Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India

Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the repl...

Full description

Saved in:
Bibliographic Details
Published inVaccine Vol. 36; no. 2; pp. 264 - 272
Main Authors Parker, Edward P.K., Praharaj, Ira, Zekavati, Anna, Lazarus, Robin P., Giri, Sidhartha, Operario, Darwin J., Liu, Jie, Houpt, Eric, Iturriza-Gómara, Miren, Kampmann, Beate, John, Jacob, Kang, Gagandeep, Grassly, Nicholas C.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 04.01.2018
Elsevier Limited
Elsevier Science
Subjects
Online AccessGet full text
ISSN0264-410X
1873-2518
1873-2518
DOI10.1016/j.vaccine.2017.11.031

Cover

Abstract Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case–control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ2, P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
AbstractList Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case–control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ2, P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
AbstractOral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case–control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ 2, P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case-control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ , P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case–control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ 2 , P  = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P  = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case-control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ2, P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case-control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ2, P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota, including a greater burden of enteropathogens and an altered commensal community composition, may contribute to this trend by inhibiting the replication of vaccine viruses. To test this possibility, we performed a nested case–control study in Vellore, India, in which we compared the intestinal microbiota of infants who responded serologically or not after two doses of Rotarix delivered at 6 and 10 weeks of age as part of a clinical trial (CTRI/2012/05/002677). The prevalence of 40 bacterial, viral, and eukaryotic pathogen targets was assessed in pre-vaccination stool samples from 325 infants using singleplex real-time PCR on a Taqman array card (TAC). In a subset of 170 infants, we assessed bacterial microbiota composition by sequencing the 16S rRNA gene V4 region. Contrary to expectations, responders were more likely than non-responders to harbor ≥1 bacterial enteropathogen at dose 1 (26% [40/156] vs 13% [21/157] of infants with TAC results who completed the study per protocol; χ², P = .006), although this was not apparent at dose 2 (24% [38/158] vs 23% [36/158]; P = .790). Rotavirus shedding after dose 1 was negatively correlated with the replication of co-administered oral poliovirus vaccine (OPV). We observed no consistent differences in composition or diversity of the 16S bacterial microbiota according to serological response, although rotavirus shedding was associated with slightly more bacterial taxa pre-vaccination. Overall, our findings demonstrate an inhibitory effect of co-administered OPV on the first dose of Rotarix, consistent with previous studies, but in the context of OPV co-administration we did not find a strong association between other components of the intestinal microbiota at the time of vaccination and Rotarix immunogenicity.
Author Kampmann, Beate
Parker, Edward P.K.
Grassly, Nicholas C.
Kang, Gagandeep
Houpt, Eric
John, Jacob
Liu, Jie
Lazarus, Robin P.
Iturriza-Gómara, Miren
Giri, Sidhartha
Praharaj, Ira
Zekavati, Anna
Operario, Darwin J.
AuthorAffiliation g Department of Paediatrics, St Mary’s Campus, Imperial College London, London, UK
e Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
h MRC Unit The Gambia, Fajara, Gambia
a Department of Infectious Disease Epidemiology, St Mary’s Campus, Imperial College London, London, UK
b Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
d Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
c Imperial BRC Genomics Facility, Commonwealth Building, Hammersmith Hospital, London, UK
f NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
AuthorAffiliation_xml – name: f NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
– name: c Imperial BRC Genomics Facility, Commonwealth Building, Hammersmith Hospital, London, UK
– name: b Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
– name: a Department of Infectious Disease Epidemiology, St Mary’s Campus, Imperial College London, London, UK
– name: d Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
– name: e Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
– name: h MRC Unit The Gambia, Fajara, Gambia
– name: g Department of Paediatrics, St Mary’s Campus, Imperial College London, London, UK
Author_xml – sequence: 1
  givenname: Edward P.K.
  surname: Parker
  fullname: Parker, Edward P.K.
  email: edward.parker@imperial.ac.uk
  organization: Department of Infectious Disease Epidemiology, St Mary’s Campus, Imperial College London, London, UK
– sequence: 2
  givenname: Ira
  surname: Praharaj
  fullname: Praharaj, Ira
  organization: Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
– sequence: 3
  givenname: Anna
  surname: Zekavati
  fullname: Zekavati, Anna
  organization: Imperial BRC Genomics Facility, Commonwealth Building, Hammersmith Hospital, London, UK
– sequence: 4
  givenname: Robin P.
  surname: Lazarus
  fullname: Lazarus, Robin P.
  organization: Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
– sequence: 5
  givenname: Sidhartha
  surname: Giri
  fullname: Giri, Sidhartha
  organization: Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
– sequence: 6
  givenname: Darwin J.
  surname: Operario
  fullname: Operario, Darwin J.
  organization: Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
– sequence: 7
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  organization: Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
– sequence: 8
  givenname: Eric
  surname: Houpt
  fullname: Houpt, Eric
  organization: Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
– sequence: 9
  givenname: Miren
  surname: Iturriza-Gómara
  fullname: Iturriza-Gómara, Miren
  organization: Centre for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
– sequence: 10
  givenname: Beate
  surname: Kampmann
  fullname: Kampmann, Beate
  organization: Department of Paediatrics, St Mary’s Campus, Imperial College London, London, UK
– sequence: 11
  givenname: Jacob
  surname: John
  fullname: John, Jacob
  organization: Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
– sequence: 12
  givenname: Gagandeep
  surname: Kang
  fullname: Kang, Gagandeep
  organization: Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
– sequence: 13
  givenname: Nicholas C.
  surname: Grassly
  fullname: Grassly, Nicholas C.
  organization: Department of Infectious Disease Epidemiology, St Mary’s Campus, Imperial College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29217369$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuP0zAUhS00iOkM_ARQJDZsGnztuI6FGIRGPCqNxAKQ2Fmu47QuiT1jO5H673Foh0clVDbxwud8Ob73XKAz551B6CngEjAsXm7LUWltnSkJBl4ClJjCAzSDmtM5YVCfoRkmi2peAf52ji5i3GKMGQXxCJ0TQYDThZihcenabjBOm8K3RdqYwrpkYrJOdUVvdfAr65MqvNtf9v3g_No4q23aTRYfsjBkyWjDEItDqGJtR5MtPuNa5VLMZxH9kDbF0jVWPUYPW9VF8-RwXqKv7999uf44v_n0YXn99mauOaZpDnWlKKxoDaBoTTAnBmpRVVxxghVvVL2iRmPNQGFNBc9fxhhnvBWkYgLoJbrac2-HVW8abVzKeeVtsL0KO-mVlX_fOLuRaz_KDGEY0wx4cQAEfzfkwcjeRm26TjnjhygJBUbqmjNxUgqCMwyM04n6_Ei69UPII_-pWvBKEFZl1bM_w_9Kfb-9LHi1F-Q1xRhMK_NWVLJ-eovtJGA5dUVu5WEtcuqKBJC5K9nNjtz3Pzjle7P3mby40Zogo7ZTgxobjE6y8fYk4eqIoDubK6W672Zn4u9ZyEgklp-nHk81zq8GJhjLgNf_BvxHgB8nqAXF
CitedBy_id crossref_primary_10_1186_s12906_023_04208_0
crossref_primary_10_2217_fmb_2018_0016
crossref_primary_10_1128_IAI_00217_21
crossref_primary_10_3390_microorganisms8081151
crossref_primary_10_1038_s41577_021_00506_1
crossref_primary_10_1016_j_virol_2023_109903
crossref_primary_10_3390_microorganisms11020452
crossref_primary_10_1016_j_jpedp_2019_02_004
crossref_primary_10_1016_j_vaccine_2017_07_116
crossref_primary_10_3390_ijms222413473
crossref_primary_10_1002_14651858_CD008521_pub4
crossref_primary_10_1080_21645515_2020_1844525
crossref_primary_10_1186_s12866_023_03098_z
crossref_primary_10_1002_14651858_CD008521_pub6
crossref_primary_10_1016_j_chom_2020_06_014
crossref_primary_10_1016_j_jim_2021_113056
crossref_primary_10_3390_vaccines12060609
crossref_primary_10_1002_14651858_CD008521_pub5
crossref_primary_10_1042_CS20171106
crossref_primary_10_1186_s12934_020_01483_1
crossref_primary_10_1016_j_chom_2020_04_008
crossref_primary_10_1016_j_chom_2021_12_002
crossref_primary_10_1080_14760584_2022_2093193
crossref_primary_10_4103_epj_epj_66_21
crossref_primary_10_1111_imm_13138
crossref_primary_10_1021_acs_biochem_2c00309
crossref_primary_10_1097_INF_0000000000002485
crossref_primary_10_3390_microorganisms10122460
crossref_primary_10_1097_INF_0000000000004223
crossref_primary_10_1038_s41541_024_01000_0
crossref_primary_10_3390_biomedicines10071545
crossref_primary_10_3389_fmicb_2019_01305
crossref_primary_10_1038_s41541_020_0194_5
crossref_primary_10_3390_vaccines11101609
crossref_primary_10_3390_cells8080876
crossref_primary_10_3390_vaccines13030306
crossref_primary_10_3390_vaccines8030341
crossref_primary_10_1007_s00705_024_05975_y
crossref_primary_10_1080_21645515_2018_1553593
crossref_primary_10_3390_v12080904
crossref_primary_10_1093_infdis_jiad094
crossref_primary_10_1016_j_vaccine_2020_06_064
crossref_primary_10_3390_vaccines12030273
crossref_primary_10_1016_j_pharmthera_2024_108785
crossref_primary_10_11569_wcjd_v30_i6_287
crossref_primary_10_1371_journal_pone_0225842
crossref_primary_10_1097_MD_0000000000012706
crossref_primary_10_3390_ijms22031010
crossref_primary_10_1080_21645515_2019_1710412
crossref_primary_10_1007_s12250_018_0043_0
crossref_primary_10_1038_s41467_021_27074_1
crossref_primary_10_1080_21645515_2018_1520583
crossref_primary_10_3389_fmicb_2022_1016220
crossref_primary_10_1073_pnas_1717163115
crossref_primary_10_1007_s40265_018_0941_3
crossref_primary_10_1016_j_chom_2018_07_017
crossref_primary_10_1016_j_vaccine_2021_07_076
crossref_primary_10_1016_j_xphs_2019_08_001
crossref_primary_10_1016_j_xphs_2019_08_002
crossref_primary_10_1080_21645515_2025_2475609
crossref_primary_10_1038_s41541_023_00627_9
crossref_primary_10_1093_infdis_jiy568
crossref_primary_10_1080_1040841X_2025_2480230
crossref_primary_10_1007_s12602_025_10477_7
crossref_primary_10_1111_febs_17241
crossref_primary_10_3389_fped_2020_565368
crossref_primary_10_1007_s12275_023_00044_6
crossref_primary_10_1186_s13099_021_00411_x
crossref_primary_10_1080_19490976_2020_1754714
crossref_primary_10_3390_v13061144
crossref_primary_10_1097_EDE_0000000000000909
crossref_primary_10_1016_j_jped_2018_11_004
crossref_primary_10_3390_v16071135
crossref_primary_10_3390_v10020096
crossref_primary_10_3390_pathogens11101078
crossref_primary_10_1016_j_heliyon_2024_e28727
crossref_primary_10_1080_14787210_2024_2340664
crossref_primary_10_1093_cid_ciy896
crossref_primary_10_3389_fcimb_2020_586751
crossref_primary_10_3390_vaccines9111340
crossref_primary_10_1016_j_pathol_2022_04_006
crossref_primary_10_3389_fimmu_2021_643255
crossref_primary_10_1016_j_chom_2018_07_005
crossref_primary_10_1016_j_csbj_2020_08_028
crossref_primary_10_1016_j_jcmgh_2024_101393
crossref_primary_10_1093_cei_uxae124
crossref_primary_10_1016_S1473_3099_18_30602_9
crossref_primary_10_12677_ACM_2023_133483
crossref_primary_10_3389_fimmu_2021_793841
crossref_primary_10_1038_s41577_021_00554_7
crossref_primary_10_1128_CMR_00084_18
crossref_primary_10_1016_S2666_5247_20_30196_8
Cites_doi 10.1093/infdis/jix028
10.1093/infdis/jiu182
10.1038/ismej.2012.8
10.1093/infdis/jit507
10.1371/journal.pone.0094249
10.1093/infdis/jiw518
10.1093/clinids/13.5.926
10.1128/JVI.76.13.6596-6601.2002
10.1111/j.2517-6161.1995.tb02031.x
10.1016/j.vaccine.2016.04.080
10.1093/cid/civ1013
10.1038/nmeth.f.303
10.1126/science.1211057
10.1371/journal.pone.0150100
10.1093/cid/civ828
10.1542/peds.73.6.799
10.1093/infdis/jiu037
10.1016/j.vaccine.2011.11.093
10.1128/AEM.00062-07
10.1056/NEJMoa0904797
10.1038/nmeth.2276
10.1016/j.ebiom.2015.09.036
10.1086/421248
10.1017/S0029665100000173
10.1016/j.vaccine.2014.03.004
10.1136/bmjopen-2014-005404
10.1093/femsre/fux027
10.1093/biomet/26.4.404
10.1073/pnas.1002601107
10.1038/s41598-017-06862-0
10.1128/JCM.02406-14
10.1023/A:1010933404324
10.1093/bioinformatics/btr507
10.1038/nature11053
10.1016/S1473-3099(16)30023-8
10.1128/JCM.02658-12
10.1038/srep08397
ContentType Journal Article
Copyright 2017 The Author(s)
The Author(s)
Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
2017. The Author(s)
2017 The Author(s) 2017
Copyright_xml – notice: 2017 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
– notice: 2017. The Author(s)
– notice: 2017 The Author(s) 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7T2
7T5
7U9
7X7
7XB
88C
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M0T
M1P
M2O
M7N
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
5PM
DOI 10.1016/j.vaccine.2017.11.031
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Immunology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Consumer Health Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
Health & Safety Science Abstracts
ProQuest Public Health
ProQuest Central Basic
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE

MEDLINE - Academic
AGRICOLA
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Veterinary Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-2518
EndPage 272
ExternalDocumentID PMC5755003
29217369
10_1016_j_vaccine_2017_11_031
S0264410X17315955
1_s2_0_S0264410X17315955
Genre Journal Article
GeographicLocations Bangladesh
India
GeographicLocations_xml – name: Bangladesh
– name: India
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_UP_A900_1122
– fundername: Medical Research Council
  grantid: MR/N006259/1
– fundername: Medical Research Council
  grantid: MC_UU_00026/2
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7RV
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AEXOQ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGGSO
AGUBO
AGYEJ
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AQUVI
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CJTIS
CNWQP
CS3
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K9-
KOM
L7B
LK8
LUGTX
LW9
M0R
M0T
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SNL
SPCBC
SSH
SSI
SSZ
T5K
UKHRP
UV1
WH7
WOW
Z5R
~G-
.GJ
29Q
3V.
AACTN
AAQXK
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AFCTW
AFJKZ
AFKWA
AGHFR
AHHHB
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HEJ
HLV
HMG
HMK
HMO
HVGLF
HX~
HZ~
R2-
RIG
SAE
SEW
SIN
SVS
WUQ
XPP
ZGI
ZXP
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AESVU
AJBFU
EFLBG
LCYCR
QYZTP
AAYXX
ACMHX
ADSLC
AGQPQ
AGRNS
AGWPP
AIGII
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T2
7T5
7U9
7XB
8FK
C1K
H94
K9.
M7N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ACLOT
~HD
7S9
L.6
5PM
ID FETCH-LOGICAL-c703t-184a31b3811a382072e189447a720a7da8b3ec0c51a0c397a0c555757f9245913
IEDL.DBID AIKHN
ISSN 0264-410X
1873-2518
IngestDate Thu Aug 21 18:45:25 EDT 2025
Sun Sep 28 08:29:55 EDT 2025
Sat Sep 27 20:01:33 EDT 2025
Wed Aug 13 10:07:19 EDT 2025
Mon Jul 21 06:04:10 EDT 2025
Tue Jul 01 01:06:39 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Fri Feb 23 02:47:37 EST 2024
Sun Feb 23 10:19:34 EST 2025
Tue Aug 26 16:40:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Enteropathogens
Microbiota
Immunogenicity
Rotavirus
Rotarix
Language English
License This is an open access article under the CC BY license.
Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c703t-184a31b3811a382072e189447a720a7da8b3ec0c51a0c397a0c555757f9245913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264410X17315955
PMID 29217369
PQID 1976749254
PQPubID 105530
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5755003
proquest_miscellaneous_2315288759
proquest_miscellaneous_1975015733
proquest_journals_1976749254
pubmed_primary_29217369
crossref_citationtrail_10_1016_j_vaccine_2017_11_031
crossref_primary_10_1016_j_vaccine_2017_11_031
elsevier_sciencedirect_doi_10_1016_j_vaccine_2017_11_031
elsevier_clinicalkeyesjournals_1_s2_0_S0264410X17315955
elsevier_clinicalkey_doi_10_1016_j_vaccine_2017_11_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-04
PublicationDateYYYYMMDD 2018-01-04
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-04
  day: 04
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Kidlington
PublicationTitle Vaccine
PublicationTitleAlternate Vaccine
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier Science
References Uchiyama, Chassaing, Zhang, Gewirtz (b0055) 2014; 210
Yatsunenko, Rey, Manary, Trehan, Dominguez-Bello, Contreras (b0060) 2012; 486
Kazi, Cortese, Yu, Lopman, Morrow, Fleming (b0035) 2017; 215
Ward, Bernstein, Smith, Sander, Shaw, Eiden (b0075) 2004; 189
Tate, Burton, Boschi-Pinto, Parashar (b0010) 2016; 62
Parker, Praharaj, John, Kaliappan, Kampmann, Kang (b0105) 2017; 7
Wang, Garrity, Tiedje, Cole (b0130) 2007; 73
Liu, Gratz, Amour, Kibiki, Becker, Janaki (b0080) 2013; 51
Nakayama, Watanabe, Jiang, Matsuda, Chao, Haryono (b0065) 2015; 5
Black, Brown, Becker (b0170) 1984; 73
EuroRotaNet. European rotavirus detection and typing methods. Available from
Grassly, Praharaj, Babji, Kaliappan, Giri, Venugopal (b0085) 2016; 6
Simpson GL, Bates DM, Oksanen J. permute: functions for generating restricted permutations of data. R package version 0.9-4; 2016.
Moon, Groome, Velasquez, Parashar, Jones, Koen (b0030) 2016; 62
Taniuchi, Begum, Uddin, Platts-Mills, Liu, Kirkpatrick (b0090) 2015; 53
Harris, Armah, Fuentes, Korpela, Parashar, Victor (b0190) 2017; 215
Patriarca, Wright, John (b0020) 1991; 13
Kattula, Sarkar, Sivarathinaswamy, Velusamy, Venugopal, Naumova (b0070) 2014; 4
Chilengi, Simuyandi, Beach, Mwila, Becker-Dreps, Emperador (b0185) 2016; 11
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.4-1; 2016.
Magoc, Salzberg (b0115) 2011; 27
Breiman (b0165) 2001; 45
Patel, Steele, Parashar (b0180) 2012; 30
Taniuchi, Platts-Mills, Begum, Uddin, Sobuz, Liu (b0045) 2016; 34
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello (b0120) 2010; 7
Madhi, Cunliffe, Steele, Witte, Kirsten, Louw (b0015) 2010; 362
Bokulich, Subramanian, Faith, Gevers, Gordon, Knight (b0125) 2013; 10
Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer (b0110) 2012; 6
Vandeputte, Tito, Vanleeuwen, Falony, Raes (b0205) 2017; 41
R Development Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2010. ISBN:3-900051-07-0.
Nelson, Morrison, Benjamino, Grim, Graf (b0200) 2014; 9
[last accessed: 24 November 2016].
Iturriza Gómara, Wong, Blome, Desselberger, Gray (b0095) 2002; 76
Benjamini, Hochberg (b0145) 1995; 57
Kuss, Best, Etheredge, Pruijssers, Frierson, Hooper (b0050) 2011; 334
John, Sarkar, Muliyil, Bhandari, Bhan, Kang (b0005) 2014; 32
Naylor, Lu, Haque, Mondal, Buonomo, Nayak (b0025) 2015; 2
Parker, Kampmann, Kang, Grassly (b0040) 2014; 210
Lunn (b0175) 2000; 59
Clopper, Pearson (b0140) 1934; 26
Lazarus, John, Shanmugasundaram, Rajan, Thiagarajan, Giri (b9000) 2017
Dominguez-Bello, Costello, Contreras, Magris, Hidalgo, Fierer (b0195) 2010; 107
Taniuchi, Sobuz, Begum, Platts-Mills, Liu, Yang (b0135) 2013; 208
Madhi (10.1016/j.vaccine.2017.11.031_b0015) 2010; 362
Ward (10.1016/j.vaccine.2017.11.031_b0075) 2004; 189
Caporaso (10.1016/j.vaccine.2017.11.031_b0110) 2012; 6
Parker (10.1016/j.vaccine.2017.11.031_b0105) 2017; 7
Bokulich (10.1016/j.vaccine.2017.11.031_b0125) 2013; 10
Black (10.1016/j.vaccine.2017.11.031_b0170) 1984; 73
Taniuchi (10.1016/j.vaccine.2017.11.031_b0045) 2016; 34
Kattula (10.1016/j.vaccine.2017.11.031_b0070) 2014; 4
Benjamini (10.1016/j.vaccine.2017.11.031_b0145) 1995; 57
10.1016/j.vaccine.2017.11.031_b0155
Dominguez-Bello (10.1016/j.vaccine.2017.11.031_b0195) 2010; 107
Vandeputte (10.1016/j.vaccine.2017.11.031_b0205) 2017; 41
10.1016/j.vaccine.2017.11.031_b0150
Liu (10.1016/j.vaccine.2017.11.031_b0080) 2013; 51
Chilengi (10.1016/j.vaccine.2017.11.031_b0185) 2016; 11
Parker (10.1016/j.vaccine.2017.11.031_b0040) 2014; 210
Lunn (10.1016/j.vaccine.2017.11.031_b0175) 2000; 59
John (10.1016/j.vaccine.2017.11.031_b0005) 2014; 32
Naylor (10.1016/j.vaccine.2017.11.031_b0025) 2015; 2
Breiman (10.1016/j.vaccine.2017.11.031_b0165) 2001; 45
Kazi (10.1016/j.vaccine.2017.11.031_b0035) 2017; 215
Yatsunenko (10.1016/j.vaccine.2017.11.031_b0060) 2012; 486
Taniuchi (10.1016/j.vaccine.2017.11.031_b0090) 2015; 53
Tate (10.1016/j.vaccine.2017.11.031_b0010) 2016; 62
Magoc (10.1016/j.vaccine.2017.11.031_b0115) 2011; 27
Caporaso (10.1016/j.vaccine.2017.11.031_b0120) 2010; 7
Wang (10.1016/j.vaccine.2017.11.031_b0130) 2007; 73
Iturriza Gómara (10.1016/j.vaccine.2017.11.031_b0095) 2002; 76
Grassly (10.1016/j.vaccine.2017.11.031_b0085) 2016; 6
Nelson (10.1016/j.vaccine.2017.11.031_b0200) 2014; 9
10.1016/j.vaccine.2017.11.031_b0100
Patriarca (10.1016/j.vaccine.2017.11.031_b0020) 1991; 13
Lazarus (10.1016/j.vaccine.2017.11.031_b9000) 2017
Harris (10.1016/j.vaccine.2017.11.031_b0190) 2017; 215
Nakayama (10.1016/j.vaccine.2017.11.031_b0065) 2015; 5
Uchiyama (10.1016/j.vaccine.2017.11.031_b0055) 2014; 210
10.1016/j.vaccine.2017.11.031_b0160
Patel (10.1016/j.vaccine.2017.11.031_b0180) 2012; 30
Moon (10.1016/j.vaccine.2017.11.031_b0030) 2016; 62
Clopper (10.1016/j.vaccine.2017.11.031_b0140) 1934; 26
Taniuchi (10.1016/j.vaccine.2017.11.031_b0135) 2013; 208
Kuss (10.1016/j.vaccine.2017.11.031_b0050) 2011; 334
References_xml – volume: 5
  start-page: 8397
  year: 2015
  ident: b0065
  article-title: Diversity in gut bacterial community of school-age children in Asia
  publication-title: Sci Rep
– volume: 51
  start-page: 472
  year: 2013
  end-page: 480
  ident: b0080
  article-title: A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens
  publication-title: J Clin Microbiol
– volume: 62
  start-page: S96
  year: 2016
  end-page: S105
  ident: b0010
  article-title: World Health Organization Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013
  publication-title: Clin Infect Dis
– volume: 210
  start-page: 853
  year: 2014
  end-page: 864
  ident: b0040
  article-title: Influence of enteric infections on response to oral poliovirus vaccine: a systematic review and meta-analysis
  publication-title: J Infect Dis
– volume: 107
  start-page: 11971
  year: 2010
  end-page: 11975
  ident: b0195
  article-title: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: 1759
  year: 2015
  end-page: 1766
  ident: b0025
  article-title: Environmental enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh
  publication-title: EBioMedicine
– volume: 215
  start-page: 786
  year: 2017
  end-page: 789
  ident: b0035
  article-title: Secretor and salivary ABO blood group antigen status predict rotavirus vaccine take in infants
  publication-title: J Infect Dis
– volume: 53
  start-page: 206
  year: 2015
  end-page: 211
  ident: b0090
  article-title: Kinetics of poliovirus shedding following oral vaccination as measured by quantitative reverse transcription-PCR versus culture
  publication-title: J Clin Microbiol
– volume: 7
  start-page: 9168
  year: 2017
  ident: b0105
  article-title: Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India
  publication-title: Sci Rep
– volume: 210
  start-page: 171
  year: 2014
  end-page: 182
  ident: b0055
  article-title: Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity
  publication-title: J Infect Dis
– volume: 26
  start-page: 404
  year: 1934
  end-page: 413
  ident: b0140
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
– volume: 30
  start-page: A30
  year: 2012
  end-page: A35
  ident: b0180
  article-title: Influence of oral polio vaccines on performance of the monovalent and pentavalent rotavirus vaccines
  publication-title: Vaccine
– volume: 62
  start-page: 157
  year: 2016
  end-page: 165
  ident: b0030
  article-title: Prevaccination rotavirus serum IgG and IgA are associated with lower immunogenicity of live, oral human rotavirus vaccine in South African infants
  publication-title: Clin Infect Dis
– volume: 41
  start-page: S154
  year: 2017
  end-page: S167
  ident: b0205
  article-title: Practical considerations for large-scale gut microbiome studies
  publication-title: FEMS Microbiol Rev
– volume: 208
  start-page: 1794
  year: 2013
  end-page: 1802
  ident: b0135
  article-title: Etiology of diarrhea in Bangladeshi infants in the first year of life analyzed using molecular methods
  publication-title: J Infect Dis
– volume: 334
  start-page: 249
  year: 2011
  end-page: 252
  ident: b0050
  article-title: Intestinal microbiota promote enteric virus replication and systemic pathogenesis
  publication-title: Science
– volume: 4
  start-page: e005404
  year: 2014
  ident: b0070
  article-title: The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India
  publication-title: BMJ Open
– volume: 362
  start-page: 289
  year: 2010
  end-page: 298
  ident: b0015
  article-title: Effect of human rotavirus vaccine on severe diarrhea in African infants
  publication-title: N Eng J Med
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0165
  article-title: Random Forests
  publication-title: Mach Learn
– volume: 32
  start-page: A5
  year: 2014
  end-page: A9
  ident: b0005
  article-title: Rotavirus gastroenteritis in India, 2011–2013: revised estimates of disease burden and potential impact of vaccines
  publication-title: Vaccine
– reference: Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.4-1; 2016.
– year: 2017
  ident: b9000
  article-title: The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: A randomized, factorial design, placebo-controlled study among Indian infant
  publication-title: Vaccine
– volume: 13
  start-page: 926
  year: 1991
  end-page: 939
  ident: b0020
  article-title: Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review
  publication-title: Rev Infect Dis
– volume: 59
  start-page: 147
  year: 2000
  end-page: 154
  ident: b0175
  article-title: The impact of infection and nutrition on gut function and growth in childhood
  publication-title: The Proc Nutr Soc
– volume: 11
  start-page: e0150100
  year: 2016
  ident: b0185
  article-title: Association of maternal immunity with rotavirus vaccine immunogenicity in Zambian infants
  publication-title: PLoS One
– reference: R Development Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2010. ISBN:3-900051-07-0.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: b0120
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  ident: b0115
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 6
  start-page: 1621
  year: 2012
  end-page: 1624
  ident: b0110
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J
– reference: Simpson GL, Bates DM, Oksanen J. permute: functions for generating restricted permutations of data. R package version 0.9-4; 2016.
– volume: 6
  start-page: 905
  year: 2016
  end-page: 914
  ident: b0085
  article-title: The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised placebo-controlled trial in seronegative Indian infants
  publication-title: Lancet Infect Dis
– volume: 10
  start-page: 57
  year: 2013
  end-page: 59
  ident: b0125
  article-title: Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing
  publication-title: Nat Methods
– volume: 189
  start-page: 2290
  year: 2004
  end-page: 2293
  ident: b0075
  article-title: Rotavirus immunoglobulin a responses stimulated by each of 3 doses of a quadrivalent human/bovine reassortant rotavirus vaccine
  publication-title: J Infect Dis
– reference: EuroRotaNet. European rotavirus detection and typing methods. Available from: <
– volume: 486
  start-page: 222
  year: 2012
  end-page: 227
  ident: b0060
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
– volume: 215
  start-page: 34
  year: 2017
  end-page: 41
  ident: b0190
  article-title: Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana
  publication-title: J Infect Dis
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: b0145
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Statist Soc B
– volume: 76
  start-page: 6596
  year: 2002
  end-page: 6601
  ident: b0095
  article-title: Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation
  publication-title: J Virol
– reference: > [last accessed: 24 November 2016].
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: b0130
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl Environ Microbiol
– volume: 34
  start-page: 3068
  year: 2016
  end-page: 3075
  ident: b0045
  article-title: Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants
  publication-title: Vaccine
– volume: 9
  start-page: e94249
  year: 2014
  ident: b0200
  article-title: Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys
  publication-title: PLoS One
– volume: 73
  start-page: 799
  year: 1984
  end-page: 805
  ident: b0170
  article-title: Effects of diarrhea associated with specific enteropathogens on the growth of children in rural Bangladesh
  publication-title: Pediatrics
– ident: 10.1016/j.vaccine.2017.11.031_b0150
– volume: 215
  start-page: 786
  issue: 5
  year: 2017
  ident: 10.1016/j.vaccine.2017.11.031_b0035
  article-title: Secretor and salivary ABO blood group antigen status predict rotavirus vaccine take in infants
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jix028
– volume: 210
  start-page: 853
  year: 2014
  ident: 10.1016/j.vaccine.2017.11.031_b0040
  article-title: Influence of enteric infections on response to oral poliovirus vaccine: a systematic review and meta-analysis
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu182
– volume: 6
  start-page: 1621
  year: 2012
  ident: 10.1016/j.vaccine.2017.11.031_b0110
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J
  doi: 10.1038/ismej.2012.8
– volume: 208
  start-page: 1794
  year: 2013
  ident: 10.1016/j.vaccine.2017.11.031_b0135
  article-title: Etiology of diarrhea in Bangladeshi infants in the first year of life analyzed using molecular methods
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jit507
– volume: 9
  start-page: e94249
  issue: 4
  year: 2014
  ident: 10.1016/j.vaccine.2017.11.031_b0200
  article-title: Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094249
– volume: 215
  start-page: 34
  year: 2017
  ident: 10.1016/j.vaccine.2017.11.031_b0190
  article-title: Significant correlation between the infant gut microbiome and rotavirus vaccine response in rural Ghana
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiw518
– volume: 13
  start-page: 926
  year: 1991
  ident: 10.1016/j.vaccine.2017.11.031_b0020
  article-title: Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review
  publication-title: Rev Infect Dis
  doi: 10.1093/clinids/13.5.926
– volume: 76
  start-page: 6596
  year: 2002
  ident: 10.1016/j.vaccine.2017.11.031_b0095
  article-title: Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation
  publication-title: J Virol
  doi: 10.1128/JVI.76.13.6596-6601.2002
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.vaccine.2017.11.031_b0145
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Statist Soc B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 34
  start-page: 3068
  year: 2016
  ident: 10.1016/j.vaccine.2017.11.031_b0045
  article-title: Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2016.04.080
– volume: 62
  start-page: S96
  issue: Suppl. 2
  year: 2016
  ident: 10.1016/j.vaccine.2017.11.031_b0010
  article-title: World Health Organization Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/civ1013
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.vaccine.2017.11.031_b0120
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– volume: 334
  start-page: 249
  year: 2011
  ident: 10.1016/j.vaccine.2017.11.031_b0050
  article-title: Intestinal microbiota promote enteric virus replication and systemic pathogenesis
  publication-title: Science
  doi: 10.1126/science.1211057
– volume: 11
  start-page: e0150100
  issue: 3
  year: 2016
  ident: 10.1016/j.vaccine.2017.11.031_b0185
  article-title: Association of maternal immunity with rotavirus vaccine immunogenicity in Zambian infants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0150100
– volume: 62
  start-page: 157
  issue: 2
  year: 2016
  ident: 10.1016/j.vaccine.2017.11.031_b0030
  article-title: Prevaccination rotavirus serum IgG and IgA are associated with lower immunogenicity of live, oral human rotavirus vaccine in South African infants
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/civ828
– volume: 73
  start-page: 799
  year: 1984
  ident: 10.1016/j.vaccine.2017.11.031_b0170
  article-title: Effects of diarrhea associated with specific enteropathogens on the growth of children in rural Bangladesh
  publication-title: Pediatrics
  doi: 10.1542/peds.73.6.799
– volume: 210
  start-page: 171
  year: 2014
  ident: 10.1016/j.vaccine.2017.11.031_b0055
  article-title: Antibiotic treatment suppresses rotavirus infection and enhances specific humoral immunity
  publication-title: J Infect Dis
  doi: 10.1093/infdis/jiu037
– volume: 30
  start-page: A30
  issue: Suppl. 1
  year: 2012
  ident: 10.1016/j.vaccine.2017.11.031_b0180
  article-title: Influence of oral polio vaccines on performance of the monovalent and pentavalent rotavirus vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2011.11.093
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.vaccine.2017.11.031_b0130
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00062-07
– volume: 362
  start-page: 289
  year: 2010
  ident: 10.1016/j.vaccine.2017.11.031_b0015
  article-title: Effect of human rotavirus vaccine on severe diarrhea in African infants
  publication-title: N Eng J Med
  doi: 10.1056/NEJMoa0904797
– volume: 10
  start-page: 57
  year: 2013
  ident: 10.1016/j.vaccine.2017.11.031_b0125
  article-title: Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2276
– volume: 2
  start-page: 1759
  issue: 11
  year: 2015
  ident: 10.1016/j.vaccine.2017.11.031_b0025
  article-title: Environmental enteropathy, oral vaccine failure and growth faltering in infants in Bangladesh
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2015.09.036
– volume: 189
  start-page: 2290
  year: 2004
  ident: 10.1016/j.vaccine.2017.11.031_b0075
  article-title: Rotavirus immunoglobulin a responses stimulated by each of 3 doses of a quadrivalent human/bovine reassortant rotavirus vaccine
  publication-title: J Infect Dis
  doi: 10.1086/421248
– ident: 10.1016/j.vaccine.2017.11.031_b0160
– volume: 59
  start-page: 147
  year: 2000
  ident: 10.1016/j.vaccine.2017.11.031_b0175
  article-title: The impact of infection and nutrition on gut function and growth in childhood
  publication-title: The Proc Nutr Soc
  doi: 10.1017/S0029665100000173
– volume: 32
  start-page: A5
  issue: Suppl. 1
  year: 2014
  ident: 10.1016/j.vaccine.2017.11.031_b0005
  article-title: Rotavirus gastroenteritis in India, 2011–2013: revised estimates of disease burden and potential impact of vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2014.03.004
– volume: 4
  start-page: e005404
  issue: 7
  year: 2014
  ident: 10.1016/j.vaccine.2017.11.031_b0070
  article-title: The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2014-005404
– volume: 41
  start-page: S154
  issue: Supp_1
  year: 2017
  ident: 10.1016/j.vaccine.2017.11.031_b0205
  article-title: Practical considerations for large-scale gut microbiome studies
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fux027
– year: 2017
  ident: 10.1016/j.vaccine.2017.11.031_b9000
  article-title: The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: A randomized, factorial design, placebo-controlled study among Indian infant
  publication-title: Vaccine
– volume: 26
  start-page: 404
  year: 1934
  ident: 10.1016/j.vaccine.2017.11.031_b0140
  article-title: The use of confidence or fiducial limits illustrated in the case of the binomial
  publication-title: Biometrika
  doi: 10.1093/biomet/26.4.404
– volume: 107
  start-page: 11971
  issue: 26
  year: 2010
  ident: 10.1016/j.vaccine.2017.11.031_b0195
  article-title: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1002601107
– volume: 7
  start-page: 9168
  issue: 1
  year: 2017
  ident: 10.1016/j.vaccine.2017.11.031_b0105
  article-title: Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-06862-0
– ident: 10.1016/j.vaccine.2017.11.031_b0155
– volume: 53
  start-page: 206
  year: 2015
  ident: 10.1016/j.vaccine.2017.11.031_b0090
  article-title: Kinetics of poliovirus shedding following oral vaccination as measured by quantitative reverse transcription-PCR versus culture
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02406-14
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.vaccine.2017.11.031_b0165
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 27
  start-page: 2957
  issue: 21
  year: 2011
  ident: 10.1016/j.vaccine.2017.11.031_b0115
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 486
  start-page: 222
  year: 2012
  ident: 10.1016/j.vaccine.2017.11.031_b0060
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
  doi: 10.1038/nature11053
– volume: 6
  start-page: 905
  year: 2016
  ident: 10.1016/j.vaccine.2017.11.031_b0085
  article-title: The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised placebo-controlled trial in seronegative Indian infants
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(16)30023-8
– volume: 51
  start-page: 472
  year: 2013
  ident: 10.1016/j.vaccine.2017.11.031_b0080
  article-title: A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.02658-12
– volume: 5
  start-page: 8397
  year: 2015
  ident: 10.1016/j.vaccine.2017.11.031_b0065
  article-title: Diversity in gut bacterial community of school-age children in Asia
  publication-title: Sci Rep
  doi: 10.1038/srep08397
– ident: 10.1016/j.vaccine.2017.11.031_b0100
SSID ssj0005319
Score 2.5326452
Snippet Oral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal microbiota,...
AbstractOral rotavirus vaccines have consistently proven to be less immunogenic among infants in developing countries. Discrepancies in the intestinal...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 264
SubjectTerms Age
Allergy and Immunology
Animals
Antibodies, Viral - blood
Babies
Bacteria
Bacteria - classification
Bacteria - isolation & purification
Case-Control Studies
clinical trials
Community composition
community structure
Developing countries
Diarrhea
Dosage
Enteropathogens
Enterovirus C
feces
Female
Gastrointestinal Microbiome
Gene sequencing
genes
Humans
Immunogenicity
Immunoglobulins
India
Infant
Infants
Intestinal microflora
intestinal microorganisms
Intestine
Laboratories
LDCs
Male
Microbiota
Parasites - classification
Parasites - isolation & purification
Pathogens
Poliomyelitis
Poliovirus Vaccine, Oral - administration & dosage
Probiotics
quantitative polymerase chain reaction
Real-Time Polymerase Chain Reaction
Replication
ribosomal RNA
Rotarix
Rotavirus
Rotavirus Infections - prevention & control
Rotavirus Vaccines - administration & dosage
Rotavirus Vaccines - immunology
rRNA 16S
Shedding
vaccination
Vaccines
Vaccines, Attenuated - administration & dosage
Vaccines, Attenuated - immunology
Virus Shedding
Viruses
Viruses - classification
Viruses - isolation & purification
SummonAdditionalLinks – databaseName: Public Health Database
  dbid: 8C1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgCMQLgvIrMJCR0J6WLontOHlCaGLakIYmsaG-WW6aQCdIRpNW6n_Pd4mTbsAYL-2DfXWTs8_f2XffMfYWTkUq41nqFwVcFKm08NPpDAoprI5mmghXKFH4-FN8eCY_TtTEHbjVLqyyt4mtoZ5VGZ2R74Up0c6k8GfeXfz0qWoU3a66Ehq32R3KASXnK9m_FOIh2sIecDOkL8Ngssng2Tsfr2xGV9cU3aXHROQpwuv2pj-x5-8hlJf2pIOH7IEDk_x9p_1H7FZejtjdrrzkesTuHbuL8xHbOekoqte7_HSTcVXv8h1-siGvhszoC8XHtEm6vBd_zFZHfS0TXhUcmJETzQSsAw3_Y96ROTWWV2XXSEknFaYmxJs1iRAPAF-gy2q-WNbcvRX-lWwtbyr8XEEBOfjmNRX140clJu4Tdnbw4XT_0HcVG_wMlqPx4S5aEU6BAkIrgC10lIdJKqWG4gOrZzaZijwLMhXaIAMSwqdSAIy6gBuo0lA8ZVtlVebPGc8jnQH86CAphEQ3q2Jt4zwQUimBHdVjsteVyRydOVXV-G76uLVz4x7GkIrh6hio2GPjQeyi4_O4SSDuJ4Lpk1VhXg12nJsE9d8E89oZidqEpo5MYD4HLSgNJqEWAJdKeSwZJB0O6vDN_wy63c9VsxlnWDoeezM0w4zQ3ZAt82rZ9lFAhlqI6_vAFVARNiWVeuxZN_2Hdxil8G1FjBZ9ZWEMHYjG_GpLOf_W0plD_wp7y4t___WX7D6eM2lPv-Q222oWy_wV8GAzfd0u-l_Fr17p
  priority: 102
  providerName: ProQuest
Title Influence of the intestinal microbiota on the immunogenicity of oral rotavirus vaccine given to infants in south India
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0264410X17315955
https://www.clinicalkey.es/playcontent/1-s2.0-S0264410X17315955
https://dx.doi.org/10.1016/j.vaccine.2017.11.031
https://www.ncbi.nlm.nih.gov/pubmed/29217369
https://www.proquest.com/docview/1976749254
https://www.proquest.com/docview/1975015733
https://www.proquest.com/docview/2315288759
https://pubmed.ncbi.nlm.nih.gov/PMC5755003
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF61qUBcEIRXoKBFQj3Vie31eu1jiVoloEYRtCi31caxIRXYVexEyoXfzjd-JIRSFXFZJ9mZbLwznkd2Hoy9g1MRev4stJIELoonlbDC6QwESYxyZ4oKrlCi8PnIH1x6HyZyssf6TS4MhVXWsr-S6aW0rj_p1bvZu57Pe5_tUpfbE0cJ6GQp99mBC20ftNjByfDjYLSN9BBlfw-Ctwhhm8jTu-quTEQn2BTkpbpUz1M4t6momybon5GUv6mms0fsYW1T8pPqZz9me3HaZveqLpPrNrt_Xp-ft9nRuKpUvT7mF9vEq_yYH_HxtoY1cNpfKEymzNXlDfoTtho2LU14lnCYjpyqTUBI0PI_5lVNp8LwLK0mKfckA4cCvVgTCpUD4AuArOaLZc7rXeFfSeTyIsPXJRSXgyvPqbcfH6bg36fs8uz0oj-w6sYNVgQBUljwGo1wpjAGHCNgYig3doLQ8xTobxs1M8FUxJEdScfYEQwijFLCblQJvEEZOuIZa6VZGr9gPHZVBBtI2UEiPIAZ6Svjx7bwpBRQrB3mNbTSUV3VnJprfNdN-NqVrm9GE4nh8WiQuMO6G7TrqqzHXQh-wwi6yVmFlNVQPHchqr8hxnktK3Lt6NzVtr7Bzx0WbDB3Hol_WfSw4VW9XSekwk2hK70Oe7uZhjShIyKTxtmyhJEwEJUQt8PAI5AudJMMO-x5xf6bPXRDuLjCx4zaeTA2AFTNfHcmnX8rq5qD_hIq5uX_3_Ur9gDvgvIPMu-QtYrFMn4Nk7GYvmH73Z8ORjVRGIM-XldCAtf3p6Pxp1-0QW7V
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwEN4p6fC4MBAeDRQQM9BTndqWZMWHDsOjnYQ2mQykndyE40dJB-wSO2Hy5_ht7PoVCpRy6SU5SGvJXmkf0u63AC_QqXCFE7hGFKGLIqTihjsJkCGRp-xAEeAKJQr3B073SLwfy_Ea_KhyYSisspKJuaAOEp_OyHcsl2BnXPRnXp19M6hqFN2uViU0vLK0QrCbQ4yViR0H4fI7unDpbu8d8vulbe_vjd52jbLKgOHjas8MdHE8bk1Qc1keR32o7NDquEIonKzpqcDrTHjom760PNNH7Y2_UqKRoyJ0XaRrcXzuNVgXdIDSgPU3e4Phh1WQCc9Li6CjIwxhmeNVDtHOaXuBs0ZTkuLLVJugRLl1kXb80_r9PYjzF624fwdul-Yse12sv7uwFsZNuF4UuFw24Ua_vLpvwtawAMlebrPRKucr3WZbbLiCz0aa5jFF6ORpwqwivweLXlVNhSURQ6uVEdAFyica_uu0gJPKPJbERSOlvSS4OZA8WxIJIRGwGXZZTGfzlJVfhZ2QtGdZgo-LKCQI_1lKZQVZL8atcx-OroSbD6ARJ3G4ASy0lY_mlzI7ERfYzZOO8pzQ5EJKjjq9BaLilfZLQHWq6_FFV5Fzp7p8GU0sRmdLI4tb0K7JzgpEkcsInGoh6CpdFgW8Rp13GaH6G2GYlmIq1ZZObW3qj2ZuFptjS3E0b6VsQaemLC2xwsL6n0E3q7WqV-PUm7cFz-tmFGR0O-XFYTLP-0i0TRXnF_dBZ0TaqBal24KHxfKvv6HtonfNHWxR5zZG3YGA1M-3xNPPOaA68l-idnv076k_g5vdUf9QH_YGB4_hFr5zJz-LE5vQyGbz8Alap9nkaSkCGHy6aqnzE2lZn5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVlRcEIRXoMAiQU91Ynt3vfGhQkAbNZRGEbRVbovjB6QCu8ROUf4iv4pv7bVDgVIuvSSH3fFrdme-sWe-IeQ5ggqfe5FvJQlCFC4ks_xJBIUkgXQjqQlXdKHwwdDbO-Jvx2K8Qn7UtTA6rbK2iaWhjrJQvyPvOr6mnfERz3QTkxYx2um_PP1m6Q5S-ktr3U4jMG0Wou2SbswUeezHi-8I5_LtwQ50_8J1-7uHb_Ys03HACrHyCwvhTsCcCbyYEzD4RunGTs_nXOLC7UBGQW_C4tAOhRPYITw5foUA4JEJwhjhOwzHvUbWJLw-AsG117vD0ftlwgkr24wg6OEWd-zxsp6oe9I5w1UDVupcM9nRtKLMuchT_omEf0_o_MVD9m-Rmwba0lfVWrxNVuK0Ra5XzS4XLbJ-YD7jt8jmqCLMXmzRw2X9V75FN-loSaUNmdaxztYpS4ZpLX6HnA3qzio0SygQLNWkF7BV-vRfpxW1VBHQLK0GdQlMho0C8WKhRTQrAZ1hytl0Ns-peSr0k7b8tMhwuESnB-Gf5rrFIB2k2EZ3ydGVaPMeWU2zNH5AaOzKEFBM2r2EcUwLhCcDL7YZF4LBv7cJr3WlQkOurnt8fFF1Ft2JMjejtIoReCmouE06jdhpxS5ymYBXLwRVl87C2Cv4v8sE5d8E49yYrFw5KneVrT7YJUS2x45kgLpCtEmvkTSorEJb_3PSjXqtquV5mo3cJs-aYRg1_aUqSONsXs4RwKmSsYvnIDARLlyk8NvkfrX8m2fo-oi0mYcReW5jNBM0qfr5kXT6uSRXh_4FPN3Df1_6U7IO66PeDYb7j8gN3HKvfC3HN8hqMZvHjwFUi8kTYwEo-XjVRucnXh6j2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+the+intestinal+microbiota+on+the+immunogenicity+of+oral+rotavirus+vaccine+given+to+infants+in+south+India&rft.jtitle=Vaccine&rft.au=Parker%2C+Edward+P.K.&rft.au=Praharaj%2C+Ira&rft.au=Zekavati%2C+Anna&rft.au=Lazarus%2C+Robin+P&rft.date=2018-01-04&rft.issn=0264-410X&rft.volume=36&rft.issue=2+p.264-272&rft.spage=264&rft.epage=272&rft_id=info:doi/10.1016%2Fj.vaccine.2017.11.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0264410X%2FS0264410X17X0056X%2Fcov150h.gif