The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods
Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and pop...
Saved in:
Published in | BMC genomics Vol. 10; no. 1; p. 107 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
13.03.2009
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/1471-2164-10-107 |
Cover
Abstract | Background
The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite
Dermatophagoides pteronyssinus
, the most important member of this largely neglected group.
Results
The mitochondrial genome of
D. pteronyssinus
is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of
Limulus polyphemus
, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered
D. pteronyssinus
with
Steganacarus magnus
, forming a sistergroup of the Trombidiformes.
Conclusion
Although the mitochondrial genome of
D. pteronyssinus
shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. |
---|---|
AbstractList | The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus , the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus , considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus , forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group.BACKGROUNDThe apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group.The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes.RESULTSThe mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes.Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari.CONCLUSIONAlthough the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. Abstract Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes), usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp), which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene order is extremely rearranged and represents a new pattern within the Acari. Both tRNAs and rRNAs are truncated, corroborating the theory of the functional co-evolution of these molecules. Furthermore, the strong and reversed GC- and AT-skews suggest the inversion of the control region as an evolutionary event. Finally, phylogenetic analysis using concatenated mt gene sequences succeeded in recovering Acari relationships concordant with traditional views of phylogeny of Acari. |
Audience | Academic |
Author | Van Leeuwen, Thomas Dermauw, Wannes Vanholme, Bartel Tirry, Luc |
AuthorAffiliation | 2 Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium 3 VIB Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium 1 Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium |
AuthorAffiliation_xml | – name: 2 Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium – name: 3 VIB Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium – name: 1 Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium |
Author_xml | – sequence: 1 givenname: Wannes surname: Dermauw fullname: Dermauw, Wannes email: wannes.dermauw@ugent.be organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University – sequence: 2 givenname: Thomas surname: Van Leeuwen fullname: Van Leeuwen, Thomas organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University – sequence: 3 givenname: Bartel surname: Vanholme fullname: Vanholme, Bartel organization: Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, VIB Department of Plant Systems Biology, Ghent University – sequence: 4 givenname: Luc surname: Tirry fullname: Tirry, Luc organization: Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19284646$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAUhU1JaR7tvqsiKJRmMakk27LVRSGkr0Cg0KZrcS1fezTY0kSSQ_Mr-pcrz6RppvSBDTbX3znXOpzDbM86i1n2lNETxmrxihUVW3AmigWj6a4eZAd3o7177_vZYQgrSllV8_JRts8krwtRiIPs--USiXbjesCIZDTR6aWzrTcwkB6tG5G4jsQELd0UkLRTiDOG5C36EaJbL6F3psVA1hG9szchGDsF8vLSuwlDAB-PXxMg1l3jxhIJeA-2xxFtJDA626dJXHq3dm14nD3sYAj45PZ5lH19_-7y7OPi4tOH87PTi4WuKI2LqmugZFK3ZS5KrVmBTVvqshUayxJ5I6EouWSMQgegS0EBKBYVrQEaqnWeH2XnW9_WwUqtvRnB3ygHRm0Gzvcq_ZTRAypWCV4D5thwWtQgmoLyjtZphyzrvIHk9WbrtZ6aEVudzuVh2DHd_WLNUvXuWnFR01qWyeDFrYF3Vym0qEYTNA4DWEypK1FxLmUt_wtyKgrJc5HA51uwh3QCYzuXFusZVqdMSsErmc8hnPyBSleLo9Gpap1J8x3B8Y4gMRG_xR6mENT5l8-77LP7qdzF8bN7CaBbQHsXgsfuF0LVXG8191fN_d1MaJUk4jeJNhGicXOuZviXkG2FIe1I3fNq5SZvU8P-rvkBZwEO9Q |
CitedBy_id | crossref_primary_10_1007_s10493_020_00477_3 crossref_primary_10_1080_23802359_2024_2361689 crossref_primary_10_1371_journal_pntd_0004384 crossref_primary_10_1016_j_jspr_2014_06_010 crossref_primary_10_1007_s00239_012_9490_7 crossref_primary_10_1016_j_cbd_2012_02_004 crossref_primary_10_1111_all_14884 crossref_primary_10_1111_zsc_12090 crossref_primary_10_1016_j_jspr_2016_12_004 crossref_primary_10_1016_j_aspen_2017_04_012 crossref_primary_10_1080_01647954_2019_1673813 crossref_primary_10_1007_s10493_014_9816_9 crossref_primary_10_1186_s12864_018_4868_6 crossref_primary_10_1111_mve_12234 crossref_primary_10_1186_s13071_015_1198_2 crossref_primary_10_1016_j_dib_2022_108835 crossref_primary_10_1016_j_ympev_2017_08_005 crossref_primary_10_1186_1756_3305_7_340 crossref_primary_10_1016_j_gene_2018_06_093 crossref_primary_10_2174_1389203720666190719150432 crossref_primary_10_1186_s12915_024_01870_9 crossref_primary_10_1007_s00436_024_08416_6 crossref_primary_10_1186_1756_3305_5_3 crossref_primary_10_3109_19401736_2014_905859 crossref_primary_10_1371_journal_pone_0216171 crossref_primary_10_2478_johr_2018_0021 crossref_primary_10_1016_j_ygeno_2018_09_002 crossref_primary_10_1007_s00441_012_1369_9 crossref_primary_10_1080_01647954_2023_2230966 crossref_primary_10_1016_j_jspr_2021_101840 crossref_primary_10_1017_S0031182024000635 crossref_primary_10_1002_arch_21868 crossref_primary_10_1186_1471_2148_12_31 crossref_primary_10_1080_01647954_2018_1539121 crossref_primary_10_1111_mve_12102 crossref_primary_10_1007_s10493_022_00745_4 crossref_primary_10_7717_peerj_8386 crossref_primary_10_1371_journal_pone_0110625 crossref_primary_10_1371_journal_pone_0029419 crossref_primary_10_1093_zoolinnean_zlz044 crossref_primary_10_1186_1471_2164_11_597 crossref_primary_10_3389_fevo_2020_00194 crossref_primary_10_1515_biol_2022_0875 crossref_primary_10_3109_19401736_2014_913144 crossref_primary_10_1080_23802359_2017_1407707 crossref_primary_10_1016_j_gene_2015_11_012 crossref_primary_10_1186_s13742_016_0129_2 crossref_primary_10_3389_fmicb_2016_01046 crossref_primary_10_1038_srep18920 crossref_primary_10_1080_23802359_2017_1289345 crossref_primary_10_1007_s00248_018_1294_x crossref_primary_10_1038_s41598_024_69203_y crossref_primary_10_1186_1471_2164_15_1124 crossref_primary_10_1038_s41598_021_02881_0 crossref_primary_10_1007_s10493_023_00889_x crossref_primary_10_1016_j_mcp_2015_07_008 crossref_primary_10_1093_nargab_lqaa111 crossref_primary_10_1111_j_1365_2583_2010_01040_x crossref_primary_10_1139_G10_004 crossref_primary_10_1080_01647954_2021_1985604 crossref_primary_10_1016_j_gene_2009_09_009 crossref_primary_10_1093_jhered_esr005 |
ContentType | Journal Article |
Copyright | Dermauw et al; licensee BioMed Central Ltd. 2009 COPYRIGHT 2009 BioMed Central Ltd. Copyright © 2009 Dermauw et al; licensee BioMed Central Ltd. 2009 Dermauw et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Dermauw et al; licensee BioMed Central Ltd. 2009 – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: Copyright © 2009 Dermauw et al; licensee BioMed Central Ltd. 2009 Dermauw et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7SS 8FD FR3 P64 RC3 7X8 5PM DOA |
DOI | 10.1186/1471-2164-10-107 |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science Entomology Abstracts (Full archive) Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DAOJ: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 107 |
ExternalDocumentID | oai_doaj_org_article_17628ae3eb2048a6b402f08b9a9583ba PMC2680895 A199627933 19284646 10_1186_1471_2164_10_107 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Belgium |
GeographicLocations_xml | – name: Belgium |
GroupedDBID | --- 0R~ 23N 2VQ 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 7SS 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c700t-7fba519cd5365cc14ebd5c5d6ce55e2b9a4529110afaac560aa0e4708aab0cc33 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Thu Aug 21 18:34:26 EDT 2025 Thu Sep 04 22:31:02 EDT 2025 Fri Sep 05 15:00:12 EDT 2025 Tue Jun 17 22:08:23 EDT 2025 Tue Jun 10 21:05:30 EDT 2025 Fri Jun 27 05:30:30 EDT 2025 Thu Apr 03 07:01:56 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 02:21:44 EDT 2025 Sat Sep 06 07:28:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rolling Circle Amplification Mitochondrial Genome Mite Species House Dust Strand Bias |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c700t-7fba519cd5365cc14ebd5c5d6ce55e2b9a4529110afaac560aa0e4708aab0cc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1471-2164-10-107 |
PMID | 19284646 |
PQID | 20649236 |
PQPubID | 23462 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17628ae3eb2048a6b402f08b9a9583ba pubmedcentral_primary_oai_pubmedcentral_nih_gov_2680895 proquest_miscellaneous_67229989 proquest_miscellaneous_20649236 gale_infotracmisc_A199627933 gale_infotracacademiconefile_A199627933 gale_incontextgauss_ISR_A199627933 pubmed_primary_19284646 crossref_primary_10_1186_1471_2164_10_107 crossref_citationtrail_10_1186_1471_2164_10_107 springer_journals_10_1186_1471_2164_10_107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-03-13 |
PublicationDateYYYYMMDD | 2009-03-13 |
PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-13 day: 13 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC genomics |
PublicationTitleAbbrev | BMC Genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2009 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
SSID | ssj0017825 |
Score | 2.210393 |
Snippet | Background
The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over... The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over 48,000... Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass encompasses over... Abstract Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). This subclass... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107 |
SubjectTerms | Acari Animal Genetics and Genomics Animals Arachnida Arthropoda Base Composition Base Sequence Biomedical and Life Sciences Codon - genetics Dermatophagoides pteronyssinus Dermatophagoides pteronyssinus - classification Dermatophagoides pteronyssinus - genetics DNA, Mitochondrial - chemistry DNA, Mitochondrial - genetics Gene Order Genes, Mitochondrial - genetics Genetic aspects Genome, Mitochondrial House-dust mite Ixodidae Life Sciences Limulus polyphemus Metazoa Microarrays Microbial Genetics and Genomics Mitochondrial DNA Mitochondrial Proteins - genetics Molecular Sequence Data Nucleic Acid Conformation Phylogeny Physiological aspects Plant Genetics and Genomics Proteomics Research Article Restriction Mapping RNA RNA, Ribosomal - chemistry RNA, Ribosomal - genetics RNA, Ribosomal, 16S - chemistry RNA, Ribosomal, 16S - genetics RNA, Transfer - chemistry RNA, Transfer - genetics Sarcoptiformes Sequence Analysis, DNA Trombidiformes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpBSyEBEWKNi87DjdeVUGCA7RSb9bEdtpK1Kk2G6T-Cv4yM06ybIoKF67OZLU783nm89r-hrHnWFStbRC8GdQOFyhgY7CZikEoh_xV1C70jPz8Re4fFp-OxNFGqy86EzbIAw-OW6Q4WxW4HFeACDaQNS54mkTVFVRC5XWgRljGpsXUuH-AdU-Ee0VlGme4Ipg2KJVcrMcoA6XURnajIAXd_j-z80Z5unx08tL-aShLe7fYzZFP8jfD77jNrjl_h10fOkxe3GU_EQY8HBtHcszPcPpiuvOWUMdJnvXM8bbhSAL5Sdt3jlMfDzJz_D2lbFIdgOP21LqOn2MEWn-Bc8j3HX95sGx7ap-yXO2-5sB9-8OFj3Qclku6sUB_O_LQywhHhm4MtrvHDvc-HLzbj8ceDLEpk2QVl00NSPKMFbkUxqSFq60wwkrjhHAZhoF2bpFDQANgkD4BJK4oEwVQJ8bk-X225VvvHjIOKSjkT0aSQrxIDZCWWCqbwlZNam0RscUUCG1GgXLqk_Fdh4WKkppCpyl0YSQpI7a7fuN8EOf4i-1biu3ajmS1wwCCTY9g0_8CW8SeETI0CWd4OplzDH3X6Y_fvmqSD5YZZrs8Yi9Go6bF729gvOiAXiCtrZnlzswSZ7aZPX46AVDTIzoO5x2iQWdIJJGZy6stZJkh0VBVxB4MgP3toAoZiSzw3XIG5Zln5k_86UkQHs-oT0slIvZqAr0eM153pd-3_4ffH7Ebwy5eHqf5DttaLXv3GMngqn4S5v0vjwtajQ priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA6lIvgi3h2tGkTQCkPnlkzGt3opVdAHbaFv4eQy20I7U2Z2hf4K_7LnZGZWp1rB1-Rk2T23fNmTfIexF7ipOlej82ZgPB5QwMXgMhWDUB7xqzA-9Iz8_EXuHxafjsTRBsumtzDhtvtUkgyZOoS1kjspptE4Q3RPmSOlB-TXBLkP-vBhtruuHOCOJ6Zy5F9WzbafwNL_Zy7-bTO6fFHyUrU0bEJ7t9jNET3y3cHct9mGb-6w60M_yYu77AcanYdL4giF-RkGKya3xpGPcSJjPfO8rTlCPn6MB37PqWsHiXn-nhI0cQzAoj1xvufnqO-2ucCIaVY9f3XQtStqltItt99w4E373YeP9By6jt4n0J-MPHQuwpGh94Lr77HDvQ8H7_bjseNCbMskWcZlbQCVap3IpbA2LbxxwgonrRfCZ6YCqtMiYoAawCJYAkh8USYKwCTW5vl9ttm0jX_IOKSgEC1ZSXzwIrVAzGGprAtX1alzRcR2JkNoO9KRU1eMUx2OJUpqMp0m04WRpIzY9nrF-UDF8Q_Zt2TbtRyRaIeBtlvoMSZ1ihuBAp97Q-zFIA2epetE4a-shMoNROw5eYYmmoyG7uEsYNX3-uO3r5rIgmWGuS2P2MtRqG7x-1sYnzWgFohZaya5NZPEOLaz6WeTA2qaostvjUdv0BnCRsTh8moJWWYIK1QVsQeDw_5SUIX4Qxa4tpy58kwz85nm5DjQjGfUlaUSEXs9Ob0e81t_pd4f_Y_wY3ZjqM3lcZpvsc1lt_JPEOItzdMQ0z8B7i1MMQ priority: 102 providerName: Springer Nature |
Title | The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart): a novel gene arrangement among arthropods |
URI | https://link.springer.com/article/10.1186/1471-2164-10-107 https://www.ncbi.nlm.nih.gov/pubmed/19284646 https://www.proquest.com/docview/20649236 https://www.proquest.com/docview/67229989 https://pubmed.ncbi.nlm.nih.gov/PMC2680895 https://doaj.org/article/17628ae3eb2048a6b402f08b9a9583ba |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DAOJ: Directory of Open Access Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2164 dateEnd: 20250331 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: C6C dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1471-2164 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017825 issn: 1471-2164 databaseCode: U2A dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0RfBF_G60nosIohCbr90kgkh7tlShRaoH97ZMdjfXQpvUy514z_7jzmxyPVPbvhzc7iQkszM7v83u_Iax1xhUjSnReCMoLC5QwPhgoswHkVnEr6KwrmbkwaHcHyVfx2K8So_uFNhcubSjelKj6en73z8Xn9DhPzqHz-RWiBOsHyHupzklpNTydYxLEdn4QbLaU8BYKFyuUSe93LS84g69IOW4_P-fsf8JWZePU17aU3Whau8-u9dhTL7dGsUDdstWD9mdturk4hH7g6bB3VFyBMz8DF0atVAZskROlK1nltclR2DIj-t5YznV9iAxyz_TNE5MBDCpT4xt-DmOSl0t0K-qecM_cOBV_cu621gO0yllLtDnR-5qGmFLW5XBNI_ZaG_3x3Df72ox-DoNgpmflgUg2NNGxFJoHSa2MEILI7UVwkZFDrSDi1gCSgCNMAogsEkaZABFoHUcP2FrVV3ZDcYhhAxxlJbEFC9CDcQpFsoyMXkZGpN4bGupfKU7onKql3Gq3IIlk4qGS9FwuZYg9djbiyvOW5KOG2R3aDwv5Ihe2zXU04nqvFWFGCIysLEtiNcYZIGr7DLI8C1zkcUFeOwVWYMiAo2KTuhMYN406sv3I0U0wjLCWS_22JtOqKzx-TV0CQ-oBeLc6klu9iTRw3Wv--XS6BR10bG4yqIFqAgBJSJ0eb2ETCMEHFnusaetka4UlCMykQlem_bMt6eZfk91cuwIyCOq15ILj71bGrpaOu61en928zs-Z3fbfbrYD-NNtjabzu0LhHuzYsBup-N0wNZ3dg-_HeG_oRwO3KeTgfNv_B1F238BkqdVRg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLamTgheEHcCg1kICYYULTc7CW_lMnVl2wPrpL1ZJ7bTTWLJlLZI-xX8Zc5xkkIGQ-LVPq5an9vnHvs7jL3GpGpMicYbQWHxgALGBxNlPojMIn4VhXU9Iw-P5OQkmZ6K0w0W9W9h3G33viTpIrVz60zuhhhG_QjRPUWOkB6Qb2ZCyGTENsfj6fF0XTvAnCf6guRf1g0SkOPp_zMa_5aOrl-VvFYvdWlo7x672-FHPm4Vfp9t2OoBu9V2lLx6yH6g2rm7Jo5gmF-gu2J4qwxZGSc61gvL65Ij6ONneOS3nPp2kJjlnyhEE8sAzOtzYxf8Ene8rq7QZ6rVgr-dNfWK2qU0y533HHhVf7fuIy2HpqEXCvQ3I3e9i3Ck7b5gFo_Yyd7n2ceJ3_Vc8HUaBEs_LQtAUKeNiKXQOkxsYYQWRmorhI2KHKhSi5gBSgCNcAkgsEkaZABFoHUcP2ajqq7sU8YhhAzxkpbECC9CDcQdFsoyMXkZGpN4bLdXhNIdITn1xfim3MEkk4pUp0h1biRIPbazXnHZknH8Q_YD6XYtRzTabqBu5qrzShViKsjAxrYg_mKQBZ6myyDDX5mLLC7AY6_IMhQRZVR0E2cOq8VC7R9_VUQXLCOMbrHH3nRCZY3fX0P3sAF3gbi1BpJbA0n0ZD2Y3u4NUNEUXX-rLFqDihA4IhKXN0vINEJgkeUee9Ia7K8NyhGByATXpgNTHuzMcKY6P3NE4xH1ZcmFx971Rq-6CLe4cd-f_Y_wNrs9mR0eqIP9oy_P2Z22Uhf7YbzFRstmZV8g4FsWLzsP_wkF2VBl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtQwELVQKxAviHsDhVoICYoUbW52Et4WyqpdoEK0lfpmTWxnW4kmqySL1K_gl5nJZSGFIvFqj6PEnstxxj7D2EsMqsbkqLwBZBY3KGBcMEHigkgs4leR2bZm5OdDuX8SzU_Faf_DrR5Ouw8pye5OA7E0Fc1kafLOxBM58dGlugEiffIiPl0m30xEKnHztTmdzo_m6zwCxj8xJCf_Mm4UjFrO_j8982-h6eqxySu50zYkze6yOz2W5NNu8e-xG7a4z2521SUvH7AfqAK8PTKOwJhfoOmiqysMaRwnatYLy8ucIwDkZ7j9t5xqeJCY5XvkrolxABblubE1X-Lsl8Ul2k-xqvnr46pcUemUqtl9y4EX5XfbPtJyqCq6rUC_HHlbxwhbukoMpn7ITmYfjt_vu339BVfHnte4cZ4BAjxtRCiF1n5kMyO0MFJbIWyQpUBZW8QPkANohE4Ano1iLwHIPK3D8BHbKMrCbjEOPiSInbQkdnjhayAeMV_mkUlz35jIYZNhIZTuycmpRsY31W5SEqlo6RQtXdvixQ7bXY9YdsQc_5B9R2u7liNK7bahrBaqt1DlY1hIwIY2Iy5jkBnurHMvwa9MRRJm4LAXpBmKSDMKOpWzgFVdq4Ojr4qog2WAni502KteKC_x_TX0lxxwFohnayS5PZJEq9aj7p1BARV10VG4wqI2qABBJKJyeb2EjAMEGUnqsMedwv6aoBTRiIxwbDxS5dHMjHuK87OWdDygGi2pcNibQelV7-3qa-f9yf8I77BbX_Zm6tPB4cen7HaXtAtdP9xmG021ss8Q-zXZ897AfwKkIVSv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complete+mitochondrial+genome+of+the+house+dust+mite+Dermatophagoides+pteronyssinus+%3A+a+novel+gene+arrangement+among+arthropods&rft.jtitle=BMC+genomics&rft.au=Dermauw%2C+Wannes&rft.au=Van+Leeuwen%2C+Thomas&rft.au=Vanholme%2C+Bartel&rft.au=Tirry%2C+Luc&rft.date=2009-03-13&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=10&rft.issue=107&rft.spage=107&rft_id=info:doi/10.1186%2F1471-2164-10-107&rft.externalDocID=A199627933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |