The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods

Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and pop...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 10; no. 1; p. 107
Main Authors Dermauw, Wannes, Van Leeuwen, Thomas, Vanholme, Bartel, Tirry, Luc
Format Journal Article
LanguageEnglish
Published London BioMed Central 13.03.2009
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/1471-2164-10-107

Cover

Abstract Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus , the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus , considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus , forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
AbstractList The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus , the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus , considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus , forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group.BACKGROUNDThe apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group.The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes.RESULTSThe mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes.Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.CONCLUSIONAlthough the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
Abstract Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.
Audience Academic
Author Van Leeuwen, Thomas
Dermauw, Wannes
Vanholme, Bartel
Tirry, Luc
AuthorAffiliation 2 Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
3 VIB Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
1 Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
AuthorAffiliation_xml – name: 2 Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
– name: 3 VIB Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
– name: 1 Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
Author_xml – sequence: 1
  givenname: Wannes
  surname: Dermauw
  fullname: Dermauw, Wannes
  email: wannes.dermauw@ugent.be
  organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University
– sequence: 2
  givenname: Thomas
  surname: Van Leeuwen
  fullname: Van Leeuwen, Thomas
  organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University
– sequence: 3
  givenname: Bartel
  surname: Vanholme
  fullname: Vanholme, Bartel
  organization: Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, VIB Department of Plant Systems Biology, Ghent University
– sequence: 4
  givenname: Luc
  surname: Tirry
  fullname: Tirry, Luc
  organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19284646$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhU1JaR7tvqsiKJRmMakk27LVRSGkr0Cg0KZrcS1fezTY0kSSQ_Mr-pcrz6RppvSBDTbX3znXOpzDbM86i1n2lNETxmrxihUVW3AmigWj6a4eZAd3o7177_vZYQgrSllV8_JRts8krwtRiIPs--USiXbjesCIZDTR6aWzrTcwkB6tG5G4jsQELd0UkLRTiDOG5C36EaJbL6F3psVA1hG9szchGDsF8vLSuwlDAB-PXxMg1l3jxhIJeA-2xxFtJDA626dJXHq3dm14nD3sYAj45PZ5lH19_-7y7OPi4tOH87PTi4WuKI2LqmugZFK3ZS5KrVmBTVvqshUayxJ5I6EouWSMQgegS0EBKBYVrQEaqnWeH2XnW9_WwUqtvRnB3ygHRm0Gzvcq_ZTRAypWCV4D5thwWtQgmoLyjtZphyzrvIHk9WbrtZ6aEVudzuVh2DHd_WLNUvXuWnFR01qWyeDFrYF3Vym0qEYTNA4DWEypK1FxLmUt_wtyKgrJc5HA51uwh3QCYzuXFusZVqdMSsErmc8hnPyBSleLo9Gpap1J8x3B8Y4gMRG_xR6mENT5l8-77LP7qdzF8bN7CaBbQHsXgsfuF0LVXG8191fN_d1MaJUk4jeJNhGicXOuZviXkG2FIe1I3fNq5SZvU8P-rvkBZwEO9Q
CitedBy_id crossref_primary_10_1007_s10493_020_00477_3
crossref_primary_10_1080_23802359_2024_2361689
crossref_primary_10_1371_journal_pntd_0004384
crossref_primary_10_1016_j_jspr_2014_06_010
crossref_primary_10_1007_s00239_012_9490_7
crossref_primary_10_1016_j_cbd_2012_02_004
crossref_primary_10_1111_all_14884
crossref_primary_10_1111_zsc_12090
crossref_primary_10_1016_j_jspr_2016_12_004
crossref_primary_10_1016_j_aspen_2017_04_012
crossref_primary_10_1080_01647954_2019_1673813
crossref_primary_10_1007_s10493_014_9816_9
crossref_primary_10_1186_s12864_018_4868_6
crossref_primary_10_1111_mve_12234
crossref_primary_10_1186_s13071_015_1198_2
crossref_primary_10_1016_j_dib_2022_108835
crossref_primary_10_1016_j_ympev_2017_08_005
crossref_primary_10_1186_1756_3305_7_340
crossref_primary_10_1016_j_gene_2018_06_093
crossref_primary_10_2174_1389203720666190719150432
crossref_primary_10_1186_s12915_024_01870_9
crossref_primary_10_1007_s00436_024_08416_6
crossref_primary_10_1186_1756_3305_5_3
crossref_primary_10_3109_19401736_2014_905859
crossref_primary_10_1371_journal_pone_0216171
crossref_primary_10_2478_johr_2018_0021
crossref_primary_10_1016_j_ygeno_2018_09_002
crossref_primary_10_1007_s00441_012_1369_9
crossref_primary_10_1080_01647954_2023_2230966
crossref_primary_10_1016_j_jspr_2021_101840
crossref_primary_10_1017_S0031182024000635
crossref_primary_10_1002_arch_21868
crossref_primary_10_1186_1471_2148_12_31
crossref_primary_10_1080_01647954_2018_1539121
crossref_primary_10_1111_mve_12102
crossref_primary_10_1007_s10493_022_00745_4
crossref_primary_10_7717_peerj_8386
crossref_primary_10_1371_journal_pone_0110625
crossref_primary_10_1371_journal_pone_0029419
crossref_primary_10_1093_zoolinnean_zlz044
crossref_primary_10_1186_1471_2164_11_597
crossref_primary_10_3389_fevo_2020_00194
crossref_primary_10_1515_biol_2022_0875
crossref_primary_10_3109_19401736_2014_913144
crossref_primary_10_1080_23802359_2017_1407707
crossref_primary_10_1016_j_gene_2015_11_012
crossref_primary_10_1186_s13742_016_0129_2
crossref_primary_10_3389_fmicb_2016_01046
crossref_primary_10_1038_srep18920
crossref_primary_10_1080_23802359_2017_1289345
crossref_primary_10_1007_s00248_018_1294_x
crossref_primary_10_1038_s41598_024_69203_y
crossref_primary_10_1186_1471_2164_15_1124
crossref_primary_10_1038_s41598_021_02881_0
crossref_primary_10_1007_s10493_023_00889_x
crossref_primary_10_1016_j_mcp_2015_07_008
crossref_primary_10_1093_nargab_lqaa111
crossref_primary_10_1111_j_1365_2583_2010_01040_x
crossref_primary_10_1139_G10_004
crossref_primary_10_1080_01647954_2021_1985604
crossref_primary_10_1016_j_gene_2009_09_009
crossref_primary_10_1093_jhered_esr005
ContentType Journal Article
Copyright Dermauw et al; licensee BioMed Central Ltd. 2009
COPYRIGHT 2009 BioMed Central Ltd.
Copyright © 2009 Dermauw et al; licensee BioMed Central Ltd. 2009 Dermauw et al; licensee BioMed Central Ltd.
Copyright_xml – notice: Dermauw et al; licensee BioMed Central Ltd. 2009
– notice: COPYRIGHT 2009 BioMed Central Ltd.
– notice: Copyright © 2009 Dermauw et al; licensee BioMed Central Ltd. 2009 Dermauw et al; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7SS
8FD
FR3
P64
RC3
7X8
5PM
DOA
DOI 10.1186/1471-2164-10-107
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
Entomology Abstracts (Full archive)
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList


Entomology Abstracts
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DAOJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 107
ExternalDocumentID oai_doaj_org_article_17628ae3eb2048a6b402f08b9a9583ba
PMC2680895
A199627933
19284646
10_1186_1471_2164_10_107
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID ---
0R~
23N
2VQ
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C1A
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7SS
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c700t-7fba519cd5365cc14ebd5c5d6ce55e2b9a4529110afaac560aa0e4708aab0cc33
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:27:17 EDT 2025
Thu Aug 21 18:34:26 EDT 2025
Thu Sep 04 22:31:02 EDT 2025
Fri Sep 05 15:00:12 EDT 2025
Tue Jun 17 22:08:23 EDT 2025
Tue Jun 10 21:05:30 EDT 2025
Fri Jun 27 05:30:30 EDT 2025
Thu Apr 03 07:01:56 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 02:21:44 EDT 2025
Sat Sep 06 07:28:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rolling Circle Amplification
Mitochondrial Genome
Mite Species
House Dust
Strand Bias
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c700t-7fba519cd5365cc14ebd5c5d6ce55e2b9a4529110afaac560aa0e4708aab0cc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2164-10-107
PMID 19284646
PQID 20649236
PQPubID 23462
ParticipantIDs doaj_primary_oai_doaj_org_article_17628ae3eb2048a6b402f08b9a9583ba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2680895
proquest_miscellaneous_67229989
proquest_miscellaneous_20649236
gale_infotracmisc_A199627933
gale_infotracacademiconefile_A199627933
gale_incontextgauss_ISR_A199627933
pubmed_primary_19284646
crossref_primary_10_1186_1471_2164_10_107
crossref_citationtrail_10_1186_1471_2164_10_107
springer_journals_10_1186_1471_2164_10_107
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-03-13
PublicationDateYYYYMMDD 2009-03-13
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-13
  day: 13
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2009
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
SSID ssj0017825
Score 2.210393
Snippet Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over...
The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000...
Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over...
Abstract Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107
SubjectTerms Acari
Animal Genetics and Genomics
Animals
Arachnida
Arthropoda
Base Composition
Base Sequence
Biomedical and Life Sciences
Codon - genetics
Dermatophagoides pteronyssinus
Dermatophagoides pteronyssinus - classification
Dermatophagoides pteronyssinus - genetics
DNA, Mitochondrial - chemistry
DNA, Mitochondrial - genetics
Gene Order
Genes, Mitochondrial - genetics
Genetic aspects
Genome, Mitochondrial
House-dust mite
Ixodidae
Life Sciences
Limulus polyphemus
Metazoa
Microarrays
Microbial Genetics and Genomics
Mitochondrial DNA
Mitochondrial Proteins - genetics
Molecular Sequence Data
Nucleic Acid Conformation
Phylogeny
Physiological aspects
Plant Genetics and Genomics
Proteomics
Research Article
Restriction Mapping
RNA
RNA, Ribosomal - chemistry
RNA, Ribosomal - genetics
RNA, Ribosomal, 16S - chemistry
RNA, Ribosomal, 16S - genetics
RNA, Transfer - chemistry
RNA, Transfer - genetics
Sarcoptiformes
Sequence Analysis, DNA
Trombidiformes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpBSyEBEWKNi87DjdeVUGCA7RSb9bEdtpK1Kk2G6T-Cv4yM06ybIoKF67OZLU783nm89r-hrHnWFStbRC8GdQOFyhgY7CZikEoh_xV1C70jPz8Re4fFp-OxNFGqy86EzbIAw-OW6Q4WxW4HFeACDaQNS54mkTVFVRC5XWgRljGpsXUuH-AdU-Ee0VlGme4Ipg2KJVcrMcoA6XURnajIAXd_j-z80Z5unx08tL-aShLe7fYzZFP8jfD77jNrjl_h10fOkxe3GU_EQY8HBtHcszPcPpiuvOWUMdJnvXM8bbhSAL5Sdt3jlMfDzJz_D2lbFIdgOP21LqOn2MEWn-Bc8j3HX95sGx7ap-yXO2-5sB9-8OFj3Qclku6sUB_O_LQywhHhm4MtrvHDvc-HLzbj8ceDLEpk2QVl00NSPKMFbkUxqSFq60wwkrjhHAZhoF2bpFDQANgkD4BJK4oEwVQJ8bk-X225VvvHjIOKSjkT0aSQrxIDZCWWCqbwlZNam0RscUUCG1GgXLqk_Fdh4WKkppCpyl0YSQpI7a7fuN8EOf4i-1biu3ajmS1wwCCTY9g0_8CW8SeETI0CWd4OplzDH3X6Y_fvmqSD5YZZrs8Yi9Go6bF729gvOiAXiCtrZnlzswSZ7aZPX46AVDTIzoO5x2iQWdIJJGZy6stZJkh0VBVxB4MgP3toAoZiSzw3XIG5Zln5k_86UkQHs-oT0slIvZqAr0eM153pd-3_4ffH7Ebwy5eHqf5DttaLXv3GMngqn4S5v0vjwtajQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA6lIvgi3h2tGkTQCkPnlkzGt3opVdAHbaFv4eQy20I7U2Z2hf4K_7LnZGZWp1rB1-Rk2T23fNmTfIexF7ipOlej82ZgPB5QwMXgMhWDUB7xqzA-9Iz8_EXuHxafjsTRBsumtzDhtvtUkgyZOoS1kjspptE4Q3RPmSOlB-TXBLkP-vBhtruuHOCOJ6Zy5F9WzbafwNL_Zy7-bTO6fFHyUrU0bEJ7t9jNET3y3cHct9mGb-6w60M_yYu77AcanYdL4giF-RkGKya3xpGPcSJjPfO8rTlCPn6MB37PqWsHiXn-nhI0cQzAoj1xvufnqO-2ucCIaVY9f3XQtStqltItt99w4E373YeP9By6jt4n0J-MPHQuwpGh94Lr77HDvQ8H7_bjseNCbMskWcZlbQCVap3IpbA2LbxxwgonrRfCZ6YCqtMiYoAawCJYAkh8USYKwCTW5vl9ttm0jX_IOKSgEC1ZSXzwIrVAzGGprAtX1alzRcR2JkNoO9KRU1eMUx2OJUpqMp0m04WRpIzY9nrF-UDF8Q_Zt2TbtRyRaIeBtlvoMSZ1ihuBAp97Q-zFIA2epetE4a-shMoNROw5eYYmmoyG7uEsYNX3-uO3r5rIgmWGuS2P2MtRqG7x-1sYnzWgFohZaya5NZPEOLaz6WeTA2qaostvjUdv0BnCRsTh8moJWWYIK1QVsQeDw_5SUIX4Qxa4tpy58kwz85nm5DjQjGfUlaUSEXs9Ob0e81t_pd4f_Y_wY3ZjqM3lcZpvsc1lt_JPEOItzdMQ0z8B7i1MMQ
  priority: 102
  providerName: Springer Nature
Title The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods
URI https://link.springer.com/article/10.1186/1471-2164-10-107
https://www.ncbi.nlm.nih.gov/pubmed/19284646
https://www.proquest.com/docview/20649236
https://www.proquest.com/docview/67229989
https://pubmed.ncbi.nlm.nih.gov/PMC2680895
https://doaj.org/article/17628ae3eb2048a6b402f08b9a9583ba
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DAOJ: Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 20250331
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: C6C
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: U2A
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_G60nosIohCbr90kgkh7tlShRaoH97ZMdjfXQpvUy514z_7jzmxyPVPbvhzc7iQkszM7v83u_Iax1xhUjSnReCMoLC5QwPhgoswHkVnEr6KwrmbkwaHcHyVfx2K8So_uFNhcubSjelKj6en73z8Xn9DhPzqHz-RWiBOsHyHupzklpNTydYxLEdn4QbLaU8BYKFyuUSe93LS84g69IOW4_P-fsf8JWZePU17aU3Whau8-u9dhTL7dGsUDdstWD9mdturk4hH7g6bB3VFyBMz8DF0atVAZskROlK1nltclR2DIj-t5YznV9iAxyz_TNE5MBDCpT4xt-DmOSl0t0K-qecM_cOBV_cu621gO0yllLtDnR-5qGmFLW5XBNI_ZaG_3x3Df72ox-DoNgpmflgUg2NNGxFJoHSa2MEILI7UVwkZFDrSDi1gCSgCNMAogsEkaZABFoHUcP2FrVV3ZDcYhhAxxlJbEFC9CDcQpFsoyMXkZGpN4bGupfKU7onKql3Gq3IIlk4qGS9FwuZYg9djbiyvOW5KOG2R3aDwv5Ihe2zXU04nqvFWFGCIysLEtiNcYZIGr7DLI8C1zkcUFeOwVWYMiAo2KTuhMYN406sv3I0U0wjLCWS_22JtOqKzx-TV0CQ-oBeLc6klu9iTRw3Wv--XS6BR10bG4yqIFqAgBJSJ0eb2ETCMEHFnusaetka4UlCMykQlem_bMt6eZfk91cuwIyCOq15ILj71bGrpaOu61en928zs-Z3fbfbrYD-NNtjabzu0LhHuzYsBup-N0wNZ3dg-_HeG_oRwO3KeTgfNv_B1F238BkqdVRg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLamTgheEHcCg1kICYYULTc7CW_lMnVl2wPrpL1ZJ7bTTWLJlLZI-xX8Zc5xkkIGQ-LVPq5an9vnHvs7jL3GpGpMicYbQWHxgALGBxNlPojMIn4VhXU9Iw-P5OQkmZ6K0w0W9W9h3G33viTpIrVz60zuhhhG_QjRPUWOkB6Qb2ZCyGTENsfj6fF0XTvAnCf6guRf1g0SkOPp_zMa_5aOrl-VvFYvdWlo7x672-FHPm4Vfp9t2OoBu9V2lLx6yH6g2rm7Jo5gmF-gu2J4qwxZGSc61gvL65Ij6ONneOS3nPp2kJjlnyhEE8sAzOtzYxf8Ene8rq7QZ6rVgr-dNfWK2qU0y533HHhVf7fuIy2HpqEXCvQ3I3e9i3Ck7b5gFo_Yyd7n2ceJ3_Vc8HUaBEs_LQtAUKeNiKXQOkxsYYQWRmorhI2KHKhSi5gBSgCNcAkgsEkaZABFoHUcP2ajqq7sU8YhhAzxkpbECC9CDcQdFsoyMXkZGpN4bLdXhNIdITn1xfim3MEkk4pUp0h1biRIPbazXnHZknH8Q_YD6XYtRzTabqBu5qrzShViKsjAxrYg_mKQBZ6myyDDX5mLLC7AY6_IMhQRZVR0E2cOq8VC7R9_VUQXLCOMbrHH3nRCZY3fX0P3sAF3gbi1BpJbA0n0ZD2Y3u4NUNEUXX-rLFqDihA4IhKXN0vINEJgkeUee9Ia7K8NyhGByATXpgNTHuzMcKY6P3NE4xH1ZcmFx971Rq-6CLe4cd-f_Y_wNrs9mR0eqIP9oy_P2Z22Uhf7YbzFRstmZV8g4FsWLzsP_wkF2VBl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVQKxAviHsDhVoICYoUbW52Et4WyqpdoEK0lfpmTWxnW4kmqySL1K_gl5nJZSGFIvFqj6PEnstxxj7D2EsMqsbkqLwBZBY3KGBcMEHigkgs4leR2bZm5OdDuX8SzU_Faf_DrR5Ouw8pye5OA7E0Fc1kafLOxBM58dGlugEiffIiPl0m30xEKnHztTmdzo_m6zwCxj8xJCf_Mm4UjFrO_j8982-h6eqxySu50zYkze6yOz2W5NNu8e-xG7a4z2521SUvH7AfqAK8PTKOwJhfoOmiqysMaRwnatYLy8ucIwDkZ7j9t5xqeJCY5XvkrolxABblubE1X-Lsl8Ul2k-xqvnr46pcUemUqtl9y4EX5XfbPtJyqCq6rUC_HHlbxwhbukoMpn7ITmYfjt_vu339BVfHnte4cZ4BAjxtRCiF1n5kMyO0MFJbIWyQpUBZW8QPkANohE4Ano1iLwHIPK3D8BHbKMrCbjEOPiSInbQkdnjhayAeMV_mkUlz35jIYZNhIZTuycmpRsY31W5SEqlo6RQtXdvixQ7bXY9YdsQc_5B9R2u7liNK7bahrBaqt1DlY1hIwIY2Iy5jkBnurHMvwa9MRRJm4LAXpBmKSDMKOpWzgFVdq4Ojr4qog2WAni502KteKC_x_TX0lxxwFohnayS5PZJEq9aj7p1BARV10VG4wqI2qABBJKJyeb2EjAMEGUnqsMedwv6aoBTRiIxwbDxS5dHMjHuK87OWdDygGi2pcNibQelV7-3qa-f9yf8I77BbX_Zm6tPB4cen7HaXtAtdP9xmG021ss8Q-zXZ897AfwKkIVSv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complete+mitochondrial+genome+of+the+house+dust+mite+Dermatophagoides+pteronyssinus+%3A+a+novel+gene+arrangement+among+arthropods&rft.jtitle=BMC+genomics&rft.au=Dermauw%2C+Wannes&rft.au=Van+Leeuwen%2C+Thomas&rft.au=Vanholme%2C+Bartel&rft.au=Tirry%2C+Luc&rft.date=2009-03-13&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=10&rft.issue=107&rft.spage=107&rft_id=info:doi/10.1186%2F1471-2164-10-107&rft.externalDocID=A199627933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon