Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can...
Saved in:
| Published in | NEUROIMAGE Vol. 243; p. 118502 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article Publication |
| Language | English |
| Published |
United States
Elsevier Inc
01.11.2021
Elsevier Limited Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-8119 1095-9572 1095-9572 |
| DOI | 10.1016/j.neuroimage.2021.118502 |
Cover
| Abstract | White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process. |
|---|---|
| AbstractList | White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process. White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process. |
| ArticleNumber | 118502 |
| Author | Yeh, Fang-Cheng Sanz-Morales, Emilio Ocampo-Pineda, Mario Lauricella, Michael Paulson, Amy Mancini, Laura Calhoun, Vince D. Daducci, Alessandro Rheault, François Pizzolato, Marco López-López, Narciso Raja, Rajikha Andrade, José Paulo Pestilli, Franco Joseph, Michael Alexander, Andrew L. Melero, Helena Sunaert, Stefan Schiavi, Simona Román, Claudio Peña-Melián, Ángel O'Donnell, Lauren J. Lebel, Catherine Toga, Arthur W. Thiran, Jean-Philippe Cocozza, Sirio Nestrasil, Igor Yeh, Ping-Hong Srikanchana, Rujirutana Grenier, Gabrielle Voineskos, Aristotle N. Korobova, Laura Houenou, Josselin Shi, Yonggang Warrington, Shaun Saito, Yuya Aranda, Ramón Anderson, Adam W. Nath, Vishwesh Seunarine, Kiran K Fischi-Gomez, Elda Reynolds, Jess E Duncan, John S. Cochereau, Jerome Welton, Thomas Caverzasi, Eduardo Meraz, Mariano Rivera Petracca, Maria Rathi, Yogesh Lenglet, Christophe Bullock, Daniel Yu, Thomas Mangin, Jean-François Makris, Nikos Guevara, Pamela Cabeen, Ryan P. Emsell, Louise De Luca, Alberto Yeh, Chun-Hung Girard, Gabriel Chen, Jian Kelly, Claire |
| Author_xml | – sequence: 3 givenname: Laurent surname: Petit fullname: Petit, Laurent organization: Groupe dImagerie Neurofonctionnelle, Institut Des Maladies Neurodegeneratives, CNRS, CEA University of Bordeaux, Bordeaux, France – sequence: 4 givenname: Colin B. surname: Hansen fullname: Hansen, Colin B. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – sequence: 6 givenname: Fang-Cheng surname: Yeh fullname: Yeh, Fang-Cheng organization: Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States – sequence: 8 givenname: Muhamed surname: Barakovic fullname: Barakovic, Muhamed organization: Translational Imaging in Neurology (ThINK), Department of Medicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland – sequence: 9 givenname: Jonathan surname: Rafael-Patino fullname: Rafael-Patino, Jonathan organization: Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 11 givenname: Elda surname: Fischi-Gomez fullname: Fischi-Gomez, Elda organization: Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 12 givenname: Marco surname: Pizzolato fullname: Pizzolato, Marco organization: Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark – sequence: 13 givenname: Mario surname: Ocampo-Pineda fullname: Ocampo-Pineda, Mario organization: Department of Computer Science, University of Verona, Italy – sequence: 14 givenname: Simona surname: Schiavi fullname: Schiavi, Simona organization: Department of Computer Science, University of Verona, Italy – sequence: 15 givenname: Erick J. surname: Canales-Rodríguez fullname: Canales-Rodríguez, Erick J. organization: Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 16 givenname: Alessandro surname: Daducci fullname: Daducci, Alessandro organization: Department of Computer Science, University of Verona, Italy – sequence: 17 givenname: Cristina surname: Granziera fullname: Granziera, Cristina organization: Translational Imaging in Neurology (ThINK), Department of Medicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland – sequence: 18 givenname: Giorgio surname: Innocenti fullname: Innocenti, Giorgio organization: Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden – sequence: 19 givenname: Jean-Philippe surname: Thiran fullname: Thiran, Jean-Philippe organization: Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 21 givenname: Stephen surname: Wastling fullname: Wastling, Stephen organization: Lysholm Department of Neuroradiology, National Hospital for Neurology & Neurosurgery, UCL Hospitals NHS Foundation Trust, London, United Kingdom – sequence: 22 givenname: Sirio surname: Cocozza fullname: Cocozza, Sirio organization: Department of Advanced Biomedical Sciences, University “Federico II”, Naples, Italy – sequence: 23 givenname: Maria surname: Petracca fullname: Petracca, Maria organization: Department of Neurosciences and Reproductive and Odontostomatological Sciences, University “Federico II”, Naples, Italy – sequence: 27 givenname: Vejay N. surname: Vakharia fullname: Vakharia, Vejay N. organization: Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom – sequence: 29 givenname: Helena surname: Melero fullname: Melero, Helena organization: Departamento de Psicobiología y Metodología en Ciencias del Comportamiento - Universidad Complutense de Madrid, Spain Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain – sequence: 30 givenname: Lidia surname: Manzanedo fullname: Manzanedo, Lidia organization: Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain – sequence: 31 givenname: Emilio surname: Sanz-Morales fullname: Sanz-Morales, Emilio organization: Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain – sequence: 32 givenname: Ángel surname: Peña-Melián fullname: Peña-Melián, Ángel organization: Departamento de Anatomía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain – sequence: 33 givenname: Fernando surname: Calamante fullname: Calamante, Fernando organization: Sydney Imaging and School of Biomedical Engineering, The University of Sydney, Sydney, Australia – sequence: 34 givenname: Arnaud surname: Attyé fullname: Attyé, Arnaud organization: School of Biomedical Engineering, The University of Sydney, Sydney, Australia – sequence: 36 givenname: Laura surname: Korobova fullname: Korobova, Laura organization: Center for Integrative Connectomics, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States – sequence: 37 givenname: Arthur W. surname: Toga fullname: Toga, Arthur W. organization: Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States – sequence: 38 givenname: Anupa Ambili surname: Vijayakumari fullname: Vijayakumari, Anupa Ambili organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States – sequence: 39 givenname: Drew surname: Parker fullname: Parker, Drew organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States – sequence: 40 givenname: Ragini surname: Verma fullname: Verma, Ragini organization: Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States – sequence: 41 givenname: Ahmed surname: Radwan fullname: Radwan, Ahmed organization: KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium – sequence: 43 givenname: Louise surname: Emsell fullname: Emsell, Louise organization: KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium – sequence: 44 givenname: Alberto surname: De Luca fullname: De Luca, Alberto organization: PROVIDI Lab, UMC Utrecht, The Netherlands – sequence: 45 givenname: Alexander surname: Leemans fullname: Leemans, Alexander organization: PROVIDI Lab, UMC Utrecht, The Netherlands – sequence: 47 givenname: Hamied surname: Haroon fullname: Haroon, Hamied organization: Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom – sequence: 48 givenname: Hojjatollah surname: Azadbakht fullname: Azadbakht, Hojjatollah organization: AINOSTICS Limited, London, United Kingdom – sequence: 52 givenname: Ping-Hong surname: Yeh fullname: Yeh, Ping-Hong organization: National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA – sequence: 56 givenname: Jian surname: Chen fullname: Chen, Jian organization: Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia – sequence: 57 givenname: Claire E. surname: Kelly fullname: Kelly, Claire E. organization: Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia – sequence: 58 givenname: Chun-Hung surname: Yeh fullname: Yeh, Chun-Hung organization: Institute for Radiological Research, Chang Gung University & Chang Gung Memorial Hospital, Taoyuan, Taiwan – sequence: 60 givenname: Jerome J. surname: Maller fullname: Maller, Jerome J. organization: MRI Clinical Science Specialist, General Electric Healthcare, Australia – sequence: 62 givenname: Fabien surname: Almairac fullname: Almairac, Fabien organization: Neurosurgery department, Hôpital Pasteur, University Hospital of Nice, Côte d'Azur University, France – sequence: 63 givenname: Kiran K surname: Seunarine fullname: Seunarine, Kiran K organization: Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London – sequence: 65 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 66 givenname: Nikos surname: Makris fullname: Makris, Nikos organization: Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 67 givenname: Alexandra surname: Golby fullname: Golby, Alexandra organization: Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 68 givenname: Yogesh surname: Rathi fullname: Rathi, Yogesh organization: Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 69 givenname: Lauren J. surname: O'Donnell fullname: O'Donnell, Lauren J. organization: Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 70 givenname: Yihao surname: Xia fullname: Xia, Yihao organization: University of Southern California, Keck School of Medicine, Neuroimaging and Informatics Institute, Los Angeles, California, United States – sequence: 71 givenname: Dogu Baran surname: Aydogan fullname: Aydogan, Dogu Baran organization: Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland – sequence: 73 givenname: Francisco Guerreiro surname: Fernandes fullname: Fernandes, Francisco Guerreiro organization: UMC Utrecht Brain Center, Department of Neurology&Neurosurgery, Utrecht, the Netherlands – sequence: 75 givenname: Shaun surname: Warrington fullname: Warrington, Shaun organization: Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK – sequence: 76 givenname: Stijn surname: Michielse fullname: Michielse, Stijn organization: Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University – sequence: 78 givenname: Luis surname: Concha fullname: Concha, Luis organization: Universidad Nacional Autonoma de Mexico, Institute of Neurobiology, Mexico City, Mexico – sequence: 79 givenname: Ramón surname: Aranda fullname: Aranda, Ramón organization: Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE-UT3), Cátedras-CONACyT, Ensenada, Mexico – sequence: 80 givenname: Mariano Rivera surname: Meraz fullname: Meraz, Mariano Rivera organization: Centro de Investigación en Matemáticas A.C. (CIMAT), Guanajuato, Mexico – sequence: 81 givenname: Garikoitz surname: Lerma-Usabiaga fullname: Lerma-Usabiaga, Garikoitz organization: Department of Psychology, Stanford University, Stanford, California, USA – sequence: 82 givenname: Lucas surname: Roitman fullname: Roitman, Lucas organization: Department of Psychology, Stanford University, Stanford, California, USA – sequence: 83 givenname: Lucius S. surname: Fekonja fullname: Fekonja, Lucius S. organization: Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany – sequence: 84 givenname: Navona surname: Calarco fullname: Calarco, Navona organization: Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario – sequence: 85 givenname: Michael surname: Joseph fullname: Joseph, Michael organization: Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario – sequence: 86 givenname: Hajer surname: Nakua fullname: Nakua, Hajer organization: Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario – sequence: 87 givenname: Aristotle N. surname: Voineskos fullname: Voineskos, Aristotle N. organization: Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario – sequence: 90 givenname: Jon Haitz surname: Legarreta fullname: Legarreta, Jon Haitz organization: SCIL, Université de Sherbrooke, Québec, Canada – sequence: 91 givenname: Nagesh surname: Adluru fullname: Adluru, Nagesh organization: University of Wisconsin-Madison, Madison, WI, USA – sequence: 93 givenname: Vivek surname: Prabhakaran fullname: Prabhakaran, Vivek organization: University of Wisconsin-Madison, Madison, WI, USA – sequence: 94 givenname: Andrew L. surname: Alexander fullname: Alexander, Andrew L. organization: University of Wisconsin-Madison, Madison, WI, USA – sequence: 97 givenname: Wataru surname: Uchida fullname: Uchida, Wataru organization: Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan – sequence: 99 givenname: Masahiro surname: Abe fullname: Abe, Masahiro organization: Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan – sequence: 100 givenname: Roza G. surname: Bayrak fullname: Bayrak, Roza G. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States – sequence: 101 givenname: Claudia A.M. Gandini surname: Wheeler-Kingshott fullname: Wheeler-Kingshott, Claudia A.M. Gandini organization: NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom – sequence: 102 givenname: Egidio surname: D'Angelo fullname: D'Angelo, Egidio organization: Department of Brain and Behavioral Sciences, University of Pavia, Italy – sequence: 103 givenname: Fulvia surname: Palesi fullname: Palesi, Fulvia organization: Department of Brain and Behavioral Sciences, University of Pavia, Italy – sequence: 104 givenname: Giovanni surname: Savini fullname: Savini, Giovanni organization: Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy – sequence: 105 givenname: Nicolò surname: Rolandi fullname: Rolandi, Nicolò organization: Department of Brain and Behavioral Sciences, University of Pavia, Italy – sequence: 106 givenname: Pamela surname: Guevara fullname: Guevara, Pamela organization: Universidad de Concepción, Faculty of Engineering, Concepción, Chile – sequence: 107 givenname: Josselin surname: Houenou fullname: Houenou, Josselin organization: Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France – sequence: 108 givenname: Narciso surname: López-López fullname: López-López, Narciso organization: Universidad de Concepción, Faculty of Engineering, Concepción, Chile – sequence: 109 givenname: Jean-François surname: Mangin fullname: Mangin, Jean-François organization: Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France – sequence: 110 givenname: Cyril surname: Poupon fullname: Poupon, Cyril organization: Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France – sequence: 113 givenname: Chiara surname: Maffei fullname: Maffei, Chiara organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA – sequence: 114 givenname: Mavilde surname: Arantes fullname: Arantes, Mavilde organization: Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal – sequence: 115 givenname: José Paulo surname: Andrade fullname: Andrade, José Paulo organization: Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal – sequence: 116 givenname: Susana Maria surname: Silva fullname: Silva, Susana Maria organization: Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal – sequence: 117 givenname: Vince D. surname: Calhoun fullname: Calhoun, Vince D. organization: Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, United States – sequence: 118 givenname: Eduardo surname: Caverzasi fullname: Caverzasi, Eduardo organization: Neurology Department UCSF Weill Institute for Neurosciences, University of California, San Francisco – sequence: 119 givenname: Simone surname: Sacco fullname: Sacco, Simone organization: Neurology Department UCSF Weill Institute for Neurosciences, University of California, San Francisco – sequence: 120 givenname: Michael surname: Lauricella fullname: Lauricella, Michael organization: Memory and Aging Center. UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA – sequence: 121 givenname: Franco surname: Pestilli fullname: Pestilli, Franco organization: Department of Psychology, The University of Texas at Austin, TX 78731, USA – sequence: 123 givenname: Yang surname: Zhan fullname: Zhan, Yang organization: Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China – sequence: 124 givenname: Edith surname: Brignoni-Perez fullname: Brignoni-Perez, Edith organization: Developmental-Behavioral Pediatrics Division, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States – sequence: 127 givenname: Igor surname: Nestrasil fullname: Nestrasil, Igor organization: Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA – sequence: 128 givenname: René surname: Labounek fullname: Labounek, René organization: Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA – sequence: 129 givenname: Christophe surname: Lenglet fullname: Lenglet, Christophe organization: Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA – sequence: 131 givenname: Stefania surname: Aulicka fullname: Aulicka, Stefania organization: Department of Paediatric Neurology, University Hospital and Medicine Faculty, Masaryk University, Brno, Czech Republic – sequence: 132 givenname: Sarah R. surname: Heilbronner fullname: Heilbronner, Sarah R. organization: Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA – sequence: 134 givenname: Bramsh Qamar surname: Chandio fullname: Chandio, Bramsh Qamar organization: Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA – sequence: 135 givenname: Javier surname: Guaje fullname: Guaje, Javier organization: Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA – sequence: 137 givenname: Eleftherios surname: Garyfallidis fullname: Garyfallidis, Eleftherios organization: Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA – sequence: 139 givenname: Adam W. surname: Anderson fullname: Anderson, Adam W. organization: Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA – sequence: 140 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34433094$$D View this record in MEDLINE/PubMed https://hal.science/hal-03346621$$DView record in HAL http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index |
| BookMark | eNqVkk1v1DAQhiNURD_gLyBLXOCwi-04ic2hUCqglSpxKeJoTZzJxtuss9jOVvvv8ZK20D2Vk62Z931mNDPH2YEbHGYZYXTOKCvfL-cORz_YFSxwzilnc8ZkQfmz7IhRVcxUUfGD3b_IZ5IxdZgdh7CklCom5IvsMBciz6kSR9l47cHEYeFh3W1JY0NAE-3gyAa8hdr2Nm4_kJ8dRNLBeo0ukNsOHRGcLPwwrsO9hzCRMjYiWUGM6Ek9uqbHQBIrdkgCrJA0ECFg_Pgye95CH_DV3XuS_fj65fr8Ynb1_dvl-dnVzFSUx5nKTc4aQMCatZU0puEKSpRc5Lw2rYKaUmNUErUlUGZqg4bXLQNZCCVMnZ9klxO3GWCp1z4NzG_1AFb_CQx-ocFHa3rUDW9FbqpGKloJVYsaKylajpIJYBXKxFITa3Rr2N5C3z8AGdW7teil_rsWvVuLntaSvLPJG25xPdaPOrkL3aQf6rJMrRdJfzrpU2aFjUEXPfSPbI8zznZ6MWy0lEWRc5YA7yZAt2e7OLvSuxjNc1GWnG122rd3xfzwa8QQ9coGg30PDocxaF6UQiWqVEn6Zk-6HEbv0gqTqpKSy6ook-r1v90_1L-_uiSQk8D4IQSP7f9M8nTPamyE3cWmOdj-KYDPEwDT3W0seh2MRWewsT6dcToM-xTIpz2I6a2zBvob3D4N8RtIkzTb |
| CitedBy_id | crossref_primary_10_1007_s10278_023_00883_0 crossref_primary_10_1016_j_jclinepi_2024_111278 crossref_primary_10_1227_neu_0000000000002508 crossref_primary_10_1007_s00429_023_02630_1 crossref_primary_10_3389_fnins_2024_1376570 crossref_primary_10_1016_j_neuroimage_2021_118706 crossref_primary_10_1111_epi_17204 crossref_primary_10_1038_s41467_024_53743_y crossref_primary_10_1162_imag_a_00042 crossref_primary_10_7759_cureus_55918 crossref_primary_10_1016_j_brs_2022_02_017 crossref_primary_10_1016_j_cmpb_2024_108449 crossref_primary_10_1016_j_neuroimage_2022_118909 crossref_primary_10_1523_JNEUROSCI_0721_23_2023 crossref_primary_10_1016_j_nicl_2022_103284 crossref_primary_10_1007_s11055_022_01241_3 crossref_primary_10_1016_j_bpsc_2022_12_006 crossref_primary_10_3389_fnins_2024_1333243 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1002_hbm_26310 crossref_primary_10_1016_j_neuroimage_2022_119550 crossref_primary_10_7554_eLife_76143 crossref_primary_10_1016_j_neuroimage_2022_119551 crossref_primary_10_1038_s41598_023_32924_7 crossref_primary_10_1007_s11548_022_02617_z crossref_primary_10_1016_j_neuroimage_2022_119553 crossref_primary_10_1016_j_nbas_2023_100067 crossref_primary_10_1007_s00429_023_02642_x crossref_primary_10_5937_pramed2104017m crossref_primary_10_3389_fneur_2022_855122 crossref_primary_10_1016_j_nicl_2022_103151 crossref_primary_10_3389_fradi_2024_1416672 crossref_primary_10_1016_j_mri_2024_05_009 crossref_primary_10_52294_e6198273_b8e3_4b63_babb_6e6b0da10669 crossref_primary_10_7554_eLife_94917 crossref_primary_10_1007_s00429_022_02503_z crossref_primary_10_1162_imag_a_00108 crossref_primary_10_1016_j_neuroimage_2023_120376 crossref_primary_10_1016_j_compbiomed_2024_109334 crossref_primary_10_1016_j_neuroimage_2022_119029 crossref_primary_10_1111_ejn_15854 crossref_primary_10_1007_s00429_024_02888_z crossref_primary_10_3390_brainsci14121232 crossref_primary_10_1002_hbm_26580 crossref_primary_10_7554_eLife_94917_3 crossref_primary_10_1016_j_media_2024_103165 crossref_primary_10_3389_fonc_2022_1008442 crossref_primary_10_1016_j_bpsgos_2022_03_004 crossref_primary_10_1016_j_banm_2024_04_018 crossref_primary_10_1007_s10334_021_00965_6 crossref_primary_10_1016_j_neuropsychologia_2024_108940 crossref_primary_10_3389_fnins_2022_837624 crossref_primary_10_1093_cercor_bhab500 crossref_primary_10_1007_s00330_023_10358_z crossref_primary_10_1007_s00701_023_05626_2 crossref_primary_10_1093_brain_awac057 crossref_primary_10_1002_hbm_26497 crossref_primary_10_1007_s00429_022_02518_6 crossref_primary_10_1093_braincomms_fcad040 crossref_primary_10_3389_fnins_2024_1403804 crossref_primary_10_1007_s00429_023_02623_0 crossref_primary_10_1002_hbm_25885 crossref_primary_10_1002_hbm_26578 crossref_primary_10_3390_brainsci13101386 crossref_primary_10_1016_j_neuroimage_2022_119455 crossref_primary_10_3389_fneur_2022_794618 crossref_primary_10_1371_journal_pone_0304449 crossref_primary_10_1523_ENEURO_0408_23_2024 crossref_primary_10_3389_fnimg_2022_930496 crossref_primary_10_1002_mrm_29881 crossref_primary_10_1002_mrm_30435 crossref_primary_10_3389_fnins_2024_1394681 crossref_primary_10_1002_mrm_30429 crossref_primary_10_1162_nol_a_00142 crossref_primary_10_3389_fninf_2024_1277050 crossref_primary_10_1016_j_nicl_2022_103097 crossref_primary_10_1089_brain_2022_0068 crossref_primary_10_1038_s41467_022_32595_4 crossref_primary_10_1002_hbm_70122 crossref_primary_10_7554_eLife_82088 crossref_primary_10_1016_j_ejmp_2023_102610 crossref_primary_10_1093_gigascience_giae009 crossref_primary_10_1162_imag_a_00353 crossref_primary_10_1162_imag_a_00430 crossref_primary_10_1002_hbm_70041 |
| Cites_doi | 10.1007/BF00236024 10.1016/j.neuroimage.2014.04.074 10.1016/j.neuroimage.2020.116673 10.1038/nmeth.3098 10.1007/s00429-011-0372-3 10.1371/journal.pone.0049790 10.1038/s41587-020-00809-z 10.1016/j.neuroimage.2007.02.056 10.1016/j.neuroimage.2012.06.002 10.1002/hbm.22902 10.1002/hbm.21332 10.1038/s41586-020-2314-9 10.1093/brain/awx225 10.21105/joss.00861 10.1088/1741-2552/ab6aad 10.1016/j.neuropsychologia.2012.11.018 10.1073/pnas.1405672111 10.3389/fnana.2016.00058 10.1016/j.tics.2012.03.003 10.1007/s00429-020-02056-z 10.1523/JNEUROSCI.0493-16.2016 10.1016/j.cortex.2008.05.004 10.1016/j.media.2015.10.011 10.3389/fninf.2014.00008 10.1002/hbm.24917 10.1016/j.jalz.2014.02.009 10.1093/brain/aws222 10.1016/j.neuroimage.2007.02.049 10.1007/s00701-019-03899-0 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H 10.1007/s00429-019-01856-2 10.1177/2515245917747646 10.1002/jmri.21053 10.1007/s00429-018-1663-8 10.1002/mrm.27471 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2020.116889 10.1016/j.jocn.2019.07.039 10.1016/j.neuroimage.2010.07.033 10.1038/s41467-017-01285-x 10.1016/j.cortex.2008.04.002 10.1073/pnas.96.18.10422 10.1016/j.neuroimage.2012.02.071 10.1167/10.5.1 10.1016/j.neuroimage.2016.05.047 10.1002/hbm.23936 10.1016/j.mri.2018.09.004 10.1038/nn.4361 10.1002/hbm.20268 10.1016/j.neuroimage.2010.11.047 10.3389/fnana.2018.00094 10.1016/j.neuroimage.2018.10.029 10.1109/TMI.2013.2285500 10.1016/j.cortex.2011.10.001 10.1016/j.mri.2018.11.014 10.1006/nimg.2002.1136 10.1073/pnas.1418198112 10.1007/s00429-016-1298-6 10.3233/JAD-2011-0004 10.1523/JNEUROSCI.5459-13.2014 10.1007/s00429-020-02129-z 10.1016/j.cortex.2015.05.011 10.1016/j.media.2013.03.009 10.1098/rstb.2005.1650 10.1111/jon.12283 10.3389/fnana.2019.00061 10.1016/j.neuroimage.2011.11.006 10.1007/s00429-017-1471-6 10.1002/mrm.27916 10.1016/j.neuroimage.2019.116207 10.1007/s11682-013-9235-2 10.1016/j.neuroimage.2012.06.005 10.1016/j.neuroimage.2021.118300 10.1016/j.neuroimage.2020.117201 10.1016/j.neuroimage.2011.09.015 10.1093/brain/awl359 10.1093/cercor/11.4.298 10.1016/j.nicl.2017.06.011 10.1016/j.cortex.2012.09.005 10.1038/nprot.2007.45 10.1007/s00429-015-1179-4 10.1016/j.neuroimage.2006.05.044 10.1016/j.neuroimage.2007.06.041 10.1126/science.4023705 |
| ContentType | Journal Article Publication |
| Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Nov 2021 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U RC3 7X8 1XC VOOES 5PM ADTPV BZJLE D8T STUKM ADTOC UNPAY DOA |
| DOI | 10.1016/j.neuroimage.2021.118502 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) SwePub SwePub Other SWEPUB Freely available online SwePub Other full text Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 118502 |
| ExternalDocumentID | oai_doaj_org_article_d2f43c7d890749b4be784f2e814a17e8 10.1016/j.neuroimage.2021.118502 oai_swepub_ki_se_668545 PMC8855321 oai:HAL:hal-03346621v1 34433094 10_1016_j_neuroimage_2021_118502 S1053811921007758 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: Wellcome Trust grantid: 215944/Z/19/Z – fundername: NIBIB NIH HHS grantid: R01 EB029272 – fundername: NIBIB NIH HHS grantid: T32 EB001628 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NIBIB NIH HHS grantid: P41 EB028741 – fundername: NIMH NIH HHS grantid: T32 MH103213 – fundername: NCRR NIH HHS grantid: P41 RR013218 – fundername: NIA NIH HHS grantid: P30 AG066530 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 AAYXX CITATION 0SF ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI Q9U RC3 7X8 PUEGO 1XC VOOES 5PM ADTPV BZJLE D8T STUKM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c702t-93c31daeaeb1f78ccd29a6e82432bcf9ab00cc9c31f6a01cbcec2bf1a85494cb3 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Fri Oct 03 12:52:13 EDT 2025 Sun Oct 26 03:41:06 EDT 2025 Mon Oct 20 03:25:16 EDT 2025 Tue Sep 30 16:33:01 EDT 2025 Tue Oct 14 20:48:13 EDT 2025 Sat Sep 27 20:48:05 EDT 2025 Tue Oct 07 07:13:59 EDT 2025 Wed Feb 19 02:05:29 EST 2025 Sat Oct 25 05:08:41 EDT 2025 Thu Apr 24 22:53:29 EDT 2025 Fri Feb 23 02:42:40 EST 2024 Tue Oct 14 19:39:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fiber pathways White matter Dissection Tractography Bundle segmentation |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c702t-93c31daeaeb1f78ccd29a6e82432bcf9ab00cc9c31f6a01cbcec2bf1a85494cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0300-5160 0000-0002-2469-0494 0000-0002-7480-8817 0000-0002-0097-8004 0000-0001-8670-6984 0000-0003-2499-5367 0000-0001-9017-5864 0000-0001-5733-2127 0000-0001-9429-2769 0000-0002-8191-2129 0000-0003-3166-5606 0000-0002-7237-0196 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.neuroimage.2021.118502 |
| PMID | 34433094 |
| PQID | 2578828756 |
| PQPubID | 2031077 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d2f43c7d890749b4be784f2e814a17e8 unpaywall_primary_10_1016_j_neuroimage_2021_118502 swepub_primary_oai_swepub_ki_se_668545 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8855321 hal_primary_oai_HAL_hal_03346621v1 proquest_miscellaneous_2564953289 proquest_journals_2578828756 pubmed_primary_34433094 crossref_primary_10_1016_j_neuroimage_2021_118502 crossref_citationtrail_10_1016_j_neuroimage_2021_118502 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118502 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118502 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NEUROIMAGE |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Catani (bib0004) 2002; 17 Le Bihan, Johansen-Berg (bib0005) 2012; 61 Maffei (bib0032) 2018; 223 Boccardi (bib0049) 2011; 26 Farrell (bib0059) 2007; 26 Lawes (bib0030) 2008; 39 Li (bib0044) 2012; 33 Thomas (bib0035) 2014; 111 ten Donkelaar, Tzourio-Mazoyer, Mai (bib0093) 2018; 12 Poline (bib0050) 2006; 27 Catani, Thiebaut de Schotten (bib0003) 2008; 44 Kobak, Linderman (bib0089) 2021; 39 Sarubbo (bib0056) 2019; 224 Fekonja (bib0076) 2019; 161 Maier-Hein (bib0022) 2017; 8 Garyfallidis (bib0084) 2014; 8 Rheault (bib0018) 2020; 17 Girard (bib0041) 2014; 98 Carpenter, Sutin (bib0013) 1983 Schilling (bib0016) 2019; 57 . Hau (bib0033) 2017; 222 Mandonnet, Sarubbo, Petit (bib0009) 2018; 12 Grisot, Haber, Yendiki (bib0028) 2021; 239 Hinton, Roweis (bib0088) 2002 Ambrosen (bib0042) 2020; 204 Makris (bib0066) 2013; 7 Pestilli (bib0053) 2014; 11 Weiner, Grill-Spector (bib0071) 2012; 16 Yeh (bib0038) 2016; 142 Essayed (bib0006) 2017; 15 Schilling (bib0073) 2020 Avants (bib0086) 2008; 12 Wiesendanger (bib0091) 1969; 61 Schilling (bib0025) 2019; 55 Daducci (bib0020) 2014; 33 Hofer, Frahm (bib0095) 2006; 32 Altieri (bib0055) 2019; 68 Girard (bib0027) 2020; 221 Witelson (bib0096) 1985; 229 Schilling (bib0039) 2018; 39 Yang (bib0081) 2021 Guevara (bib0079) 2020; 212 Panesar, Fernandez-Miranda (bib0010) 2019; 13 Landman (bib0058) 2011; 54 Conturo (bib0002) 1999; 96 Knösche (bib0037) 2015; 36 Xue (bib0001) 1999; 42 Sarubbo (bib0031) 2013; 218 Jones (bib0067) 2013; 51 Tootell, Hadjikhani (bib0070) 2001; 11 Reveley (bib0040) 2015; 112 Aydogan (bib0036) 2018; 223 Botvinik-Nezer (bib0019) 2020 Jenkinson (bib0085) 2012; 62 Bajada, Lambon Ralph, Cloutman (bib0011) 2015; 69 Winawer (bib0072) 2010; 10 Thiebaut de Schotten (bib0094) 2012; 48 Vanderweyen (bib0007) 2020; 225 Donahue (bib0026) 2016; 36 Nath (bib0063) 2019 Guevara (bib0023) 2012; 61 Jang (bib0090) 2009; 24 Neher (bib0021) 2015; 26 Landman (bib0060) 2007; 36 Nieuwenhuys, Voogd, Huijzen (bib0014) 2008 Wassermann (bib0080) 2016; 221 Sarwar, Ramamohanarao, Zalesky (bib0054) 2019; 81 Cote (bib0043) 2013; 17 Pujol (bib0017) 2015; 25 McInnes, L. and J. Healy, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv e-prints, 2018. Schilling (bib0034) 2019; 185 Yeatman (bib0078) 2012; 7 Dick, Tremblay (bib0069) 2012; 135 Schmahmann (bib0015) 2007; 130 Smith (bib0077) 2007; 2 Boccardi (bib0074) 2015; 11 Glasser (bib0052) 2016; 19 Rheault (bib0064) 2020 Hau (bib0057) 2016; 10 Forkel (bib0008) 2014; 56 Smith, Calamante, Connelly (bib0045) 2020; 83 Smith (bib0046) 2012; 62 Wakana (bib0062) 2007; 36 Catani, Mesulam (bib0092) 2008; 44 Seltzer, Pandya (bib0065) 1986; 62 Heilbronner, Haber (bib0068) 2014; 34 Schmahmann, Pandya (bib0029) 2006 Theaud (bib0083) 2020 Bajada (bib0012) 2017; 140 Perrin (bib0024) 2005; 360 Bullock, D.N., et al., A taxonomy of the brain's white matter: Twenty-one major tracts for the twenty-first century. DN (bib0075) 2021 Fonov (bib0087) 2011; 54 Silberzahn (bib0051) 2018; 1 Jones, D.K., et al., What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods. 2007. Bastiani (bib0047) 2012; 62 Catani (10.1016/j.neuroimage.2021.118502_bib0004) 2002; 17 Cote (10.1016/j.neuroimage.2021.118502_bib0043) 2013; 17 Smith (10.1016/j.neuroimage.2021.118502_bib0046) 2012; 62 Boccardi (10.1016/j.neuroimage.2021.118502_bib0074) 2015; 11 Yeh (10.1016/j.neuroimage.2021.118502_bib0038) 2016; 142 Hinton (10.1016/j.neuroimage.2021.118502_bib0088) 2002 Rheault (10.1016/j.neuroimage.2021.118502_bib0018) 2020; 17 Tootell (10.1016/j.neuroimage.2021.118502_bib0070) 2001; 11 Girard (10.1016/j.neuroimage.2021.118502_bib0027) 2020; 221 10.1016/j.neuroimage.2021.118502_bib0048 ten Donkelaar (10.1016/j.neuroimage.2021.118502_bib0093) 2018; 12 Sarubbo (10.1016/j.neuroimage.2021.118502_bib0031) 2013; 218 Girard (10.1016/j.neuroimage.2021.118502_bib0041) 2014; 98 Grisot (10.1016/j.neuroimage.2021.118502_bib0028) 2021; 239 Hofer (10.1016/j.neuroimage.2021.118502_bib0095) 2006; 32 Maffei (10.1016/j.neuroimage.2021.118502_bib0032) 2018; 223 Pestilli (10.1016/j.neuroimage.2021.118502_bib0053) 2014; 11 Neher (10.1016/j.neuroimage.2021.118502_bib0021) 2015; 26 Fekonja (10.1016/j.neuroimage.2021.118502_bib0076) 2019; 161 Landman (10.1016/j.neuroimage.2021.118502_bib0060) 2007; 36 Guevara (10.1016/j.neuroimage.2021.118502_bib0079) 2020; 212 Catani (10.1016/j.neuroimage.2021.118502_bib0092) 2008; 44 Wakana (10.1016/j.neuroimage.2021.118502_bib0062) 2007; 36 Sarubbo (10.1016/j.neuroimage.2021.118502_bib0056) 2019; 224 Bajada (10.1016/j.neuroimage.2021.118502_bib0012) 2017; 140 Heilbronner (10.1016/j.neuroimage.2021.118502_bib0068) 2014; 34 Makris (10.1016/j.neuroimage.2021.118502_bib0066) 2013; 7 Poline (10.1016/j.neuroimage.2021.118502_bib0050) 2006; 27 Hau (10.1016/j.neuroimage.2021.118502_bib0057) 2016; 10 Botvinik-Nezer (10.1016/j.neuroimage.2021.118502_bib0019) 2020 Jenkinson (10.1016/j.neuroimage.2021.118502_bib0085) 2012; 62 Schilling (10.1016/j.neuroimage.2021.118502_bib0016) 2019; 57 Pujol (10.1016/j.neuroimage.2021.118502_bib0017) 2015; 25 Thomas (10.1016/j.neuroimage.2021.118502_bib0035) 2014; 111 Schilling (10.1016/j.neuroimage.2021.118502_bib0073) 2020 Jang (10.1016/j.neuroimage.2021.118502_bib0090) 2009; 24 Kobak (10.1016/j.neuroimage.2021.118502_bib0089) 2021; 39 Hau (10.1016/j.neuroimage.2021.118502_bib0033) 2017; 222 Wiesendanger (10.1016/j.neuroimage.2021.118502_bib0091) 1969; 61 Dick (10.1016/j.neuroimage.2021.118502_bib0069) 2012; 135 10.1016/j.neuroimage.2021.118502_bib0061 Conturo (10.1016/j.neuroimage.2021.118502_bib0002) 1999; 96 Essayed (10.1016/j.neuroimage.2021.118502_bib0006) 2017; 15 Winawer (10.1016/j.neuroimage.2021.118502_bib0072) 2010; 10 Altieri (10.1016/j.neuroimage.2021.118502_bib0055) 2019; 68 Carpenter (10.1016/j.neuroimage.2021.118502_bib0013) 1983 Weiner (10.1016/j.neuroimage.2021.118502_bib0071) 2012; 16 Lawes (10.1016/j.neuroimage.2021.118502_bib0030) 2008; 39 Mandonnet (10.1016/j.neuroimage.2021.118502_bib0009) 2018; 12 Maier-Hein (10.1016/j.neuroimage.2021.118502_bib0022) 2017; 8 Reveley (10.1016/j.neuroimage.2021.118502_bib0040) 2015; 112 Yang (10.1016/j.neuroimage.2021.118502_bib0081) 2021 Garyfallidis (10.1016/j.neuroimage.2021.118502_bib0084) 2014; 8 Nath (10.1016/j.neuroimage.2021.118502_bib0063) 2019 Le Bihan (10.1016/j.neuroimage.2021.118502_bib0005) 2012; 61 Wassermann (10.1016/j.neuroimage.2021.118502_bib0080) 2016; 221 Bastiani (10.1016/j.neuroimage.2021.118502_bib0047) 2012; 62 Xue (10.1016/j.neuroimage.2021.118502_bib0001) 1999; 42 Schilling (10.1016/j.neuroimage.2021.118502_bib0034) 2019; 185 Seltzer (10.1016/j.neuroimage.2021.118502_bib0065) 1986; 62 Landman (10.1016/j.neuroimage.2021.118502_bib0058) 2011; 54 Thiebaut de Schotten (10.1016/j.neuroimage.2021.118502_bib0094) 2012; 48 Fonov (10.1016/j.neuroimage.2021.118502_bib0087) 2011; 54 Avants (10.1016/j.neuroimage.2021.118502_bib0086) 2008; 12 Smith (10.1016/j.neuroimage.2021.118502_bib0077) 2007; 2 Panesar (10.1016/j.neuroimage.2021.118502_bib0010) 2019; 13 Aydogan (10.1016/j.neuroimage.2021.118502_bib0036) 2018; 223 Sarwar (10.1016/j.neuroimage.2021.118502_bib0054) 2019; 81 Glasser (10.1016/j.neuroimage.2021.118502_bib0052) 2016; 19 Guevara (10.1016/j.neuroimage.2021.118502_bib0023) 2012; 61 Bajada (10.1016/j.neuroimage.2021.118502_bib0011) 2015; 69 Ambrosen (10.1016/j.neuroimage.2021.118502_bib0042) 2020; 204 Knösche (10.1016/j.neuroimage.2021.118502_bib0037) 2015; 36 Perrin (10.1016/j.neuroimage.2021.118502_bib0024) 2005; 360 Nieuwenhuys (10.1016/j.neuroimage.2021.118502_bib0014) 2008 Silberzahn (10.1016/j.neuroimage.2021.118502_bib0051) 2018; 1 Farrell (10.1016/j.neuroimage.2021.118502_bib0059) 2007; 26 Schilling (10.1016/j.neuroimage.2021.118502_bib0039) 2018; 39 Schmahmann (10.1016/j.neuroimage.2021.118502_bib0029) 2006 Daducci (10.1016/j.neuroimage.2021.118502_bib0020) 2014; 33 Smith (10.1016/j.neuroimage.2021.118502_bib0045) 2020; 83 Yeatman (10.1016/j.neuroimage.2021.118502_bib0078) 2012; 7 Li (10.1016/j.neuroimage.2021.118502_bib0044) 2012; 33 Schilling (10.1016/j.neuroimage.2021.118502_bib0025) 2019; 55 Schmahmann (10.1016/j.neuroimage.2021.118502_bib0015) 2007; 130 Catani (10.1016/j.neuroimage.2021.118502_bib0003) 2008; 44 Vanderweyen (10.1016/j.neuroimage.2021.118502_bib0007) 2020; 225 10.1016/j.neuroimage.2021.118502_bib0082 Theaud (10.1016/j.neuroimage.2021.118502_bib0083) 2020 DN (10.1016/j.neuroimage.2021.118502_bib0075) 2021 Jones (10.1016/j.neuroimage.2021.118502_bib0067) 2013; 51 Forkel (10.1016/j.neuroimage.2021.118502_bib0008) 2014; 56 Boccardi (10.1016/j.neuroimage.2021.118502_bib0049) 2011; 26 Witelson (10.1016/j.neuroimage.2021.118502_bib0096) 1985; 229 Donahue (10.1016/j.neuroimage.2021.118502_bib0026) 2016; 36 Rheault (10.1016/j.neuroimage.2021.118502_bib0064) 2020 |
| References_xml | – volume: 223 start-page: 2841 year: 2018 end-page: 2858 ident: bib0036 article-title: When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity publication-title: Brain Struct. Funct. – volume: 26 start-page: 61 year: 2011 end-page: 75 ident: bib0049 article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol publication-title: J. Alzheimers Dis. – volume: 8 start-page: 8 year: 2014 ident: bib0084 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. – volume: 7 start-page: 335 year: 2013 end-page: 352 ident: bib0066 article-title: Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography publication-title: Brain Imaging Behav. – volume: 27 start-page: 351 year: 2006 end-page: 359 ident: bib0050 article-title: Motivation and synthesis of the FIAC experiment: Reproducibility of fMRI results across expert analyses publication-title: Hum. Brain Mapp. – volume: 212 year: 2020 ident: bib0079 article-title: Superficial white matter: A review on the dMRI analysis methods and applications publication-title: Neuroimage – year: 2019 ident: bib0063 article-title: Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge publication-title: J. Magn. Reson. Imaging – volume: 34 start-page: 10041 year: 2014 end-page: 10054 ident: bib0068 article-title: Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: implications for neuroimaging and psychiatric disorders publication-title: J. Neurosci. – volume: 7 start-page: e49790 year: 2012 ident: bib0078 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One – volume: 44 start-page: 953 year: 2008 end-page: 961 ident: bib0092 article-title: The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state publication-title: Cortex – volume: 42 start-page: 1123 year: 1999 end-page: 1127 ident: bib0001 article-title: In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging publication-title: Magn. Reson. Med. – year: 2020 ident: bib0019 article-title: Variability in the analysis of a single neuroimaging dataset by many teams publication-title: Nature – volume: 111 start-page: 16574 year: 2014 end-page: 16579 ident: bib0035 article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited publication-title: Proc. Natl. Acad. Sci. U.S.A., – volume: 56 start-page: 73 year: 2014 end-page: 84 ident: bib0008 article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography publication-title: Cortex – volume: 12 start-page: 94 year: 2018 ident: bib0009 article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front. Neuroanat. – volume: 61 start-page: 72 year: 1969 end-page: 136 ident: bib0091 article-title: The pyramidal tract: recent investigations on its morphology and function publication-title: Ergeb. Physiol. – volume: 19 start-page: 1175 year: 2016 end-page: 1187 ident: bib0052 article-title: The Human Connectome Project’s neuroimaging approach publication-title: Nat. Neurosci. – volume: 62 start-page: 459 year: 1986 end-page: 469 ident: bib0065 article-title: Posterior parietal projections to the intraparietal sulcus of the rhesus monkey publication-title: Exp. Brain Res. – volume: 222 start-page: 1645 year: 2017 end-page: 1662 ident: bib0033 article-title: Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation publication-title: Brain Struct. Funct. – volume: 112 start-page: E2820 year: 2015 end-page: E2828 ident: bib0040 article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 225 start-page: 1413 year: 2020 end-page: 1436 ident: bib0007 article-title: The role of diffusion tractography in refining glial tumor resection publication-title: Brain Struct. Funct. – volume: 11 start-page: 298 year: 2001 end-page: 311 ident: bib0070 article-title: Where is ‘Dorsal V4’ in Human Visual Cortex? Retinotopic, Topographic and Functional Evidence publication-title: Cerebr. Cortex – year: 2020 ident: bib0073 article-title: Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go publication-title: Brain Struct. Funct. – volume: 83 start-page: 787 year: 2020 end-page: 790 ident: bib0045 article-title: Mapping connectomes with diffusion MRI: Deterministic or probabilistic tractography? publication-title: Magn. Reson. Med. – volume: 223 start-page: 449 year: 2018 end-page: 459 ident: bib0032 article-title: Topography of the human acoustic radiation as revealed by ex vivo fibers micro-dissection and in vivo diffusion-based tractography publication-title: Brain Struct. Funct. – volume: 140 start-page: 2752 year: 2017 end-page: 2759 ident: bib0012 article-title: Reconnecting with Joseph and Augusta Dejerine: 100 years on publication-title: Brain – year: 2020 ident: bib0083 article-title: TractoFlow: A robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity publication-title: Neuroimage – volume: 11 start-page: 126 year: 2015 end-page: 138 ident: bib0074 article-title: Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance publication-title: Alzheimers Dement – volume: 17 start-page: 844 year: 2013 end-page: 857 ident: bib0043 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med. Image Anal. – start-page: 654 year: 2006 ident: bib0029 article-title: Fiber Pathways of the Brain – volume: 15 start-page: 659 year: 2017 end-page: 672 ident: bib0006 article-title: White matter tractography for neurosurgical planning: A topography-based review of the current state of the art publication-title: Neuroimage Clin. – volume: 62 start-page: 782 year: 2012 end-page: 790 ident: bib0085 publication-title: Fsl. Neuroimage – volume: 68 start-page: 290 year: 2019 end-page: 294 ident: bib0055 article-title: Inferior Fronto-Occipital fascicle anatomy in brain tumor surgeries: From anatomy lab to surgical theater publication-title: J. Clin. Neurosci. – year: 2021 ident: bib0075 article-title: A taxonomy of the brain's white matter: Twenty-one major tracts for the twenty-first century publication-title: PsyArXiv – volume: 161 start-page: 1125 year: 2019 end-page: 1137 ident: bib0076 article-title: Manual for clinical language tractography publication-title: Acta Neurochirurgica – volume: 16 start-page: 251 year: 2012 end-page: 254 ident: bib0071 article-title: The improbable simplicity of the fusiform face area publication-title: Trends Cogn. Sci. – volume: 26 start-page: 287 year: 2015 end-page: 305 ident: bib0021 article-title: Strengths and weaknesses of state of the art fiber tractography pipelines–A comprehensive in-vivo and phantom evaluation study using Tractometer publication-title: Med. Image Anal. – volume: 360 start-page: 881 year: 2005 end-page: 891 ident: bib0024 article-title: Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner publication-title: Philos. Trans. R. Soc. Lond. B – start-page: 857 year: 2002 end-page: 864 ident: bib0088 article-title: Stochastic neighbor embedding publication-title: Proceedings of the 15th International Conference on Neural Information Processing Systems – volume: 10 start-page: 58 year: 2016 ident: bib0057 article-title: Cortical terminations of the inferior fronto-occipital and uncinate fasciculi: anatomical stem-based virtual dissection publication-title: Front. Neuroanat. – volume: 221 year: 2020 ident: bib0027 article-title: On the cortical connectivity in the macaque brain: a comparison of diffusion tractography and histological tracing data publication-title: Neuroimage – volume: 135 start-page: 3529 year: 2012 end-page: 3550 ident: bib0069 article-title: Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language publication-title: Brain – year: 2020 ident: bib0064 article-title: Tractostorm: The what, why, and how of tractography dissection reproducibility publication-title: Hum. Brain Mapp. – volume: 239 year: 2021 ident: bib0028 article-title: Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography publication-title: Neuroimage – volume: 8 start-page: 1349 year: 2017 ident: bib0022 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: bib0062 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 25 start-page: 875 year: 2015 end-page: 882 ident: bib0017 article-title: The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery publication-title: J. Neuroimaging – volume: 12 year: 2018 ident: bib0093 article-title: Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex publication-title: Front. Neuroanat. – volume: 36 start-page: 6758 year: 2016 end-page: 6770 ident: bib0026 article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey publication-title: J. Neurosci. – volume: 61 start-page: 324 year: 2012 end-page: 341 ident: bib0005 article-title: Diffusion MRI at 25: exploring brain tissue structure and function publication-title: Neuroimage – volume: 229 start-page: 665 year: 1985 end-page: 668 ident: bib0096 article-title: The brain connection: the corpus callosum is larger in left-handers publication-title: Science – start-page: 66 year: 2021 ident: bib0081 article-title: Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges publication-title: Phys. Med. Biol. – volume: 62 start-page: 1924 year: 2012 end-page: 1938 ident: bib0046 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage – volume: 81 start-page: 1368 year: 2019 end-page: 1384 ident: bib0054 article-title: Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? publication-title: Magn. Reson. Med. – volume: 221 start-page: 4705 year: 2016 end-page: 4721 ident: bib0080 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct. Funct. – reference: Jones, D.K., et al., What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods. 2007. – volume: 130 start-page: 630 year: 2007 end-page: 653 ident: bib0015 article-title: Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography publication-title: Brain – start-page: 967 year: 2008 ident: bib0014 article-title: The Human Central Nervous System – volume: 24 start-page: 285 year: 2009 end-page: 290 ident: bib0090 article-title: The role of the corticospinal tract in motor recovery in patients with a stroke: a review publication-title: NeuroRehabilitation – volume: 218 start-page: 21 year: 2013 end-page: 37 ident: bib0031 article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle publication-title: Brain Struct. Funct. – volume: 54 start-page: 313 year: 2011 end-page: 327 ident: bib0087 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: Neuroimage – volume: 32 start-page: 989 year: 2006 end-page: 994 ident: bib0095 article-title: Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging publication-title: Neuroimage – volume: 36 start-page: 4116 year: 2015 end-page: 4134 ident: bib0037 article-title: Validation of tractography: Comparison with manganese tracing publication-title: Hum. Brain Mapp. – volume: 1 start-page: 337 year: 2018 end-page: 356 ident: bib0051 article-title: Many analysts, one data set: making transparent how variations in analytic choices affect results publication-title: Adv. Methods Pract. Psychol. Sci. – volume: 98 start-page: 266 year: 2014 end-page: 278 ident: bib0041 article-title: Towards quantitative connectivity analysis: reducing tractography biases publication-title: Neuroimage – volume: 48 start-page: 82 year: 2012 end-page: 96 ident: bib0094 article-title: Monkey to human comparative anatomy of the frontal lobe association tracts publication-title: Cortex – volume: 12 start-page: 26 year: 2008 end-page: 41 ident: bib0086 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. – volume: 13 start-page: 61 year: 2019 ident: bib0010 article-title: Commentary: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front. Neuroanat. – volume: 39 start-page: 1449 year: 2018 end-page: 1466 ident: bib0039 article-title: Confirmation of a gyral bias in diffusion MRI fiber tractography publication-title: Hum. Brain Mapp. – reference: McInnes, L. and J. Healy, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. ArXiv e-prints, 2018. – volume: 69 start-page: 141 year: 2015 end-page: 151 ident: bib0011 article-title: Transport for language south of the Sylvian fissure: The routes and history of the main tracts and stations in the ventral language network publication-title: Cortex – volume: 39 start-page: 62 year: 2008 end-page: 79 ident: bib0030 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: Neuroimage – volume: 54 start-page: 2854 year: 2011 end-page: 2866 ident: bib0058 article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study publication-title: Neuroimage – volume: 17 year: 2020 ident: bib0018 article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography publication-title: J. Neural Eng. – volume: 142 start-page: 150 year: 2016 end-page: 162 ident: bib0038 article-title: Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics publication-title: Neuroimage – reference: Bullock, D.N., et al., A taxonomy of the brain's white matter: Twenty-one major tracts for the twenty-first century. – start-page: 872 year: 1983 ident: bib0013 article-title: Human Neuroanatomy – volume: 62 start-page: 1732 year: 2012 end-page: 1749 ident: bib0047 article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm publication-title: Neuroimage – volume: 61 start-page: 1083 year: 2012 end-page: 1099 ident: bib0023 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage – volume: 55 start-page: 7 year: 2019 end-page: 25 ident: bib0025 article-title: Anatomical accuracy of standard-practice tractography algorithms in the motor system - a histological validation in the squirrel monkey brain publication-title: Magn. Reson. Imaging – volume: 33 start-page: 384 year: 2014 end-page: 399 ident: bib0020 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans. Med. Imaging – volume: 204 year: 2020 ident: bib0042 article-title: Validation of structural brain connectivity networks: The impact of scanning parameters publication-title: Neuroimage – volume: 10 start-page: 1 year: 2010 ident: bib0072 article-title: Mapping hV4 and ventral occipital cortex: The venous eclipse publication-title: Journal of Vision – volume: 17 start-page: 77 year: 2002 end-page: 94 ident: bib0004 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: Neuroimage – volume: 39 start-page: 156 year: 2021 end-page: 157 ident: bib0089 article-title: Initialization is critical for preserving global data structure in both t-SNE and UMAP publication-title: Nature Biotechnology – volume: 26 start-page: 756 year: 2007 end-page: 767 ident: bib0059 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J. Magn. Reson. Imaging – volume: 44 start-page: 1105 year: 2008 end-page: 1132 ident: bib0003 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex – reference: . – volume: 57 start-page: 194 year: 2019 end-page: 209 ident: bib0016 article-title: Challenges in diffusion MRI tractography - Lessons learned from international benchmark competitions publication-title: Magn. Reson. Imaging – volume: 185 start-page: 1 year: 2019 end-page: 11 ident: bib0034 article-title: Limits to anatomical accuracy of diffusion tractography using modern approaches publication-title: Neuroimage – volume: 11 start-page: 1058 year: 2014 end-page: 1063 ident: bib0053 article-title: Evaluation and statistical inference for human connectomes publication-title: Nature Methods – volume: 224 start-page: 1553 year: 2019 end-page: 1567 ident: bib0056 article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution publication-title: Brain Struct. Funct. – volume: 51 start-page: 67 year: 2013 end-page: 78 ident: bib0067 article-title: Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: implications for neuropsychological investigations publication-title: Neuropsychologia – volume: 33 start-page: 1894 year: 2012 end-page: 1913 ident: bib0044 article-title: The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography publication-title: Hum. Brain Mapp. – volume: 2 start-page: 499 year: 2007 end-page: 503 ident: bib0077 article-title: Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics publication-title: Nat. Protoc. – volume: 36 start-page: 1123 year: 2007 end-page: 1138 ident: bib0060 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage – volume: 96 start-page: 10422 year: 1999 end-page: 10427 ident: bib0002 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 654 year: 2006 ident: 10.1016/j.neuroimage.2021.118502_bib0029 – volume: 62 start-page: 459 issue: 3 year: 1986 ident: 10.1016/j.neuroimage.2021.118502_bib0065 article-title: Posterior parietal projections to the intraparietal sulcus of the rhesus monkey publication-title: Exp. Brain Res. doi: 10.1007/BF00236024 – volume: 98 start-page: 266 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0041 article-title: Towards quantitative connectivity analysis: reducing tractography biases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.04.074 – volume: 212 year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0079 article-title: Superficial white matter: A review on the dMRI analysis methods and applications publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116673 – ident: 10.1016/j.neuroimage.2021.118502_bib0048 – volume: 11 start-page: 1058 issue: 10 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0053 article-title: Evaluation and statistical inference for human connectomes publication-title: Nature Methods doi: 10.1038/nmeth.3098 – volume: 218 start-page: 21 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2021.118502_bib0031 article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle publication-title: Brain Struct. Funct. doi: 10.1007/s00429-011-0372-3 – volume: 7 start-page: e49790 issue: 11 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0078 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One doi: 10.1371/journal.pone.0049790 – volume: 39 start-page: 156 issue: 2 year: 2021 ident: 10.1016/j.neuroimage.2021.118502_bib0089 article-title: Initialization is critical for preserving global data structure in both t-SNE and UMAP publication-title: Nature Biotechnology doi: 10.1038/s41587-020-00809-z – volume: 36 start-page: 1123 issue: 4 year: 2007 ident: 10.1016/j.neuroimage.2021.118502_bib0060 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 62 start-page: 1732 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0047 article-title: Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.002 – volume: 36 start-page: 4116 issue: 10 year: 2015 ident: 10.1016/j.neuroimage.2021.118502_bib0037 article-title: Validation of tractography: Comparison with manganese tracing publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22902 – volume: 33 start-page: 1894 issue: 8 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0044 article-title: The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21332 – year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0019 article-title: Variability in the analysis of a single neuroimaging dataset by many teams publication-title: Nature doi: 10.1038/s41586-020-2314-9 – volume: 140 start-page: 2752 issue: 10 year: 2017 ident: 10.1016/j.neuroimage.2021.118502_bib0012 article-title: Reconnecting with Joseph and Augusta Dejerine: 100 years on publication-title: Brain doi: 10.1093/brain/awx225 – ident: 10.1016/j.neuroimage.2021.118502_bib0061 doi: 10.21105/joss.00861 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0018 article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab6aad – volume: 51 start-page: 67 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2021.118502_bib0067 article-title: Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: implications for neuropsychological investigations publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2012.11.018 – volume: 111 start-page: 16574 issue: 46 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0035 article-title: Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited publication-title: Proc. Natl. Acad. Sci. U.S.A., doi: 10.1073/pnas.1405672111 – volume: 10 start-page: 58 year: 2016 ident: 10.1016/j.neuroimage.2021.118502_bib0057 article-title: Cortical terminations of the inferior fronto-occipital and uncinate fasciculi: anatomical stem-based virtual dissection publication-title: Front. Neuroanat. doi: 10.3389/fnana.2016.00058 – volume: 16 start-page: 251 issue: 5 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0071 article-title: The improbable simplicity of the fusiform face area publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2012.03.003 – volume: 225 start-page: 1413 issue: 4 year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0007 article-title: The role of diffusion tractography in refining glial tumor resection publication-title: Brain Struct. Funct. doi: 10.1007/s00429-020-02056-z – volume: 36 start-page: 6758 issue: 25 year: 2016 ident: 10.1016/j.neuroimage.2021.118502_bib0026 article-title: Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0493-16.2016 – volume: 44 start-page: 1105 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2021.118502_bib0003 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex doi: 10.1016/j.cortex.2008.05.004 – volume: 26 start-page: 287 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2021.118502_bib0021 article-title: Strengths and weaknesses of state of the art fiber tractography pipelines–A comprehensive in-vivo and phantom evaluation study using Tractometer publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.10.011 – volume: 8 start-page: 8 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0084 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00008 – start-page: 66 issue: 15 year: 2021 ident: 10.1016/j.neuroimage.2021.118502_bib0081 article-title: Diffusion MRI tractography for neurosurgery: the basics, current state, technical reliability and challenges publication-title: Phys. Med. Biol. – year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0064 article-title: Tractostorm: The what, why, and how of tractography dissection reproducibility publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24917 – volume: 11 start-page: 126 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2021.118502_bib0074 article-title: Delphi definition of the EADC-ADNI Harmonized Protocol for hippocampal segmentation on magnetic resonance publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2014.02.009 – ident: 10.1016/j.neuroimage.2021.118502_bib0082 – volume: 135 start-page: 3529 issue: Pt 12 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0069 article-title: Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language publication-title: Brain doi: 10.1093/brain/aws222 – volume: 36 start-page: 630 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118502_bib0062 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 161 start-page: 1125 issue: 6 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0076 article-title: Manual for clinical language tractography publication-title: Acta Neurochirurgica doi: 10.1007/s00701-019-03899-0 – volume: 42 start-page: 1123 issue: 6 year: 1999 ident: 10.1016/j.neuroimage.2021.118502_bib0001 article-title: In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199912)42:6<1123::AID-MRM17>3.0.CO;2-H – start-page: 857 year: 2002 ident: 10.1016/j.neuroimage.2021.118502_bib0088 article-title: Stochastic neighbor embedding – volume: 224 start-page: 1553 issue: 4 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0056 article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution publication-title: Brain Struct. Funct. doi: 10.1007/s00429-019-01856-2 – volume: 1 start-page: 337 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2021.118502_bib0051 article-title: Many analysts, one data set: making transparent how variations in analytic choices affect results publication-title: Adv. Methods Pract. Psychol. Sci. doi: 10.1177/2515245917747646 – volume: 26 start-page: 756 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118502_bib0059 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21053 – volume: 223 start-page: 2841 issue: 6 year: 2018 ident: 10.1016/j.neuroimage.2021.118502_bib0036 article-title: When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1663-8 – volume: 81 start-page: 1368 issue: 2 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0054 article-title: Mapping connectomes with diffusion MRI: deterministic or probabilistic tractography? publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27471 – volume: 12 start-page: 26 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2021.118502_bib0086 article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.06.004 – year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0083 article-title: TractoFlow: A robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow & Singularity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116889 – start-page: 872 year: 1983 ident: 10.1016/j.neuroimage.2021.118502_bib0013 – volume: 68 start-page: 290 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0055 article-title: Inferior Fronto-Occipital fascicle anatomy in brain tumor surgeries: From anatomy lab to surgical theater publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2019.07.039 – volume: 54 start-page: 313 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2021.118502_bib0087 article-title: Unbiased average age-appropriate atlases for pediatric studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.033 – volume: 61 start-page: 72 year: 1969 ident: 10.1016/j.neuroimage.2021.118502_bib0091 article-title: The pyramidal tract: recent investigations on its morphology and function publication-title: Ergeb. Physiol. – volume: 8 start-page: 1349 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.118502_bib0022 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nat. Commun. doi: 10.1038/s41467-017-01285-x – start-page: 967 year: 2008 ident: 10.1016/j.neuroimage.2021.118502_bib0014 – volume: 44 start-page: 953 issue: 8 year: 2008 ident: 10.1016/j.neuroimage.2021.118502_bib0092 article-title: The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state publication-title: Cortex doi: 10.1016/j.cortex.2008.04.002 – volume: 96 start-page: 10422 issue: 18 year: 1999 ident: 10.1016/j.neuroimage.2021.118502_bib0002 article-title: Tracking neuronal fiber pathways in the living human brain publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.96.18.10422 – volume: 61 start-page: 1083 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0023 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 10 start-page: 1 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2021.118502_bib0072 article-title: Mapping hV4 and ventral occipital cortex: The venous eclipse publication-title: Journal of Vision doi: 10.1167/10.5.1 – volume: 142 start-page: 150 year: 2016 ident: 10.1016/j.neuroimage.2021.118502_bib0038 article-title: Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.05.047 – year: 2021 ident: 10.1016/j.neuroimage.2021.118502_bib0075 article-title: A taxonomy of the brain's white matter: Twenty-one major tracts for the twenty-first century publication-title: PsyArXiv – volume: 39 start-page: 1449 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2021.118502_bib0039 article-title: Confirmation of a gyral bias in diffusion MRI fiber tractography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23936 – volume: 55 start-page: 7 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0025 article-title: Anatomical accuracy of standard-practice tractography algorithms in the motor system - a histological validation in the squirrel monkey brain publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2018.09.004 – volume: 19 start-page: 1175 issue: 9 year: 2016 ident: 10.1016/j.neuroimage.2021.118502_bib0052 article-title: The Human Connectome Project’s neuroimaging approach publication-title: Nat. Neurosci. doi: 10.1038/nn.4361 – volume: 27 start-page: 351 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2021.118502_bib0050 article-title: Motivation and synthesis of the FIAC experiment: Reproducibility of fMRI results across expert analyses publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20268 – volume: 54 start-page: 2854 issue: 4 year: 2011 ident: 10.1016/j.neuroimage.2021.118502_bib0058 article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.047 – volume: 12 start-page: 94 year: 2018 ident: 10.1016/j.neuroimage.2021.118502_bib0009 article-title: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front. Neuroanat. doi: 10.3389/fnana.2018.00094 – volume: 185 start-page: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0034 article-title: Limits to anatomical accuracy of diffusion tractography using modern approaches publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.10.029 – volume: 33 start-page: 384 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0020 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2285500 – volume: 48 start-page: 82 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0094 article-title: Monkey to human comparative anatomy of the frontal lobe association tracts publication-title: Cortex doi: 10.1016/j.cortex.2011.10.001 – volume: 12 issue: 93 year: 2018 ident: 10.1016/j.neuroimage.2021.118502_bib0093 article-title: Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex publication-title: Front. Neuroanat. – volume: 57 start-page: 194 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0016 article-title: Challenges in diffusion MRI tractography - Lessons learned from international benchmark competitions publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2018.11.014 – volume: 17 start-page: 77 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2021.118502_bib0004 article-title: Virtual in vivo interactive dissection of white matter fasciculi in the human brain publication-title: Neuroimage doi: 10.1006/nimg.2002.1136 – volume: 112 start-page: E2820 issue: 21 year: 2015 ident: 10.1016/j.neuroimage.2021.118502_bib0040 article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1418198112 – volume: 222 start-page: 1645 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2021.118502_bib0033 article-title: Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation publication-title: Brain Struct. Funct. doi: 10.1007/s00429-016-1298-6 – volume: 26 start-page: 61 issue: Suppl 3 year: 2011 ident: 10.1016/j.neuroimage.2021.118502_bib0049 article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-0004 – volume: 34 start-page: 10041 issue: 30 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0068 article-title: Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: implications for neuroimaging and psychiatric disorders publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5459-13.2014 – year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0073 article-title: Brain connections derived from diffusion MRI tractography can be highly anatomically accurate—if we know where white matter pathways start, where they end, and where they do not go publication-title: Brain Struct. Funct. doi: 10.1007/s00429-020-02129-z – volume: 69 start-page: 141 year: 2015 ident: 10.1016/j.neuroimage.2021.118502_bib0011 article-title: Transport for language south of the Sylvian fissure: The routes and history of the main tracts and stations in the ventral language network publication-title: Cortex doi: 10.1016/j.cortex.2015.05.011 – volume: 17 start-page: 844 issue: 7 year: 2013 ident: 10.1016/j.neuroimage.2021.118502_bib0043 article-title: Tractometer: towards validation of tractography pipelines publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.03.009 – volume: 360 start-page: 881 issue: 1457 year: 2005 ident: 10.1016/j.neuroimage.2021.118502_bib0024 article-title: Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner publication-title: Philos. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2005.1650 – volume: 25 start-page: 875 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2021.118502_bib0017 article-title: The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery publication-title: J. Neuroimaging doi: 10.1111/jon.12283 – volume: 13 start-page: 61 year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0010 article-title: Commentary: The nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification publication-title: Front. Neuroanat. doi: 10.3389/fnana.2019.00061 – volume: 24 start-page: 285 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2021.118502_bib0090 article-title: The role of the corticospinal tract in motor recovery in patients with a stroke: a review publication-title: NeuroRehabilitation – volume: 61 start-page: 324 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0005 article-title: Diffusion MRI at 25: exploring brain tissue structure and function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.006 – volume: 223 start-page: 449 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118502_bib0032 article-title: Topography of the human acoustic radiation as revealed by ex vivo fibers micro-dissection and in vivo diffusion-based tractography publication-title: Brain Struct. Funct. doi: 10.1007/s00429-017-1471-6 – volume: 83 start-page: 787 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0045 article-title: Mapping connectomes with diffusion MRI: Deterministic or probabilistic tractography? publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27916 – volume: 204 year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0042 article-title: Validation of structural brain connectivity networks: The impact of scanning parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116207 – volume: 7 start-page: 335 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2021.118502_bib0066 article-title: Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography publication-title: Brain Imaging Behav. doi: 10.1007/s11682-013-9235-2 – volume: 62 start-page: 1924 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0046 article-title: Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.005 – volume: 239 year: 2021 ident: 10.1016/j.neuroimage.2021.118502_bib0028 article-title: Diffusion MRI and anatomic tracing in the same brain reveal common failure modes of tractography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118300 – volume: 221 year: 2020 ident: 10.1016/j.neuroimage.2021.118502_bib0027 article-title: On the cortical connectivity in the macaque brain: a comparison of diffusion tractography and histological tracing data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117201 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118502_bib0085 publication-title: Fsl. Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 130 start-page: 630 issue: Pt 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118502_bib0015 article-title: Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography publication-title: Brain doi: 10.1093/brain/awl359 – volume: 11 start-page: 298 issue: 4 year: 2001 ident: 10.1016/j.neuroimage.2021.118502_bib0070 article-title: Where is ‘Dorsal V4’ in Human Visual Cortex? Retinotopic, Topographic and Functional Evidence publication-title: Cerebr. Cortex doi: 10.1093/cercor/11.4.298 – volume: 15 start-page: 659 year: 2017 ident: 10.1016/j.neuroimage.2021.118502_bib0006 article-title: White matter tractography for neurosurgical planning: A topography-based review of the current state of the art publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.06.011 – volume: 56 start-page: 73 year: 2014 ident: 10.1016/j.neuroimage.2021.118502_bib0008 article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography publication-title: Cortex doi: 10.1016/j.cortex.2012.09.005 – year: 2019 ident: 10.1016/j.neuroimage.2021.118502_bib0063 article-title: Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge publication-title: J. Magn. Reson. Imaging – volume: 2 start-page: 499 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2021.118502_bib0077 article-title: Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.45 – volume: 221 start-page: 4705 issue: 9 year: 2016 ident: 10.1016/j.neuroimage.2021.118502_bib0080 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1179-4 – volume: 32 start-page: 989 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2021.118502_bib0095 article-title: Topography of the human corpus callosum revisited–comprehensive fiber tractography using diffusion tensor magnetic resonance imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.044 – volume: 39 start-page: 62 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2021.118502_bib0030 article-title: Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.06.041 – volume: 229 start-page: 665 issue: 4714 year: 1985 ident: 10.1016/j.neuroimage.2021.118502_bib0096 article-title: The brain connection: the corpus callosum is larger in left-handers publication-title: Science doi: 10.1126/science.4023705 |
| SSID | ssj0009148 |
| Score | 2.6669111 |
| Snippet | White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in... |
| SourceID | doaj unpaywall swepub pubmedcentral hal proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118502 |
| SubjectTerms | Agreements Algorithms Bioengineering Brain research Bundle segmentation Datasets Diffusion Tensor Imaging - methods Dissection Dissection - methods Fiber pathways Humans Image processing Image Processing, Computer-Assisted - methods Imaging Life Sciences Magnetic resonance imaging Neural Pathways - diagnostic imaging Neurons and Cognition Nomenclature Segmentation Substantia alba Tractography White matter White Matter - diagnostic imaging |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagBx4HxJtAQQYhbhHxI44NB1QQ1QpRTq3Um2V7He3Cbroim1b994xjJzTqgT1wi2yP4808PLOe-YzQW6lsIW1JclsalnNpTa4qKkDxjKpl4UVNQ3Hy0Q8xO-HfTsvTK1d9hZywCA8cP9z7Oa05c9VchihOWW59JXlNvSTckMr3Zb6FVEMwNcDtgpef8nZiNlePDrlcg45CTEgJWApZpr9Shs2ox-yf7Ek3FyE58rrneT2BMsGM3kW3u2ZjLi_ManVlmzq8j-4l_xIfxN_1AN3wzUN06yidoD9C3XEoi0o41bg_je8rG_A5BM0Rs_vyAw6A3nhhNhsIcvHFwjeYU9wXgLQDDSYcesBhxeseohPbLuA1tBjmAqcSt2btccg_bf3202N0cvj1-MssT1cv5K4q6DZXzDEyN96AKa8r6dycKiO8pJxR62plQFudUzCoFqYgzjrvqK2JkRBvcmfZE7TXnDX-GcLcO8IrUZbeVXzOmGK8CFNIJ2sB_kWGqoEH2iVc8nA9xkoPCWg_9V_u6cA9HbmXITJSbiI2xw40nwObx_EBXbtvAJnTSeb0v2QuQ2oQEj0UsILJhYmWOyzg40ibnJzovOxI_QZkcrL62cF3HdoKxrgQlJzDF90fRFYni9TqYJrD5QalyNDrsRtsSTggMo0_68IYEdKNIQbP0NMo4eOrGOeMFYoDuyayP1nLtKdZLnq8cilLmBSW9S5qyYQkNf2CJ6-FAPkpM0RHLdqZsc__B2NfoDthylhruo_2tr87_xKczq191duXP0cygwo priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGHvh4QHxTGMggxFto_BHHhgc0JqYKMV7YpL1ZjuushTat1nbTXvjbuUucjGgvlXhLbJ_r-s7nu_juZ0LeaVOkushYUmROJFIXLjE5V7DwnCl1GlTJMTn56Icanchvp9npDjloc2EwrDLq_kan19o6lgzjbA6X0-nwJ1gGsN0gnleN44YJv1LmeIvBhz_XYR6GySYdLhMJto7RPE2MV40ZOZ3DygVPkTPQHzqLH1jaLapG8u_tVLcmGDJ50x69GVYZwUfvkTubaumuLt1s9s_mdfiA3I9WJ91v_thDshOqR-T2UTxXf0w2x5gsFdGraX1GX-c70AtwpRsk76uPFGG-6cQtl-D60stJqKjktE4LWbU0lEmoATOWzmvgTlpsEMVhRaEvMDXpys0DxajUVVh_fkJODr8eH4ySeCFD4vOUrxMjvGBjFxwo-DLX3o-5cSpoLgUvfGkcrGHvDTQqlUuZL3zwvCiZ0-CFSl-Ip2S3WlThOaEyeCZzlWXB53IshBEyxS6016UCq2NA8pYH1ke0crw0Y2bbsLRf9pp7FrlnG-4NCOsolw1ixxY0X5DNXXvE3K4LFudnNgqdHfNSCp-PNX5PMIUsQq5lyYNm0rE86AExrZDYNq0VFDF0NN1iAJ862p74b0n9FmSyN_rR_neLZakQUinOLmBG91qRtVFPrSwqbLzyIFMD8qarBg2Dx0auCosNtlEYhAye-YA8ayS8-ykhpRCpkcCunuz3xtKvqaaTGsVc6ww6hWG9b1ZJjyQW_YanYJUC-ckGhHeraGvGvviveX1J7uJbk3q6R3bX55vwCmzQdfG6VjJ_AbV8h68 priority: 102 providerName: Elsevier – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLa2TuLygLgNAgMZhHiLiC9xbBCaNrSpQqxCaJP2ZjmOQwttWtZ20_49x4mTEU1CfYtsH8fJufjYPuczQu-kyhOZpyTOU8NiLnMTq4wKUDyjSpk4UVKfnHwyEsMz_vU8Pd9CozYXxodVtjaxNtTF3Po98g9etDw4eyr2F39if2uUP11tr9Aw4WqF4nMNMbaNdqhHxhqgncOj0fcfNzC8hDfJcSmLJSEqxPY0EV81guRkBnoM60ZKwJrINGy3tBNWjevfm7e2xz6A8rZ3ejvIMkCR3kd319XCXF-Z6fSfqez4IXoQfFB80AjNI7Tlqsfozkk4ZX-C1qc-dSpgWeP6xL7OfsCXsLBucL2vP2IP-o3HZrGAhTC-GrsKc4rrJJFlS4MJhxr4gXhWw3jifO0xHZYY-gLHEy_NzGEfo7p0q_2n6Oz46PTLMA7XM8Q2S-gqVswyUhhnwNyXmbS2oMoIJylnNLelMqDR1ipoVAqTEJtbZ2leEiNhTcptznbRoJpX7jnC3FnCM5Gmzma8YEwxnvgupJWlAB8kQlnLA20Ddrm_QmOq2yC1X_qGe9pzTzfcixDpKBcNfscGNIeezV17j8BdF8wvfuqg0LqgJWc2K6TfXVA5z10meUmdJNyQzMkIqVZIdJvkCmYZOppsMIBPHW1whBoHZ0PqtyCTvdEPD75pX5YwxoWg5BL-6F4rsjpYraW-0bEIvemqwd74QyRTufnatxE-JBnW6RF61kh49yrGOWOJ4sCunuz3xtKvqSbjGtNcyhQ6hWG9b7SkRxKKfsOT00KA_KQRop0WbczYF___6Jfonm_cZJruocHqYu1egcu5yl8HO_IXTayDIw priority: 102 providerName: ProQuest |
| Title | Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset? |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921007758 https://dx.doi.org/10.1016/j.neuroimage.2021.118502 https://www.ncbi.nlm.nih.gov/pubmed/34433094 https://www.proquest.com/docview/2578828756 https://www.proquest.com/docview/2564953289 https://hal.science/hal-03346621 https://pubmed.ncbi.nlm.nih.gov/PMC8855321 http://kipublications.ki.se/Default.aspx?queryparsed=id https://doi.org/10.1016/j.neuroimage.2021.118502 https://doaj.org/article/d2f43c7d890749b4be784f2e814a17e8 |
| UnpaywallVersion | publishedVersion |
| Volume | 243 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZbxMxELbaROJ44D4WSmQQ4m2j9bFeLzygFLUKR6OCGql9WtmOVwlNthHJtioP_HbGe8FSCQVectgex7E94_HOzDcIvZSxDqQOia9DxXwutfLjiApgPBWnMrAipS44-WAkhmP-4Tg83kJBHQvTst8XflgFruNsAdwFtzlKgMdl6NAjuyIE7buDuuPR4eCkMGqGzJekyOVBApeCMIxq552_ddU6kQrg_tbBtD11HpJX1c-rXpQV1uhNdD3PluryQs3nv51V-7fR5_pfli4qp_18rfvm-x8AkP8yDXfQrUpxxYNyp91FWza7h64dVKb5-yg_cvFWFQA2Lsz8RcgEPofbeAkGfvkaO6RwPFXLJdye8cXUZphTXESWrGoaTDjUgCaMFwX2J9a5A4JYYegLtFW8UguLnWPryq7fPkDj_b2jd0O_yungmyigaz9mhpGJsgrOiDSSxkxorISVlDOqTRorEAPGxNAoFSogRhtrqE6JknCR5Uazh6iTnWX2McLcGsIjEYbWRHzCWMx44LqQRqYCFBcPRfW6JqYCPHd5N-ZJ7dn2Nfk1q4mb1aScVQ-RhnJZgn5sQLPrtk7T3sF2FwWwjEklBZIJTTkz0US6RxKx5tpGkqfUSsIViaz0UFxvvKSOjAVZDh3NNhjAm4a20p5KrWhD6hewz1ujHw4-Ja4sYIwLQck5zOhOzQZJJepWiZP5LmtCKDz0vKkGIeUsTyqzZ7lrI5wfM1zuPfSo5JrmpxjnjAUxh-Vq8VNrLO2abDYtgNClDKFTGNarkvNaJFXRKXyyiRCwf0IP0YYzN17YJ_9D9BTdcN_KoNUd1Fl_y-0z0F7Xuoe2-z8IvEbHUQ91B-8_Dkfwvrs3OvzSK54I9SqR9hPnKJ2r |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELb6kCgcEG8CBQwCbivWj_XaoKpqoVVKH0KolXpzvV4vKSSb0CSt8uf4bYx3vQlRJZRLb5HtcZzMeDxjz3yD0FupslhmCYmyxLCIy8xEKqUCNp5RhYydKKhPTj48Eu0T_vU0OV1Cf5pcGB9W2ejESlHnfevvyD940fLg7InYHPyOfNUo_7ralNAwobRCvlFBjIXEjn03uQIXbrix9wX4_Y7S3Z3jz-0oVBmIbBrTUaSYZSQ3zoDWKlJpbU6VEU5SzmhmC2VAMK1VMKgQJiY2s87SrCBGgmvFbcZg3mW0yhlX4Pytbu8cffs-g_0lvE7GS1gkCVEhlqiOMKsQK897oDfAT6UEtJdMwvVOc0BWdQTmzsnljg_YvG4NXw_qDNCnd9DauByYyZXpdv85OnfvobvB5sVbtZDeR0uufIBuHYZX_YdofOxTtQJ2Nq4iBKpsC3wJjnyNIz75iD3IOO6YwQAcb3zVcSXmFFdJKcOGBhMOPcAw3KtgQ3E29hgSQwxzgaGLh6bnsI-JHbrR5iN0ciOMeoxWyn7pniLMnSU8FUnibMpzxhTjsZ9CWlkIsHlaKG14oG3ASvclO7q6CYr7qWfc0557uuZeC5Ep5aDGC1mAZtuzeTreI35XDf2LHzooEJ3TgjOb5tLfZqiMZy6VvKBOEm5I6mQLqUZIdJNUC8cATHS-wAI-TWmD4VUbVAtSvwGZnFt9e-tA-7aYMS4EJZfwj643IquDlhzq2Z5uodfTbtBv_tHKlK4_9mOED4GmUrXQk1rCp1_FOGcsVhzYNSf7c2uZ7ynPOxWGupQJTArLel_vkjmS0PQLPjktBMhP0kJ0uosWZuyz___oV2itfXx4oA_2jvafo9uesM5yXUcro4uxewHm7ih7GXQKRmc3rcb-AnkSwwM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbaIhU4IN4EChgE3FZdP9Zrg1BVKFFKH-LQSrkZr-MlgWQTmqRR_hq_jvGuNyGqhHLpLbI9jpNvPB7bM58ReiNVFsssIVGWGBZxmZlIpVTAxDMql7ETOfXJySenonXOv7aT9gb6U-fC-LDK2iaWhroztP6MfNerlidnT8RuHsIivh0090a_I_-ClL9prZ_TqFTkyM1nsH0bfzw8AKzfUtr8cva5FYUXBiKbxnQSKWYZ6RhnwGLlqbS2Q5URTlLOaGZzZUAprVXQKBcmJjazztIsJ0bCtorbjEG_m-hGypjy4YRpO10S_hJepeElLJKEqBBFVMWWlVyVvQFYDNihUgJ2SybhYKdeGssXBFZWyM2uD9W86gdfDecMpKe30c1pMTLzmen3_1k0m3fRneDt4v1KPe-hDVfcR9sn4T7_AZqe-SStwJqNy9iAMs8CX8IWvmIQn7_Hnl4cd81oBFtuPOu6AnOKy3SUcS2DCYcagAcPSsJQnE09e8QYQ1_g4uKxGTjso2HHbrL3EJ1fC0yP0FYxLNwThLmzhKciSZxNeQdwYzz2XUgrcwHeTgOlNQbaBpZ0_1hHX9fhcD_1Ej3t0dMVeg1EFpKjiilkDZlPHuZFe8_1XRYML37oYDp0h-ac2bQj_TmGynjmUslz6iThhqRONpCqlUTX6bSwAEBHvTUG8GEhG1yuypVaU_o16OTK6Fv7x9qXxYxxISi5hH90p1ZZHezjWC9ncwO9WlSDZfPXVaZww6lvI3zwM5WqgR5XGr74KsY5Y7HiANeK7q-MZbWm6HVL9nQpE-gUhvWumiUrIqHoF3xyWgjQn6SB6GIWrQ3s0___6JdoG4yXPj48PXqGbnm5Kr11B21NLqbuOfi5k-xFaVAw-n7dFuwvOKbAnQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJ_HxwDcjMJBBiLdM8WcceEAFMVWITSCt0niybNdRy9qsWptN46_nnC8Ik1DhLbF9F9e-O5_ru58ReqUymygrSGyFYTFX1sRZSiUonslylXiZ05CcfHAoR2P-6Vgcb6GkzYXpnd9XcVgVruNsAdoFuzlKQMeVCOiR21KA9z1A2-PDL8Nv1aGmYLEi1V0eJAlXEIq0Dd75G6veilQB9_cWpmvTECF51f28GkXZYI3eQjfKYmkuL8x8_ttatX8HfW1_ZR2icrJXru2e-_EHAOS_DMNddLtxXPGwlrR7aMsX99H1g-Zo_gEqj0K-VQOAjatj_iplAp_DbrwGA798gwNSOJ6a5RJ2z_hi6gvMKa4yS1YtDSYcasATxosK-xPbMgBBrDDwAm8Vr8zC4xDYuvLrdw_ReP_j0YdR3NzpELs0oes4Y46RifEG1og8Vc5NaGakV5Qzal2eGTADzmXQKJcmIc4676jNiVGwkeXOskdoUJwW_jHC3DvCUymEdymfMJYxngQWyqlcguMSobSdV-0awPNw78Zct5Ft3_WvUdVhVHU9qhEiHeWyBv3YgOZ9EJ2ufYDtrgpgGnVjBfSE5py5dKLCXxKZ5daniufUK8INSb2KUNYKnm4zY8GWA6PZBh1429E23lPtFW1I_RLkvNf70fCzDmUJY1xKSs5hRHdbNdCNqVvpYPPDrQlCRuhFVw1GKpw8mcKflqGNDHHMsLmP0E6tNd2nGOeMJRmH6erpU68v_ZpiNq2A0JUSwBS69brWvB5JU3QCT15LCfIjIkQ7zdx4Yp_8D9FTdDO81Umru2iwPiv9M_Be1_Z5Y7B-Amosl6k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tractography+dissection+variability%3A+What+happens+when+42+groups+dissect+14+white+matter+bundles+on+the+same+dataset%3F&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Schilling%2C+Kurt+G.&rft.au=Rheault%2C+Fran%C3%A7ois&rft.au=Petit%2C+Laurent&rft.au=Hansen%2C+Colin+B.&rft.date=2021-11-01&rft.issn=1053-8119&rft.volume=243&rft.spage=118502&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118502&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2021_118502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |