellaneous_2162494351
proquest_journals_2168457576
gale_infotracmisc_A568314777
gale_infotracacademiconefile_A568314777
gale_incontextgauss_ISR_A568314777
pubmed_primary_30598075
crossref_primary_10_1186_s12859_018_2523_5
crossref_citationtrail_10_1186_s12859_018_2523_5
springer_journals_10_1186_s12859_018_2523_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-31
PublicationDateYYYYMMDD 2018-12-31
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-31
  day: 31
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References F Scarselli (2523_CR7) 2009; 20
R Huang (2523_CR24) 2016; 3
PC Hawkins (2523_CR2) 2007; 50
A Micheli (2523_CR8) 2009; 20
H Zeng (2523_CR16) 2016; 32
Y Bengio (2523_CR17) 2013; 35
B Alipanahi (2523_CR12) 2015; 33
A Mayr (2523_CR6) 2016; 3
2523_CR21
2523_CR20
H Du (2523_CR25) 2017; 30
2523_CR23
2523_CR22
D Rogers (2523_CR1) 2010; 50
S Kearnes (2523_CR11) 2016; 30
J Lanchantin (2523_CR15) 2017; 22
PJ Ballester (2523_CR3) 2007; 28
2523_CR18
J Ma (2523_CR5) 2015; 55
2523_CR19
J Zhou (2523_CR13) 2015; 12
A Lusci (2523_CR9) 2013; 53
D Weininger (2523_CR4) 1988; 28
DR Kelley (2523_CR14) 2016; 26
2523_CR10
References_xml – volume: 3
  start-page: 85
  year: 2016
  ident: 2523_CR24
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00085
– volume: 22
  start-page: 254
  year: 2017
  ident: 2523_CR15
  publication-title: Pac Symp Biocomput
– volume: 12
  start-page: 931
  issue: 10
  year: 2015
  ident: 2523_CR13
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3547
– volume: 32
  start-page: 121
  issue: 12
  year: 2016
  ident: 2523_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw255
– ident: 2523_CR22
– ident: 2523_CR20
– volume: 55
  start-page: 263
  issue: 2
  year: 2015
  ident: 2523_CR5
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500747n
– ident: 2523_CR19
– volume: 26
  start-page: 990
  issue: 7
  year: 2016
  ident: 2523_CR14
  publication-title: Genome Res
  doi: 10.1101/gr.200535.115
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 2523_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume: 50
  start-page: 74
  issue: 1
  year: 2007
  ident: 2523_CR2
  publication-title: J Med Chem
  doi: 10.1021/jm0603365
– volume: 50
  start-page: 742
  issue: 5
  year: 2010
  ident: 2523_CR1
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100050t
– ident: 2523_CR23
– ident: 2523_CR21
– volume: 30
  start-page: 595
  issue: 8
  year: 2016
  ident: 2523_CR11
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume: 30
  start-page: 1209
  issue: 5
  year: 2017
  ident: 2523_CR25
  publication-title: Chem Res Toxicol
  doi: 10.1021/acs.chemrestox.7b00037
– volume: 20
  start-page: 498
  issue: 3
  year: 2009
  ident: 2523_CR8
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2010350
– ident: 2523_CR18
– volume: 28
  start-page: 1711
  issue: 10
  year: 2007
  ident: 2523_CR3
  publication-title: J Comput Chem
  doi: 10.1002/jcc.20681
– volume: 53
  start-page: 1563
  issue: 7
  year: 2013
  ident: 2523_CR9
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400187y
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: 2523_CR4
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00057a005
– volume: 3
  start-page: 80
  year: 2016
  ident: 2523_CR6
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2015.00080
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  ident: 2523_CR12
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3300
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 2523_CR7
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2005605
– ident: 2523_CR10
SSID ssj0017805
Score 2.6352618
Snippet Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning...
Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning models have...
Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep learning...
Abstract Background Previous studies have suggested deep learning to be a highly effective approach for screening lead compounds for new drugs. Several deep...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 526
SubjectTerms Algorithms
Analytical chemistry
Artificial intelligence
Artificial neural networks
Binding sites
Bioinformatics
Biomedical and Life Sciences
Chemical compound
Chemical compounds
Chirality
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Convolution
Convolutional neural network
Deoxyribonucleic acid
DNA
Drug discovery
Fingerprints
Functional groups
Genomes
Information processing
Lead compounds
Life Sciences
Machine learning
Methods
Microarrays
Multivariate analysis
Neural networks
Organic chemistry
Performance evaluation
Proteins
Representations
SMILES
Software
Source code
TOX 21 Challenge
Virtual screening
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEPVB_LZzShRBcJT1K0n7OMfGJs4Hr4O9hTQfKlzSYe-d7L_3nDSttwrbi08tzSkk55ycD3LyO4S8LQWDqNbmKWtUm1a6qFKVVS7VxuoyawrbZnhR-PQzPz6rPp6z841WX1gTNsADD4zb09ogSJzKHLh-poxiruCW6dxxxXIXru5ldTMmU_H8AJH64xlmXvO9PkecNkibQSsg80rZzAsFsP5_TfKGT_q7XnI6NL1H7qz9hbr6pZbLDb909IDcjwEl3R8W8pDcsv4RuT20mLx6TOxB5y-jegEZwleGRyj-pujDDO08XZyefDpc0ABxOV5H8rRzFEvOsfNSTyG6pcbimQPMieoINECxmM89IWdHh18PjtPYWiHVsMVXqRJFy22WtdbmwlUVq7VRTakUa00JFg_y7bIswBwwJ1iLmImmtQqSWcOYZcKWT8mW77x9TqjINDjColKGZZXVuYKXVnNulILstzEJyUZWSx1xx7H9xVKG_KPmcpCOBOlIlI5kCXk__XIxgG5cR_wB5TcRIl52-ABaJKMWyZu0KCFvUPoSETE8ltx8U-u-lyeLL3Kf8brMKyFEQt5FItfBCrSKNxiADwiiNaPcmVHCltXz4VHJZDQZvSxyXlcQPAuekNfTMP6JZXDedutAA-kyRLh5Qp4NOjmtGwx3g8jSCREzbZ0xZj7if3wPgOK8BNY2MK3dUa__TOsavu9Oqn-zlLb_h5RekLsF7uGAs7lDtlY_1_YlxISr9lXY_r8B9oZc9g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_qFVEfxO-uVokiCJal-5Xs7YNIW660Yg_pWehbyCbZWjh2z96d0v_emVx221U4n_bYzEIyX5m5TH4D8D7NOUa1Ng55ocow00kWqiirQm2sTqMisWVEF4VPxuLoLPtyzs83YNzehaGyytYnOkdtGk3_ke8msRhmGFvk4vPsZ0hdo-h0tW2hoXxrBfPJQYzdgc2EkLEGsLk_Gn877c4VCMHfn23GQ7E7jwm_DdNp1BbMyELe250ciP-_rvrWXvV3HWV3mPoA7i3rmbr-rabTW_vV4SN46ANNtrfSjMewYesncHfVevL6KdiDpv7l1Q7JCNbSPVxROKO9zbCmZpOT46-jCXPQl-01pZo1FaNSdOrINGcY9TJj6SwC58S0ByBgVORXPYOzw9H3g6PQt1wINZr-IlR5UgobRaW1cV5lGR9qo4pUKV6aFD0h5uFpmqCb4FXOS8JSNKVVmOQazi3PbfocBnVT2y1geaRxg0wyZXiUWR0r_FFqIYxSmBUXJoCoZbXUHo-c2mJMpctLhkKupCNROpKkI3kAH7tPZiswjnXE-yS_jpBwtN2L5upCerOUWhuCIFRRhTPlyiheJcJyHVdC8bgqAnhH0peElFFTKc6FWs7n8nhyKve4GKZxlud5AB88UdXgCrTyNxuQDwSu1aPc7lGiKev-cKtk0ruSubxR_ADedsP0JZXH1bZZOhpMozHyjQN4sdLJbt3o0AtCnA4g72lrjzH9kfryhwMaFymytsBp7bR6fTOtNXzf6VT__1J6uX7Jr-B-QtbpkDW3YbC4WtrXGAUuyjfetP8AqmtaSw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9RAEF-0ItYP4rNGq6wiCJZgHvtIPtajpRXrB89Cvy2bfVThSIq5U_rfO7PZixeVip8u3M6GzTx2ZpjZ3xLyqpQcolqXp7zWTcpMwVKdMZ8a60yZ1YVrMjwofPJRHJ2y92f8LIJF41mYzfp9Xom3fY4Ia5DwgjwhZ0r5dXIDfJQIdVkxGwsGCM0fi5Z_nTZxOwGd_889eMMJ_d4gOVZJb5Nbq_ZCX_7Qi8WGIzq8S-7ECJLuDyK_R6659j65OdwpefmAuFnXfo_6BGSIVxl-Qrc3RadladfS-cnxh4M5DZiW6_NHLe08xR5zvGqppxDOUuuwyABroiYiC1Ds3vMPyenhwefZURrvUkgN2PQy1bJohMuyxrlcesZ4ZayuS615Y0vY4iDBLssC7J97yRsESbSN05C9Ws4dl658RLbarnWPCZWZAc9XMG15xpzJNTw0RgirNaS7tU1Itma1MhFoHO-7WKiQcFRCDdJRIB2F0lE8IW_GKRcDysZVxO9QfiMhAmSHP0BvVLQ3ZYxFbEGdeVgp11ZzXwjHTe6F5rmvE_ISpa8QAqPFHptzvep7dTz_pPa5qMqcSSkT8joS-Q6-wOh4ZAH4gKhZE8rdCSXYqJkOr5VMxT2iV0UuKgbRshQJeTEO40zse2tdtwo0kB9DSJsnZGfQyfG7YaeuEUo6IXKirRPGTEfar18CgrgogbU1LGtvrde_lnUF3_dG1f-3lJ7817ufku0CjTUgaO6SreW3lXsG0d6yeR7s_CcnaEwz
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF_qFVE_-H5Eq6wiCJZc89pN8vEsLa3YKp4H9dOyr9TSMzl6d0r9651JNvFSpSL4KSE7C5vZebIzvyXkZZwyiGpt6LNcKj_RUeLLICl8bayOgzyyKsBG4YNDvjdJ3h6xozXyvu2FUV-1OqkcaCgCFQ9X29Cnte2GF326NTNFo_IZ35qHiMMGaTHsOmRWPrtC1jmD4HxA1ieHH0af6x6jNPQhwWHubPOP83reqQbx_91Ur_iqi3WU3WHqDXJtWc7k-Xc5na74q91bZNb-aVOmcjpcLtRQ_7gAAvkfWXGb3HSxLR01wniHrNnyLrna3HZ5fo_Y7ar85iQdyBBJs37UdegU3amhVUnHB_vvdsa0RttsO6NKWhUUq9_xEqg5hbVSY_H4A9hAtcM8oFhXWNwnk92dT9t7vrvlwddgbRa-TCPFbRAoa8O0SBKWaSPzWEqmTAzGF1L_OI7AMrEiZQrhG42yEvJqw5hlqY0fkEFZlfYRoWmgwSdHiTQsSKwOJbwozbmREhLx3HgkaHdXaAeBjjdxTEWdCmVcNNwTwD2B3BPMI6-7KbMG_-My4jcoMh0hQnfXH6qzY-EsgdDaIOqhDApYKZNGsiLilumw4JKFRe6RFyhwAsE5Sqz-OZbL-Vzsjz-KEeNZDHKcph555YiKCmVAumYK4APiefUoN3qUYD10f7iVa-Gs11xEIc8SiONT7pHn3TDOxIq80lbLmgYydwi2Q488bNSg-2_wITmCXHsk7SlIjzH9kfLkS41tzmNgbQ7L2mxV6deyLuH7Zqdtf9-lx_9E_YRcj1CZamzPDTJYnC3tU4hDF-qZsy0_AZOlgqo
  priority: 102
  providerName: Unpaywall
Title Convolutional neural network based on SMILES representation of compounds for detecting chemical motif
URI https://link.springer.com/article/10.1186/s12859-018-2523-5
https://www.ncbi.nlm.nih.gov/pubmed/30598075
https://www.proquest.com/docview/2168457576
https://www.proquest.com/docview/2162494351
https://pubmed.ncbi.nlm.nih.gov/PMC6311897
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-018-2523-5
https://doaj.org/article/ccd4540a0f3245ada5f26e5c1f6a51f9
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3rb9MwELf2EAI-IN4ERmUQEhJTIC_byQeEuqplq2g1rVTqPlmO4wykKhl9AP3vuXPTbIGpfGmq-FI59_Dd1effEfImFAyiWuO7LFGpG-kgcpUX5a7OjA69JDCphweFB0N-PI76EzbZIZv2VhUD5zemdthPajybvv_9Y_UJDP6jNfiYf5j7iMIGSTHIHPIql-2SfXBUCXZyGERXmwoI328PGwnfhUyHVZucN_5Ew01ZNP9_1-xrTuvvgsp6V_Uuub0sLtXql5pOrzmu3n1yr4o4aXutIg_IjikeklvrHpSrR8R0yuJnpX9AhviW9mKrwyk6uYyWBR0NTr50R9RiYG7OKxW0zCnWpGNrpjmF8JdmBjclYE5UV0gEFKv98sdk3Ot-7Ry7Ve8FV8MasHCVCFJuPC81xhd5FLFYZyoJlWJpFsKSCAl5GAawXrBcsBRBFbPUKMh2M8YMEyZ8QvaKsjDPCBWeBk8ZRCpjXmS0r-BLqjnPlIL0OMkc4m1YLXUFTI79MabSJigxl2vpSJCOROlI5pB39SOXa1SObcRHKL-aEAG17Y1ydiEr-5RaZ4hFqLwcZspUplgecMO0n3PF_DxxyGuUvkTIjAJrci7Ucj6XJ6Mz2WY8DkGphHDI24ooL-ENtKqOOAAfEGWrQXnQoASb1s3hjZLJjUnIwOdxBNG14A55VQ_jk1gnV5hyaWkgn4YQ2HfI07VO1u8NK3uC0NMOEQ1tbTCmOVJ8_2YRx3kIrE1gWocbvb6a1ha-H9aq_38pPd_OkRfkToDWaSE2D8jeYrY0LyEcXKQtsismAj7j3ucW2W-3-6M-XI-6w9MzuNvhnZb9o6VlFwMYGQ9P2-d_AMrZYLc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKESocEO8uFDAIhNRq1X3Zzh4QKqVVQpMeSCvlZry2t0WKdkM3ocqf4jcys692QQqnnhLFs5E9D8_MevwNIe9CwSCqtb7LYpW4kQ4iV3lR6mpjdejFgU08vCg8Oub90-jrhE3WyO_mLgyWVTZ7YrlRm1zjO_LdwOe9CGILwT_NfrrYNQpPV5sWGpVaHNnlJaRsxcfBF5Dv-yA4PDjZ77t1VwFXg3bPXSWChFvPS6z1RRpFrKeNikOlWGJCMHZINcMwAEtgqWAJwgWaxCrI4wxjlgkbwv_eIrejEPYSsB8xaRM8H_sD1Cenfo_vFj6iw0GyDroI-Z7LOr6vbBHwryO45gn_rtJsj2rvkY1FNlPLSzWdXvOGhw_I_TqMpXuV3j0kazZ7RO5UjS2Xj4ndz7NftVIDGYJmlh9lyTlFz2lontHxaDA8GNMSWLO5BJXRPKVY6I79ngoKMTU1Fk86YE5U1_AGFEsI0yfk9EZY_5SsZ3lmNwkVngb3G0TKMC-y2lfwJdGcG6Ug546NQ7yG1VLXaOfYdGMqy6ynx2UlHQnSkSgdyRyy3T4yq6A-VhF_Rvm1hIjSXf6QX5zJ2uil1gYBDpWXwkyZMoqlAbdM-ylXzE9jh7xF6UvE4ciw0OdMLYpCDsbf5B7jvdCPhBAO-VATpTmsQKv63gTwAaG7OpRbHUrYKHR3uFEyWW9UhbwyK4e8aYfxSSy-y2y-KGkgSYe42nfIs0on23WDu4gRz9ohoqOtHcZ0R7If5yWMOQ-BtTFMa6fR66tpreD7Tqv6_5fS89VLfk02-iejoRwOjo9ekLsBWmqJ4blF1ucXC_sS4s158qo0ckq-3_Su8geeXpHK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rb9QwDI9giNcHxJvCgICQkDZV6yNJ24_j2GkH24Q4Ju1blOYxkE7tab0D7b_HbtOyAhri01UXp0pjO7Zl52dC3qQZB6_WxiEvVBkynbBQRcyF2lidRkViywgvCh8eif1j9uGEn_g-p01f7d6nJLs7DYjSVK12lsZ1Kp6LnSZG3DUIg4HLEEmF_Cq5xsC4YQuDiZgMaQQE7PepzL9OGxmjFrP_z5P5gmn6vWxyyJ3eJjfX1VKd_1CLxQXzNL1L7ni_ku52gnCPXLHVfXK96zR5_oDYSV1991IGZIhi2f60NeAUTZmhdUXnh7ODvTltkS77W0kVrR3FynNswNRQcHKpsZh6gDVR7fEGKNb0uYfkeLr3ZbIf-g4LoQZNX4UqS0pho6i0Ns4cYzzXRhWpUrw0KRx8EHanaQKnAncZLxE60ZRWQUxrOLc8s-kjslHVlX1CaBZpsIcJU4ZHzOpYwUOphTBKQRBcmIBE_VZL7eHHsQvGQrZhSC5kxx0J3JHIHckDsjVMWXbYG5cRv0P-DYQIm93-UZ-dSq-FUmuDiIMqcrBSroziLhGW69gJxWNXBOQ1cl8iMEaFlTenat00cjb_LHe5yNOYZVkWkLeeyNXwBVr5iwywD4ilNaLcHFGC5urxcC9k0p8cjUxikTPwoTMRkFfDMM7EarjK1uuWBqJmcHTjgDzuZHL4bji_CwSYDkg2ktbRxoxHqm9fW1xxkcLWFrCs7V6ufy3rkn3fHkT_31x6-l_vfklufHo_lQezo4_PyK0E9baF2NwkG6uztX0O7uCqfNGq_E8MtFdp
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3ra9RAEF_qFVE_-H5Eq6wiCJZc89pN8vEsLa3YKp4H9dOyr9TSMzl6d0r9651JNvFSpSL4KSE7C5vZebIzvyXkZZwyiGpt6LNcKj_RUeLLICl8bayOgzyyKsBG4YNDvjdJ3h6xozXyvu2FUV-1OqkcaCgCFQ9X29Cnte2GF326NTNFo_IZ35qHiMMGaTHsOmRWPrtC1jmD4HxA1ieHH0af6x6jNPQhwWHubPOP83reqQbx_91Ur_iqi3WU3WHqDXJtWc7k-Xc5na74q91bZNb-aVOmcjpcLtRQ_7gAAvkfWXGb3HSxLR01wniHrNnyLrna3HZ5fo_Y7ar85iQdyBBJs37UdegU3amhVUnHB_vvdsa0RttsO6NKWhUUq9_xEqg5hbVSY_H4A9hAtcM8oFhXWNwnk92dT9t7vrvlwddgbRa-TCPFbRAoa8O0SBKWaSPzWEqmTAzGF1L_OI7AMrEiZQrhG42yEvJqw5hlqY0fkEFZlfYRoWmgwSdHiTQsSKwOJbwozbmREhLx3HgkaHdXaAeBjjdxTEWdCmVcNNwTwD2B3BPMI6-7KbMG_-My4jcoMh0hQnfXH6qzY-EsgdDaIOqhDApYKZNGsiLilumw4JKFRe6RFyhwAsE5Sqz-OZbL-Vzsjz-KEeNZDHKcph555YiKCmVAumYK4APiefUoN3qUYD10f7iVa-Gs11xEIc8SiONT7pHn3TDOxIq80lbLmgYydwi2Q488bNSg-2_wITmCXHsk7SlIjzH9kfLkS41tzmNgbQ7L2mxV6deyLuH7Zqdtf9-lx_9E_YRcj1CZAtCnbIMMFmdL-xTi0IV65mzLT5SkgrU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+based+on+SMILES+representation+of+compounds+for+detecting+chemical+motif&rft.jtitle=BMC+bioinformatics&rft.au=Hirohara%2C+Maya&rft.au=Saito%2C+Yutaka&rft.au=Koda%2C+Yuki&rft.au=Sato%2C+Kengo&rft.date=2018-12-31&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=19&rft.issue=Suppl+19&rft_id=info:doi/10.1186%2Fs12859-018-2523-5&rft.externalDocID=A568314777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon